Fermi National Accelerator Laboratory

het

FERMILAB-PUB-88/144-T
October, 1988

An Order Parameter that Tests the Existence of Charged
Vector Bosons in the Georgi-Glashow Model

Thomas Filk!, Klaus Fredenhagen?,
Mihail Marcu®* and Kornél Szlachdnyi*®*

! Fakultat fiir Physik, Universitdt Freiburg,
Hermann-Herder-Str. 3, D-7800 Freiburg, FRG

?Institut fiir Theorie der Elementarteilchen, Freie Universitdt Berlin,
Arnimallee 14, D-1000 Berlin 33, FRG

3 Fermi National Accelerator Laboratory,
P. O. Box 500, Batavia, Illinois 60510, USA

4II. Institut fir Theoretische Physik, Universitit Hamburg,
Luruper Chaussee 149, D-2000 Hamburg 50, FRG

5 Central Research Institute for Physics,
1525 Budapest 114, P.O. B. 49, Hungary

ABSTRACT

On the example of the Georgi-Glashow model, we define order pa-
rameters that test the existence of charged states in the case of partial
breakdown of symmetry.
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The vacuum overlap order parameter (VOOP) proposed in [1] seems to indicate
correctly the phase transitions in several gauge theories with matter fields [2]. A
different approach, inspired from the Coulomb gauge treatment of electrodynamics,
leads to similar conclusions [3]. Both parameters test whether a specific attempt to
construct charged states is successful; the phase transition they indicate is tied to
the occurence versus nonoccurence of these charged states.

It is in general very difficult to get information on all possible charged states
in a given model. Sometimes there are obvious candidates for charged states. In
gauge theories one often searches for states with a nontrivial total electric flux corre-
sponding to the center of the gauge group G. If however all matter fields transform
trivially under the center, we do not expect to find gauge invariant states with a
nontrivial center-electric flux. On the other hand, there might be candidates for
charged states whose charge corresponds to a subgroup H of G. Typical examples
are in models with “partial breakdown of symmetry” (Higgs mechanism), which
have been discussed in the literature in the framework of perturbation theory. In
this framework one speaks of “gauge symmetry breaking” and “the unbroken group
H”.

In this paper we indicate how to construct the charged vector bosons in the
Georgi-Glashow model [4]. On a hypercubic lattice this model has the action [5]:

S = B ATU(p) — 5 Y (6o D*(Ue) Pt3) (1)

Ty

where the lattice gauge field U, , is an SU(2) matrix in the fundamental representa-
tion that lives on the link starting from z and going in the y-direction, U(p) stands
for the product of U’s around the plaquette p, . is a real 3-component field with
|@z| = 1, D! denotes the adjoint representation and j denotes the unit vector in
direction px. The Boltzmann measure 1s:

e=5 T] de. [] dUe. (2)

Ty

where dy, is the normalized rotationally invariant measure on the 2-sphere S? and
dU,,, is the Haar measure on SU(2). The phase diagram of this model is depicted
in fig. 1. In the Higgs phase the “unbroken group” is U(1).

Using the original VOOP one does not get information about states with a
U(1) charge, as seen e.g. from the numerical results of [6]. Theoretically this can
be understood as follows. The original VOOP is the infinite distance limit of a
gauge invariant two-point-function of the ¢-field. This two-point-function is defined
as the scalar product between the vacuum (hence the name vacuum overlap) and
a candidate for a “dipole” of particles carrying the adjoint representation as their
charge. The gauge invariant dipole state is constructed by taking a pair of static
adjoint SU(2)-sources (lowest energy eigenstates of the Hamiltonian that transform
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Figure 1: Phase diagram of the lattice Georgi-Glashow model with a fixed length Higgs
field (from [5}).

as the adjoint representation of SU(2) at two spatial sites z and z'), and then
replacing the sources by dynamical matter fields ¢ [1]. Now, in the Higgs phase
the vacuum can be viewed as a condensate of the p-fields [7], which screens the
adjoint sources. Therefore the attempt to create a charged state by sending one of
the partners in the dipole to infinity has to fail. The two-point-function approaches
a constant, which can be interpreted as the gauge invariant counterpart to the usual
“Higgs expectation value”. On the other hand, in the confinement phase the ¢-two-
point-function also approaches a constant for large distances, albeit for a different
reason: the dipole state is constructed to have a bounded energy [1]; if the distance
between the two partners becomes too large, a pair of dynamical ¢’s pops out of
the vacuum and we are left with two clouds of “hadrons” around z and z'.

