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Abstract

I outline a method for the consistent perturbative calculation of scat-
tering amplitudes in hot gauge theories. As the first step in this program,
I determine the spectral representations for the renormalized gauge field
and fermion propagators in the limit of high temperature. The interac-
tion of an abelian gauge field with an external current illustrates how the
collective longitudinal mode enters, and where infrared divergences arise.
Massless fermions have a collective mode, for which the usual relation
between chirality and helicity is flipped. The collective mode persists for

light, massive fermions.
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I. Motivation

Consider “hot” gauge theories: for QCD, at a temperature T well into the chirally
symmetric phase; for QED, at a temperature T > m, where m is the mass of the
matter field. The latter is in contrast to “cold” QED, when T <« m.

It is well known that at finite temperature, the gauge fields, like everything else,
act as if they had a “mass” m, ~ gT (g is the coupling constant). It is direct to

compute these masses, and as expected m] is positive and independent of gauge.

Now go one step beyond. At T # 0, sooner or later any state will scatter off of
particles in the thermal distribution, and so acquire a non-zero imaginary part to its
self-energy. The diagram for a gluon decaying into two virtual gluons is shown in fig.
(1), where the dotted line represents the sum over intermediate states, etc.. To try
and incorporate the gluon “mass”, use the corresponding mass shell for the external
legs, such as pp = —img, p = 0. This is why the external legs in fig. (1) have a dot
on them: they are meant to represent renormalized propagators, which include some

effects of ~ ¢gT.

Even for a gauge-variant field, there is physical information contained in its prop-
agator: namely, the position of its pole(s), and the residues about them. A non-trivial

example is provided by the W and Z bosons in the weak interactions.

Computing fig. (1), the imaginary part found is ImII ~ g(gT')?, with a gauge-
dependent coefficient. In contradiction to general expectation, it appears as if the

plasmon’s pole is gauge-dependent.

This has lead several people to argue that one needs to define the plasmon by
some more complicated, but gauge invariant, manner. While this may be useful in
itself, I suggest that it doesn’t matter what is used to compute the plasmon’s pole,

but how it is computed.

I assert that for scattering amplitudes involving soft quanta in hot gauge theories,
there is a breakdown between powers of g, and the order of the loop expansion. To see
this, consider the two-loop contribution to ImII in fig. (2). If the internal momenta
flowing through the leg with the self-energy correction is K, then the ratio of fig. (2)
to (1) is

I(K) m2+cag*TIK|+...
K3 ~ K3 Komy 1 (1.1)
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I have expanded the self-energy about zero momentum; neglecting indices and the
like, I take the leading order term to be given by the gluon “mass”. The virtual
momenta in these diagrams are X ~ mg, so one concludes that eq. (1.1) is of order
one, and the two loop correction in fig. (2) is of exactly the same magnitude as fig.
(1), ~ g(gT)*.

To solve this problem, I insist that one must first sum up all effects of ~ gT', to
determine renormalized propagators and vertices that are exact to this order. Then
these renormalized objects are sewn together to compute a damping rate. Thus
instead of fig. (1), one should compute fig. (3): the important difference between the
two is that in fig. (3), both the external and the internal legs are renormalized.

To understand why the resummation of terms ~ gT works, let me assume that
the only such effects are represented by the gluon mass. I estimate a correction to
fig. (3), like that of fig. (2), except that inside the loop of fig. (2), everything gets
renormalized. Then the ratio of this renormalized fig. (2), to fig. (3), is

oI — m? ~c1g2T|K|+... . (12)
K? + m? K?+m3 K 9 :

Because the one-loop mass term has already been included in the propagator, in the
renormalized form of fig. (2), it is necessary to use Il — m2 instead of just II. With

K ~ my, the renormalized fig. (2) is g times smaller than fig. (3).

For a scalar theory with only quartic self-interaction ~ g?, the scalar mass m, ~
gT is the only term of ~ gT': there are no momentum dependent terms in the self-
energy ~ gT, and no vertex renormalizations to this order. Thus the resummation of
perturbation theory is trivial — all that is needed is to change the bare propagator,
1/K?, to 1/(K? + m?).

This is not true for fermion or gauge fields. The self-energy of either includes
terms ~ gT which are involved functions of the energy and three-momentum. Also,
the Ward identities instruct us that if the self-energies are renormalized, then at least

some vertices will be as well: this is why the vertex in fig. (3) is dotted.

The self-energies ~ gT for fermions and gauge fields were first computed, in mo-
mentum space, by Klimov and Weldon [2]. To compute efficiently with these propa-
gators, I generalize the methods of ref. [3], and compute here the complete spectral

representation for these renormalized propagators: gauge fields are the subject of sec.
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II, fermions of sec. III.

Determining these renormalized propagators is actually easy. The precise defini-
tion of terms ~ g7 is given in ref. [1]: loosely speaking, they are things which are
powers of gT, with no g’s left over. The interesting thing is that not only are they
given merely by diagrams at one-loop order, but by a small subset of the complete
one-loop diagram, when the virtual momenta within the diagram is hard, ~ ¢T'. This
vastly simplifies the determination of terms ~ gT'. What is difficult is to go beyond
leading order, to determine something like a damping rate, which is g times a power
of gT. For such quantities, soft momenta ~ g¢gT inevitably contribute; when this
happens, it is imperative to use all of the machinery of renormalized propagators and

vertices that are exact to ~ gT.

