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I. Introduction

In the past few years, we have seen a great surge of interest in string theories.
These theories—at least the supersymmetric ones—have the potential to unify all the
known fundamental interactions in a desirable manner*3l. The dynamics of the string
theory, however, is quite in its infancy. That is to say, we do not yet have acceptable,
second quantized, string field theories at least for the superstrings. Consequently,
much of the dynamical information about strings is derived from the first quantized
theories. For example, by considering the evolution of the string in the presence of its
massless background excitations, it is possible to construct the generating functional
for the S—-matrix elements for the scattering of the massless states of the string(®* and
develop a perturbation theory where we have to consider only one surface of a given
genus at each order of the perturbation theory. Moreover, we can give nonzero vacuum
expectation values to these background fields in order to study the mechanisms of
compactification in the string theory. However, the background fields are not allowed

to acquire any arbitrary configuration.

The guiding symmetry in the case of the string theories is the infinite dimensional
conformal invariance. This symmetry is quite essential for the consistency of the string
theories. Therefore, the background has to be compatible with the requirements of
conformal invariance of the string theory. As we know, the S—function in a theory is
a measure of the conformal anomaly. The compatibility of the background fields with
conformal invariance can, therefore, be translated to a requirement that the allowed
background field configurations give rise to vanishing A-functions of the theory!®.
The B-functions can, of course, be calculated perturbatively® and consequently the

compatibility conditions on the background fields can be determined perturbatively
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in the first quantized theory and these conditions are the equations of motion satisfied

by the backgrounds.

An equivalent, but more elegant and algebraic method of implementing the re-
quirements of conformal invariance, is through the method of BRST quantization. In
this approach, one constructs the BRST charge appropriate to the conformal invari-
ance of the string theory. The BRST charge, Qsrst, by construction is fermionic and
anticommutes with itself (nilpotent) in the absence of any anomaly. Consequently, a
background which is compatible with the conformal invariance can be determined to

be the one which maintains the nilpotency of Qprsr.

While the BRST approach has been worked out for a bosonic string coupled
to non-trivial backgrounds!’~'%, much remains to be done for the superstrings. In
particular, the Hamiltonian structure of the Green-Schwarz superstring!!!! is far from
clear at present. Consequently, as a first step, we have chosen to study the BRST
quantization of the Neveu-Schwarz-Ramond closed type II superstring propagating
on the background of a gravitational and antisymmetric tensor field which are massless
states of the NSR string. Although there exists a Hamiltonian formulation of the type
IT superstring in curved background,[?l a complete BRST formulation for graviton and
antisymmetric tensor background is lacking so far. The presence of the antisymmetric
field is quite interesting in that it gives rise to torsion in the propagating manifold.
The consistency of the superconformal algebra has never been explicitly exhibited
in the presence of torsion. Therefore, such a calculation is quite worthwhile, since
we know from ou;' experience with supergravity theories that the presence of torsion
can sometimes alter the physics in our interesting way. Another attractive aspect
of the present investigation is that some of the salient features of the model can be

reformulated in a geometrical manner which is both economical and elegant.
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The rest of the paper is organized as follows: In Section II, we describe the
Lagrangian with its various symmetries. Then we discuss various identities which
are appropriate to a manifold with torsion and which are useful in the study of the
algebra. In Section III, We construct the generators of the super conformal algebra,
the stress energy momentum tensor T, and T__; and the supercharge densities Jit
and J__ and we explicitly verify the classical algebra of the constraints which is
identical to the superconformal algebra and construct the BRST charge appropriate
to this theory. In Section IV, we obtain the classical Ward identities following from
the symmetry properties of the S-matrix generating functional. The question of
the nilpotency of the quantum BRST charge, Q@ srsr, and the resulting equations of

motion for the background fields would be discussed in a subsequent pé.per.