In order to construct a candidate for a charged state with a U(1) charge using a
similar procedure, we need as an intermediate step to construct static U(1)-sources.
However, all static sources transform under an irreducible representation of SU(2),
and one expects them to be screened. In order to overcome this problem we enlarge
the set of fields and the Hilbert space of the system in a natural way. The aim is to
define a dynamics in the new sectors of the Hilbert space with respect to which the
physically interesting U(1)-sources become static.

Exploiting the fact that the Higgs field ¢ lives in a homogeneous space of the
gauge group G = SU(2), we replace the field ¢, by the new field V, € G, which is
related to ¢, by

ve =DV ") p € S? (3)
where ¢ is the vector (0 0 1). By (3) S? is identified with the homogeneous space
G/H, where H=U(1) is the stability group of ¢, H={h € G| D'(h) ¢ = ¢}. Since
(3) is invariant under left multiplications of V by elements of H, the action expressed
in terms of the V and the U is invariant under the gauge group Gx H

| A 9;17 Uppu = 9=U=,#gz_-:ﬁ ’ h. € H, g.€@G. (4)



The extension of the Boltzmann measure on the new configuration space is
e 5 [ av. [1 dUs.s (5)
& Ty

where dV, is again the Haar measure.

To make the interpretation of the model as a gauge theory with gauge group
H more transparent, we replace the variables Uy, by W, , defined as

W - V U”r“V;-:i'l-‘ (6)
Under the gauge transformation (4)
W — BaWa b}y - (7

In analogy to the perturbative treatment of the Georgi-Glashow model, we decom-
pose the field W into a “U(1) gauge field” Wl and a “spin one” matter field W+ by
making the coset decomposition

w=wtwl (8)

where W+ is a rotation around an axis in the x-y plane, the rotation angle being not
larger than 7, and Wl € H. Up to discontinuities, these conditions fix W+ and Wl
uniquely. Notice that the set of coset representatives in which W+ takes its values
is invariant both under charge conjugation and under gauge transformations. For
the latter we have:

Wi, = hWhhZt, Wi, — W A h.€H. (9)
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In order to discuss the structure of the state space of the theory we pass to
the temporal gauge, U, o =1 for all timelike links. For a finite spatial volume the
state space is the Hilbert space of quadratically integrable functions on the direct

product of copies of G for all sites and links. The transfer matrix 7' = e~H (ﬁ is
the Hamiltonian) has the form

T =¢34t 34 (10)

where A is the operator of multiplication with the spatial action (underlining always
refers to purely spatial objects; j=1,2,3 denotes the spatial directions),

AWU) = _glerU(p ) = £ 35 (6, DM (Ve Ui Vi) ¢) (11)

2,

and t has the kernel

(V,u; v, U') —exp{ Z 1T U, U +nZ(q§,D1 v, V! )45)} (12)



Notice that ¢ and thus T vanishes on the orthogonal complement of the subspace of
H-gauge invariant functions.

We now want to identify operators corresponding to H-electric flux and H-
electric charge density. The H-electric field should be the canonical conjugate of the
multiplication operator by Wll, so we define it to be

(Bes(h) £) (VW) = £(V, WY, { Wiy = Wosh

i g
oy =Wy, ' #z or jl#j.