Without bothering with the technical details, it is apparent why using renor-
malized quantities, as in fig. (3), makes such a difference. Consider the decay of a
transverse gluon into a virtual transverse gluon plus an unphysical longituainal mode.
In fig. (1), since the propagators inside the loop aren’t renormalized, this certainly
contributes, as a massive quanta can decay into two massless ones. But fig. (3) rep-
resents the decay of a massive mode into a massive plus massless mode, which is not
allowed kinematically. Thus the gauge dependence of fig. (1) and fig. (3) will be very
different. |

This kind of argument is naive. Consider the decay of a transverse gluon into two
virtual transverse gluons: since everything is massive, one expects fig. (3), and so
Im1l, to vanish to ~ g(g7T')?, and only non-zero at ~ g?(gT)?. This is what I first
thought [3], but it’s wrong. In summing all terms ~ gT for fermion or gauge fields,
not only are there the (massive) quasi-particle excitations, which lie above the light
cone, but as well the contribution of a cut, below the light cone. This cut is due to
Landau damping by pairs of particles with hard momenta, ~ T. As these cuts lie
below the light cone, they dominate the imaginary parts of amplitudes on mass shell.
My argument in ref. [3] — that massive states don’t decay until two-loop order —
is correct, but by resumming terms ~ gT', one sees effects at leading order, as in fig.

(3), that wouldn’t appear with bare propagators until at least two-loop order.

Further complications arise for gauge theories, especially in QCD. At zero tem-
perature, the gauge field contains two physical, transverse degrees of freedom, and

two unphysical longitudinal modes. At T # 0, the transverse modes are still physical,
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but one of the longitudinal modes becomes a physical, collective mode; the other
longitudinal mode remains unphysical. In Coulomb gauge it is easy to pick out the
physical longitudinal mode, but in covariant gauge, the physical and unphysical lon-
gitudinal modes are all mixed up. Further, what cancels the contributions of the
ghost loop in covariant gauge QCD involves both the unphysical longitudinal mode
and vertex renormalization; again, Coulomb gauge is much easier, as then the ghosts

don’t contribute to discontinuities.

Nevertheless, I expect that in the end that the general arguments prevail, and that
the damping rates found will be gauge invariant and positive, indicating stability of
the perturbative vacuum. I have completed the computation of the decay of a massive
fermion [1]. This example is elementary, as corrections to the fermion propagator,
and its vertex, can be neglected. At zero momentum, I find that the self-energy
of the fermion is ImXr ~ +g(gT). Non-zero momentum is surprising: ImZp ~
+log(1/9)9(gT); both are independent of gauge. The log(1/g) at non-zero momentum
is special to gauge theories: contrary to the estimate of eq. (1.2) above, which
indicates that corrections are down by at least one power of g, I can only reliably

compute the coefficient of the ~ log(1/g).

I believe this example is generic. The great difficulty in computing for light fields
at soft momenta is the necessity of including vertex renormalization. I have computed
the vertex renormalization for QE D, which I used to determine the damping rate of

a massless fermion [4].

After completing ref. [1], Gordon Baym and Chris Pethick informed me that they
and H. Monien have also investigated a resummation of terms ~ g7 [5]. Although
they did not resum all terms of ~ gT, they did include the most important — the
Landing damping mentioned above. They find that 1/viscosity is ~ log(1/g)g*. This
~ log(1/g) has a different origin from that in the self-energy: in the viscosity it comes
from log(T/(gT)), while in the self-energy, it arises from log((g9T)/(¢*T)).

II. Gauge fields

In this section I determine the the gauge propagator to ~ gT'. My results for
this, and for massless fermions in the next section, build upon those of Klimov and
Weldon [2]. My principal contribution lies in the computation of the spectral repre-
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sentation for these propagators. This requires not only the positions of the poles in
the propagator [2], but the residues about these poles, as well. Further, in order to
construct the complete renormalized propagator to ~ gT, the effects of cuts due to
Landau damping must also be included. I then use the renormalized gauge propa-
gator to compute the interaction with an external current. This standard example

demonstrates some general features of the infrared limit of hot gauge theories.

Let the self-energy of the gauge field be II,,. At a temperature T # 0, the
Ward identity, P#P¥Il,, = 0, implies that there are two independent components to
.. I choose to define these as the transverse and longitudinal terms, II; and II,,

respectively:
pop’ (i agad .. D3
Moo = 10, , Iy; = ~;—2 I, I = (6% - §'%) M + 5% % L. (21
I use upper case letters to denote four-vectors, with P* = (po, ), so P? = p3 + p?;

p = |p| and p = p/p. The transverse and longitudinal propagators are defined as

1 R
Cp+pr-I,° RIS

Ay (2.2)
In the limit of high temperature, the leading terms in the propagator are those
~ (gT)?, with the neglect of those ~ g(gT'), etc. [1]. To illustrate the results for II

to ~ gT , I consider the contribution of Ny flavors of massless fermions in QC D:

1 k*—(k-p)*+P-K
H{ = —2¢* N; (tr(_)—f; +tr (k- ) ) ,

K3(P - K)?

—2k? — kopo + k - 1‘7) (2.3)

K*(P - K)?

The subscript on the trace indicates anti-periodic boundary conditions in time. The

Hf = —-2gzN, (tr(_)fé—z- + tr(-)

first term is:
1 T?

K 24’

To understand the other terms, consider

ir(-) (2.4)

t B Pk R
"OKP-Ky J (@2r)72E2E,
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- _1 1
1—n(E.) — E, _ . :
{( 7 (Er) — 7t (Ep-k)) (lpo_Ek—Ep_k+lpo+Ek+Ep—’¢)

+ (B0 = (Bp) (g + g )} e

ipo— Ex+Epr ipo+ Ex — Epie
#(E) = 1/(ezp(E/T) + 1), Ei = k for massless fermions. The method of ref. [3] was
used to do the ko integral.