II. The Model

The Lagrangian describing the propagation of a NSR string in a non-trivial back-
ground is given by{t3
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where the world—sheet indices y,v = 0,1 and 1,j,%,£ = 1,2,...d. €au denotes the

Zweibein of the world sheet satisfying
€auly, = G

B__
€au€p = Mab
and

e = dete,, (2.2)

Our metric convention is (+,—) and (+,—,—,...,—) for the world sheet and the
target manifold respectively. The flat space antisymmetric tensor €®! = 1 and the

two dimensional Dirac matrices in the flat background are chosen to be

t
P = o= =p°
10
0 -1
pl = —id? = ____plt
1 0
1 0
ps = ppt=0"= =pl (2.3)
0 -1
so that
papb — nab + eabps (2.4)

holds.
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Xy Tepresents the two—dimensional gravitino and % is the super partner of the
string variable X*. Both x, and ' are majorana spinors. The gravitational and
the antisymmetric tensor background fields are represented by G;;(X) and B;;(X)
respectively and satisfy

Gi;i(X) = Gu(X)

B;(X) = —Bj(X) (2.5)
In terms of these variables, then, we have

Th = 5G™ (Gt + BuGhm — BnCis)
Tijk = B;BJ'). + 6,-Bk.- + al:Bij

R = OT%, — 8 T% + ITh, — Tl (2.6)

D; is the covariant derivative with respect to the affine connection defined above in
Eq. (2.6) and k is an arbitrary constant parameter required, for the consistency of

the Wess~Zumino action, to take on integer values only.

The Lagrangian of Eq. (2.1) is invariant under the following symmetry transfor-

mations.

(i) Reparameterization invariance:
deay = &' (0,7)0vequ + (0" (0,7)) €ar
bxu = &(0,7)0xu + (0ué” (0,7)) X0
§X' = ¢#(0,7)0,X°

6’¢’" = 6"(0'1 T)au"/’i ‘ (2.7)
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where £#(o,7) is the parameter of the transformation.

(ii) Local Lorentz invariance

bean = Aeles,
1
Bxu = —5APsXu
i 1 i
oYt = —‘i/\Psd’ (2.8)

where A(o,7) is the parameter of transformation.

(iii) Weyl scaling:

deay = Aegy,
1
EXu = EAX“
Y = — §A¢t' (2.9)

where A(o,7) is the parameter of transformation.

(iv) Local supersymmetry:

deqy = 20Epaxu
§xu = (Bu—%ps (wp—Y“psp-x))e
X' = —wp
s = iph (a,‘x*'+7“¢")e
+ Fj‘k’ﬁkﬁbj

+ %G“Tju (;ﬁ—jps'ﬁk) € (2.10)



‘Here €(o,7), a Majorana spinor, is the parameter of transformation and
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wy = —e% [ei (B”eb,\ — a,\ebu) + e;\eg (apec,\) ef]

(v) Conformal supersymmetry:

5X/.4 = ipuﬂ

where 7(0,7) is the parameter of the transformation.

(2.11)

In addition, the Lagrangian is also invariant under the reparameterization of the

target manifold. However, there is no space-time supersymmetry for this Lagrangian.

The various symmetries of the Lagrangian allow us to choose a gauge fixing to

simplify the calculations. A particularly simple choice is the orthonormal gauge where

we choose

and

H . LM
ea‘aa

Xu = 0.

The Lagrangian in this gauge becomes

L

%n“"a,.X"a.,X"G.-,-(X)A -+ gk;e“”B.-,-(X)a,,X"B,,X"

%FP" (8w + I8, X*9*) Giy(X)
ik

mﬂjh?ﬂ“ﬂs’ﬁjaux k
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k — i
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(2.12)

(2.13)



s FERMILAB-Pub-88/208-T

and that we can consider all the two dimensional quantities as the flat space objects

in this gauge.