(13)

Notice that E. ;(h) is the exponential of the usual electric field, and therefore it
satisfies a multiplicative Gauss’ law

QE(h) = Pg(h) H Eg—i.j(h) Es,:i(h_l) (14)

where g.(h) is the H-gauge transformation operator at z and the H-charge density
operator p,(h) is defined such that (14) is an identity

VE’ = h'IVE
V,:' = Vg, ' #z

Wi, = hT1W,h
: = W?.’tj ’ Q’ # z.

z'J

(p=(h) F)(V, W) = (V' W"), (15)

The next step is to find operators that create a definite H-electric flux and an
H-electric charge. Let u be a function on G with the property

w(hW) = w(Wh) = x(h) uw(W) (16)

for some nontrivial character x of H. Examples of such functions are the diagonal
matrix elements DJ, (W) of the spin-j representation of SU(2) in the basis of
eigenvectors of the rotations around the 3-axis. We have the following commutation
relations for the operator of multiplication by u(W,,;):

Esi(h) w(Wa,i) = x(h) w(We;) Bej(h),  pa(h)u(We;) = w(Wes) pe(h).  (17)

Thus u(W,,;) creates an electric flux equal to x on the link z,5. Let on the other
hand w be a function on G with the property

w(hW) = x(R)w(W), w(Wh) = w(W). (18)

Examples of such functions are DZ,(W) with integer m. Because of the commuta-
tion relation

pa(h)w(We3) = X(B) w(Wa;i) pa(h),  Esi(h)w(We,;) = w(Weys) Eei(h)  (19)



the operator of multiplication by w(W,,;) creates an H-electric charge equal to x at
the point z.

Consider now a spatial line L starting at z and ending at z', and let us denote
by u(L) the product of u(W,;)’s along L. By acting with u(L) on the vacuum we
obtain a state with an H-electric flux along L and a pair of external H-charges (H-
sources) at z and z'. Following the discussion of the VOOP [1], we want to modify
this state in such a way that its energy remains bounded as z’ — oo. In other
cases [1,2], this was achieved by acting on it with the Euclidean evolution operator.
However, as mentioned before, the transfer matrix (10-12) gives infinite energy to
all states with nontrivial external H-charge. Actually this is not a surprise. When
extending the model, we did not give any dynamics to the new degrees of freedom
0z := (V. 1)II; which were the only carriers of the H-charge (we use here the coset
decomposition (8) for V!). Let us introduce a dynamics for the o’s by adding an
extra term to the action

S+ S§=5-&> Reu(W,,) (20)
YT

which couples the new degrees of freedom in a G-gauge invariant way. For K #0, H
is only a global symmetry. In the limit & — 0, H becomes local and the ¢’s become
infinitely heavy. By subtracting the self-energy of the o-particle we shall obtain a
new transfer matrix that is finite on the H-sources. This will correspond to a new
Boltzmann measure with only a time independent local H-gauge symmetry, which
is a situation similar to the temporal gauge in the standard framework.

The transfer matrix corresponding to (20) is
TR = e_%A .;‘ e"%A (21)
where A is the spatial part of the action § and
t(V,U; V', U) = t(V,U; V', U’) exp {fs > Reu(ViVE'“l)} . (22)

T is positive if u is a function of positive type, i.e. for all functions f on SU(2)

/dV/dV’ FV) w(VV*-Y) F(V') 2 0. (23)
This condition is fulfilled for all u = ¥; ¢; D%, with positive coefficients c;, where

the integer or half-integer m specifies the character x of (16).

For finite &, iz is already locally H-gauge invariant, so we may decompose it
into a sum of positive operators

tx =Y PutiPn (24)



where P, projects onto the subspace of functions with external H-charge mn(z) at

the point ¢ (n(z) is an integer, n is a multiindex). Then, denoting by I, the kth
modified Bessel function, and by w; the expression |u(V;V;71)],

n(z)
- - Wa
(Put BV, UV, U = ¢(V,U; V', U') HIﬂ(E)(K' lwg)) (m) . (25)

We now use the fact that I(A) A=l = (Jk[!)~* for A\, 0 and define a renormalized

operator t,., by

oo = Z (l:[ I,.eln(_)l )P,,f,-cP,, : (26)

In the limit £ — 0 we obtain
t.ren = lil% t-ren,fc. (27)

with the kernel

bV U3V, U") = 4V, U5V, U") ] {1 +2) Re [u(VgV;-l)]“} . (28)

n=1
Clearly A = limz o A. The new transfer matrix
T =e 341,14 (29)

coincides with the old one on the H-gauge invariant subspace H of the Hilbert space
H of our extended model, that is on functions depending only on U and ¢. H is
precisely the Hilbert space of the original Georgi-Glashow model.

