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1. Introduction

The Polyakov path integral provides a convenient means of calculating on-shell amplitudes
in string theories. But it leaves many points about the results obscured. Does it yield bare
or physical (‘renormalized’) S-matrix elements? What is the corresponding choice of space-time
field variables in the low-energy effective action? We emphasize that the first question, that of
wavefunction renormalization, is important not only as an abstract string theory question, but also
to the practical application of strings — the efficient calculation of gauge-theory amplitudes [1,2].

In field theory, the standard technology of Feynman diagrams yields ‘bare’ Green’s functions
which must have factors of the square root of the wavefunction normalization removed from external
legs in order to produce physical (‘renormalized’) matrix elements. In the language of effective field
theories, one must adjust the Green’s functions by a (finite) wavefunction renormalization when
making a (finite) change in the choice of renormalization scale. Now, loop amplitudes in closed
string theory include integrations over regions of punctured moduli space with loops on external
legs, which look very much like field-theory diagrams with loops on external legs; it is these loops
which give rise to wavefunction and mass renormalization of those legs. The gluons in string theories
remain massless just as in gauge (field) theories because of gauge invariances, but for massive states,
in general one expects a non-vanishing mass renormalization. Weinberg [3] has calculated this shift
explicitly for the tachyon, and the result is indeed non-vanishing. The man in the street might thus
expect a non-trivial wavefunction renormalization for the gluons. After all, gauge invariance does
not forbid it; and a wealth of experience in field theory teaches him that whatever isn’t forbidden
by a symmetry will appear explicitly.

As we shall see, the man in the street would be wrong. There is in fact no wavefunction
renormalization for the massless vector states of a closed string theory; and thus the Polyakov path
integral yields both the ‘bare’ and physical S-matrices, because the two are identical. Although we
shall demonstrate this statement only at one loop, for the massless vector states, we believe it is
quite likely to persist at arbitrary order in perturbation theory.

Although some steps have been made towards off-shell continuations of string amplitudes {4],
such formalisms are not yet ready to address the questions we have posed. We will therefore
stick to on-shell Polyakov amplitudes. This will require a certain amount of care in extracting
renormalizations, but there is really nothing special about string theory in this regard; a field
theorist attempting to calculate on the mass shell would encounter difficulties, and with appropriate

care, would also circumvent them.



In the next section, we discuss the notion of renormalization in string theories. In sect. 3,
we review the B-function calculation of refs. [5,1,6] and Minahan’s ‘off-sheet’ prescription [5] for
handling the ‘momentum/pole’ 0/0 ambiguity that arises when calculating the renormalization of
the three-point function. In sect. 4, we demonstrate the correctness of the prescription by factorizing
a four-gluon amplitude. In sect. 5, we discuss the question of wavefunction renormalization. In
sect. 6, we present a toy field theory exhibiting many of the same peculiarities found in the string
theory. In sect. 7, we discuss our conclusions.

For our calculations, we will use a four-dimensional N = 1 [space-time] supersymmetric het-
erotic string model, using the fermionic formulation of Kawai, Lewellen, and Tye [7]. The model
reduces in the infinite-tension limit to an N = 1 supersymmetric non-Abelian gauge theory. As
the reader may verify, however, our conclusions are largely independent of the specific string model
chosen, and will also apply to closed bosonic or supersymmetric strings. (We use a supersymmetric
model solely to avoid technical problems with dilaton tadpoles; otherwise, and in particular in the
low-energy limit, everything in this paper applies to (non-tachyonic) non-supersymmetric models
as well.) The model we use, along with our conventions and normalizations, is summarized in two

appendices.

2. Renormalization

One might wonder why the question of renormalization need even be discussed in a string
theory. After all, according to lore, string theory is finite, and so there are no infinities to be
banished. (In fact, string amplitudes are not finite; they contain the usual sorts of infrared diver-
gences encountered in any field theory with massless particles. But at least there are no ultraviolet
infinities.) But finiteness is beside the point; renormalization has to do with physics, not infinities.
Field theory S-matrix elements are finite, too — when expressed in terms of physical couplings;
and it is physical couplings and S-matrix elements that experimenters measure, not bare ones.

In field theory, one of course has the freedom to choose different renormalization points for
the coupling constants, that is, different definitions of the coupling constants. For example, one
may express physical S-matrix elements for a scattering experiment with center-of-mass energy
of O(p1) in terms of either g(p,), or say, g(pa 3> p1). But the sensible thing to do is to define
the physical coupling for a process at energy O(u;) using g(u1), not g(pa), because this eliminates
large logarithms from the radiative corrections, and absorbs them into the definition of the coupling
constant.

