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Abstract 

We study the problem of the dynamical stability of the equilibrium solu- 

tions for the bosonic stellar cmfigurations in the framework of general relativity. 

The time evoiution of infinitesimal radial oscillations, which comerve the total 

number of particles, is analyzed starting from the scalar wave equation coupled 

to the Einstein’s field equations. Following the method developed by Cham 

drasekhar, one finds a variational principle for determining the eigeofrequen- 

ties of the oscillations. Using the variational principle, one can find numerically 

an upper bound for the central densities where dynamical instability occurs. 

As examples, we consider the equilibrium configurations, found by RuiIini and 

Bonazzola, for the non-interacting massive complex scalar fields as well as 

the quartic self-interacting case, V(j$l) = 41$1’ (x > 0), discussed by Colpi, 

Shapiro and Wasserman. In the non-interacting case, we find that for central 

densities bigger than p = 2,l x 10BBm g/cm3 (m is the boson mass in grams) 

the cotiguration is dynamically unstable; whereas in the interacting case, with 

a value i = 3,s x 10”m2, the bound is given by p = I,3 x IO*%? g/en?. 
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I. Introduction 

Recent developments in particle physics and cosmology suggest that evolving 

scalar fields may have played an important role in the evolution of the early uni- 

verse[lJ, for instance in primordial phase transitions, and that they act as an im- 

portant source for the missing mass[2,3). This latter possibility raises naturally the 

questions whether cold, gravitational equilibrium configurations of massive scalar 

fields-“boson stars”-may exist and whether they are dynamically stable[4]. 

In an early work, Ruffini and Bonazzola[S] f ound spherically~symmetric gravita- 

tional equilibrium configurations in asymptotically flat space-times for non-interacting 

massive complex fields by solving the coupled system of Einstein-Klein-Gordon equa- 

tions. They used the simplifying assumptions that the radial scalar field solution is 

nodeless and that the configuration is at zero temperature. The equilibrium config- 

urations are macroscopic quantum states of cold, degenerate bosons held together 

by gravity with supporting pressure given by Heisenberg’s uncertainty principle. For 

a quantum state confined into a region of size R-the boson star radius+ne gets a 

typical boson momentum p * i (we use throughout the paper ti E c E l), and for 

a moderately relativistic boson star p - m, where m is the scalar field mass, so that 

R - l/m. The results obtained in Ref. [5] h ave been confirmed and extended in 

subsequent works listed in Refs. 16-81. 

In Ref. [5], it has been shown that boson stars have many similarities with their 

fermionic counterparts, white-dwarfs and neutron-stars, on the other hand, there 

are also many differences, which would call for a more detailed study of those ob- 

jects. For the boson stars, with the scalar fields in the ground state, there is also 
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a critical mass and a critical particle number ‘, above which mass gravitational col- 

lapse occurs. These quantities are respectively given by M,, = 0.633M&,,/m and 

N,;e = 0.653M;,,,, ml, where Mplonch = (G)-“’ is the Planck mass. The order of 

magnitude of these limits can be easily obtained from Chandrasekhar’s dimensional 

argument presented in Ref. [9], or by using Landau’s argument, adapted for a bosonic 

configuration by minimizing the energy of a scalar particle with above momentum in 

the background gravitational potential for all self-gravitating particles E,, m -* R . 

In the fermionic case, the Chandrasekhar mass is Mcb,, w M&,&m’ and the crit- 

ical particle number behaves as NL~~ N M$arre*/d. For fields of mass 5 1 GeV, we 

obtain a critical mass for the boson star of 1O”g and loss particles, which is clearly 

much lighter than their fermionic counterparts. On the other hand, the critical cen- 

tral density for the boson stars is Peit = 5.26 x 108’mz g/n3 (the boson mass m 

is given in grams), which is enormously higher than in the cold, degenerate fermions 

case. 

The extension to the self-interacting case, for a potential V(l4l) = +I\#’ (i > 

0), has been considered in the work of Colpi, Shapiro and Wasserman(lO]. The 

consequence of switching on a quartic self-interaction between the scalar particles is 

to increase the above limits on the critical mass and particle number. In particular, if 

‘%o*on = ~l”m,&onr the critical mass for the boson star becomes comparable to the 

Chandrasekhar limit. Other models, including soliton-stars[ll] and boson stars with 

non-minimal coupling for the scalar field[lZ], h s ow the same tendency to increase the 

critical mass and the particle number. 