Let w = ipo and p be ~ gT . If k is itself ~ gT , then all momenta in eq. (2.5)
are of the same order, with the k integral ~ [ d®k /ipy'~ (gT)?; this only contributes
9°(gT)? to II7. To get a term in I ~ (gT')?, eq. (2.5) must be like eq. (2.4), ~ T2
This only happens if in eq. (2.5) k is ~ T. In this case, I can approximate

Ept —Ep ~ —pcosl , i (Ep) — n(Epi) ~ _pcos0

A(E)(1-4(E) . (2.6)

Then it is easy to do eq. (2.5): in the first two terms, ipo + (Ey + E,_) ~ +2k, which
produces a constant; in the second two terms, ipo = (Ex — Ep_4) = ipo — pcos 8, with

an easy angular integral. The final result is

T T? i . '
eq.(2.5) ~ % " (1 - ?p;l (zpo,p)) +..., (2.7)
: ipo + p
L (ipo,p) = log | - . 2.8
(ipo, p) g(zpo_p) (2.8)

The other terms not represented in eq. (2.7) are ~ pT, etc., and so contribute ~ ¢g*pT
to I/, which for p ~ gT is ~ g(gT)?, and not ~ (gT')?. The function L(ipy,p) in eq.
(2.8) will appear often in the following.

For the other terms in eq. (2.3), that ~ tr(_)(k-p)?/(K?(P — K)?) generates terms
~ T? as above. All of the other terms in eq. (2.3), however, can be ignored: e.g.,
tr(—yk - p/(K*(P — K)?) ~ pT, and so only contributes ~ g(gT)? to II‘.

As claimed in sec. I, terms ~ gT' are due entirely to a small part of the one-loop
graphs, when the virtual momenta k ~ T'. This is especially easy to compute. For
example, in the full one-loop result, the angular integrals are arduous to evaluate. In
contrast, due to the simplifications of eq. (2.6), the angular integrals for the terms
~ gT are trivial. |
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The full result is [2]:

) .
o, = —3m: (1 — %L(zpo,p)) ,

3 p2 2 3 .
I, = +§ m: -I-;g- (1 - (1 + %—) ZL](:L (zpo,p)> . (2.9)

P
0
I have dropped the superscript (f) for fermions, since the only change in adding the

gluons is to alter the value of m2:

2
my= 2012 QD) m =L (N+ M) suvy), 20

where m, is the “mass” for the gauge field.

In a general covariant gauge, the self-energies of ‘eq. (2.9) are independent of the
gauge-fixing parameter {. To show this, one starts with the form of the diagram in
momentum space, as in eq. (2.3), before any sum over ko is performed. In covariant
gauges, terms with double poles in 1/K? appear; to evaluate these, it is best to use

the identity
1

(T = lim o (% - Fi_m?) (2.11)
In most terms, such as in the residue of the gauge field, its statistical distribution
function, etc., the dependence on m; produces terms that are down by ~ 1/k?, which
is ~ 1/T? for hard k ~ T. The greatest contribution from gauge dependent terms
comes from terms where m; appears in an energy denominator, like the last two terms
in eq. (2.5); then produces contributions ~ 1/(ipok), which is ~ 1/(gT?) for soft po
and hard k.

Using this kind of power counting, it is direct to show the ¢-independence of the
gauge self-energies to ~ gT. What I do not have is a more direct way of show-
ing this, using merely the fact that the gauge-dependent part of the propagator is
~ ¢ K*KV/[(K?)?. At present, I can only establish gauge invariance after I have

contracted all indices and done the sum over ky — but not before.

It is noteworthy that the functional form of the self-energies is constant, with
the same dependence on ip, and p. The temperature enters solely through the mass

mg ~ gT; it is only through m, that the difference between virtual fermions and
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gluons is felt. This is presumably because for hard momenta k ~ T, the differences

in spin, etc., don’t matter.

Beyond leading order, when terms ~ g(gT)? are included, I expect that neither of
these properties is preserved: then the self-energies will depend on ¢, with a different
functional dependence on p, and p from diagrams with virtual fermion loops versus

those with virtual gluon loops.

The renormalized propagators to ~ gT' are formed by using eqs. (2.2) and (2.9).
Computing with these renormalized propagators in the usual fashion, by performing
the discrete sum over kg, is surely intractable. I then generalize the method of ref.

[3], by computing the fourier transform of the propagator in the Euclidean time 7:

A(r,p) = Z ~%7 A(po, p)

n=-oco,

=2xnT

47‘_1% dz e **"cot (ZT) (z,p) ——f -u/r A(z,p), (2.12)

C is a contour encircling the real axis counter—clockwise; I assume A(z) has no poles
within C. The final integral in eq. (2.12) is convergent at infinity in the entire z plane
for 0 < 7 < 1/T. Thus C is deformed from around the real axis, into two U’s around

the imaginary axis, plus infinity.

This produces a spectral representation for A:

Bed(ryp) = [ do pealorp) (L +n(@)) e +n(@)e™) ,  (213)

n(w) = 1/(ezp(w/T) — 1). The spectral densities py¢(w, p) equal

pre(w,p) = P15 (wee, p) 6 (w — wyye (P)) + pge® (w,p)0(p — w) , (2.14)

6(z) = 0,1forz < 0,> 0. wy,(p) are the mass shells for the longitudinal and transverse
modes, and always lie above the light cone, wy,(p) > p; o is the residue of the pole.
piisc represents the contribution of a cut below the light cone, from w = p down
to w = 0. This represents Landau damping by pairs of particles — either virtual

fermions or virtual gluons — with hard momenta k ~ T'.

