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Abstract

SDiff M, the group of area preserving reparametrizations of two—dimensional sur-
faces M, play an important role in the theory of relativistic membranes. We calculate
the riemannian curvature of this group and analyze the stability of their geodesics.

Since the geodesics are motions of an ideal fluid, this gives information on the insta-

bility of ideal fluid flow on M.
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In the light—cone gauge a residual symmetry of the relativistic membrane consists
of a group of area preserving diffeomorphisms of a two—dimensional surface M[1-3l,
The role of this group is close to that of the group of conformal transformations in

string theory.

In the fundamental paper of Arnold ™ it was shown that this group can also be
considered as a configuration space for an ideal fluid filling the domain M. Such a
flow is described by a curve g; in the group SDiffM and the kinetic energy of the

moving fluid defines a right-invariant riemannian metric on this group.

We calculate the riemannian curvature of this group SDiffS%. This formula allows
us to find the curvature in any two—dimensional direction and estimate the stability
of geodesics. Since the geodesics are motions of an ideal fluid (incompressible and

non-viscous), this gives information the the instability of ideal fluid flow on S2.

The Lie algebra SdiffS? corresponding to the group SDiff$? consists of all vector
fields with divergence 0 on S?. Since the first cohomology group of S? is trivial
- H'(S%,R) = 0, every element v of SdiffS? can be represented in a unique way

through the functions €, on $2,i.e.
v® = 8¢, a,b=1,2 , (1)

€'? = 1. This relation defines a homomorphism of the Lie algebra SdiffS? onto the

Poisson algebra PdiffS?
[e, GM]‘P = €L (2)
where

(€,7]p = 01€02m — Dyedhn (3)

and

v, uln = VP8 — p*80° . (4)
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The kernel of this homomorphism consist of the constant functions.

Kinetic energy, i.e., a positive definite quadratic form on the Lie algebra SdiffS?

is
(wv) = [ u-vdio (5)
where oy = —cosf,03 = ¢, p-v = gaupu®v? is the scalar product giving the riemannian

metric on S2. The scalar product (5) in SdiffS? can be represented as
(pyv) = ——/dza'e“Ae,, = —(ey, Ae) (6)

where p® = €20,¢,, v* = €°8se,, and A is the Laplace operator on $2. We also have

that

([IL,V]L,“’) =—- (E[M'V]L’ew) = - ([Emev]'p ’Afw) (7)
Let us introduce orthogonal basis in the PdiffS? by means of the functions ¥j,,(c)

Yim(0) = Cime™?*P™(—0ay)

= (o Tl ®

and define structure constants as

[Klml, Kz"‘:]? = Glams Ksms ’ (9)

lim,lama

(see Appendix). Basis e, in the SdiffS? algebra can be constructed by using homo-
morphism (1)

e = %Y, . (10)
For e;,, we have that
(6111711 ) elzmz) =—- (Y;Unl’AY;zmz) =

= (_1)m1 ll(ll + 1)611—1:5m1+ﬂu . (11)
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Structure constants of the SdiffS? algebra coincide with the structure constants of

the PdiffS? algebra (see (9) and (7))

[elmuvelzﬂu]L = Gi:::lzm, €i3ms - (12)

Bernoulli equations in hydrodynamics can be represented as the Euler equation

for the geodesics of the group G=SdiffS21!
v=—-B(y,v) , (13)

where the bilinear operator on algebra TG,, B : TG, x TG, — TG, is defined by

the formula
([F:V]Law) = (B(w,[l,),ll) (14)
and can be expressed in terms of the vector fields w and p of the Lie algebra B(w,v) =

curl w A p + grad a. Using (14) and (12) it is easy to compute B in terms of the

structure constant (12)

B (ehnu ’ el,m;) = bg:z:lgmg €3y
L(li+1)
Iym 1\¢1 lsm
l:m:l:mg = 13(13 + l)Gl:m:lgmz * (15)

Riemannian metric (5) on the group SDiffS? is right—invariant, therefore
(Veseiren) + (€j, Veier) =0 (16)
where ¢ = (I,m), and V/.,e; is the covariant derivative. Since
leise5]e = Veies — Vejei (17)

and

Ve €5 + Ve € = —B(ei: eJ') - B(eiaei) ’ (18)
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one can represent the connection as:

Nll—‘

Ve €5 = Dher = ([eiae:i]L — B(ei, ;) — B(ej, e,-)) (19)