A crucial difference between the bosonic and the fermionic configurations arises if 

IThis is still true if one considers radial scalar field solutions with nodes. The critical mea as 

well M the critical number grow by increasing the number of nodes[8]. 
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one tries to implement a macroscopic description for the bosonic condensate. As it 

was already shown in Ref. [5], it is not consistent with the Klein-Gordon equation to 

describe the spherically symmetric boson condensate as a perfect fluid with a given 

equation of state. In fact, the energy-momentum tensor is not isotropic in the 3 

spatial directions with the radial component differing from the 2 angular ones. As a 

consequence, we cannot apply to the boson stars the theorem on stability of a fluid 

star[l3] (the boundary between stability and instability being given by the conditions: 

9 = 0 and q = 0; M and N being functions of the central density p), which 

is based upon the assumption of a perfect fluid behaviour. Nevertheless, if we plot 

the mass for the equilibrium configurations against central density for these stars, 

we find, except for the scales, a behaviour remarkably similar to those of neutron- 

stars: the mass quickly raises to a maximum (for p = P-it), drops a little, oscillates 

and approaches an asymptotic value at large central densities, the same happening 

for the particle number (see fig. 1 and 2). These similarities lead naturally to the 

conjecture[6] that the stability behaviour is similar to the fermionic case, namely that 

the boundary between stable and unstable configurations being given by p = prrir. 

Note also that the binding energy, Es = M, - Nm, becomes positive for a finite 

value of the central density, bigger than p-it, suggesting the existence of possible 

configurations with excess energy. 

In this paper, we study the problem of the dynamical stability of the bosonic equi- 

librium configurations in the framework of general relativity. We discuss both the case 

of a non-interacting massive complex scalar field, as well as the case with a quartic 

self-interacting potential. However, the analytic part of our results can immediately 

be extended to any interacting potential for complex scalar fields. (The extension to 

soliton-stars[ll] is not straightforward.) We analyze the time evolution of infinitesi- 
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mal radial oscillations, which conserve the total number of particles, starting from the 

system described by the scalar wave equation coupled to the Einstein’s field equations. 

We follow closely the method developed by Chandrasekhar[4]; the main modification 

being that we cannot use the energy-momentum tensor of a perfect fluid, but instead 

we use the energy-momentum tensor of a quartic self-interacting massive complex 

field (the non-interacting case being given by setting J = 0). We find an eigenvalue 

equation which determines the normal modes of the radial oscillations, and as in the 

perfect fluid case we find a variational principle for determining the eigenfrequencies 

of the oscillations. This allows then to find numerically, using suitable trial functions, 

upper bounds to the central density, of the equilibrium configurations, from which on 

dynamical instability will occur. 

The paper is organized as follows: in Section II, we present the known results 

for the equilibrium configurations for the boson stars. In Section III, we derive the 

equations governing to first order the infinitesimal radial perturbations. In particular, 

since we describe the complex scalar field by two independent real fields, we obtain a 

system of two coupled eigenvalue equations, for which we get a variational principle 

for determining the eigentiequencies. In Section IV, we present the numerical results 

for the upper bounds of the eigenfrequencies, for different values of the central density. 

We conclude in Section V with a summary of our results as well as some comments 

on possible developments. 
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II. Equilibrium Configurations 

The many particle system is described by a second-quantized complex scalar field 

coupled to gravity. The action for this system is given by 

S = 
J 

d’zfi (2.1) 

This action is invariant under a global U(l) phase transformation, b -+ @c$, which 

implies the conservation of its generator Q, the number of particles minus the number 

of antiparticles. By varying the action with respect to g““,# and @ we obtain the 

Einstein’s field equations 

R; - +R = -87rG T,’ 

with the energy-momentum tensor 

(2.2) 

7’: = ;P’ (Qi$ + d;&) 

