
A Fermi National Accelerator Laboratory 
FERMILAB-Pub-88/67-A 
May 1988 

STABILITY OF BOSON STARS 

Marc& Gleiser t 

NASA/Fern&b Aatrophysica Center 
MS209 Fermi National Accelerator Laboratory 

Boz 500, Batavia, IL 60510 

ABSTRACT 

Boson stars are gravitationally bound, spherically symmetric equilibrium configurations 
of cold, free or interacting complex scalar fields-d. As these equilibrium configurations 
naturally present local anisotropy, it is sensible to expect departures from the well known 
stability criteria for fluid stars. With this in mind, I investigate the dynamical instability 
of boson stars against charge conserving, small radial perturbations. Following the method 
developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the 
perturbations is found. This approach allows one to find numerically an upper bound for 
the central density where dynamical instability occurs. As applications of the formalism, I 
study the stability of equilibrium configurations obtained both for the free and for the self- 
interacting (with V(d) = aidI4 ) massive scalar field 4. Instabilities are found to occur not 
for the critical central density as in fluid stars but for central densities considerably higher. 
The departure from the results for fluid stars is sensitive to the coupling A; the higher the 
ralue of A: the more the stability properties of boson stars approach those of a fluid star. 
‘These results are linked to the fractional anisotropy at the radius of the configuration. 
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1. Introduction 

In recent years, the active interplay between particle physics and cosmology has made 
frequent use of scalar fields es driving the dynamics and the formation of structure in the 
early Universe. This current interest in the possible role scalar fields may have played in 
primordial phase transitions or es sources of dark-matter, has raised interesting questions 
es to whether cold, spherically symmetric and stable configurations of complex scalar fields, 
“boson stars”, could exist in which the gravitational contribution to the total energy of 
the configurations can. not be neglected. 

Boson stars are to be contrasted with other localized, stable, scalar field configurations 
that have been proposed in the literature in which gravity does not play a role, such as non- 
topological solitons and Q-balls [I]. These objects owe their stability (against dispersion of 
the scalar particles to infinity) to the balance between two opposing terms in the expression 
for their energy: Non-trivial couplings in the effective potential generate surfece and/or 
volume terms that act to localize the field configuration. The effective pressure that 
balances this effect is actually common to both boson stars and non-topological solitons. 
It comes from the conservation of charge associated-with e global symmetry of the model. 
For a global U(l), this charge is related to the number of particles (minus anti-particles) in 
the configuration, N (although, of course, any additive quantum number will do). Thus, if 
N is bigger than a calculable minimum value, the particles will resist localization with an 
effective pressure that scales with - l/R, where R is the typical size of the configuration. 
The bigger the charge the more bound is the object. The importance of gravity also grows 
with the charge. One may think of soliton stars or Q-stars where the charge of the non- 
topological soliton is big enough to justify gravitational corrections to the energy. Although 
these objects are very interesting (more about them later), es a first step I will forget about 
the non-trivial couplings and consider only free or self-interacting (with quartic coupling) 
scalar fields. This takes us beck to the realm of boson stars. 

The iirst step in understanding boson stars wes taken by Ruffini and Bonazzola [2]. 
They have found interior Schwarzscbild solutions to the Einstein-Klein-Gordon system 
with the simplifying assumptions that the scalar field is nodeless and et zero temperature, 
i.e., that the field forms a condensate with zero-momentum p - l/R N m, where m is 
the scalar field mass and R is the typical size of the configuration. Thus, the equilibrium 
configurations can be thought of es being macroscopic quantum states of cold, degenerate 
bosom held together by gravity with supporting pressure given by Heisenberg’s uncertainty 
principle. The results in [z] have been recently confirmed by the works listed in [3]. 

In [2] it was shown that, although boson stars have many similarities to their fermionic 
counterparts, white dwarfs and neutron stars, there are also many interesting differences, 
that call for a detailed study of these objects. As e first example, boson stars also exhibit e 
critical mess and critical particle number, given respectively by M,et = 0.633M&,,,,/m 
and Nc,it = 0.653M$IancL/mZr where Mplonch is the Planck mess. The order of magnitude 
estimates for Mcrir and Nc,it can be easily obtained using Landau’s argument adapted 
for a bosonic.configuration; just minimize the energy of a scalar particle with the above 
momentum in the background gravitational potential of all self-gravitating particles, Ep - 
-GMmJR. Note, however, that the Chandrasekhar mess is h!fChon - M&nck/m2r while 
the critical particle number goes es NC&,,, - M&,ncL/m3. Thus, for fields of mess - 
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1Gev we obtain boson stars of mess - 1O”g and 103’ particles, much lighter than their 
fermionic counterparts which would, instead, have e mess - 10s3g with - 10” particles. 
It is also,worth mentioning that the critical density for boson stars is pct;t(0) = 8.3 x 

10s2( $-)gcme3, enormously higher than that for cold, degenerate fermions! Densities 
of this order are found for objects with sizes comparable to the Compton wavelength of 
their constituent particles. Clearly, et such densities we may expect deviations from the 
common lore concerning stability of fluid stars. 