Since the self-energies computed to ~ gT are independent of gauge, the transverse

part of the renormalized propagator satisfies properties expected for a physical field.
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For instance, the transverse density is the probability for finding a physical state, and
so is never negative, pi(w,p) > 0. It is not apparent how the longitudinal density
should behave. It turns out that to ~ gT, the longitudinal density is never positive,
pe(w,p) < 0. The example of interaction with an external source, discussed later,

helps to explain this.

Further, following Killen and Lehman, the canonical commutation relations de-
termine the commutator between A; and A_,-; the spectral density that appears there
is the same p; as in the propagator, and so the transverse spectral density satisfies a

sum rule,
[ dw (20) pi(wrp) =1, (2.15)

for all p. This was checked numerically. The equal-time commutation relations
between Ag and A, are gauge dependent, and thus it is not clear whether there is any
such sum rule for the longitudinal density. Numerically, I could not find any moment
of ps, in w, whose integral was independent of p. I note that by analyticity in the
complex z plane, it is always possible to write a dispersion relation relating the real
and imaginary parts of anything, as in eq. (25) of ref. [3]; what makes eq. (2.15)

special is that its form is independent of p.

In examining the detailed properties of the spectral denmsities, I start with the

more familiar example of the transverse mode.

we(p) is the solution of the transcendental equation

4p® 3 LW
L — T B S L) .
(we; p) ST ) ( wf +p* + S m} p’) (2.16)
Its limiting forms are
wi(p) — m +3p2 9p4+ 2.17
tp p—0 g smy 35mg R (' )
3m2 9 m] 8 p?
— ——f - ——2{2log|-—] -3 cee . .
wle)mmrt 3 ~ @ (219 3m? + (2.18)
The residue at this pole is
res w(w? — p?
pi*(w,p) = Cild ) (2.19)

3miw? — (w? —p?)?
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Its limiting forms are

i (wep) o5 Zmy  5m3 + B +ee (2.20)
1 3m} 8 p?
e’ ——=—1l1 = —] - cee s .

Egs. (2.17) - (2.21) show why I refer to m, as a “mass”, in quotes: both the mass
shell, w,(p), and the residue, p;, are more complicated than that for a relativistically

invariant excitation.

The spectral discontinuity p@*c is found by using
L(w +10%,p) = ir + L(p,w) . (2.22)

The result is .
pttiuc( ’p) _Im At

2 2 2 2
2“’(1’ —w?) 2@ (P’ —w?) 3rmiw(p? — w?)
=/ {( Fami (1 T o)) + (TR
(2.23)
Asw — p~,
2 2
disc p—w .
P) - T 2.24
( W, w—p— 3m3p2 ) ( )
while as w — 0,
duc 3 8 3 2
(W,p)c=p = 1 miwp [ |p°+ (—;— m,w) . (2.25)
For the longitudinal mode, the mass shell is the solution of
2p
L = ?+3m?) ; .
(we,p) Tton (p* +3m2) ; (2.26)
its limiting forms are
3 pz 3 p4
“(P) 755 ™ + 15 -~ 280 m3 (2:27)
wi(p) =~ p|1+2z+ §l’-2-~z~1o z] +... (2.28)
pmeo 3 m3 ¢ ’

)}
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where
_ 2 p?
Ty = €xp —§ m'—-: -2 . (2.29)
The residue is (" — oY)
ree _ 1 ww’ —p
Pt (w,P) (—F) Imi — o2 + p2 ) (2.30)
with limiting forms
res 1 m, 3 p? 9 pt
4] (wlip) p—0 ( pn) ( 2 20 m, + 560 ;2 RS B (2'31)
res 1 4P 8 p2
P (we, P) pomo (—;;) 3 (1 +3 (;13 + 3) ¢+ ) - (2.32)

Unlike the transverse field, the mass shell for the longitudinal mode is only similar
to that for a field of mass ~ m, at small momentum, p ~ my, eq. (2.27). At large
momentum, the mass shell of the longitudinal mode is exponentially close to the light
cone, eq. (2.28). Even more striking is the behavior of the residue: p, is of order one
over all momenta, eqs. (2.20) and (2.21), up to kinematic factors. In contrast, p, is
exponentially small at large momenta, eq. (2.32). Remember that large momenta
means large compared with ~ gT': even for p ~ T, the residue for the longitudinal
mode is ~ ezp(—#/g?)! This is the signal for the longitudinal mode as a collective

excitation.

As noted before, the longitudinal density is never positive; indeed, as seen from
egs. (2.30) - (2.35), there is always an overall factor of —1/p® in p;: about zero

momentum, eq. (2.31), p; is only finite once this factor is extracted.

The longitudinal discontinuity is given by

) 1)\ 3miwp 3 w 2 3rm? W\’
disc —
pg*(w,p) = (-p—,) — /{ (p’ +3mg — 5 my 2 L(p,w)) + ( - ;) :

(2.33)
where i\ 2 2
disc —_— 1= P
Py (w,p) - ( p,) 3 mi log 2/ (7 =)’ (2.34)
: 1\ 3 miwp
disc — -1 < g
Py (va) w—0 ( pz) 2 (Pz + 3m3)2 * (2'35)
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While the self-energies to ~ gT are independent of the choice of gauge, the prop-
agator itself does change. In Coulomb gauges with gauge-fixing parameter ¢, the

renormalized propagator is:

2

0.1 t

Ao = Actbly s Boi= b T, Ay = (8 = fib) A+ p”’ (2.36)
In covariant gauges with gauge-fixing parameter ¢,
4 ’ 2 t..2 t
_ P Po __ _ por'p popt
Ao =y S0+ pap » 80 =~ (o Mt (o
G miad PP r'y

Ay = (89 - 5'%) At (P’): Ay +£(P2)2 , (2.37)

with A, and A, as in eq. (2.2). The transverse propagator A, is always the same,
only appearing through the term ~ § — p'p7. Also, terms involving the gauge fixing

parameters, £ or ., are not renormalized, in that they do not involve either A, or A,.