- ;6: g”“4;&7 + m21$v + $4 - 1 (2.3) 

and the scalar wave equation in curved-space 

s’1y4;py + nZ+ + ilqlaqd = 0 (2.4) 

and its complex conjugate. The field C$ can be expanded in creation and annihilation 

operators 

where 

4 (‘-, t) = c (WA (7, t) + dd,f (7, t,) (2.5~) 
” 

4” (7, t) = (h, (7, t) + ih, (7, t)) eeiY”’ (2.5b) 
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&(r,t) and &“(~,t) are real functions. For our considerations it is more convenient 

to write the complex scalar field in term of two real fields. 4 as well as &,, and &,, ate 

functions of + and t alone since we consider only spherically symmetric equilibrium 

configurations. In fact, we expect them to correspond to solutions with minimal 

energy. We express the metric in Schwarzschild coordinates 

ds’ = e”dt’ - e’dr’ - +’ (do’ + sin* Od&) (2.6) 

where Y and X are functions of T and t only (go0 = -e-” and g” = e-“). For P --t 00, 

we require eY(‘nt) -+ 1 as well as e’(+) + 1. The creation and annihilation operators 

satisfy the usual commutation relations 

[an, a$] = &d27& (2.7) 

and the ground state with N particles is given by 

N 
IN;0 >= n a,+10 > 

1 
(2.8) 

where 10 > is the vacuum state in the background metric and a0 is the operator 

associated with a nodeless &(T, t). In the following, we will drop the subscript 0, 

since we consider only the nodeless solution. The mean values of the components of 

the energy-momentum tensor Z’,’ are given by 

Z’;=<N;OI:T;:IN;O> (2.9) 

where :: denotes normal ordering and the operator T,’ is defined in eq. (2.3). 

With the above metric, eq. (2.6), the E’ t . Ins em’s equations are, where in the 
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following T,’ denotes the mean value as defined in eq. (2.9). 

R: - ;R = -87rGT,O = -$ (&)‘+ L$ 

R; - ;R = -8rGT; = me-X 

(2.10) 

(2.11) 

R; - ;R = R; - ;R = -8xGT; = -8rGT; 

- e -A [g/f - py + ; (v’)’ f ; (v’ - A’)] 

+ e-” (2.12) 

and 

g = -8,&T,’ = -E-*x (2.13) 

where the prime and the dot denotes differentiation with respect to r and t respec- 

tively. 

Combining eq. (2.10) and (2.11) we obtain the useful relation 

q (A’ + v’) = 87rG (T; - T,o) (2.14) 

Equations (2.10)(2.13) are not alI independent due to the fact that the covariant 

divergence of RI - f&R vanishes identically, which implies (Tz);, = 0. This leads to 

the following two relations 

i’,, + T,” + ; (To” - T;) ,i + T,’ [; (A’ + Y’) + ;] = 0 (2.15) 

and 

ri;” + T:’ + ;T; (i + b) + ; (T; - T,o) Y’ + ; (T; - T;) = 0. (2.16) 
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Notice that eq. (2.16) is equivalent to the scalar wave equation, as can be seen when 

T$, given in eq. (2.3), is explicitly substituted into it. 

Writing 4, and &, as given in eq. (2.5b), we get for the scalar wave equation a 

set of two coupled equations for 4, and 4~ 

- d-u& + ;e*-v (; - i) & 7 g-u (Ij - i) w+2 (2.17) 

* 2eA-‘w4* - eAji4,& = 0 

where the equation for 4s is obtained by interchanging in above equation the subscript 

1 + 2 and by taking the lower signs. 

The global invariance in the action (2.1) leads to the current conservation equation 

P icL = 0 (2.18) 

where the current vector J’ is 

.Y = igw (&$P - g”qb) . (2.19) 

As a consequence of eq. (2.18) the total charge (the number of particles minus the 

number of antiparticles) given by 

Q=j dx3J-g Jo (2.20) 

is a conserved quantity. 

At the equilibrium configuration, the functions V, X, +& and 4s are all time inde- 

pendent. In order to recover the solutions found in Refs. [5],[6],[8] and [lo], we set 
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& = 0 at the equilibrium, In this way, we have only particles and the charge is then 

the total number of particies Ns. We will denote all the equilibrium quantities by 

a subscript o. We set &, G &(T), thus at the equilibrium &(r, t) = +s(r)e-iwt. It 

has been proven by Friedberg, Lee and Pang, see Ref. [a], that the minimum energy 

solution requires &(T, t) to have a harmonic time dependence. 