Let us note here that the antisymmetric tensor B;;(X) gives rise to torsion in
the manifold even in the absence of fermions!!¥. Furthermore, the torsion acts differ-
ently on different light cone vectors. This can be most easily seen by calculating the
change in the bosonic Lagrangiaﬁ under an arbitrary variation of the target manifold

coordinates. Thus
6Lbosonic = & (%"]“VBMX 9,X7Gi;(X) + glj-rﬁ“”Bij(X )0,X'8,X i)
= —6X'(9*Gi;0,06,X7
+ {-;-17"” (0eGij + 0;Gux — 8;Gjx)
- %e’“’ (0:Bjk + 0;Bi; + 8, Bi;) }aquavXk
- _sxiG, [n“”a,.auxf + 7*TL,8,X*8,X*

- —’ie“"T,g;auXka,,X‘]

8r
- _isx"a.-,- (DM, X7 + DPo_x7] (2.14)
where we have defined
8: X7 = (8o £ 8;) X? (2.15)

and

Do, X7 = 8.(8,X7)+ Ty, (8_X*)(8, X*)

DPo_X7 = 8,(8_X7)+ T, (8, X*)(a_X*) (2.16)
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with
ri, — I\:iu__iTJ'u
8w
rés, = rf,,,+i:rv'u (2.17)
8w

In fact, this analysis suggests that in such a case, we can write down two generalized

curvatures for the manifold following from Eqs. (2.6) and (2.17), namely,

R(l)‘ju = atr(l)ijk — akr(l)ijl
+ T@m @y, rMm, ray,
Ry, = 8,3, — 8, %,

+ I@m, 1@, _ r@m oK (2.18)
Written explicitly, the two generalized curvatures of Eq. (2.18) take the form

k
R, = Riu+ P (DwTgij — DiThij)

k?
6473

k
R, = Riu- g (DrTuj — DeTiij)

G™ (TiemTjtn — TitmTjkn)

k? n
t Gans G™ (TitmTjtn — TitmTikn ) (2.19)
Let us note further from the relation
DTsj — DiTijn + DiTjne — DjTiss = 0 (2.20)

that

RM, = RCY,; (2.21)
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Moreover, R(],Zt and RS:Z‘ satisfy the following Bianchi identities which are useful in

proving the superconformal algebras, given in Section III.

k k? . .
R(l) + 4—7;D§-1)T.~u + T6m3 TijmT ™ + cyclic perm 3k€ =0
R E pog, + Xog. li ikt =
ke Y5 Lk + = Tona imd ke + cyclic perm jkl =0 (2.22)

k
DRy + G (TWR“’ ~ TyimRigk)

+ cyclic perm jkf =0

D; Rf:zu - siG" (TthR(z) Tm'mRS:llz)

+ cyclic perm jké =0 (2.23)

The analysis of constraints and the algebra take a particularly simple form if we
go to the local coordinates of the target manifold. Let us define the vielbeins, Ey;,

which satisfy
Eu(X)ENX) = Gy(X)
Ex(X)E5(X) = mas (2.24)

where 7,7 and A, B take values 1,2,...d. We can also define X—independent spinors

through the relation
P(X) = Ey(X)¢*(o,7) (2.25)

as well as the one component spinors, ¥4, as

S(1 £ oot = 9 (2.26)
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In terms of these variables, the Lagrangian of (2.13) becomes

L = -;— (ﬂ“"Gij(X) + ;;e“"Bij(X)) 9,X'3,X7
; .
- 51/1‘_1 (nAsa pB — w5233+X'¢f)
)
+ T/fﬁ (nA53—¢f 5233—X1¢+)
1
+ TRty (2.27)

The two spin connection terms are defined with the two different torsions as

w:(,lsz = —F,4;0 EB - EAJI‘(I) Et
k i ot
= wW;aB + 'S';EAJ'T wEy
wlly = —Ea;8,EL — E T4 ES
k
= Wi 4B — S—EAJT EB (2.28)

In writing eq. (2.27) in terms of the one component spinors 14, we have used the

Majorana property and the charge conjugation matrix in our convention is
C=p'=-CT=-C* (2.29)