Although the chance of any experimenter measuring string scattering amplitudes in the visible

future is vanishingly small, one nonetheless might imagine an experimenter performing hypothetical
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string scattering experiments. The sensible choice for the physical coupling in a string theory is then
no different from that in a field theory; one should express the computed S-matrix elements in terms
of couplings defined at an energy scale comparable to the energy of the scattering experiment, in
order to eliminate large logarithms from the radiative corrections. What is different about string
theory is that the ‘bare’ coupling is defined at a finite renormalization scale, and so one could
choose to express S-matrix elements in terms of ‘bare’ couplings if one wished without encountering
divergences. Renormalization in string theory is thus analogous to finite renormalizations that
occur in field theory when changing renormalization scales by a finite ratio. But the finiteness
of coupling-constant renormalizations in string theory should not obscure the existence of such
renormalizations. (It is true that in certain supersymmetric string theories, just as in certain
supersymmetric field theories — for example four-dimensional N = 4 supersymmetric theories —
there is no coupling constant renormalization; but this is a consequence of supersymmetry, and has

nothing particular to do with string theory.)

In field theory, there is always a prescription dependence in renormalizations. This comes
about because (small) finite shifts in the renormalization can be absorbed into small changes in the
radiative corrections. Thus finite renormalizations are always somewhat ambiguous: is the renor-
malization scale s or s/2? The situation in string theory is of course the same; all renormalizations
are finite, and thus prescription-dependent. Nonetheless, one thing is clear: all terms which become
UV-divergent in the infinite-tension limit should be considered renormalizations, in order to match
on to a low-energy effective field theory in a sensible fashion (and in order to accomplish the stated
goal of absorbing all large logarithms into renormalization of the coupling constant). With this

criterion, our conclusions are general, holding for a variety of prescriptions.

From the viewpoint of a person calculating scaling in a non-Abelian gauge theory, the string
tension is simply a physical cut-off (albeit unusual in that it preserves both gauge invariance and
unitarity) that one eventually wishes to remove; the scaling behavior can be extracted in the manner
one is familiar with from non-gauge theories, by differentiating with respect to the cut-off. From
this perspective, the prescription dependence discussed earlier applies only to the finite pieces of

the wavefunction renormalization.

In field theory, one studies the various renormalizations by computing various off-shell Green’s
functions — the two-point function to examine wavefunction and mass renormalization, three- and
higher-point functions to examine coupling constant renormalization. If we attempt to carry out
a similar program with our on-shell Polyakov amplitudes, we run into trouble immediately, since
the two-point function for massless vectors vanishes trivially on shell, as a consequence of gauge

invariance. We therefore turn our attention to the three-point function.
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3. Coupling Constant Renormalization

The Polyakov path integral leads to an expression for the three-point function,

2(1(1;1,-2) ,\12 (]_j:‘r)z (ImT) /dzyldzyz Zp(7) ZCQZF[ ](T) (Ve (VI)VM(VZ)VGS(Vz))g;T

” (3.1)

where A = wa' is the inverse string tension; Zp the bosonic partition function; & and ﬁ the various

As =

boundary conditions for the world-sheet fermions (‘spin structures’) over which one must sum
to obtain a modular-invariant answer; Zp[g'] the fermionic partition function for a given set of
boundary conditions (detailed expressions are in appendix II) and (VV'V') the expectation value of

the vertex operators for gauge boson states. This vertex operator [8, 9] is (in the F; formalism for

the right-movers)
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(3.2)

(note that the normalization conventions differ slightly from refs. [5,1]). (All calculations in this

paper are in Minkowski space, with convergence provided where necessary by rotation to Euclidean
space.)

Evaluating the correlation functions for the three-point amplitude and integrating by parts to

eliminate double derivatives of the bosonic Green’s functions gives
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where G p is the bosonic Green’s function, G is a fermionic Green’s function, where ag and B¢ are
the boundary conditions on the torus of world sheet fermions associated with the gauge group of
interest, and where a; and (; are the boundary conditions of the right-mover world-sheet fermions
carrying the space-time index. The terms of interest for our discussion are the ¢; - ¢; terms, which
can yield terms proportional to the tree amplitude. The (e - k)® terms in the amplitude do not
contribute to renormalization.

Each term is proportional to a momentum invariant k; - k;j, which vanishes on shell (this
is stronger than the usual kinematic vanishing of the three-point amplitude). However, there are
regions of punctured moduli space which produce poles in the momentum invariants; these can leave
a non-vanishing contribution if we cancel the pole against the momentum invariant. (Of course, we
will need a prescription to resolve this ‘momentum/pole’ 0/0 ambiguity). Such pole contributions
arise only from regions where the Koba-Nielsen variables come together so as to isolate the loop on
an external leg. Using the short distance behavior of the Green functions given in appendix II, the
poles in the k; - k; channel are obtained by taking »; — v; and then integrating over v;; = v; — v;.

The only contributions are from the regions where »;; ~ 0, and the integral over v;; is of the form

273
PP L VURY T L S 34
/d V:I”i]l Ak; - kj ( )

For example, to extract the k; - k2 pole from the ¢; - €3 terms we perform the integral around

v12 =~ 0 so that the relevant terms in the amplitude (3.3) reduce to
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where the loop factor L is
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We can now introduce a renormalization scale u, and separate L into renormalizations and

finite pieces,
L(X, p; Fy, ka) = R(A; 1)+ L'(A1 H; k1, ka)
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(exp (Aks - k2Gp(v)) — exp (Au’Gs(v)))
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The renormalization piece R contains all the In A contributions, and thus all the renormalization
contributions in the low-energy limit, while L' contains only [on-shell] infrared divergences as A — 0.
This split-up is thus natural for linking up with low-energy effective field theories. Alternatively, it
is possible to define the renormalization to include only the In A terms, absorbing all the rest into
the loop amplitude. These two prescriptions differ only by terms which vanish as A — 0, and the
use of such a prescription would not alter our conclusions.