A parenthesis should be opened here concerning higher node solutions. As mentioned 
before, the above critical values are alI related to nodeless field configurations. In the work 
by Friedberg, Lee and Pang [3] it wes shown that if one considers only the spherically sym- 
metric higher nodes (i.e., with 1, the angular momentum quantum number being zero), the 
critical mass grows approximately linearly for large node number n - 1. The same tendency 
WBS observed for scalar fields with non-minimal coupling in the work by van der Bij and 
Gleiser [4]. If a given configuration happens to contain too many particles to be a zero 
node equilibrium configuration, it would possibly find equilibrium in a configuration with 
the number of nodes necessary to accomodate the total number of particles. Nevertheless, 
despite the difference in node number, the equilibtium configurations obtained all have 
very similar properties. In particular, whet is crucial to the stability~aalysis is that they 
all share the existence of a critical mess. In this work I will look only into the simplest zero 
node configurations. The stability analysis to be developed here can be extended to higher 
spherical nodes without too much problem. The results should be qualitatively similar. 

Boson stars with self-interacting scalar fields have been considered in the work by 
Colpi, Shapiro and Wasserman [5]. One of the consequences of switching on e repulsive 
self-interaction between the scalar particles is to. increase the above critical limits on the 
mess end particle number. In particular, if rnb o.on = A’/4 mfcpmionr the critical mess 
for the boson star approaches the Chandrssekhar limit. Other models, including so&on 
stars [6] and boson stars with non-minimal coupling for the scaler field [4], have confirmed 
the seme tendency; interactions tend to increase the critical values for mess end particle 
number, although the particular values are very model dependent. An extreme example is 
obtained for soliton stars, where the critical mess scales es Al,,+, - ~“$~/rn~. 

One of the crucial differences between the bosonic and the fermionic configurations 

arises if one tries to implement e macroscopic description for the bosonic condensate t. 
As it wes already shown in [2] and later emphasized in more recent work [3], it is not 
consistent with the field equations to describe the bosonic condensate es a perfect fluid 
with a given equation of state; the energy-momentum tensor is not isotropic in the 3 spatial 
directions, with the radial component differing from the 2 angular components. Due to 
this local anisotropy, the most general form of the energy-momentum tensor is T,’ = 
diag(p, -pr, -PA, -pl), where pr is the radial pressure and pl is the tangential pressure. 
As an immediate consequence, we can not epply directly the well known theorems for 

tB f y ermionic configurations I mean configurations with supporting pressure given 
by Pauli’s exclusion principle, such es white dwarfs end neutron stars. These should be 
distinguished from fermion soliton stars [6] that e&t due to a non-trivial coupling between 
the fermions and a real scalar field. 
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stellar stability when dealing with boson stars. Nevertheless, if we plot mass against central 
density for these stars, we will find a behaviour remarkably similar to those of neutron stars: 
In the plot of total mass against central density, the mass M quickly raises to a maximum 
(at u(O) = ucrit(0) = 0.271, where u(0) is the dimensionless v&e of the SC&U field at 
the origin which is used as a parametrization of the central density of the configuration), 
drops B little, oscillates and approaches an asymptotic value at large central densities, the 
same happening for the particle number N (see fig. 1). Note also that the binding energy 
.??b E M - Nm becomes positive for a finite value of the central density (at cc?,(O) = 
0.54), suggesting the existence of configurations with excess energy (or fissionable). Such 
configurations are unstable in principle against a collective transformation in which they are 
dispersed into tree particles at in&&y. The excess energy is translated into kinetic energy 
of the tree particles. Nevertheless, they are (as any equilibrium configuration is) stable 
against removal of individual particles; at the surface of the configuration, the mass-energy 
necessary to create a particle is m(l - 2M/R)‘I’, which is less than the energy needed 
to create a scalar particle at infinity. Also, as shown by Zcl’dovich and Novikov [7], there 
may be equilibrium configurations with excess energy which are stable against small radial 
perturbations. 

At fir&sight, the existence of B critical mass suggests that for M > Mcrir gravitational 
collapse will be unavoidable. For boson stars things are not so simple, since, as was stressed 

before, it is possible that such heavy configurations will reach equilibrium with n - 1 > Ot. 
But this is not the only way collapse can occur. From the theory of stellar stability we 
know that equilibrium configurations with central densities p(O) > petit(O) are unstable to 
small radial perturbations [7]. Most of the previous papers on boson stars have conjectured 
that similar results would be found once a microscopic approach to the stability analysis 
was known. 