Let us also note here for completeness that we can write the generalized curvatures

in terms of the spin connections as

Fh = BiBEE)

(1 ) (1) (1 ..,(1)¢C

= akw - a[w AB + wl Acwk B

- wilowh s (2.30)
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and
RS}, = ELELRY),
= akwg,z)w - 3£W1£23 + Wz( i)c &ac

w’(ezlcwgzgc (2-31)

III. The Algebra of Constraints and BRST Quantization

It is clear from the structure of the Lagrangian in Eq. (2.1) that e,, and x, are
not dynamical variables. Consequently, their equations of motion would give rise to

constraints in the theory. Namely,

6L

e = €T, ~0

L (3.1)
6)(“

Let us note that Tuv and J# are the stress tensor and the supersymmetry current
respectively. In the orthonormal gauge of Eq. (2.12), the components of 7., take the

form
T+.. - T01 - T10 = 0
1
Ty = 2 [(Too + T1) + (Toa + T1o)]
1 . . ;
= = [G,-,-(X)6+X'6+X’ + 2ip2 (napdrp? — wfpo X p5)

f,llﬂﬁ‘ ¥l ¢+¢+] (3.2)

T . = % [(Too + T11) — (Tox + To)]
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1 )
- [ $(X)0-X0_X7 + 204 (nandi® — w0, X'y
R o] (3.3)
In writing Egs. (3.2), we have used the fermion equations following from the Lagran-
gian in Eq. (2.27).

In the one component notation of Eq. (2.26), we can also calculate explicitly the
components of the supersymmetry current in the orthonormal gauge of Eq. (2.12),

and they take the form

J4JE = Jf=Jd,=0
J_Jl = Jo=J,_=0

J_?_—J_ll__ = J_;=J++
i3 tk i3k
= 2G;;0:X ’/’+m‘ﬂjk‘/’+¢+¢+

O+ = Jr=J_

= 2G4(X)0_X'y + .,1.1/" R (3.4)

For later convenience let us define a differently normalized supercurrent, namely,

Jy = %J++ = Gi;(X)0, X'y + uk1/’+¢+7/’+
J. = % = Gii(X)o_ XYL + ,,k¢‘ Rk (3.5)

Thus the constraints of the theory take the form

12
=)

Tys

Iy

12
o
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T__

1
o

J-

12
o

(3.6)

We recognize these as the generators of the superconformal algebra. Therefore, we
expect the constraints to be all first class and the algebra of the constraints to be the

superconformal algebra.
In order to check the algebra, let us first note from Eq. (2.27) that

oL ok .
F=g% = GuX'+ —B,XY - -¢f¢f wilp

+ ¢A¢f e (3.7)

where X* = %X fand X" = %X i, We note that the nontrivial fundamental Poisson

brackets of the theory are given by
{Xi(e,7), Pi(o",7)} = 6i8(o- o)
{¢+ ‘77 ¢+ (a' T)} = _iﬂABg(a - a')
{#2(0,7),92(0,7)} = in*B5(0 - o) (3.8)

It is worthwhile to mention here that the fermionic Poisson brackets of (3.8) are to be
understood as Dirac brackets due to the presence of second class constraints as follows:
The canonical momenta associated with % are defined as i = a ) Sk — :!:21/1i, and
therefore, give rise to the second class constraints 7§ F §¢£ =~ 0. These constraints
can be eﬁminate& by standard procedure of introducing Dirac Brackets and last two
equations in (3.8) are to be interpreted in that sense. We adopt this prescription in

the computation of all Poisson bracket relations involving fermions. Furthermore, we

have already taken into account the Majorana nature of the fermions while obtaining
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(3.8). It follows from Egs. (2.25) and (3.8) that
(@@} = FEix08E - o)
{Benwien] = —awise-o) (39)
We are now in a position to calculate the algebra of the constraints. Let us note that