Of course, there are other potential contributions in the »; — v; region; collecting all the ¢ - ¢

terms which contribute in this region we obtain the kinematic factor

ky -eska-ks—ky-e3ky ks ky -ex(ky - ka+ky - k) —ks-e1 by - ks
€1 * E3 by - Fy +e2 .63 kL - kg
ks - €3 ky - ka —ky - ea(ky - k3 + k3 - ka)
+é€1- €3 :
ky - kg

(3.8)

which is ill-defined, since both the numerator and denominator of each term vanish.
This type of ambiguity arises in general N-point gluon amplitudes, when considering a con-
figuration of Koba-Nielsen variables where all but one are brought close together; in the case that

the isolated leg is the last one, the denominator is
Y ki-kj=ky/2=0 (3.9)
i<j<N
while the numerator vanishes because of gauge invariance (this configuration of Koba-Nielsen vari-
ables would correspond to a mass renormalization of the gluon if the numerator did not vanish).

Minahan [5] has proposed a prescription for resolving this ‘momentum/pole’ 0/0 ambiguity.

In this prescription, momentum conservation is relaxed, in such a way so that modular invariance
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is maintained. This is equivalent to requiring each external momentum, and their sum p = ¥, k;,
to be a null vector, so that N
Y kickj=0 (3.10)
i<j
This prescription is sufficiently ‘off-sheet’ to resolve the ambiguity discussed earlier. It may seem
odd, but at least at the three-point level can be justified by examining the four-point function, as
we shall do in the next section.
We can rewrite the kinematic factor (3.8) as
ky k3 +ky - k3
ky - k2

ky - kgt ky - katky-ks
ky - kg

ky - ks+ky -ka+ky - kg
ki« ky

E] - €aky - €3 + &3 - e3ks - €1

(3.11)

— £ -E3k1 + €3

where all terms proportional to p - € have been dropped.
Using the Minahan prescription in equation (3.8), we find for the contribution of the v;; term

1,
Asl,,, = —5len eaky - €3 G L(A;ky + ka, k)

: (3.12)
= —5%'61 - €aky - £3 ¢° (R(X; 1) + L'(A; By + k3, k3))

Since pinches in the Koba-Nielsen variables correspond in tree-level diagrams to the appearance

of an explicit pole due to gluon exchange, one is tempted to identify this configuration as a loop
isolated on an external leg, and this contribution as a wavefunction renormalization [5]. But
the contribution is not cyclicly symmetric in the external leg, and so fails to factorize into a
product of a tree-level three-point vertex and a propagator on an external leg. This suggests
that this contribution cannot be all wavefunction renormalization, but also includes some vertex
renormalization. It is only when we add all the different pole contributions (which appear to be
loops on the various external legs) that cyclic symmetry, and resulting proportionality to the three-
point tree diagram, is restored. One might worry that this behavior is due to the peculiarity of the
Minahan procedure, but as we shall see, a similar state of affairs arises in a pole configuration of
the four-point variables that does not require any ‘off-sheet’ prescription to become to well-defined.

The most general form one might expect for the v13-pole contribution to the R terms is
C1€1 * €2 k]_ + E3 + C2€83 - £3 kz + €1+ C3€1 - €3 k3 c £ (3.13)

(the last two coefficients must be equal because of the reflection symmetry of the Polyakov ampli-
tude). We can decompose this into a cyclicly symmetric piece,

63(51 cegky eateg-e3ky-e1+6€1-€3ky - 52) (3.14)
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and a left-over asymmetric piece. By factorization, the three-point diagrams which contain wave-
function renormalization must be proportional to the three-vertex terms which are cyclicly symmet-
ric, so naively, one would interpret c; as a contribution to the wavefunction renormalization, and
the left-over asymmetric term as a contribution to vertex renormalization. In equation (3.12), c;
vanishes, so this implies that the renormalization contributions we are seeing are all vertex renor-
malization, and contain no wavefunction renormalization piece at all. One cannot actually draw
this conclusion from the three-point function alone, because the identification of cyclicly symmetric
terms as contributions to wavefunction renormalization is not a unique procedure; vertex renor-
malization can always be shifted into wavefunction renormalization and an appropriate rescaling
of external states*. Nevertheless, as we shall see in sect. 5, the naive conclusion turns out to be

correct.