In the basis (10) T¥ is equal to

phms  _ Va(la4+1) — (i +1) + L(L + 1) Glams
llmllzmz 2 13(13 + 1) ll'ﬂll:ﬂﬂ

(20)

Riemannian curvature of the group G with right-invariant metric at any point g
is determined by the curvature at the identity. Therefore, it is sufficient to calculate
the curvature in different directions in the Lie algebra TG.. The components of the

curvature tensor £
e, e5) = [Ven ve,‘] = Vleise;l (21)
have the form
Rijem = (Q(ei, ;) er,em)
= <quk) Vejem) - (Ve,' €k Ve;em)

+ %([ei’ e.‘l'] ’ [ek, e'rn] - B (ek? em) +B (e"" ek)) (22)

and for our case is equal to
l—-m
Rllmllzmzllmlllml = Z( 1 ml(l + 1) dlllg 1214 Gl;mllgmg Gl;mgl;nu

l-m l—m
dl]_lq dlglg G11m114m4 Glgm;l;m; + kl;lg Gl]_mllzmz Gl;m;hm; (23)

where

LH(I+1) —h(h+1)+ bl +1
do = g D s
W oo LW+ -hhit1)—ba+1)
hla ™ 9 I(1+1)

aly = !

(24)



-5- FERMILAB-Pub-88/203-T

It is possible to rewrite (23) in a more symmetric way

2. Rlllmllgmglamslgﬂu = Z(_l) v l(l + 1)

. ! l I I Im l-m

+ [dzlz3 di1, + ki, + Eig, +diy, - dm,] G matsms * Glymalyms (25)
i At i { i l im l-m

- [dzlz. Aty + ki, + Ry, + dyyy, 'dt:,l,] *Gilmgtems - Glymatsms

where we use Jacobi identity (A.17).

As was mentioned above, the riemannian curvature of group manifold is closely
connected with the behavior of its geodesics [4l. The vector field of geodesic variation
bv satisfies the Jacobi equation. This equation for the normal component §v; (normal
to the velocity vector v) can be written in the “Newton’s ” form with potential which

is proportional to the curvature K in the direction (év ,v)

Kusu,) ~ (v, bvi)v, bv,)

I 1 I 1
= Rlxmxlzmzlamsl4m4ulml b‘yfmzyamsé‘yfﬂu (26)
where
v=1v"e, ,bv=~6'"em (27)

So that the formula (25) allow us to estimate stability of the geodesics of the group

SdiffS? (i.e. the stability of Earth atmosphere!)

We gratefully acknowledge conversations with A.A. Belavin, S.G. Matinyan, and
M.E. Laziev. One of the authors (G.K.S.) is thankful to P. Arnold, B. Bardeen,
A. Casher, P. Griffin and L. McLerran for stimulating discussions and acknowledges
the warm hospitality during his visit of Fermilab and the Physics Department of the

University of Minnesota where this work was completed.
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APPENDIX A:

It is much more convenient to calculate real structure constants gff;""’u lyms

Glama — __i(__l)ma I3—mj

llmll,mz gllm;llgmz

From the definition (9) one can see that
gll:::lgm; = 7'/32 Ylams [Yhmul/l:ma]P d’-" ’
For the functions on 5% we have

/32 edandp = — ./52 n0;edu

/ eGindp = / €n
S2

+1
o /sz Bue - ndp

(A1)

(A2)

(A3)

Note that if € or 7 contain derivatives in o3, then the first term in (A.3) is zero; so

we obtain

‘/sze["I,X]dﬂ' = /;,X[f”?]dﬂ'=/‘277[x,e]dp :

Iamg I1m,

Iymy —
Jiyms timy = Jizma lym,

gllmll,m:
Structure constants g are real, and since Y}, = (—1)™Y},_,n , then

Iy,—mj3

Ismy —
L

Jiymydama =
Further from Y, (7 — 8, + 7) = (—1)'Y},, we have

{yms —
Jiymy lamg = 0

if I + I3 + I3 is even number, and, finally, since g,lfz:‘_l’m is proportional to

(A4)

(AS5)

(A6)
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Jexpi(my + ma + ma) 02do,, then
gll::::lanlzmz =0 ,my+my+ms 75 0 (A7)