What is surprising is how the physical longitudinal mode, A,, appears. At zero
temperature, the propagator represents two physical, transverse modes, and two un-
physical, longitudinal modes. At non-zero temperature, there are three physical
modes: the two transverse modes, and one physical longitudinal mode, with the
remaining longitudinal mode unphysical. But as eqs. (2.36) and (2.37) show, the
way in which the physical longitudinal mode shows up is in covariant gauges is very
different from Coulomb gauges. It is not apparent how A, contributes to physical
quantities in the same fashion.

To understand this, consider the interaction with a conserved, external current
J#, P,J# = 0, in the abelian theory. The J dependent part of the effective action is

1
Sepr = +§ trey) JH(P)Au(P)JY(P). (2.38)
Using current conservation, this reduces to
Sett = (2,,)3 [ do (14 2n)) (e (@,0) T2+ pe(w,p) J2) 5 (2:39)

the transverse current satisfies - J,, = 0.
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This result is independent of gauge: both p; and p, appear in the same manner.
For this to hold, all that matters is that J* is a conserved current. This is why

T-matrix elements, such as self-energies on mass shell, are gauge invariant.

To compute Sss explicitly, I assume that about zero momentum,
J (w )'-~—+-'-7--é J(w,p) — — T¢ (2.40
e\ P) 755 P y Yo\W,P) .75 0 . )

with J2 and Jg positive constants. The behavior of J;, is standard for an accelerated

charge. As the charge density, Jo behaves smoothly about zero momentum. With

Euclidean conventions, J, is imaginary: by current conservation, poJ° = —5-J, so Jo

is imaginary when pq is.

Then

1 ¢ & 1 oo 2 2 2

o (+3) [ @0 042D (u @) 72 + (-5 (0rm) ) -
(2.41)

The —p? above cancels the —1/p? in py, so that in all the longitudinal density con-

Setr =+

tributes with a positive weight to S.;s, in a manner no more infrared divergent than
that for the transverse density. Thus p, is positive, and p,; negative, because p; couples
to the space-like part of the current, while p; couples to the time-like part.

I first evaluate S.;s using the tree level propagators; then I can ignore p;, and

take
1

2p
With an infrared cutoff poueoss, at zero temperature there is the usual infrared loga-

pi(w,p) = o 8w —p) . (2.42)

rithm:

Supp~ 42 tog (—L ) 4., T=0 (2.43)
eff 873 9 Ploutos § veey =Vv. .

At T # 0, the Bose-Einstein distribution function enters, 1 + 2n(w) = 2T /w + 0(w),

and the logarithm turns into a power:

+oy, TH#0O. (2.44)

By construction, ezp(—S.ys) is the probability to emit zero photons in the presence

of the source J¥; the divergences in S.s; are typical of those found in scattering



~14- FERMILAB-Pub-88/113-T

processes. Eq. (2.44) applies to cold QED, when the temperature is much less than
the mass of any matter field.

In hot QED, or QC D, most contributions to S.s; are infrared finite. For instance,

over momenta p ~ my, the tranverse pole contributes
2 d3 1 res 1 2
~ T [ P (e ) A e Dy S TR (248)

Similarly, the longitudinal pole contributes ~ +gT?J2. The longitudinal discontinu-

ity also produces a finite result, as p§** is finite about zero momentum, eq. (2.35).
The only infrared divergence arises from the transverse discontinuity. As w —

0,n(w) ~ T'/w, and [ dw(p¢/w) enters in eq. (2.41). But as p — 0,

* dw dise 1
/o o P (w,p) =0 2 (2.46)

To show this, only the form of pf*® as w — 0 is needed, eq. (2.25). Because pd* is
so singular for w < p, the integral in eq. (2.46) is dominated by very small values of
w,~ p*/m3, which produces the 1/p* on the right hand side.

Using eq. (2.46),

2 T
Sefg ~+—2 —— ..., T#0. 2.47
11 yr R T # (2.47)

This applies to hot QED, when T is much larger than any mass. Why the result
should be the same as for cold QED, eq. (2.44), escapes me.

This example exemplifies what happens in the calculation of damping rates [1].
The largest contribution is from the effects of the discontinuity in the transverse
distribution, concentrated in the region about zero frequency, w ~ 0. The identity
of eq. (2.46) is useful is picking out the dominant contribution to damping rates at

non-zero momentum.

It is not difficult to understand why the transverse distribution is singular in the
limit of small w, and the longitudinal distribution not. Consider first the imaginary
part of II, for either II; or II;. At w = 0,Im Il must vanish, so ImIl ~ w. Since we
are keeping terms ~ (gT')? in II, and as it has dimensions of (mass)?, when w < p,
IO ~ m2w/p. Thus the difference between p§** and pgi** arises from the behavior of
the real part of II in the limit of w — 0.
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At w = 0, though, I can calculate Rell equally well in Euclidean space-time,
without bothering with analytic continuation. In this case, the behavior of Rell in
the static limit is familiar; for terms ~ (¢7')?, ReIl; ~ m3, while ReIl, vanishes.
This difference arises because to ~ gT, static electric fields are screened, while static

magnetic fields are not.