4. Renormalization of the Four-Point Amplitude

Similar to the renormalization of the three-point amplitude considered in the previous section,
one may compute the renormalization of the four-point amplitude. Here, one finds that after
integration by parts, there are two different sorts of configurations of the Koba-Nielsen variables
that contribute: one kind of configuration where two independent pairs of s are pinched (an
‘internal-loop’ piece), shown pictorially in Fig. 1a, and another where three vs are pinched together
(an ‘external-loop’ piece), shown in Fig. 1b. Both leave a factor of an integral of the same form as
in equation (3.6), which gives rise to the renormalization piece. (Terms with fewer pinches cannot
give rise to In A’s and thus do not yield any contributions proportional to R; they should not be
interpreted as a renormalization of the coupling with either of the renormalization prescriptions
mentioned earlier. Terms with all four Koba-Nielsen variables pinched together vanish because of
supersymmetry.) The first kind of contribution suffers from no ‘momentum/pole’ 0/0 ambiguity,
and does not require any sort of ‘off-sheet’ prescription to make it well-defined. The second kind does
suffer from the ambiguity, and a prescription, such as the Minahan modular-invariant prescription,
is necessary in order to make it well defined. There are two important things the four-point
amplitude can teach us. First, the contributions from the two kinds of configurations are not
independently gauge-invariant. Only when the two are added together do we get a kinematic factor
proportional to the tree amplitude (and thus gauge-invariant on shell). This demonstrates the

validity of the Minahan prescription for the four-point amplitude, as it preserves gauge invariance as

* In ordinary field theory, this potential ambiguity is resolved by the two point function, which defines wave-
function renormalization. In string theory, we cannot use the two-point function to determine the value of the
wavefunction renormalisation since it vanishes because of the on-shell condition, and the off-shell extension is
obscure. Thus, one must resort to more indirect methods.
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well as the renormalizability of the effective low-energy theory. Furthermore, the factorization of the
prescription-independent piece of the four-point amplitude verifies that the Minahan prescription
is correct for the three-point amplitude.

That the ‘internal-loop’ piece is not by itself proportional to the tree amplitude tells us that it
cannot be interpreted as a renormalization of an internal propagator. Explicitly, the contribution

proportional to Tr(T%1T*2T*:T%4) is

internal loop renormalization

2¢*R(X; u):—t (61 - €263 - €4t + €1 - €369 - €48t + £1 - €467 - €38% — €1 - €2ka - £3k3 - €4l
—€y - &qkg - e3kg €4t — ey - €3ky ce3kg 64t + 1 -4k -e3k3 - €38 (41)
—€y +€4ky c€qky €38+ €9 - €3ky -1 ky 648 —£q -e3ky -4k £
—eg - e4kg - e1k3 - €3t + €3 - e4ky - £2k3 - £1t)
There are two parts to this contribution, one arising from the double pinch »; — vy;v3 — v4, and
the other from the double pinch »; — v4; v3 — v3. The former part separates into two terms, each
of which factorizes into a product of a one-pinch contribution to the one-loop-corrected three-point

function we found in the previous section, and a tree-level three-point function:

internal loop renormalization

( - iAlsow one pinch (1’2’1“)) (_ig-:l) ( - iA;'“(I,,,3,4))

+ (i) (-if2) (- e (1.,39)
+ finite as s — 0

—iA,

(4.2)

one pinch

where we have extracted the part proportional to Tr(T*1T*2T%T?4), after summing over the colors
of the propagator on the right-hand side. (The phases are determined by factorizing a four-point
tree amplitude.)

Indeed, there is no contribution that can be interpreted as a product of two tree-level three-
point functions with a one-loop-corrected propagator connecting the two. Although it is possible,
as discussed in the previous section, to change the wavefunction renormalization and vertex renor-
malization by shifting part of the latter into the former along with a rescaling of the external states,
the requirement that both the three- and four-point amplitudes yield the same coupling constant
renormalization fixes this ambiguity. In the next section, we will rephrase this argument in a form
independent of the detailed algebraic structure of the three- and four-point amplitudes.

The factorization shown above also singles out the Minahan prescription for the three-point

function as yielding the unique answer consistent with unitarity. We can imagine contructing a
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three-point amplitude with one leg off-shell by factorizing a four-point amplitude on a gluon pole,
for example on the pole in (k3 +k4)?. If we then extracted the contributions proportional to R(\; 1)
arising from the »; — v, pinch, we would find exactly the three-point loop amplitude in the first
term of equation (4.2), the same answer as was obtained using the Minahan prescription.

The ‘external-loop’ contributions proportional to Tr(T%T%2T23T%+) have the form

external loop remormalization

2g472(/\; u)i (e1 - €263 - €48t — 261 - €367 €48t + £1 - €463 - €38 — €1 + €3ka - £3k3 - €4t
+2kg - €169 - £3k3 - €4t — 281 - €3ky - €aky - €4l — 3 - £4kg - €1 k3 - £qt
+ky-egks-€163 -4t — €1 ~Eqkg -3k - €4t — €1 - €3k - €3k - 4t
+2kg - e1kg - €363 - e4t + 229 - 4y - €3kg - €1t — 261 - €4ky - £2ky - €3t
—2ky - €3k - €361 - 4t + 26y - £3k3 - €3k3 €48 — ¢ €2k - £3ks - €438 (4.3)

+kz - 169 - €3ky €48 — 263 - e4k3 - e1k3 - €28 — 263 -54kg - £1k3 - €38

+2¢y - e3kg -eqkz a8+ €y -64ky ce3ks €28 — €3 €3k -e4ka-eq8

+2eq - e4ky - e3k3 618 — 261 - €aky - €3k - £48 + 269 - €4ky - €1ky - €38

—£1 54’61 . Ezkz . 538)

The reader may verify that the sum of the contributions in equations (4.1) and (4.3) is proportional
to the coefficient of Tr(T'**T*2T23T?4) in the tree string amplitude.