As independent equations, we can take eqs. (2.10), (Z.ll), (2.13) and (2.17). As 

mentioned above, eq. (2.16) is the scalar wave equation and, thus, equivalent to 

(2.17), whereas eqs. (2.13) and (2.15) vanish identically at the equilibrium since ali 

quantities are time independent. 

We are left with the following three independent equations (2.10, 2.11) and (2.17) 

(TemAo)’ = 1 - 4wGrr 
K 

.& + eeA’O$t 1 (2.21) 

e-X’ -“A = - 1 - e-h 
7 ,i ( ) +‘m2 

q$+ (~+~~~~b)~~-e*o(m’-e-aw’+~~~)~o=O (2.23) 

and equation (2.14) becomes 

(A; + vi) = 8xGr (eAome&w2 + 49) 

In order to get the mass, we use the relation 

,A= (l-2y)-L . 

Inserting (2.25) into eq. (2.21), we get 

(2.24) 

(2.25) 

1 . (2.26) 
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The total mass is then given by the value of M(r) at infinity. 

For the numerical integration of the set of equations (2.21), (2.22) and (2.23), it 

is convenient to introduce the new variables z = mr, n = (41rG)“s&, with the factor 

u~s/ms being absorbed into the definition of the metric function e’+. Note that the 

coupling constant ;\ is also replaced by A = *. 

The appropriate initial conditions and boundary conditions are: o(O) = cmut, 

d(O) = 0,e x&Jl = l,em(al = 5 (since we absorbed w*/mZ in e”). One finds then 

the solution of the system of equations, which constitute an eigenvalue problem for 

em(O) and @trnl with the constraint that u(z) has no nodes. For more details, see 

References [5] and [lo]. In Figs. 1 and 2, we plot the total mass and particle number 

against u(O), which is directly related to the value of the central density, for the 

equilibrium configurations obtained for A = 0 (non-interacting case) and A = 30. 

Note the existence of a critical mass and a critical particle number and how their 

extrema overlap. 

For A # 0, the critical mass is bigger, whereas the corresponding critical central 

density is smaller than in the A = 0 case [lo]. The central density corresponding to 

the critical mass in the A = 0 case is prrit - 5.3 x 109’m2 gjns, where the boson 

mass m is in grams, and for the A = 30 case, p-i, N 3 x 109’mZ g/cm3. 

III. Eigenvalue Equation and Variational Principle 

We consider now the situation where the equilibrium configuration is perturbed 

in a way such that the spherical symmetry is still preserved. These perturbations 

will give rise to motions in the radial direction. Taking only radial perturbations on 

one hand simplifies a lot the calculations, and on the other hand, one would expect 
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that non-radial perturbations give a higher value for the Limiting central density 

above which the star is unstable against gravitational collapse, due to the angular 

momentum. 

The equations governing the small perturbations are obtained by expanding all 

functions to first order and then by linearizing the equations. We, therefore, write 

x(T,t)=AO(f)+6X(r,t) (3.la) 

v(T,t)=Vo(T)+6Y(r,t) 

dl(T,1) = 400(T) + 641(T,t) 

ds(r,t) = Ws(r,t) 

for the various perturbed quantities. 

(3.S) 

(3.k) 

(3.ld) 

The corresponding linearized equations for the smaU perturbations, derived fxom 

eq. (2.10), (2.11) and (2.13) are 

(~e-%X)’ = -87rGTZST,o (3.2) 

with 

1 
se = -be--w~$g + $e-“o (f#g’ 

- 1-q (ww4* + wl&2) 

- m2&6& - L&6& - e-xo@& (3.3) 

;-^” (cb’ - v&4) = $6x + 8lrGJT; (3.4) 

with 

6T; = -bT,D - 2m’,$,& - 2k$&, (3.5) 
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and 

6i = 87rGr (&S& + w$f?J6c& - wr##,) (3.8) 