For w < p, then,

dl'lc ~ Im 1 Im H['t
Pe pP—Mg  (p? — Rellye)? + (ImM,,)? -

(2.48)

Thus about zero frequency, w < p, pf*c, eq. (2.25), is so much more singular than
pi*c, eq. (2.35), because static magnetic fields are not screened: Rell, # 0, ReIl, ~
0.

It is worth considering corrections to these results. Although to ~ ¢gT ReIl,
vanishes, there are terms in Rell, at ~ ¢g?T: ReIl, ~ g°Tp [6]. Because these terms
vanish at zero momentum, static magnetic fields remain unscreened, but as RelIl,

vanishes less slowly than p?, these terms act to soften the behavior of pe for p ~ g*T.

This is crucial to understanding damping rates at non-zero momentum [1]. Com-
puting to ~ gT, the effects of p; for w « p « m, turn out to produce a logarithmic
divergence. The cutoff for these terms only arises when terms ~ ¢2T in Rell, are
considered. Given the mild logarithmic divergence, any change in the behavior of

Rell;, and so py, is sufficient to provide convergence at a scale ~ ¢27T.

I emphasize that this cutoff comes naturally from considering the corrections to
the leading ~ gT approximation. It is not related to the appearance of “magnetic
mass” in QCD. For instance, for QED with scalar matter fields, the analogous scale

is ~ €T — yet here a “magnetic mass” probably does not arise.

Indeed, in an unusual circumstance, I do not understand what cutoffs the infrared
logarithm for QED with only fermion matter fields. In this case, ReIl, ~ p* order
by order in perturbation theory, so it must be higher order corrections to ImII, that
provide the cutoff. This scale is probably smaller than €27'.
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ITI. Fermions

In this section I compute the the renormalized propagator for both massless (2]

and light, massive fermions.

Consider massless, isodoublet fermions coupled to an SU(N) gauge field. In Feyn-

man gauge, the self-energy of the fermion is

&k 1
— 2a2C, ¢ __K = 2ig?
Ly =21g°Cy tr, K (P-K) 2ig Cf/ (21r)3 2E.2E,_,

- _ K K.
{(1 - n(Ek) + n(E -k)) (ipo — Ep—E,» + ipo + B + Ep-k)

. - K K* -
(B (EL) + 7 Ep-s)) (iPo — Ex+ Epi * ipo + Ej — E,_k) } " (3.1)

C;=(N*-1)/2N),K = —iExyo+ k-7, K* = +iEpvo + k- 7.

Unlike IT,.,, ¥ has dimensions of mass, so it is not apparent how terms ~ (g7')? can
appear. Again, though, let k ~ T in eq. (3.1): the first two terms ~ g% f d®k/k? ~
9(gT), and so can be ignored. Terms ~ (gT')? only arise from the second two terms,

where the energy denominators ¢po £ (Ex — Ep_i) ~ ipo £ pcos 8, and the k integral
is ~ g* [ &®k/k ~ (gT)?. The renormalized propagator,

A7 (poyP) = —i ¥~ By = —(1°Do +i $D,) . (3.2)
is , , -
—w— e rs — my (, _*Por,.
Do =w % L(ipo,p) , D.=p+ . (1 % L(tpo,p)) , (3.3)

with the L(w,p) of eq. (2.8). my is the fermion “mass” induced by temperature:
2 _ € 2 _ 9°Ctma
m§ = -S—T (QED), m} = TT (SU(N)) . (3.4)

Like the gauge field propagator, once the sum over virtual ky is performed, it
is easy to pick out the terms that contribute ~ gT': they omly arise from virtual
momenta that are hard, k¥ ~ T. By similar means, it can be shown that the the terms

~ gT are independent of gauge.



-17- FERMILAB-Pub-88/113-T

I start by discussing the quasi-particle excitations of massless fermions. On mass

shell, spinors satisfy

(+*Do+i #D,) % =0. (3.5)
Multiply this by ¥57°, and define & = —iy°4°3. Then 9 obeys
D,\_ .
Y= (T?:) G-py. (3.6)
From this relation, it is apparent that
_ chirality(y) . (D,)
X= Retiany(p)  9"\Do/ (3.7)

At zero temperature, sign(D,/D,) =sign(w): positive energy states have x = +,

while negative energy states, x = —.

At non-zero temperature, there is not one but two poles in Ay, for a given p # 0

and positive w. There is the usual pole,

D, = +D,, | (3.8)
along which x = +, as at zero temperature. The second solution is given by

Dy = —-D,, (3.9)

with x = —. This second solution represents a collective excitation, where the usual
relation between chirality and helicity is flipped.

This collective excitation with flipped helicity gives rise to some interesting phe-
nomena. For example, the ratio of the decay rate for a charged pion into ev versus
pv is ~ ml}/m3 at zero temperature. Since the decay into electrons is suppressed
by the standard relation between chirality and helicity, at sufficiently high tempera-
tures decay into electrons can proceed via the x_ mode, with the ratio of decay rates
~ (eT)/m3.

Unfortunately, none of decays that open up due to the x_ mode appear to be of
dramatic significance for the quark-gluon plasma. Like the above example, chirality
suppressed modes are typically of importance only for weak decays; for the strong
interactions, such effects are rather more indirect. This does suggest, however, that

the effects of the x— mode might be of importance for the early universe.
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The fourier transform of the fermion propagator is found from

400 —t
= —ipoT = 1 e 7]
AP = Y eTPTAy(po,7) = ﬂf}, iz —mr18:(=8),  (3.10)
po=z;ﬂ_:1.)*T

which is convergent at infinity in the complex z plane for 0 < r < 1/T. Deforming
the contour C as before, to wrap around infinity and the imaginary z axis, generates
the spectral representation of Ay:

()

As(rp) = / oo [p°(“”P)7o ((1 — #(w))e ™" + fi(w)e*)

+pu(w,p)i B ((1 — i(w))e™™ — a(w)e”)] . (3.11)
The difference in signs for the terms ~ ezp(wr) is because the term ~ 4° involves
8/t exp(Fwr) ~ Fw ezp(FwT).