In this paper I address the question of the stability of bosonic equilibrium configu- 
rations against radial oscillations both for the free and for the self-interacting case, with 
V(d) = $ld14. In fact, the present formalism can be extended to any interacting poten- 
tial for the scalar field. (The extension to soliton stars [6] is more subtle). I will adapt 
Chandrasekhar’s formalism for studying dynamical instability of fluid stars against small 
radial oscillations [g] to scalar fields with a given energy-momentum tensor. A variational 
approach is used to obtain an upper bound for the eigenfrequencies of the perturbations 
for different values of the central density and given trial functions. As will be shown, the 
existence of pressure anisotropy has a big impact on the stability properties of boson stars; 
contrary to the results for fluid stars, instabilities are found not for central densities equal 
or larger than the critical density but for configurations welI to the right of the maximum 
mass (see figures 1 and 2). 

The paper is organized as follows; in section 2 the basic formalism to obtain the equi- 
librium configurations for boson stars with the potential V(4) = 21q51’ for the scalar field 
is developed. In section 3 some interesting properties of the equilibrium configurations 
not previously discussed in the literature are presented. In particular, for a given value of 

t As shown in Friedberg, Lee and Pang [3] high node configurations are unstable against 
fission. The mass can not grow indefinitely. 
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A, the fractional anisotropy at the radius of the stellar configuration fa = (pr - pl)/pr 
shows a very regular pattern that is roughly independent of the central density and plays B 
crucial role in the understanding of the stability results later on. In section 4! I extend the 
formalism to first order radial perturbations and obtain the linearized dynamical equations 
that govern their evolution. It is shown that the problem can be reduced to two coupled 
eigenvalue equations for the two real components of the perturbations of the scalar field, 
and how a variational base that is used to give an upper bound to the eigenfrequencies 
of the perturbations can be built. It is also shown how the formalism is compatible with 
charge-conserving perturbations. The formalism of section 4 can then be used, with suit- 
able trial functions for the perturbations, to numerically obtain upper bound8 for their 
eigenfrequencies for different values of the central density. This is done in section 5 both 
for the free case and for the self-interacting case. The relation between the results found 
and the tractional anisotropy introduced in section 3 is stressed. 

I conclude in section 6 with a summary of the results and with an outlook to future 
work. 

2. Equilibrium Configurations 

The starting point for the calculation is the action 

s=/W?+& + g’“b.;r& - +#f - ;ldl’] 

This action is invariant under a global phase transformation, 4 -+ e”~$, that implies the 
conservation of its generator N, the total particle number. By varying the action with 
respect to gpy and 4 (or equivalently 4’ ), we dbtain respectively Einstein equations 

R w R = -8nGT,,, , (2) 

with 

T,w = 4:,,+,v + 4:,4J,, - s&w 1 (3) 

and the scalar field equation 

sa8~;ap + m24 + ;i9i?++ = 0. 
4s we are considering a spherically symmetric system with motions only in the radial 

direction, we take as the spacetime metric 

ds2 = e’dt’ - eXdrZ - r2(d02 + sin2t?dip2) , (5) 

where Y and X are functions of r and t only. The distinction between the metric function 
X and the coupling constant with same notation,should be obvious throughout the text. 
It is also convenient to write the scalar field as 

4(+, t) = [h(T, t) + +(T, t)le-“’ 1 (‘3) 
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where &(T, t) and &(r,i) are real functions. With the metric (5) Einstein equations are 

Ri - ;R = -8&T, E -87&p = $(d)’ - $ 

R; - ;R = -8nGTf E &rGp, = e-‘(; + $) - f 

R; - ;R = R; - ;R = -&rGT; = -8rGT,3 = 8xGpL = 

e--x 
1 
iv” - Jpf + i”‘Z + $/f - A’) 1 - e-” 1 

and 
e-A. 

R; = -8nGT, = --=-A , (10) T 

where the prime and the dot denote differentiation with respect to 7 and t respectively. 
For future convenience, the energy density p, the radial pressure p,, and the tangential 
pressure pi were introduced. Combining (7) and (8) we obtain the useful relation 

$A’ + II’) = -BnG(T; -T;) . 
T 

As it is well known, equations (7)-(10) are not all independent due to the Bianchi identities. 
As a consequence, the conservation of energy-momentum T:;” = 0 leads, in the present 
framework, to 

f;+T;‘+;(T;-T;)i+T; 
[ 

;(X’+v’)+; =0 1 (12) 

and 

f’;+T:‘+;T;(i+ti)+;(T;-T,o)v’+;(T;-T;)=O . (13) 

The equations for 41 and 42 can be obtained by using (5) and (6) into equation (4) 
and its complex conjugate giving, 

4;’ + (E + g - gj$: + eywze-~ -d - $g)4, 
- exmyqi, + ie”-‘(i, - ;\)& f ieA-‘(i, - ~)w#Q 

7 2eX-” 4 - e”($hK = 0 , 04) 

where the equation for 42 is obtained by interchanging the subscripts 1 u 2 and by taking 
the lower signs. 
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Finally, as mentioned before, the global invariance of the action (1) leads to the 
continuity equation, 

J&=0 , (15) 

where the current four-vector .Tp is given by 

J’ = igpY(4,y4* - 4:,4) . (1‘3) 

The conserved charge is then 

N = J d3zfiJo . 