The linearized equations for 64, and I%& are obtained from eq. (2.17) 

+ 6XeA” [ws? 40 - m2& - iiq$] + exe (wze-uo - m2 - 3&j:) 64, 

- e-A’-@lp,wZ6” - c+-~&jl + 2eXO-~4, = 0 (3.7) 

and 

a&! + (~+~~~~b)6~~+e1a(w2e-3-m2-X#)6~2 

- ,+-yo~& + ;+-l. w [& (6i, - sq -46&J = 0 . (3.8) 

The corresponding linearized equation coming from the current conservation equa- 

tion (2.18) 

6P ;~ = 0 (3.9) 

turns out to be identical to the above eq. (3.8) for 641, and, therefore, gives no new 

condition. Similarly, one can compute also 6Q from eq. (2.20) 

6Q = 4xws J - & T2e(xo-m)/2 0 4o[io(6v-6X)- 

- 2 (34l + 642) 1 . (3.10) 

Due to eq. (3.9), it follows immediately that 6Q = 0. We will see later on that the 

requirement SQ = 0 imposes conditions on the boundary values of 64s. Notice that 

the linearized equation derived from eq. (2.15) vanish identically, as was the case 
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at zerc-order. This fact is independent from the particular choice of the energy- 

momentum tensor T,‘. 
It might seem that we have a set of five equations ((3.2), (3.4), (3.6), (3.7) and 

(3.8)) for four unknown functions (Sv,6&6&,6&). It turns out, in fact, that these 

equations are not all independent. More precisely one can, for instance, show that eq. 

(3.8) is a consequence of the other equations. To see this one can proceed as follows: 

from eq. (3.2), with definition (3.3) for ST:, one can solve for 6~. Then one takes 

the time derivative of the so obtained equation and subtracts next eq. (3.6), thus 

obtaining an expression for (6ti - Si), which is then inserted into eq. (3.8). After 

rearranging all the terms and using the zero-order scalar wave eq. (2.23) and eq. 

(X24), one finds that equation (3.8) is identically satisfied. 

We proceed now by showing how we can reduce the basic system of four equations 

((3.2), (3.4), (3.6) and (3.7)) to a system of two coupled equations involving only the 

real components of the perturbation of the scalar field. Notice that in the case of a 

fluid star[4], the radial velocity of the perturbation is related to a single “Lagrangian 

displacement,” thus yielding only one final equation. Here, as we are dealing with a 

complex scalar field, we will naturally get two coupled equations, making the problem 

of obtaining a variational principle more subtle. 

Eq. (3.6) integrates directly in time if we write 64s as 

&%(T, t) = h(r)d~, t) (3.11) 

we get 

SA = 87rGr (&S& + w&‘) (3.12) 

Instead of taking the equations (3.2) and (3.4), it turns out to be more convenient to 
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take as independent equations (3.2) and the linear combination (3.2)-(3.4), 

6~’ - 6X’ = v; - A; + ;) 6X - 16eGr& (d&, + 14;) 6$1 (3.13) 

As done before, we solve eq. (3.2) with respect to 611 and we insert definition (3.11) 

for 642 and substitute 6X (as well as 6X’) from eq. (3.12). We also make use of the 

zero-order scalar wave eq. (2.23) to get 

,ew-Aa 
+ 9- -8rGr~~ - 2 + 2X; - 42 (3.14) 

Next we differentiate (3.14) with respect to t and substitute the so obtained result 

for 6~’ into eq. (3.13), where we also substitute 6X (and 6X’) using (3.12). This way 

we find an equation for the function g’(r, t), which from now on we write as g’(r, t) E 

fs(r,t). In order to keep the notation transparent, we also introduce S&(r,t) s 

fi(r,t). Thus, for fr we obtain the following equation 

f:’ + f; 
( 
; (VA - ,y$ + ; + zf&) - ,h j* 

0 

+ fi 1 
Z(Y:, - X6) 2 (VZ - Xb’) 

( ) 

1 
-- 

T ra+ 2 
+&-2 s! 

do 40 
+ (4-W 

2 
(VA - A;) + 4$’ 