As for the gauge field, since the renormalized fermion propagator to ~ gT is
independent of gauge, it exhibits some general properties. The density ~ 4° is never
negative: po(w,p) 2 0 for all w > 0 and p. Secondly, the equal time anti-commutation
relations determine the anti-commutator between 3 and 1/:f; thus po satisfies a sum
rule,

/o dw 2po(w,p) = 1. (3.12)

Using the propagator of eqs. (3.2) and (3.3), I checked numerically that this sum
rule was satisfied. The equal time anti-commutation relations do not determine the
anti-commutator between v and xbf"y; numerically, I did not find any sum rule, like
that of eq. (3.12), which was satisfied by p,.

There are three contributions to the spectral densities:

po.s(w,P) = Pors (w,P) (§(w — w4 (p)) + 8(w — w—(p))) + 8(p — w)pGis*(w,p) . (3.13)

wx(p) are the mass shells for the x+ modes. p™*(ws,p) are the residues of Ay at
these poles, which has the same functional form for each, eq. (3.18). As these modes

are eigenstates of yx;,

res

P (wi,p) = £p5™ (ws, P) - (3.14)

This discontinuity due to Landau damping does not contribute with a fixed Dirac
structure: generally pdi* # +p%c. This is because the discontinuity represents the
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effect of a pair of particles, a virtual fermion plus gauge field, and this pair need not

be in an eigenstate of x.

I begin with the poles of Ay. The mass shell for the x; mode, Dy = +D,, is the

solution of

2p? ( m’)
L(wy,p) = ————— |ws — 1. 3.
( + ) m}(p—w+) + P P H ( 15)
with limiting forms
w ( ) —~ mys+ p + li +
+ P p—0 f 3 3m! R | (3-16)
m% 1m} 2
—_ f _— 1 P
w4 (P) o Pt » 270 og (2m§) +.... (3.17)
The residue is: .y )
res _ wy —p
o (we,p) = 7 o (3.18)
For the x, mode,
g Ll 2 L P .
po +’P p—0 4 6 m! 18 m; ttr ( '19)
res 1 1 m§ 2p2
o (wiyP) o 271 p (109 (r_n? —.1 +.... (3.20)

2p? ( m’)
Lw_,p)= —————— |w_+ +---i 3.21
(w-,p) — PR r+—r) (3.21)
where 1 o
P p
w_(p)gm‘f—iﬁ'g;n—f-ﬁ-..., (3.22)
w-(P) s P (1 +2z_ +4z? +.. ) , _ (3.23)
P
z_ =e€ezxp (—2m—} -_ 1) . (3.24)

The residue for the x_ mode has the limits,

P W) R T T B mE T (3.25)
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2
o (w-»P) e ;%3- (1+3z_+..)). (3.26)

The x, mode is a renormalized version of the usual fermion. Finite temperature
effects push the mass shell above the light cone, as if it had a mass ~ gT'; its residue
is of order one over all momenta, egs. (3.19) and (3.20). In contrast, while the x_
mode is a collective excitation, like the longitudinal mode of the gauge field: it acts

like a massive field over p ~ my, but at large momenta, its residue is exponentially
small, eq. (3.26).

One property of the x_ mode is unique. w,(p) increases monotonically with p.

w—(p) first decreases, has a minimum at
P = Pmin = .408my , (3.27)

and then increases. About p™",

(p —p™")?

w-(p) p ., -928my + .966 —

+oee © (3.28)

I do not attach much significance to this minimum in w_(p). Certainly it means
that for a pair of fermions with zero net momentum, the smallest total energy is
not 2my, from fermions with p = 0, but .928(2m;), from fermions with p = p™n.
Still, I do not believe the existence of p™" signals a transition to a new ground state,
etc. [2]. After all, the minimum occurs at energies ~ gT, which is far below the
temperature T. This is exactly opposite to what happens for rotons in liquid helium;
there & minimum in the energy at p # 0 produces superfluidity, but only when the
temperature is much less than the roton energy.

There is one limit in which the sum rule of eq. (3.12) is evident. At non-zero mo-
mentum, the sum rule receives contributions from the discontinuities due to Landau
damping, but these vanish at p = 0. At zero momentum, from eqs. (3.19) and (3.25)
each mode contributes 1/4 to py, to give 1/2 overall.

The discontinuities are given by

disc disc: 1 _ 1 D070+Dli ﬁ
Po Yo+ pi* i f= — Im —DiiDi |° (3.29)
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where the imaginary part is evaluated for w > 0, using eq. (2.22). The general form
of p3*c and pfi*c are not very enlightening, so I give just their forms for w <« p <« my:

. 2
disc 4
Po wp€ms 17 1 4 -,m—-zf +.ee, (3.30)
: 2(1!"2 - 12) w
disc
pl wpLmy (ﬂ_z +4)2 m} con g (3.31)
while as w — p~ K my,

. . 1

pguc ~ _p:'iuc p (3.32)

wmr=€ms 2m {(Lp,w) = 1) +79) °

For p > my, pg*c and p3*c fall off as ~ m}/p?. For general w, the discontinuity does
not contribute with definite helicity: e.g., p%*® vanishes as w — 0, while pdi*c does
not. Asw — p~, though, pdi*c ~ —pdisc 5o the cut contributes like an excitation with
X=-.