{J+(0',T) - (d',r)}

- { G50, X (0,7), Gpody X2 (o, 7) }

Lk

i 224 {G"a+X ¥i (0,7), e V29595 (d’,T)}
Lk

i 214 { Tini¥iv) (0,7), Gpads X2 (cr’,r)}
kz

- —576,,2{Ti5k¢i¢i¢i (0,7) s Tpar ¥ 92Y7, (a’,r)} (3.10)

Each of these terms can be evaluated using the relations in Egs. (3.7), (3.8) and (3.9).
They take the forms

{Gija+Xj¢i- (0,7) , Gpg0: X% (o', 7) }
. { i k i3
= [—iGy0, X0, X7 — —Tudy X ¢ 9]
+ 2¢:’, (api + 1o, x*yt) @

+ S:mmw Pt

zk’
+ Py nG "ﬂJmTklnﬂb#/’ ¢’+¢-l|-]5(°'—°") (3.11)
ik T ofyd P2 T !
. {Gi:'a+X Yi(oy7), TR 39l (U’T)}

k
87

'Ic

= [— yp

T._-,k3+Xk¢’+'¢’+ 2 ( t1k¢+¢+¢+) ¢P
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+ g B Tewb i vl il 16 (0 - o) (3.12)

ik o
o {Tabipivh (5,7), Gl X3 (',7) |

ik -
- E{Gﬁmxw; (0,7) s Tom 2245, (a",'r)} (3.13)

_k2
57672
1k?

= o G Tijm T, Y0 L 6 (0 — o) (3.14)

{Tabl bk (0,7), et 38295 (01,7 |

Combining equations (3.11)~(3.14) and using the identities of Section II (2.22)-(2.23),

we obtain
{Ji(oy7) Iy (0, 7)} = 2iT44 6 (0 — o) (3.15)

Similarly, we can show that

{J-(o,7),J_(0',7)} = +2T__6 (0 — o) (3.16)
The poisson bracket {T(o,7),J1(0’,7)} can be explicitly evaluated by noting that

{Toste)  T@n)}

= {-;-G;58+X‘8+X" (0,7),Js (' 7) }

+ {i‘ﬁ‘ﬁ (ﬂAaaﬂﬁf - w:(,lz.ealxiﬁbf) (oy7) Js (‘T',"')}

+ { - SRS (07) 0k (0m) ) (3.17)
Each of these terms can be evaluated to have the form

%{Gi,-a+x‘a+xf . (a’,r)}



~17- FERMILAB-Pub-88/208-T

, . 1 .
= [ — 6+X'3+X’3,-¢”Gjp - -2—3+X'¢3_3PG,,

. k g k
+ 3+X‘ (6,, (G,’j - EB'J) X — a.. (qu —_ EBPQ) qu) 1/,1

+ BP0, X0, Xu{lpps
) . .
~ SRELWEYL0. X7 8(o - o)
k

+ 8,X'(o,7) ((G,-,, — EB"’) (o,7) + (Gp-' - %Bm‘) (0’,7))

Y (o', 7) 016 (0 — o) (3.18)

i{’/’f (UABBI¢-€ - w,(,ﬁaalx'kpf) (0y7),J4 (o', 7) }
[ — (8,94 — 2whs8 XYE) E4qdy X

10, X 0wl ) g APyt — il po1pAyByt

20, X wi Jwl L r w2 yh

. ,
o FaTor 024391

X B Tl 94416 (o — o)
V2 (0) Bag (¢)) 0: X% (o) — il (o) (o192 (o 12 (o)
v (s () 2 (o) ¥ (o)

%Eﬁ (a") Togr (a") ¢i (a-') ¢:_ (o.l) ¢ﬁ(a)] 8,6 (0' _ a") (3.19)

ottt t0)

o p——

) .1 L
;| RO wh 0, X7 — S D, R vl vttt
k

+ 53 C R T biviut ¥iut |50 — o) (3.20)



-18- FERMILAB-Pub-88/208-T

Combining Egs. (3.18) - (3.20) and using various identities of Section II, Egs. (2.22)