For the equilibrium configurations the metric functions are time independent. Also, 
the scalar field components can be written as &(r,t) = 40(r) and &(T,t) = 0 . Thus, 
there are only three unknown functions of T to be determined; VO, XO and 40, where the 
subscript 0 is used to characterize the equilibrium quantities. There must be only three 
independent equations. First note that for the static solutions, equations (lo), (12j and 
(15) are trivially satisfied. Also, equation (13) (the hydrostatic equilibrium equation) is 
identical to (14) which can be obtained from a combination of equations (7)-(g). It is then 
a matter of choice which set of equations is taken to be independent; one can use Einstein 
equations (7)-(g) or, say, equations (7), (8) and (13). I will f o II ow the current practice [z-5] 
and take the latter combination. The reason I am stressing this point now is that, when 
we analyse the equations for the perturbations in section 4, matters will not be so simple. 
We are left with the three equations 

(s-eeAo)’ = 1 - 8xGr2 
1 
(mZ + i+i + e-“~J)& + e-Ao df] 

e-AO 1 
,.vh - Tz(l - e-‘“) = -8nG (m* - e-“Ow’ + $$)& - e-““# 1 (19) 

&I + > $75; - eym* - e-“ow2 + ;c$;,f$o = 0 
Equation (11) becomes, 

x; + v: = 16xGr(e~0-“0wZ.$~ + +a, (21) 

These equations can be integrated numerically once we introduce the dimensionless 
variables I s rm,~(r) 5 (BrrG)‘/‘&(r), with the factor w2/m’ being absorved into the 

definition of the metric function Co. Note that the coupling X is replaced by A s “y$b 
The boundary conditions are XO(T = 0) = O,o(r = 0) = cr(O),cr’(r = 0) = 0 and u(a) = 0. 
For details see references [2-51. In figures 1 and 2 we plot the total mass M and particle 
number N against P(O) for the equilibrium configurations obtained by taking A = 0 and 
A = 60 respectively. The total mass M is defined by, 

M = 47r 
r 

pr’dr . 
0 
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Note the existence of a critical mass and particle number and how the extrema of the 
two curves overlap. Note also that, as already mentioned in the introduction, for a finite 
value of the central density, the binding energy of the configurations & e M- Nn becomes 
positive, signaling the existence of configurations with excess energy. Of course, for A > 0 
the repulsive meson-meson interaction not only increases the number of particles in a 
configuration of given central density but also makes the binding more difficult, explaining 
why configurations with excess energy occur for smaller values of u(O). As shown in [4], 
an attractive coupling, if large enough, may make &, negative definite. 

3. Some Properties of the Equilibrium Configurations 

In this section I will look in more detail into the equilibrium configurations. In equations 
(7)-(g) the energy density and the radial and tangential pressures were introduced. For a 
fluid star, at least up to nuclear densities, there is no reason to include local anisotropy in 
the equation of state. Nevertheless, there has been some interest in the past in the possible 
consequences of local anisotropy to properties of compact objects such as surface redshift 
and critical mass [9]. It has been shown that anisotropy is responsible for changes in 
these properties and that these changes can be related to the fractiopal anisotropy (= fa) 
defined by 

fa = (Pr - PljlP, . (23) 

Clearly, fa measures the departure from local isotropy. To the best of my knowledge, 
the importance of anisotropy has not been much explored ever since, the main reason 
being the apparent lack of any realistic object that would naturally display it. Leaving the 
question of reality aside for the moment, boson.stars are ideal subjects for an extensive 
analysis of the effects of anisotropy [lo]. Using the definitions of p, and pl in equations 
(8) and (9) combined with the expression for the energy-momentum for the equilibrium 
configurations, the fractional anisotropy is 

fa = wa 

(e--uvo2 - ,2 - &4;)& + e-*0(&2 

In figures 3 and 4, the fractional anisotropy is shown for A = 0 and A = 60 respectively, 
for different values of the central density. The dots correspond to the values of fa at the 
radius of the configuration, where the radius is defined as 

RG~ 
I 

ODpr3d7. . 
0 

(25) 