The important property of p3:* and pdi*¢ is that, like the longitudinal discontinuity
of a gauge field, pj**, they are smoothly behaved about zero momentum, eqs. (3.30)
and (3.31). This is the limit, w < p <« g7, in which the transverse discontinuity
of the gauge field is singular, eq. (3.22). That the fermion densities are smoothly

behaved in this limit follows from

irm3 m? irmiw
A 14— (3.33)

Do w(p—zm! 2? ’ lw&'m’ P 2P2 ]

and eq. (3.29).

The extension to light, massive fermions is immediate. Assume that the mass,
as defined at zero temperture, is no greater than ~ g7'. Then because terms in the
self-energy only arise from virtual momenta that are hard, k ~ T, m can be ignored
in the functions of eq. (3.3). At non-zero mass, there is also a term in the self-energy
~ m, but this is no larger than ~ m g(gT), and so can be ignored. Thus in the
renormalized propagator of eq. (3.2), m merely tags along:

A7'=—(y°Do+i $D,) +m. (3.34)

As the mass m is increased to become ~ T, one enters a complicated crossover

regime, with many terms of the same order. Of course the limit of a very heavy
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fermion, m > T, is simple, as then all self-energy corrections are ~ g?T/m, and it

suffices to use the bare propagator at leading order.

At non-zero mass, it remains true that that A; exhibits two branches for w > 0. I
refer to the one where Dy = +(D, +m) as the x7 mode, and Dy = —(D, +m) as the
x™ mode. When m # 0, of course, states do not have definite chirality. Nevertheless,

each x7 made smoothly connects with x+ as m — 0, so the notation is convenient.

For simplicity, I concentrate on zero momentum. At p =0,

Wwi(0) = % (y/m? +4m? £m) . (3.35)

As m increases from 0 — oo, w7*(0) moves up, from my to m:
m m m m?f
w+(o)m2;!m,+?+... ) w+(0)m—>—;—n’m+7—n-+..., (3.36)
while w™(0) moves down, from m; to 0:

m ™ m? mi
w'_n(O)mz;'n’ mf—?'*'... ’ w_(O.)m;;"!—”T‘f—;ﬁ-+... . (3.37)

The residues behave similarly: that for xT increases as m does:

1 1 md

() g (w7,9) s 1
po (Wi, m<my 7 8 my cee g Po\Wy, "')m’E_EF-*—“" (3.38)
while that for x™ decreases:
m 1 1m m 1m} 3 m}
PO(‘*’-vO) m<my Z_-S-nT!-'- ’ po(w_,O) ,,.‘;;’,.,5;';—-2-——4+ (3.39)

As at zero mass, po satisfies the sum rule of eq. (3.12).

These results can be used to determine when the collective mode, x™, is important.
At first, one might hope for dramatic effects from x™ at large m, since it becomes very
light when m is heavy: w™(0) ~ m%/m for m 3> my, eq. (3.37). But as the energy of
x™ becomes small, so does its residue; po(w™,0) vanishes as ~ m?/m? when m — oo,
eq. (3.39). In particular, let m ~ T; the above doesn’t get factors of one right, but
should give the correct powers of g. With my ~ ¢gT and m ~ T, w™(0) ~ ¢*T and
po(w™,0) ~ g*. Since the residue of x™ is ~ g* by the time that m ~ T, its effects

can be safely ignored.
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This is of consequence for the quark-gluon plasma. The relevant regime of temper-
atures is T' ~ 100 — 200 MeV, so at these temperatures, the up and down quarks are
(essentially) massless myq < T, while for the strange quark, m, ~ T. Thus at small
momentum, p ~ gT, the propagation of up and down quarks is strongly renormalized
by the medium, and they develop a collective made with flipped chirality/helicity.
For the strange quark, though, even at small momentum any renormalization effects
are strictly ~ g%, and its collective mode can be ignored. Of course I am assuming
that I can use perturbation theory over such T', which is surely wrong; but perhaps
these perturbative results are qualitatively correct.

Finally, I mention the results of a similar analysis for massless fermions at zero
temperature, but non-zero chemical potential x. Following the approach at T' # 0, I
compute only the leading terms in the high density limit, ~ (gu)?, neglecting those
~ g(gn), etc.. In the tree propagator, to go to u # 0, one merely replaces w — w + u.
It is not obvious, but in the high density limit this also holds for the renormalized
propagator of eq. (1): everywhere w becomes w + p. It is also necessary to redefine
the fermion “mass”; for QC D, m3 = g*Cyp?/(872).

Thus one would naively think that the same phenomena present at 7'# 0, u = 0
would arise at g # 0, T = 0 (Klimov, ref. (2)). For instance, at zero momentum,
there is not one pole at w = —pu, but two, for w = —pu + my; further, for w > —p + p,

there are two branches, with one a collective mode like x_.

But at non-zero chemical potential, however, what is of interest is not the region
about zero momentum, but that about the Fermi surface, when p ~ u. In this
case, the collective mode is completely negligible, since its residue is ~ ezp(—#/g%);
similarly, the renormalization of the x, mode is uniformly small, ~ g?. In particular,
due to x4 states near the Fermi surface, there are still excitations with arbitrarily

small energy — at least to leading order in ~ gpu, there is no superconductivity.

Thus when computing at g # 0, T' = 0, the bare fermion propagator can be used
in computing scattering amplitudes to lowest order in g; likewise, the bare vertex
with a gauge field is adequate. This is a simplification from T # 0 [1], where it is
necessary to use renormalized quantities for the fermion propagator and its vertex.
To leading order at u # 0, T = 0, the only effects ~ gu reside exclusively in the gauge

field: in its propagator, and for a non-abelian field, in its self-interactions.
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