This does not uniquely single out the Minahan prescription as a resolution of the 0/0 ambiguity
for the four- or higher-point amplitudes, but it is quite likely that by repeating the factorization ar-
guments given earlier for an (N 4 1)-point function, that one would derive the Minahan prescription
for the N-point amplitude.

5. Wavefunction Renormalization

As we have seen in previous sections, the renormalization of the three- and four-point func-
tions suggests that the one-loop contribution to wavefunction renormalization vanishes in Polyakov
amplitudes. In gauge theories, Ward identities provide powerful constraints on renormalization. In
particular, the identities constrain the numerical coefficient of the 8-function for the entire four-
point amplitude’s coupling constant, g?, to be twice that of the B-function for the three-point
coupling, g. Since wavefunction renormalization contributes differently to the three- and four-point

amplitudes, its value can be determined by comparing the three- and four-point string amplitudes.
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The argument can be phrased in a simple fashion, not relying on the detailed algebra and factoriza-
tions used in the preceeding discussions. As a side benefit, it will also turn out to be independent
of the over-all normalization of tree- and one-loop amplitudes.

We proceed as follows. The tree and one-loop amplitudes are

Az = g fa({ki, €5, T*})

AT = g* fu({kiyei, T*Y})

AP — KSR ) fal{ ks, e, T%}) + O(A%)
APP = K1g*R(; p) fa({kiy €, T%}) + O(X°)

(5.1)

where the K} are renormalization coefficients, analogous to the coefficients of the ‘divergent’ pieces
of diagrams encountered in field theory, where the f; are proportional to the kinematic and color
factors of the three- and four-point functions in a non-Abelian gauge field theory, and where g is
the renormalization scale. We have picked out the gluon pole terms in A}, since we are studying
its wavefunction renormalization. Note that calculating renormalization in string theory is similar
to calculating renormalization in field theory from the full amplitude, including loops on external
legs.

The coupling-constant renormalization coefficient can be expressed in terms of the Kf and the

wavefunction renormalization coefficient as follows,

3
Ky=Kj+ 3Ky

(5.2)
Kyn =2K9=K4'+2KA
so that
K'
Ki=Kj} (K:: - 2) (5.3)
We can write the ratio of the K directly as

K{ _ Coefficient of R(A; ) in AP Afree (5.4)

K3 Afre Coefficient of R(}; i) in AY°P

which form makes it clear, as advertised, that it is independent of the over-all normalization of tree
or one-loop amplitudes. Explicit calculation gives

A3 = gfs({ki &0, T*})

AL = g2 f({ks, €5, T )
Coefficient of R(\; 1) in AY°P = g3 fa({k:, €5, T*})
Coefficient of R(A; p) in AP = 2g* fy({ks, e:, T*})

(5.5)
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We thus find that K{/K{ = 2; this in turn implies that K4 = 0. Now, the one-loop SB-function
of the string model is given by g3dR(A; 1)/31n v/} in the low-energy limit, A — 0, this yields exactly
the B-function of the low-energy non-Abelian gauge theory [5]; if the one-loop contribution to
wavefunction renormalization did not vanish, we would have to peel away three-halves of the latter
from the coefficient of A'°P in order to obtain the correct B-function. The previous calculations
[5,1,6] are thus consistent with the result obtained here (although they did not give the correct
interpretation). Kaplunovsky [10] has also calculated the B-function of the low-energy field theory
limit of the string theory, using a background-field method, in agreement with the other results.
The background-field method [11] does not, however, tell us anything about Polyakov amplitudes.
Were the Polyakov amplitude generating background-field S-matrix elements, we would have found
that K{/K3 = 12/7 as required by the background-field Ward identity Zs = Z;I/ ?, where Z, and
Z3 are the usual two- and three-point renormalization constants.

One remaining puzzle involves the two-point function. It has the form
ki - kaer - €3¢ R(A; 1) + O(X®) + (e - k)? terms (5.6)

As noted earlier, it vanishes on-shell, because of gauge invariance. It also vanishes when using
Minahan’s prescription. One might nonetheless be tempted to simply remove the k; - k3 in front,
and interpret the remaining coefficient of the ¢ - ¢ term as a one-loop contribution to wavefunction
renormalization. Qur earlier discussion shows that this naive off-shell continuation is simply not

correct.

6. A Field Theory Toy Model

In the infinite tension limit, the string amplitudes should reduce to the amplitudes of the
low energy effective field theory; but as discussed in the previous sections the amplitudes contain
features which are quite puzzling from a field theory point of view.