- (2.23), we obtain the following algebra
{T++(a',1'), J. (o', 7) } = (204 (0,7) + Ty (0, 7)) B (0 — o) (3.21)
Similarly,
{T__ (0,7),J- (o', 7) } = — (2] (o,7) + J_ (¢',7)) 816 (o — o) (3.22)
A much simpler and straightforward calculation gives

{J+ (0,7),J- (a','r)} —0 (3.23)

It then follows from the Jacobi identity

{{J+,J+},J_} + {{J_,J+},J+} + {{J+,J_},J+} =0 (3.24)

that
{T++ (7,7),J (o",‘r)} —0 (3.25)

Similarly, it follows from another Jacobi identity

{{J_,J_},J+} + {{J+,J_},J_} + {{J_,J+},J_} =0 (3.26)

that |
{T__ (0,7),J4 (a',T)} ~0 (3.27)

In order to derive the algebras involving T, we use the following Jacobi identity

{2 p Tua f{{Tuw o2+ {0 ma 2} = 0
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and arrive at

{T:I::t (0‘,1") aT:t:t (0”, T) } =+ (T:i::t (O’,T) + Ty (0",7')) 0,6 (0’ — 0") (3.28)

Furthermore, the relation

{T_ﬂ (0,7), Tex (a','r)} —0 (3.29)

from the Jacobi identity involving J_,J_ and T, ..

This completes the demonstration that the classical algebra of the constraints is

indeed the superconformal algebra.

Following the method of Batalin, Fradkin and Vilkovisky!s), we can now write

down the BRST charge, Qgrsr, for the theory.

@BRrsT = _/da' [T++77+ +T_ - +J. A,
+ JoAD + Pi8oneny — P_B.n_n_
4 iPLAL Ay —iP_A_AL
+ (+0:A4m4 + %C+/\+3a17+

S B %g_,\_a,n_] (3.30)

where 7 are anticommuting ghosts and Py their canonical momenta so that they

satisfy following Poisson bracket relations.

{'Pi(a',‘r),ni (a",'r)} = §(oc—7d'),

{Peeym)ma(om)} = 0 (3:31)
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Similarly, the even Grassmann type ghosts Ay and their corresponding cannical mo-

menta, (1, satisfy the canonical Poisson brackets

{/\i (6:7),¢x (o', 7) } = §(c—10')
{i(em) 6 (0 m) b =0 (3.32)

The BRST charge as constructed in Eq. (3.30) is nilpotent at the classical level as a
result of the classical algebra. The quantum BRST operator has to be defined with
proper normal ordering prescription(® for the fields appearing in Eq. (3.30). The
quantum nilpotency condition of Qpggsr restricts the space-time dimension of the
target manifold to be 10 as is well known. In the presence of nontrivial background
fields Qs = 0, at the quantum level imposes strong constraints on the background
field configurations. The implications of the nilpotency of the BRST charge for the

present model will be reported in a subsequent publication(1®.

IV. The Ward Identities

In this section we shall discuss the invariance properties of the Fradkin-Tseytlin
S-matrix generating functional®, ¥, under the general coordinate transformations
in the target manifold. Eventually, we shall derive the gravitational Ward identities
(WI), for the S—matrix elements, as a consequence of the invariance properties of X.
We define the S-matrix generating functional in the presence of graviton and the

antisymmetric tensor background to be

L[G,B] = /\/——C_}'D "’D?'Dd:"ughasts)

ezp(iS [G, B, X, %, ¥,ghosts]) (4.1)
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where G = detG;; and S is the full gauge fixed action including the ghost fields. As
was emphasized earlier, the generating functional is well defined for those background
field configurations which are compatible with conformal invariance of the theory. In
other words, X is required to be BRST invariant. The BRST invariance of X, at the
classical level, follows from the Fradkin-Vilkovisky theorem!*®l. Indeed, the quantum
BRST invariance gives rise to anomalies in general and the absence of these anomalies

lead to the equations of motion of the background fields.