0 
+ 4xGrw2&+-‘O (VA - A; + ;) j 

(m’& + L#J~) wexO+ 

(3.15) 

The analogous equation for fr is obtained by substituting (6~’ - SX’),(SX - 6~) and 

64s into eq. (3.7) by using the above equations (3.11), (3.12), (3.13) and (3.14). The 
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resulting equation is 

f; + f; 

- 16nGreX0& (n& + &b;) + 4nGr (4;)’ (v; - A:, + t) ] 

” - f1e xrLa + f;2w& + fi 

+ 8rrGreXO (-m2~o - iqg) wl#$ + 4w#& 

&w + 4- +(v:,-A~)w#kJ =o . 
P I 

(3.16) 

Before going on with the analysis of equations (3.15) and (3.16), we willaddress the 

question of the particle number conservation. We expect the radial perturbations not 

to change the total particle number No. NO is given at the equilibrium configuration, 

using eq. (X20), by 

No = 4nw 
J 

m ar /J&,f(h-lo) . 
0 

(3.17) 

After perturbing we will have Q = No + SQ,SQ given by eq. (3.10). We can now 

easily compute SQ, by substituting 6&,bv and 6X, as given by eq. (3.11), (3.12) and 

(3.14), into eq. (3.10). Using the zero-order relation (2.24), we find (with the above 

definition for ft and fa) that the integrand of SQ is a total derivative with respect of 

T, thus getting 

SQ = 8~ (f2?&e(m0-Ao)‘2) 1: (3.18) 

Therefore, the requirement SQ = 0 translates into conditions on the boundary vaiues 

for f2. For P + 00 we require (fir’&) -t 0 (exe+ + 1). We know that r’$i --f 0 

(for r -+ cso) such that No (see eq. (3.17)) is finite. This imposes restrictions on the 

behaviour of fi at P + m. For T -t 0, since c&(O) = cast and e’o-w -+ cast, we 

require s-*f2 --t 0 which is automatically satisfied as long as f2 does not diverge faster 
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than +-r+r(~ > 0) at the origin. An inspection of eq. (3.15), inserting for fs the 

function rp-= in order to see the behaviour of the solution near the origin, shows that 

n > 2 is not allowed; the limiting case being a = 2, which has thus to be excluded 

by appropriately choosing the boundary condition at r = 0. 

To further deal with the partial differential equations (3.15) and (3.16) we use the 

standard method of the Fourier decomposition for the time variable, ail coefficients 

entering the equations being time independent. Thus 

f;(r,t) = c f;&)P~~ i = I,2 (3.19) 
n 

where CT,, are the characteristic frequencies of the perturbations, which will determine 

the stability behaviour. Equations (3.15) and (3.16) constitute thus an eigenvaiue 

problem, with eigenvaiue 0: and corresponding eigenfunctions fin and fin. For no- 

tational simplicity, we will drop from now on the subscript n in vi as well in fin and 

fr,,. In the following, we are interested only in the value of the lowest eigenvalue 0:. 

As next we multiply equation (3.15) by the function G,(r) = ~~~&es~~(~-~~) and equa- 

tion (3.16) by Gt(r) = .zel/z(W-xOl. Thi s will allow to find more easily the variational 

principle for which eq. (3.15) and (3.16) are then the corresponding Euler-Lagrange 

equations. Finally we get as eigenvalue equation 

Lijfj = Q’~~jfj i,j = 1,2 (3.20) 

where 

M.. = euo--xo G, 0 
$2 

0 G 
(3.21) 
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Lij = 

-$I$ t GIG(~) I -24Gh) t G&(r) 

--------- 1 ---------- 

2wGb4 + G&(r) I -,$Gz& t G&(r) 

G(T) = exe 1 (3w2e-y, t mz t 3&h:) + 16rGex*t#(, (m’& + i&30) 

-4rGr ($6)’ ( I(, - A; t f) ] (3.23~~) 

+(x2 - 4) 
2 

[ (vk - XL) + 421 - 4nGrw2&eXo-” (v;~ - A; + f) ] (3.236) 

CC,(P) = -24;~ + 8rGreAo (mz~,, + &ji) WC$J~ 

-4rrGr,& 
( 

v:, - x; + f w& 
> 

(3.23~) 

Equation (3.20) is the required “pulsation equation”[4]. 