Other definitions for the radius, although not as natural as the one above, have been used 
in the literature [3,4]. The present results are qualitatively the same, independently of the 
definition used for the radius. There are two important features to be noted. First, for B 
given A, the kactional anisotropy at the radius (FAR) lies very much on a straight line, 
with deviations, for A = 0, of only a few percent. For larger values of A the fit is still 
good, although there are deviations of up to 30% for the smaller and bigger values of the 
central density as can be seen in table 1. Second, and this is important to the stability 
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analysis, the higher the value of A the smaller is the FAR. Thus, we should expect that 
configurations with large enough values of A have stability properties similar to those of 
fluid stars. In reference [5] it has been shown that in the limit A + m it is possible 
to write an effective isotropic equation of state for the bosonic matter so that the well 
known theorems for stability can be successfully applied. Using the present approach, we 
will see that it is possible to map the deviations from the fluid star results to the FAR. 
Another interesting property of the equilibrium configurations is shown in table 2; if we 
write o,,+(O) for the central density at the maximum and c=,,.(O) for the central density 
at the point where Eb = 0, we find that, independently of A, u,~.(O)/O,,~~(O) N 2. 

4. Radial Perturbations and Variational Principle 

Consider that the equilibrium configurations described in the last two sections are per- 
turbed in such a way that spherical symmetry is maintained. These perturbations will 
give rise to motions in the radial direction. The equations for the perturbations will be 
obtained by considering only their first order contributions, i.e., by neglecting all terms of 
second or higher order in the perturbed quantities. We can thus write 

a = a0 + 6X, y = YO + 6v, 41 = Ql + a&), 41 = &J& (26) 

for the various perturbed quantities. The definition of 642 with the time derivative will 

prove to be extremely useful later on, in connection with charge conservation. 
In fist order, equations (7)-(10) become respectively 

(re-‘O6X)’ = 8nGrz6Tl , 

with 

with 

6T,O =6p = -6vw2&e-“~ - 6x,#e-‘o + 2e-YOW2~~6+$1 - 2e”wow&6J, 

+ 2=-X0$~64, + 2emxo&,&6& + 2&&6& + X&Cp, , 

b(6v’ - v~6X)eeXo = $6A - &rG6T: , 

with 

6T: = -6p, = -6To” + (4m’ +2X&)&6& , 

eeA0[$6v” - iv;aW - $Xb6~’ + :v;~J + &(6J - ,fa’)] _ ie-‘o{a 

- 6+l’ - ;v;& + ;vf + $(v; - A;)] = -8nG6T; 

6Ti = - 6pl = 6vwzqS~e-“o - 6ae-xo4b2 - 2e-“OW24i6& + 2evYo~&6& 

+ 2e-XodbZ6dl + 2emxo&&6& + 2m2~~6& + X4:6& 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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and, finally, 
iA = lGxGr&[&6& -w&S&] (33) 

The equation for 64, can be obtained by inserting the perturbations either in equation 
(13) or (14) since these are identical. We obtain 

Q:‘+ f + 2 ( 
v:, - a; + 2” 144 

40 > 
64: + --(6v’ - 6X’) - e~~-ym& + 6&) 

2 40 
+e x”-‘qsx - &/) - e~‘DX&6r$l - eym* + ;&)6x = 0 

Equation (31) was included for completeness. Note that now there are four unknown 
functions of 7 and t, 6X, 6v, 64, and 642. Th ere must be four independent equations. As 

with the equilibrium case, one is free to choose a set of four independent equations out of 
the five equations written above. One may choose, for example, equation (31) or equation 
(34) together with equations (27), (29) and (33) as the independent set. -4s before, I 

will choose equations (27), (29), (33) and (34). There is, however, an important point 
that was absent in the equilibrium case. Now, the continuity equation (equation (15) or, 
equivalently, equation (12) or equation (14) written for ~$2 = &6&) is not trivially satisfied 
but, instead, gives 

VA - a; 
2 + 2L 

b 

40 > 
642’ - ;~xo-voU(~~ - s’x) - &-“O(&& _ &&$ = o . (35) 

Note that this equation can not only be trivially integrated in time (justifying the 
ansatz 41 = &6&) but also with respect to the radial coordinate giving, 

[ ~*e+(“~-~+7$6+;]~ + rZ&i(Ao-Yo)~[26qSl + 56X - Sv) - ;6;pzj = 0 . (36) 

Thus, the set of equations obtained earlier is subject to the above constraint equation; not 
all solutions are allowed, but only those compatible with (36). Of course, the constraint 
equation is nothing else than the restriction that the radial perturbations should conserve 
the total number of particles. In fact, from the definition of N in equation (17), one obtains 
in first order in the perturbations, 

6N = 8TW JO‘ drrZe+(Xo-Y0)&[26q51 + :(6X - 61/) - :6&l (37) 
0 

Substitution of (36) into (37) gives immediately 

6N = --8xwr2ej(YO-Xa)~~s~:I~ (38) 

In order to have 6N = 0 (conservation of charge) the function 64, must have the 
appropriate radial behaviour at the boundaries. This restriction on 64, will later be 
translated into the choice of possible trial functions used to evaluate the eigenfrequencies 
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of the perturbations. With this in mind, we can now go back to the independent set of 
equations, equations (27), (29), (33) and (34). Fr om now on, it will prove convenient to 
introduce the notation ji(r, t) = 6&(r, t) and ji(r, t) = 64(r,t). The latter choice should 
be obvious from equations (33) and (38). 