We shall focus our attention to study the invariance properties of ¥ under the

general coordinate transformations
X' (o,7) = X (o,7) + €(X) (4.2)

where {(o,7) is an arbitrary infinitesimal function of X*(c,7). Under the transfor-

mation

feX' = £(X)
. ags
beyp* = a;—mlﬁ"‘
-t a i —m
¥ = T (43)

Furthermore, under the shift of coordinates (4.2), X* — X* + ¢¥(X), the background

metric G;;(X) and the antisymmetric tensor B;;(X) are shifted to

5G(X) = 52-Gu(X)E™(X)
§eB(X) = o Bi(X)Em(X) (44)

Note that the variations of all the connections and generalized curvatures can be

obtained in a straightforward manner using (4.4). The ghost fields remain invariant
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under the transformations (4.2). We can compute the variation induced on the full
action, S, under (4.2) using eqs. (4.3) together with (4.4). It is a straightforward

computation to check that the simple relation
8¢S = LS (4.5)

is satisfied, where £¢S is the Lie derivative with respect to the parameter ¢. The Lie

derivative of the background fields are defined as follows

LeGii(X) = Gim(X)0€™(X) + Gim(X)0il™(X) + 8mGij(X)E™(X),
LGI(X) = —G™(X)0mt(X) — G™(X)0mt(X) + 8.G(X)E™(X),

L¢Bij(X) = Bim(X)3i6™(X) + Bmi(X)8:£™(X) + 8mBi;( X)E™(X), (4.6)

Similarly we compute the Lie derivatives of all other tensors in arriving at the relation
(4.5). Notice that the path integral measure remains invariant, at least classically,
under the general coordinate transformations. We are aware, however, that quantum
effects might destroy the invariance properties of the measure and give rise to anoma-
lies. In fact, we have investigated(!”), in the recent past, the effects of such anomalies
in the case of compactified closed bosonic string coupled to the gauge background
fields. Therefore, the invariance properties of X, presented here, are to be consid-
ered as the classical result. Now we argue that the generating functional satisfies the

relation

2(G,B) = (G — L¢G, B — L,B] | (4.7)

due to the property (4.5) and the invariance of the path integral measure (at least
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classically) under (4.2). We immediately arrive at

0= f DZ ( o Z)LZeG.,(Z) + 5362( Z)LEB.,(Z)) (4.8)

where £;G;; and L;B;; are given by (4.6). We can suitably modify the arguments of
ref. 7 to deduce the desired WI. The main sequence of steps are as follows. It follows

from the definition of X, eq. (4.1), and the relation (4.8) that
oL
0 = < [D25(X (o)~ 2) ( / Po g LG
6L
+ /dzU‘ECEBiJ') > (4.9)

where < .... > means the averaging with the measure of the path integral together

with exp(i5). We can rewrite the above equation (4.9) as
< /d’a’ (VéjﬂeG;j + V;jl:eB,'j) >=0 (4.10)

where the vertex function V¥ and V;’ are defined as

g §L .. 8L
] — ] —
Vg = 3Gy and Vg = 5B, (4.11)
Using eq. (4.6) in (4.10), we get
< / d’o [Véj (GimOi€™ + GmjOil™ + 0 Gii€™)
+V5 (BimDi™ + BrjOif™ + 8nBijt™) | >=0 (4.12)

We recall that {™(X) are arbitrary infinitesimal functions. Therefore, eq. (4.12)
should continue to hold good if differentiate the left hand side of the equation with

respect to {™(y) and then set {™ = 0; and we obtain

< f d’.r[vg"(c.-,,.()()a,-a (X (0) = y) + Gmj(X)3:8 (X (0) — y)
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+8,G:;(X)6 (X (o) — y)) + Vv (B.-m(X )8:6 (X (o) — v)

+Bni(X)85 (X (0) = 9) + 0nBy(X)6 (X (0) - 9) )| =0 (413)

We can generate all the WI for the S-matrix elements, involving scattering of gravi-
tons and the antisymmetric tensors, starting from the fundamental relations (4.13)

in the following manner.