The appropriate boundary conditions coming from the requirement that 84, and 

641 -+ 0 for 7 -t co and ~54, = cast, 64, = cast for T + 0, along with 6Q = 0 are 

T-900 : fl --t 0, ~‘4:fz -+ 0 

T-+0 : fl = cmst, Pfz ---t 0. (3.24) 

The operators Lij as well as Mij are both symmetric given the above boundary 



-18- FERMILAB-Pub-88/66-A 

conditions (3.24), which means that they satisfy 

(3.25) 

and similarly for Mj. In order to show eq. (3.25), one uses partial integrations. The 

vanishing of the boundary terms is related to the fact that we require 6Q = 0. Since 

Lij and iW;j are symmetric and also real, it follows that the eigenvaIues crz are real. 

Dynamical instability will occur whenever vi 5 0. 

From the form of the equations, as given in (3.20), with definitions (3.21)-(3.23), 

one can find the following variational principle 

nz o- ;e(+-) (GJ; + G&) dr = 
I 

I 1 0 
- +J;’ + ;G&(P) + ;GJ;‘+ +fiZW + 

fif; (2&mG1) + MiGG(+~ (3.26) 

Eigenfunctions related to different eigenvalues satisfy the following orthogonality re- 

lation 

I 
-1 

-exo--LI) (Glfiiflj + Glfzifij) dr = &j 
0 2 

(3.27) 

Equation (3.26) is a minimal (and not just an extremal) principle, in fact, the integral 

on the right hand side of eq. (3.26) is b ounded from below. From this, it is clear that 

a sufficient condition for dynamical instability to occur is that the right hand side 

of eq. (3.26) vanishes (or becomes negative) for some chosen pair of trial functions 

fi,fi, which satisfy the appropriate boundary conditions (3.24). 

In the next section, we will apply these results to the particular cases A = 0 

(non-interacting) and A = 30 (A = i&f2 Pltinck/4xmZ) for the quartic self-interacting 

case. The generalization of the above results to other potentials is straightforward. 



-19- FERMILAB-Pub-88/66-A 

IV. Upper Bounds for Dynamical Instability 

As a first step we solve numerically the equilibrium equations, in order to deter- 

mine all coefficients, which enter in eq. (3.26). Each equilibrium configuration is 

parameterized by a given value of do(O) or the corresponding value of the central den- 

sity, which is used an an initial condition for the integration of equations (2.21)-(2.23). 

Once we have the equilibrium solutions, we can evaluate numerically the integrals in 

(3.26) for a given pair of trial functions, obeying the boundary co&ditions (3.24) with 

different values of the central density. Dynamical instability will be present, whenever 

the right-hand side of eq. (3.26) is 5 0. The integral on the left-hand side of eq. 

(3.26) is always positive and is only a normalization condition. 

The right hand-side of eq. (3.26) (call it I) can be written as a sum of three 

integrals, which we shall call Z,, for the piece containing fi alone, Z,, for the piece 

containing fi alone, and Zs, for the piece containing the mixed terms Fiji and fif;. 

In defining the trial functions fi and fi, we are free to multiply fi by a constant al 

and fi by another constant az(al and al being real). Only the ratio, for instance 

z = a,/~, will be relevant, therefore Z will be a function of z 

z = z, + 2Z~ + 21s (4.1) 

Whenever Z < 0 also u* < 0. The condition that Z 5 0 is given by 

1; - 41112 2 0 (4.2) 

Thus, for a given pair of trial functions, we will compute the integrals ZlrZz and Z, 

and verify if the condition (4.2) is satisfied. 

Since we parameterize the equilibrium configurations by the value of the central 
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density, what we will find is an upper bound for the central density from which on 

dynamical instability will occur. 

We tried for both cases we considered, namely A = 0 and A = 30, with different 

pairs of trial functions. We found, so far, that the lowest bound are obtained by using 

as trial functions 

fl = fi = 4; (4.3) 

db being the derivative of the equilibrium solution &(T) for a given central density. 