In this section, we construct a simple scalar field theory toy model whose amplitudes display
many of the features we found in the string amplitudes. We will present a scalar field theory with
the following properties: (a) its amplitudes possess an on-shell ‘momentum/pole’ 0/0 ambiguity;
(b) there is no one-loop contribution to wavefunction renormalization, although the theory has
non-trivial scattering amplitudes; (c) a naive analysis of the three-point function yields a fake
wavefunction renormalization; (d) the theory contains fake propagators.

Our model field theory has the action

2
Sle] = / dPz [0(-8" - mi)g - %qbs + aAgH(—87 — ml)$ — %,,54

a?ad adAt
7 =5 ¥

(6.1)
¢° -

+ 5'32-'3&(—8’ - m?)¢? -
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where « is to be chosen appropriately.

Actually, this theory has two other properties: it is renormalizable on shell in six dimensions
and super-renormalizable in four dimensions; and its perturbative S-matrix elements are unitary.
At first sight, these last claims may appear to be manifestly wrong, but as we shall see they are in
fact rather trivially true.

The three-point vertices generated by this Lagrangian are displayed in Fig. 2. From the
vertices, it is not difficult to construct the two-point diagrams given in Fig. 3, which determine
the mass and wavefunction renormalization. (For convenience, we have neglected the tadpole and
cactus diagrams which only contribute to mass renormalization.) The truncated two-point function

is

op*) = %2- [6m2 + (p* — m?) K4 + 4a(p® — m?)ém? + O((p® — m’)’)] (6.2)
wher
e smt = [ 40P 1 6.3
=] @y Pomy (6:3)
K. = i dPp 1
+= 35 | ey @ = (o B = ) e

From the form of the vacuum polarization it is clear that for the choice

_ Ko
46m3

(6.4)

the wavefunction renormalization vanishes. For D < 4 the integrals converge and a is some finite
constant. For D > 4 where the integrals diverge a will depend on the dimensional regularization
parameter € = 4 — D.

The three-point amplitude contains an on-shell ambiguity, analogous to the one encountered
in the on-shell Polyakov string amplitude. For example, when the diagram in Fig. 4 is placed
on shell we find an on-shell internal propagator multiplied by an vanishing vertex — this is the
‘momentum/pole’ 0/0 ambiguity. Of course, in the field theory case we can work entirely off
shell with a well defined two-point function, an alternative not available in the standard Polyakov
approach. This allows for an unambiguous factorization of the three-point function in field theory
and the resolution of the ambiguity is clear.

One feature of striking similarity to the string amplitude is the incorrect conclusion of non-
trivial wavefunction renormalization as determined from a naive analysis of the three-point ampli-
tude. Consider the truncated three-point one-loop amplitude with momenta k; and k3 on shell, but
with momentum k; off shell. In the string, the analogous amplitude is obtained by factorizing the
four-point amplitude, as discussed in the previous section. A naive approach to determining the

wavefunction renormalization on the first leg would be to collect all terms proportional to kI — m?
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in the truncated amplitude (before dividing by the propagator pole) and calling that the wavefunc-
tion renormalization. The Feynman diagrams contributing to this are given in Fig. 5. Summing
over the four contributions yields a non-vanishing result for the “wavefunction renormalization” in
contradication to the two-point computation. The problem is that we have implicitly assumed an
incorrect factorization of the three-point amplitude; the diagram of Fig. 5d should not be included
in the wavefunction renormalization part of the A¢? coupling-constant renormalization.

The unitarity and renormalizability properties mentioned earlier follow from the fact that
the action (6.1) generates the physical S-matrix elements of ordinary ¢* theory; the reader may
convince himself of this by explicitly working out Feynman diagrams to arbitrarily high orders.

Alternatively, it is clear that the action (6.1) is related the standard ¢ action

el = [ ¢ [L4(-0" - m?)s- 3] (6.5)

by the change of variables
¢ — ¢+ arg?. (6.6)

Since the logarithm of the jacobian of this transformation is proportional to §°(0) (which we can
drop in dimensional regularization), the field redefinition theorem [12] guarantees that the physical
S-matrix elements from either action (6.1) or (6.5) are identical. However, the renormalization
constants differ for the two choices of field variables, as we have explicitly seen.

The diagrammatic analysis of the correspondence between the action (6.1) and ordinary an ¢*
theory teaches us another important lesson. The pole in the diagram of Fig. 4 does not appear in
the S-matrix of the action (6.1); the correct interpretation of this diagram in the on-shell limit is
given in Fig. 6. Poles in Feynman diagrams do not necessarily imply the existence of those poles
in the S-matrix, since momentum factors associated with vertices may cancel them. (With the
standard choice of field variables, as in the action (6.5), the poles are in Feynman diagrams are
in one-to-one correspondence with the poles in the S-matrix.) As the Polyakov amplitude does
not specify the field variables of the low-energy field theory, poles which arise from the pinching
of Koba-Nielsen variables need not correspond to poles in the S-matrix. Our analysis in previous

sections gives explicit examples of pinches which do not give rise to physical poles.