Let us take functional derivatives of the LHS of (4.13) with respect to the back-
ground fields G;;,(X(or)) and By, (X (o))

N M
: ! 7 (G i o) —
I I §Gi,i; (X (01)) Brye, (X (01)) < d’a[VG (Gim(X)8:6 (X (o) — 9))

+Gomi(X)8:6 (X (0) — ) + Bmi( X)2:5(X (¢) — y)

+0,Bi5(X)5 (X (o) — y)] > |G=G‘ L (4.14)

It is understood the G;; and B;; are set to their background configurations denoted by
Gy and By, respectively after we take the functional differentiations. The background

configurations are compatible with conformal (BRST) invariance of the theory.
Notice that the functional derivatives §/6G;,;, and §/6B;,;, act in three ways.

i) The Derivative acting on the vertex function V7 and/or V¥ removes G;; and/or
g G B 1)

B;; present in the vertex function and introduces a §(X (o) — X(o71)).

(ii) Next, the background field functional derivatives acting on the terms involving

Gim and/or B;n, eliminate it and give rise to a §(X (o) — X(o1)) again.

(iii) Finally, each §/6G and/or §/8B acting on the action functional, implicitly present
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in the definition of < --- > bring down a factor of vertex function

/ &08 (X (0) — X (o7)) Vior / &0 (X () — X (o1)) Vi

Therefore, when a string of V functional derivatives of the background fields act

on < --- > they bring down N-vertex functions.

As a consequence of the above arguments, we find that the divergence of (N +
1)-point amplitude is given by a linear combination of N-point amplitudes. It is
easy to see from eq. (4.14) that, if we take the Fourier transform then the (N +
1)-point amplitudes get contracted with momenta k; (coming from the derivatives
of the é—functions), and this is related to N-point amplitudes and some contact
terms (appearing due to the presence of §—functions see (i) and (ii) above). This
is the gravitational Ward identity(!® arising due to the invariance properties of the

generating functional X.

The vertex functions V7 and Vj' defined through (4.11) take very complicated
form when we evaluate them for arbitrary nontrivial background values of G;; and
B;;. We present below the graviton and antisymmetric vertices for simple background
field configurations such as G;; # 7;j, the flat metric and B;; # 0; however, torsibn
Tije = 0.

6L

6Gpq Gpe=npq:\Tija=0

o |
= SMBLXPOX(X —y)+ SYLO_YI8(X — )

~ L4ro.4T8(X ~ )

+ (VR0 XBS(X — y) + $19L0_XI08(X — )
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- W10 X06(X - 1))
— (#2920, X708 (X — y)) + 424 0, XI0:6(X — y)
_ 10, X786 (X — y)) + %a[a,-s(x —y)Ppieigt  (4.15)

and

5L
5B
k

v
= = [ewa,,xva.,xq + S¥L YO X18:6(X — )

Gpe=npq,Tija=0

+ PiYi0-XPEE(X — y) + PRylo_X'8:6(X — y)
+ PLYPPOLXUB:6(X — y) + YLyl a, XP8S(X — y)
+ PPLa, X0 (X — y))

+ SOBB(X — g Wik (4242 + ¥i97) | (4.16)

V. Summary and Discussions:

We have studied the evolution of a type II closed superstring in the background of
its massless condensates, namely, the graviton and the antisymmetric Kalb-Ramond
fields, We have not considered the dilaton coupling, because our study has been re-
stricted mainly to the classical level and it breaks the superconformal invariance at
this level. In this paper we have shown explicitly that the classical superconformal
algebra holds ev;en in the presence of torsion. The Qpgrsr is constructed and the
classical Ward identities have been derived. We will describe the quantum nilpo-
tency of the BRST change and the resulting background equations in a subsequent

publication. ¢!
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