It is still not very clear how to extract the dynamics of the perturbations from the 
equations above. I will proceed by showing that it is possible to reduce the system to only 
two coupled equations for the real components of the perturbations on the scalar field. 
Note that in the case of fluid stars [7,8], the velocity of the perturbations can be related to 
a single “Lagranglan displacement”, thus yielding only one final equation that governs the 
dynamics of the perturbations. Here, as we are dealing with a complex scalar field, we will 
naturally have two equations, rendering the problem of obtaining a variational principle 
more subtle. 

Instead of taking equations (27) and (29) independently, it proves more convenient to 
take as independent equations, equation (27) and the combination (29)-(27), 

6~’ - 6X’ = (v:, - A; + f)SA - 32wGrexo(mZ + ;&)$;fi (39) 

Also, equation (33) can be trivially integrated in time giving, 

6X = 16aGr&(&,ji - w&ji) . (40) 
The procedure now is tedious but simple. Using equation (40), it is possible to elim- 

inate 6A from the remaining equations, (27), (34) and (39). We can then differentiate 
equation (27) with respect to P and equate it to equation (39), eliminating 6~‘. The final 
result is a second order differential equation for the function jz(r, t) , 

j;+z i+$ 
( o + ;(v; - a;) > 

j; - $+“I; + 2eXo-ww j; 

+ [2( v; - a;) 
( 
1+“+ 4’ v& - % 

> 
yjf _ xb’ 

f 40 4 
-;+2cQE+ 0 2 

40 4,’ 
+ si?Gr&-“0 w’qg(v; - x; + f) 1 fz 

- 8nGre~~-“%C$s ((VA - a: + f)4; - 2c+(l7? + ~,,,,) fi = 0. (41) 

Of course, the same dynamical equation would have been obtained had we used equa- 
tion (31) instead. This is, in fact, a good consistency check, In order to obtain the analo- 
gous equation for j1 (r, t) , substitute 6~ and 6X as obtained respectively from equations 
(27) and (40) into equation (34). The resulting equation is, 

f:‘+ ;+4;Xb 
( 

+ & 
40 > 

f; - &f; - &--vojl 

- 
i 
eX0(4e-“%* + xc#l;) + lG?rGr& 

( 
;$J; + 4; + exo(e-Yow: + m* f $#$)rno)] j* 

- w 
1 
v; - a; + 1 + 4F - 16nGrl$s( 5; + $6; + e~~-“%J$bo) fi = 0 

0 I 
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The construction of a variational base closely follows that of Chandrasekhar [S]. As- 
sume that sll perturbations have a harmonic dependence on time of the form, eiat , with 
c being the characteristic frequency to be determined. We also let fi and fr stand for 
the amplitudes of the perturbations. It is then clear that equations (41) and (42) become 
eigenvalue equations for fr(r) and fr (r) respectively, with eigenvalue u*. They are, fol- 
lowing Chandrasekhar’s nomenclature (81, the “pulsation equations” of the problem. We 
must look for solutions to these equations satisfying the boundary conditions, 

fl(0) = j&l) = 0 and 6p, -+ 0 as T -+ co , (43) 
where 6p, is defined in equation (30). 

Inspection into equation (38) shows how the behaviour of fr at the origin is related 
to charge conservation. The requirement that both functions vanish at the origin insures 
that the perturbations have zero velocity at that point. The choice of boundary condition 
at infinity resembles, as closely as possible, the usual boundary condition for fluid stars 
6p(R) = 0. Writing it in terms of 6p, makes it independent of the choice of parametrization 
for the perturbations in equation (26). Also, it is compatible with the equilibrium results 
found for anisotropic spheres in the literature (91. 

The system of coupled equations (41) and (4?), together with the harmonic time 
dependence and the boundary conditions (43) constitute a characteristic value problem for 
qz. It can be shown that the problem is self-adjoint and that we can build a variational 
base to determine uz ifwe multiply equations (41) and (42) by Gr(r) = ?&et(Yo-Xo) and 
G,(r) = rz+4~ef(Yo-Xo) respectively. The action integral that gives rise to the pulsation 
equations is then, 

2 J m[~e-)(G~j~ + G2 j;)]dt = 0 2 J om [;G,f;’ + ;Gzf;’ 
+ +C(P)~: - ;G,H(+; - ~W2(2f: + P(r))] &- > (44) 

where we have introduced 

C(T) a?y4e-%Jz + a& 

+ 16wGr&& + I$; + e~~(e--uowr + 7nz + $)&] 