We are now ready to define our candidate for a U(1)-charged vector boson
(W-state). Let us denote the vacuum by Q. For simplicity let us assume that L is
a straight line. Following [1] we first consider an energy regularized and normalized
state \Il(z ,_?, that contains a pair of U(1) sources at z and z’,

), = | T u(L) Q) T u(l) (30)
The gauge invariant candidate for a dipole of charged W’s is the state

8 5 = W(Wa) w(Wer,) B (31)
Using the methods of [1] we can prove that the energy of @iz), i stays bounded
as g’ — 0o, provided that the energy regulating parameter n grows at least linearly
with the distance |z — z|. Essentially the proof only relies on the positivity of T
and on the perimeter law for the u-Wilson loop. The latter follows from reflection
positivity with respect to oblique lattice planes 8] in the original model.



(n)

In the Higgs phase we expect that in the limit of infinite separation &7, ..,
approaches, in the sense of expectation values, a W-state with U(1)-charge 1. On
the other hand, in the confinement phase we expect to obtain in the same limit a
local excitation of the vacuum. Hence the modified VOOP

lim lim (Q, 8"

z'—0 n—0 zz"jj' )

(32)

tests the existence versus nonexistence of the charged W by being zero or nonzero
respectively [1].

In terms of Euclidean expectation values we obtain the following expression
for this order parameter:

z 2! z z!

@8 = ([ L) (| = > (53)

where the strings stand for products of u(W, ,)’s (the vertical direction is time, the
horizontal direction is space), and the w(W,,;)’s at time zero are represented by a
dot (at z or z') and a short line (in direction j or j').

The state ¥), defined by

zz!

‘I’(gng) =0, 75 ¥ (34)

zz'

is in H (but it is not G-gauge invariant). All operators in the field algebra of the
original problem (the algebra generated by the U’s, the ¢’s, and their respective
canonical conjugates) have identical expectation values in the states ‘Il( ), and ‘Il(")

In particular this is true for all observables (G- and H-gauge invariant operators)

We can now see that it would have been possible to construct the physical W- state
without ever enlarging the problem. We could have used some other procedure to
construct a state with similar properties to \Il”, (in the Higgs phase, after z' — oo as
described above, this state contains a nontrivial U(1)-electric flux at infinity); then
we would have replaced the sources with dynamical matter fields by using o, w(W, ;)
instead of the w(W;,;) in a formula analogous to (31). The extended formalism just

provides us with a specific (and simple) method to construct \Il:(c ), and to prove the

finiteness of the energy of @(2"2,,_1-1-,.
The U(1) sources and therefore the W-state too can be introduced in another
way, using gauge invariant charged fields which explicitely create the W particle
accompanied by its Coulombic electric field. Using the ideas of {3] one has to find a
physical gauge, which in our case would be the unitary gauge and for the remaining
U(1) gauge symmetry the Coulomb gauge, and then study the W- two-point-function
in this gauge. If
(0(We3) w(Wari1)) — 0 (35)



as ' — oo, there are no translationally invariant states in the sector of the W,
which is therefore charged. This is the analogue of the vanishing of the generalized
VOOP. If however the r.h.s. of (35) approaches a nonzero value as ' — oo, then
this indicates screening of the electric charge. For a tetrahedron-discretized SU(2),
this approach has been pursued in [9]. Actually in a confining phase one has to
be a little more careful [3]. It is possible that the spacelike physical gauge W- two-
point-function behaves as in (35), but that the charged state whose existence this
behaviour indicates is unphysical because it has infinite energy. Such a conclusion
would be drawn from the fact that as soon as the separation between the two points
becomes nonzero in Euclidean time too, the two-point-function is identically zero,
for any spacelike separation {3].

In the Higgs phase of the Georgi-Glashow model we expect to be able to com-
pute (33) and (35) perturbatively and thus confirm the existence of the U(1)-charged
W. In the confinement phase however, where we do not expect to have charged W's,
perturbation theory can be only used at short distances. In order to compute the
order parameters and two-point-functions in this case, other techniques like small-3
and hopping parameter expansions can be used [10]. Computer simulations may
also turn out to be useful.
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