7. Conclusions

In this paper, we have demonstrated the validity of the modular-invariant Minahan prescription
[5] for resolving an on-shell ambiguity in Polyakov amplitudes, and we have used this prescription to

show that the one-loop correction to the wavefunction renormalization vanishes. This is a general
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feature of Polyakov amplitudes, holding for a variety of renormalization prescriptions which match
on to the usual low-energy effective field theory limit. It is also independent of the particular gauge
group of the string theory.

In gauge field theory, one can of course make loop contributions to wavefunction renormal-
ization vanish by choosing an appropriate gauge parameter, § = 3/13, for pure Yang-Mills. Here,
however, the situation is different. The propagator, 1/Lg, has trivial tensor structure, analogous
to Feynman gauge (£ = 1), so that is presumably not the explanation.

At tree level, the ambiguity in the low energy effective action of the string has been extensively
studied [13] and as expected the S-matrix of the effective field theory is completely unaffected by
any local field redefinition. However, different choices of field variables can lead to different values
for the wavefunction renormalization at loop level, as we have seen in the toy field theory example.
While we do not know what field variables A, (of the effective low-energy field theory) are chosen
by the Polyakov path integral, the absence of loop corrections to the wavefunction renormalization
gives a clue.

While the field redefinition theorem [12] guarantees that the perturbative physical S-matrix is
unchanged under a wide class of field redefinitions, there is no such guarantee for non-perturbative
physics, and so understanding the choice of field variables is in principle important for non-
perturbative string physics, as well as for the use of string technology in calculating loop corrections
to gauge theory amplitudes.

The research of both authors was supported in part by the Department of Energy. We would
like to thank the Niels Bohr Institute for its hospitality during the commencement of this research,
H. B. Nielsen for helpful discussions, and J. Polchinski and S. Weinberg for asking the right ques-

tions.

Appendix 1. String Model

The string model used as a reference in this paper has an N = 1 supersymmetry, and contains
an SU(18) supersymmetric non-Abelian gauge theory in its low-energy limit.

In the KLT formalism, the boundary conditions for the complex Bardakci-Halpern [14] world-
sheet fermions are represented by vectors W; = (ly...la3| 1 ...710), where the I; component signi-
fies that the ith left-mover fermion picks up an exp(—2xl;) phase when going around the appropriate
(world-sheet space or time) closed loop. A model specified by a set of basis vectors W; is a consis-
tent string theory if it satisfies certain constraint equations, egs. (3.33-35) of ref. [7]. The space
boundary-condition vectors specify the sectors, while the time boundary-condition vectors deter-

mine the generalized GSO projections that constrain the spectrum. The mass squared of a given
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state is determined by adding the quanta of the fermionic world-sheet oscillators to the vacuum
energy with the usual left-right level-matching. Modular invariance requires that in calculating the
partition function (or scattering amplitudes) we sum over time- and space-boundary conditions,
with coefficients given in eq. (3.32) of ref. [7].

The model at hand is specified by the five “basis” vectors,

122 110
wo=(3 |5 )

118
W1=(04§ 010),
11 1/111\ /1 1
W= |==00"®_-(===){(= -0 .
2 (22 2(222) (200) (2 0))’ (L.1)
2
Wi = ol 019}. olo 111 010 ,
2 2\ 2 222 2
11 1 1 1\ /111
W= =0-0'% = = (===
1 (2 2 2(002) (002) (222))
with “structure constants”
00 0 0 O
00 0 0 0
kij=]0 0 0 % o0 (L.2)
000 0 }
00 ;7 00

This model has the nice feature that the gauge bosons are found only in the W, sector while the
gluinos are only in the Wy + W + W3 + W, sector.

Appendix I1. Notation and Normalizations

We define theta functions for general twisted boundary conditions by

0[;] (” I ,’.) — Z eﬂn’(n+a—1/2)’1’e21n'(n+a—1/2)(u—ﬂ—1/2) (H.l)
nez
Then
9 [;] (v|7) = emi’Tedmia(v=6-1/2)y, (4 t ar — B|7) (11.2)

where 9, = 9] is the conventional first Jacobi theta function.

We remind the reader of the definition of the Dedekind 5 function,

n(,r) = e™iT/12 H (1 _ ehrin‘r)

n=1

S ERE
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where the prime indicates differentiation with respect to the first argument.