H(T) EZ(VA - &)(f + f + 4 ; A”) _ ; +,&L&f+ 
0 

ho ~~ 4 ; xb’ 

and 

+ 87rGre(+‘~L%$~(v; - a; + ;) (46) 

L(T) GE lGxGr$JSs ($ + 4; + e(~~--uoLz&l) . (47) 

Note that the orthogonality condition related to different characteristic values of u* 
is given by 

J O” ~e(xO-Y”)(Glf,‘f~ + G2 ji ji)dT = 0 0 2 
(i # A (48) 
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where the (i, j) indices represent the solutions for different characteristic values of cr2 . 
In the spirit of Chandrasekhar’s work [8], we can state that since equation (44) ex- 

presses a minimal principle, a suficient condition for the dynamical in&ability of a boJonic 
stellar configuration with the interactions defined in (1) id that the right hand Ade of equa- 
tion (44) voniahea for home given trial functiona fi and fi mtirfying the boundary condi- 
tions (43). In the next section the above formalism will be applied to the particular cases 

A = 0 and A = 60. (Remember that in section 2 we introduced A = w ). 

5. Looking for Instabilities 

The first step in finding dynamical instability is to numerically solve the equilibrium equa- 
tions (18)-(20), since all coefficients in (44) depend on the equilibrium solutions. I refer 
the reader to references [2,5] for details. For us it is important to stress the fact that each 
equilibrium configuration is parametrized by a given value of the central density, which is 
used as an initial condition on the integration of equations (18)-(20). Once we have the 
equilibrium configurations, we can evaluate numerically the integrals in (44) for a given 
pair of trial functions obeying the boundary conditions (43), with different values of the 
central density. Dynamical instability will be presen? whenever the right hand side of (44) 
is less than or equal to zero. 

In order to look for instabilities we can concentrate just on the right hand side of 
equation (44); the coefficient multiplying c2 on the left hand side is positive definite and 
will only “normalise” the value of the eigenfiequencies. It then proves useful to write the 
integral (call it I ) on the right hand side of (44) as 

where 

I=z*C~+C~-zC~ , (49) 

Cl E J $1 if;;’ + C(~)f:l (50) 

c, z J ~W;z - WrV,zl (51) 

G = J d&f&U; + AL(r)] (52) 

and E zz a/b comes from multiplying the trial functions fi and fi by the arbitrary numbers 
a and b respectively (there is always freedom in the choice of multiplicative coefficients for 
the trial functions) and by dividing equation (44) by b*. Thus, if I 5 0 for a given pair of 
trial functions we have found dynamical instability. In fact it can be stated that a sufficient 
condition for dynamical instability is that 

c;-4c1cz>o (53) 

Clearly, once this condition is satisfied, one can always find two (or one if (53) is an identity) 
real numbers 21,~ just by solving the algebraic equation obtained by equating (49) to zero. 
As C1 > 0 for all ranges of interest (the function C(T) defined in (45) is positive definite 
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for 0 < o(O) < 2.0), we can make I < 0 just by picking the ratio a/b within the limits 
z, < a/b 5 zz. Thus, to look for instabilities just pick a pair of trial functions fi and 
fz that obey the boundary conditions (43) and the constraint of charge conservation and 
evaluate the integrals Ci, Cs and Cr defined in equations (SO)-(52). Check if the condition 
(53) is satisfied. If it is, the system is unstable for that central density and for that pair 
of trial functions. It is then a cosmetic matter to explicitly evaluate the eigenvalue by 
obtaining zi,r from (49) and using the information in equation (44). 

As trial functions are used as approximations to the real solutions to evaluate (44), it 
is only possible to put an upper bound on the value of the central density where dynamical 
instability intervenes, gin,(O). I n choosing possible trial functions, I have used the well 
known ansatze of the stability analysis of fluid stars [7,8] compatible with the requirement 
of charge conservation. After a thorough (but not exaustive) search, I found that the 
smaller values for ci”.(O) were obtained, independently of A, for the pair 

fi = ze42 ; f2 = 40 , (54) 

where the multiplicative constants a and b were left-out. They can be easily evsluated for 
each particular case. 

The ansatz for fi is, in fact, the same used by Chandrasekhar in his stability analysis of 
homogeneous spheres with constant energy density [8]. In figures 1 and 2 the upper bounds 
for the occurence of dynamical instability are shown for A = 0 and A = 60, respectively, 
in a plot of total mass against u(O). The upper values of ‘Tin,(O), gin,(O) 2 0.98 and 
vi,.(O) 2 0.45 are indicated by dots. Note that the instabilities occur well after the 
mtimum mass. 