We found in the case A = 0, that for all values of u(O) 2 1.09 (CT(O) = (4*G)‘/‘$o(O)) 

the condition (4.2) is satisfied (we checked this till u(O) = 2). Therefore, an upper 

bound for the occurrence of dynamical instability in the case A = 0 is given by 

o(O) = 1.09 corresponding to a central density p = 2.1 x 10gsm2 g/cms(m is the 

boson mass in grams). 

Similarly we analyzed the interacting-case, where we took as an example A = 

30 (A = ;\M&,nck/4mZ, corresponding to X = 3,s x 10’2mz,m boson mass in 

g). We found that for u(O) 2 0.69, corresponding to a central density p = 1.3 x 

10gs’mz g/c&, the condition (4.2) is satisfied. We notice that in the interacting case 

the critical central density corresponding to the maximal mass is smaller than in the 

non-interacting casejlO]. 

In the range of central densities, we were looking at, we found numerically that the 

function C,(T) (eq. (3.23a)) is always positive for all values of P, giving thus a positive 

value for Z,. On the other hand for the function C,(P) (eq. (3.23b)) there are ranges of 

7, where it is negative. In particular in the case A = 0, for o(O) > 0.8 C*(T) is negative 

in the region nearby the origin (7 = 0). The trial function #o has its maximum value 

also near the origin (at T = 0 &,(O) = 0) and afterwards decays exponentially. This 
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leads, using #s as trial function, to a negative value for Is for u(0) > 1.2, making 

thus the condition (4.2) automatically satisfied. We have marked with an arrow 

in figures I and 2 the upper bounds we found for the two cases respectively. It is 

immediately apparent that the upper bounds, we found, are above the critical central 

density, corresponding to the maximal mass, the point one would conjecture to be 

the boundary between stable and unstable configurations. 

V. Conclusions 

We have addressed, in the framework of general relativity, the problem of the 

dynamical instability against small perturbations for bosonic stellar configurations 

made up from massive complex scalar fields, with or without a quartic self-interaction. 

Starting from the coupled system of scalar wave and Einstein’s field equations we 

derived, following Chandrasekhar’s method[4], an eigenvalue equation (eq. (3.20)), 

describing the perturbations, and subsequently found a variational principle (eq. 

(3.26)) for the characteristic eigenfrequencies of the radial oscillations. 

We then found numerically an upper bound for the central density above which 

the bosonic stellar configuration becomes dynamically unstable. In both cases, we 

studied numerically, the bounds are above the critical densities corresponding to the 

maximum masses. Our limits are also above the point where the binding energy 

becomes positive. It is well possible that with more sophisticated trial functions one 

could find lower bounds, compared to ours. 

A weak point of the variational method is that we cannot easily estimate how far 

our bounds are from the actual values. Our results can thus not be conclusive about 

the conjecture whether the border between stability and instability is given by the 
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central density corresponding to the maximum mass. 

On the other hand, given the complexity of the problem, the fact that we could 

derive a variational principle for the eigenfrequencies of the radial oscillations starting 

from the “microscopic” scalar wave equation, rather than using an effective equation 

of state, is certainly already a step forward towards a compiete understanding of the 

problem of the stability. 

As a next step, it would be interesting to apply the method we developed to con- 

figurations where the radial scalar field function has nodes, corresponding to excited 

states, as well as to the soliton-star case. 

The study of the bosonic stellar configurations, from their formation and subse- 

quent evolution and stability, may be of relevance in order to understand the role 

scalar fields may have played in the early universe or may still play as candidates 

for the missing mass. These facts, together with the wide range of masses boson 

stars may have, according to different models, suggest the richness of the phenomena 

involved. 
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Figure Captions 

Fig. 1: Boson star mass in units of M&.nck.m (continuous line) and particle num- 

ber n units of MS,.& /mz (dotted line) as a function of o~(= (4~G)‘/‘&,(O)) 

for A = 0. The arrow indicates the upper bound for the occurrence of dy- 

namical instability. 

Fig. 2: Boson star mass in units of Mi(,,,,+ /m (continuous line) and particle num- 

ber in units of M&,/m’ (dotted line) as a function of o, for A = 30. The 

arrow indicates the upper bound for the occurrence of dynamical instability. 
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