The bosonic partition function is
2-D
25(r) = (n(r)(r)vim~) (IL4)

where D is the number of spacetime dimensions.
We define 2, [2] (7) to be the partition function for a single left-moving complex fermion with
[g] boundary conditions,
2«.(1/2—a)(1/2+ﬁ),9[ ] (0 | ,,.)
n(7)

where the phase is present in order to be consistent with the KLT definition [7]. It is really

-4 [;] (7) = Tr [e?miflametmilh-A)a] - = (IL.5)

irrelevant, and could be absorbed into the definitions of the summation coefficients Cg.
Putting the pieces together, the complete partition function for the set of fermions with [g—]

boundary conditions is

23| = zs(r)hﬁL z ["‘”‘](r)hﬁnzl [
= (n(f)ﬁ(f)\/fm_“') |

lenar, 6_3,;(1/3_,,&‘)(1/2.}.5“)19[gif] (0 | T) lenag ezui(l/z—an;)(1/2+ﬂn.')§[g::’] (0 |T)

i=1 7’(7) i=1 ﬁ(T)
(11.6)
The bosonic correlation function, Gp(v), is defined via
(X¥(r1, 1) X" (12, 72)), = 1"Gp(v =11 — 13) (IL.7)
It can be expressed in terms of theta functions,
GB(V) _= ]n 21re—1r(lm u)’/lm‘r"9 [0] (V T) (IIS)

9o (07)
A dotted variable, for our purposes, will always be taken to signify differentiation with respect
to v,
X = 8;X. (11.9)

In a slight abuse of notation, we write the correlation function for right-movers as Gp(7) although

in fact it is equal to C;'B(V).
We thus have
imv 1 9'[J] (7| -7)

Gp(P) = —— T 2”5[]T:f_) (IL.10)
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The fermionic particle correlation function G F[;](u) and anti-particle correlation function
G F[Z](V) are defined as follows (excluding the case a = 8 = 0):

(T () Ti(wa)) ., = 6ijGF|:g](” =1 — 1)

: (IL.11)

(Ti(n) ¥ (na)) ., = J‘jép[ﬂ](u =1 — vy)

where here the expectation value is understood to exclude a factor of the partition function.

These correlation functions can also be expressed in terms of theta functions,

oy _ Il wIne[] (ol7)
GF[ﬂ]( )= 5ro [o] (wI7)9[5] (0]7) (IL.12)

GF[;](V) = GFE _ ;](V) = ‘GF[;](_V)

where the last equality derives from a theta function identity.

As v — 0 the various Green’s functions have the following behavior:

exp (Gp(v)) — |¥|™*/™ x constant

. 1
Gp(7) > —5— (IL.13)
a 1

s3]0 - o

The vertex operator for emission of a gauge boson, in the F; picture for the right-movers, is

Vo(e, ki1, 7) = ~2gVAT® : B1(0)05(v) & - (85X (%) + iVAT(D) k - F(7)) &VPk (X1 TD)

(11.14)
or, using Grassman variables to put it into an exponential form,
Ve(e, kv, 7) = 2gVAT®I : / d6, do, dfs do,
exp (i\/Xk - X(v,7) + 6,9 (v) + 6,%;(v) (II.15)
+6364¢ - X(9) +iV20sk - F(P) + 64 - T(9)) :
The N-point amplitude is then given by
__r 1 T T
AN = S(iemr) 1 / )t 027) / d-o- [
(1.16)

Z2pg(T) Z CgZF I:go] (1) (Voi(0y)--- VaN(VN))g; i
af
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Evaluating the correlation functions gives (in Minkowski space)

1 - a n n
2(167r2)AN/z 2(29)N T g™ T, ™
d"r N N-1
=t . , . . 2., & 2@
Ty / (]:[1 db;, d;; df;s db;, )Im'r/ (Hl d u,) Zcﬁzﬁ(r)
= = a,p

Hexp l:)\k,- - k; Gp(vi — vj)

i<j

m; Qm,; m; A | Om;

—0;10526™ 5, GF[ ](Vi —v;) — 012016 ’n.-G'F[ ](Vi - vj)
ﬂn,- ﬂﬂi
- {30j3Ak; . k_.,' GF[aT](F; — Fj) (H‘17)
Br
+ iﬁ(0;3054k.- €5 + 0:0jakj - £;) GF[ZT](F; - il_j)
T

— i\/X(o,;;;ol'.;kj - £ — 0_.,'3054’5,' . Ej) C;"B(il-.' - Fj)

ar

ﬂr](ﬁi ~7i)

+ 64046 - €5 GF[
+ 6:360:40;30;4¢; - €5 Gp(¥; — 7;) ]

This formula is valid in all sectors except Ramond-Ramond, where the fermionic zero mode de-
mands special treatment. However, that sector enters only into parity-violating amplitudes, and
so is not relevant to any of the calculations in this paper. The normalization of the amplitude has
been calculated by Polchinski [15] and Sakai and Tanii [16].
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, Figures

Fig. 1. (a) An ‘internal-loop’ contribution to A4. (b) An ‘external-loop’ contribution to
A4. The internal lines merely represent pinches of Koba-Nielsen variables, and not necessarily
propagators.

Fig. 2. (a) The three-point vertex generated by A¢*/3!. (b) The three-point vertex generated
by aA¢?(—8% — m?)¢ has value —2iaX(k? + k} + k3 — 3m?).

Fig. 3. The two-point diagrams generated by the action (6.1).

Fig. 4. A diagram containing an on-shell ‘momentum/pole’ 0/0 ambiguity analogous to the
one found in the Polyakov amplitude.

Fig. 5. Three-point diagrams containing factors proportional to k3 — m?.

Fig. 6. The correct on-shell interpretation of the diagram of Fig. 4.
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