To calculate the bracket (3) in the definition of structure constant (9) we shall use

the formula

aP™ = —(1-o2) 1P _ 5y (1 - 02)Ym|- P,

aZHm = "'mY;m . (AS)
Then

{}fllﬂu ’ },lzmz }L = iCllml Chmz e'("u tmales

-1 1 1 |
() (BBt i) s
+01(1 — 07) 7" (ma|m3| — ma|m,|) Plllml‘ ’ Pllzmz']

In order to reduce the upper index {m|+1in Legendre polynomial, we’ll use a recursion

relation:
1 (t=Im|-F]
(1=ot) A = QEEDRTH )R = N (-2 +RT
(A10)
Substituting (A10) into (A9) we obtain
i Vi Yo = (A11)

ma Y /20— 2 — 1)+ 1)(2h + 1)y il s Yim,
ey

—my ; V(2(1a — 2ks — 1) + 1)(2L + 1)\/ i e VYo 2k - 1,m3
2
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The integral in (A1) now can be calculated via the Wigner formula:

2 +1)2L+)2a+1) (h b B\ (L b &
/Klmln,m,nm,dﬂz\/( L+ D)2 + 1)(2h + )( )(

A my M2 M3 0 0 0
(A12)

where 3j -symbol is nonzero if l;,[; and I3 produce a vector triangle, i.e. none of I;
is larger than a sum of two others; 3j -symbol turns to zero if m; is larger than I;.
Finally we’ll obtain that at m; > 0,m3 > 0 or m; < 0,m3 < 0 the expression for

structure constants has a form

1
4T 7 s 3
<(211 + 1)(2[2 + 1)(213 + 1)) gll‘mllz'mz - (A13)

op (b= |mal])-- - (h = |ma| — 2k,)
mz%:(z(h 2k1 1)+1)J(ll+|m1|)"'((ll+lm1|_2k1)

(11—2k1——1 ly 13) (11—2161—-1 I 13)
my my; M3 0 0 O

op (la — |mal) - - - (la — |ma| — 2k,)
_m1§(2(12 2k2 1) + 1)\‘ (12 + |m2|)_ . (lz + lm2| _ 2k2)

(ll Iy —2ky—1 13) (ll Iy —2ky — 1 13)
my ma ma 0 0 0

When m; and m, have different signs, g7, ;.. can be calculated by means of (A4).

First coefficients for S? are

m / 3
g}::nllzmg = (—1) lml Eb.lllzam1+mg 3 (A14)

3
Ttmimy = (=)™ /(L —m)(ly +ma + 1)y g butabmatma 1

3
Fiirmlamy = —(=1)™ \/(11 +my)(lh — m1 + 1)\/ gal1lz6m1+m2—1
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from which we can se that Yiq, Y11 and Y;_, form a finite subalgebra S 0(3) :

.13
[Yi1,Y11] = ZVEYIO’ (A15)

Vi1, Yao] = 44/ ~Yu ,
./ 3
[Y1—1,Y10] = -1 Z';Yl_l’

which has the following commutation relations with the other generators:

. 3 '
Yo, Yin] = —imy|=Yim (A16)

[},lla},lm] = z\/(l“m)(l+m+1)\/gnm+l’

. 3
[Yie1,Yim] = /(I +m)(l—m+ 1)\/#@_1 :
Using Jacobi identity for the Poisson bracket one can find that

m _Im I—m m _Im l-m
—(—1) lymylamg * Jlymylams T ("1) G1myi50s ° Jiamalems

—(_1)mgﬂ1:nllgm4 * g:g_mmgl;m; =0 (A17)

Let us substitute in (A17) (I,m) equal to (1,1) and (1,—1). Then using (A17) for

91 tym, 30d gl we come to the relations

\/(1 —m)(I+m+1)gmt (= ma) (A ma 4 D (A18)

+/(la — ma)(ly + ma + 1)g™ s =0

JU+m)(l —m+ 1)gmd o+l ma) (i —ma 4 gl ime (AL9)

+¢(12 + m2)(12 — My + l)gll:’:nl,’zm:—l =0
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Since g{° 1y, = gf;z;m it is easy to calculate this coefficient using the general repre-

sentation (A 13). For example
-qlz].oﬂlllzmz = (A20)

my 5([1 — ml)(ll + ml) 5(11 + 1-— ml)(ll + 1 -+ ml)
B (L) b s N In(2h — 1)(2h + 1) )k 13)

and so on. Then (A18) and (A19) allow us to calculate all structure constants.
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