Although it is possible, in principle, to find LLbetter” upper values for bi”,(O)t , the 
fact is that the results are quite different from those for fluid stars. The instabilities seem 
to occur well after the critical point, even after the crossing point where & = 0. These 
results can certainly be linked to the fractional anisotropy characteristic of these objects. 
The fractional anisotropy being positive definite seem to provide extra support against 
small perturbations. From table 1 and figures 3 and 4, it is easy to see that a bigger 
value for A has the consequence of decreasing the FAR. Table 3 offers yet another way 
of confirming this result, by listing the values of a;,,,(O) and r=,+(O) for different values 
of A. Notice that both quantities decrease with growing A, although the change is not 
monotonic. Clearly, in the isotropic case, the two values for o(O) such be identical. 

t For example, the inequality (53) can be trivially satisfied if Cr < 0. By studying the 
behaviour of the function H(r) defined in (46), it is possible to choose trial functions that 
will make Cr < 0. In practice, though, this task is not so simple [lo]. 
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6. Closing Remarks 

A variational formalism, in the framework of general relativity, was developed to examine 
the occurence of dynamical instability against small, radial perturbations on bosonic stellar 
;e;i?sgurations obtained from massive, self-interacting (with V(d) = alql4 ) complex scalar 

Adapting Chandrasekhar’s formalism to a microscopic context, it was possible to find 
an upper bound for the value of the central density where dynamical instability intervenes 
both for the free case and for the repulsive, self-interactive case. The results indicate 
that the instabilities occur to the right of the maximum in the curve of mass against 
central density of the equilibrium configurations (figures 1 and 2 and table 3), contrary 
to the conjecture [3-51 that they should occur at the maximum. Nevertheless, it should 
be stressed that this conjecture is based on theorems applicable only for fluid stats with 
an isotropic equation of state. As explained in sections 2 and 3, local anisotropy certainly 
plays an important role in determining the structure of boson stars. In particular, as 
shown in section 5, it is intrinsically related to the stability properties of the equilibrium 
configurations. The present results arc corroborated by the analysis of Colpi, Shapiro and 
Wasserman for the large coupling limit [5], where it-is possible to approximately describe 
the configuration with an effective isotropic equation of state; the larger the coupling the 
smaller the fractional anisotropy and the better the approximation of an isotropic perfect 
fluid. 

Of course, the possibility that better trial functions can decrease the upper bounds 
found in the present work for dynamical instability is not totally excluded. However, based 
on preliminary calculations, it seems very difficult to improve the bounds so dramatically 
as to have the instabilities at the msximum value for the mass. 

Certainly, the study of anisotropic compact objects promises to be a very interesting 
field of investigation. It should be possible to generalize the present approach to any 
anisotropic object either by formulating the problem from a field theoretical point of view 
or by adapting the perfect fluid analysis to the anisotropic case [lo]. In the latter case 
one would need 2 equations of state in order to establish the variational formalism. What 
would be the relationship between the tangential pressure and the energy density? Also, 
the dynamics of the gravitational collapse of these objects, together with the possible 
formation of scalar black holes (the particle number would probably be one of the charges 
of the scalar black hole) and its connection with thermodynamics (is the loss of quantum 
numbers translated into the black hole’s entropy ?) deserve further study. 
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Figure Captions 

Figure 1. Boson-star mass in units of M&,nch /m (continuous line) and particle number 
in units of M&,ck/mZ (dotted li ne as a function of the central density for A = 0 . The ) 
dot represents the upper value for stability. 
Figure 2. Boson-star mass in units of M&,nck /m (continuous line) and particle number 
in units of M~l,,,k/mZ (dotted li ne as a function of the central density for A = 60 . The ) 
dot represents the upper value for stability. 
Figure 3. The fractional anisotropy as a function of the radial coordinate for A = 0 
for 3 different equilibrium configurations. The dots represent the value of the fractional 
anisotropy at the radius of the configurations. The straight line is a good fit to within a 
few percent. 
Figure 4. The fractional anisotropy as a function of the radial coordinate for A = 60 
for 3 different equilibrium configurations. The dots represent the value of the fractional 
anisotropy at the radius of the configurations. The straight line is a good fit for central 
values of u(O). 

Table Captions 

Table 1. The value of the fractional anisotropy at the radius for different values of the 
central density and for different values of A. Note how the FAR drops for bigger values of 
A. 
Table 2. The ratio between the values of the central density at the maximum Q,,it(O) and 
at the crossing point ucr,(0) for different values of A. 
Table 3. Values of the central density at the maximum u,,+(O) and at the upper value for 
stability bin,(O) for different values of A. 
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40) fao a7(0) fmo ma(O) fh3a 

0.1 1.085 0.1 0.353 0.05 0.137 

0.271 1.088 0.16 0.241 0.094 0.066 

0.54 1.105 0.327 0.245 0.195 0.078 

1.02 1.208 0.7 0.384 0.3 0.118 

Table 1 _ 

A O,it(O) ~.zr,(O) -Ycr.(O)/%it(O) 

I*;;. 

Table 2 

Table 3 
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