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ABSTRACT 

A recent one flavour quark matter equation of state is generalized to several 

flavours. It is shown that quarks undergo a first order phase transition. In addi- 

tion, this equation of state depends on just one parameter in the two flavour case, 

two parameters in the three flavour case, and these parameters are constrained by phe- 

nomenology. This equation of state is then applied to 1”)the hadron-quark transition 

in neutron stars and the determination of quark star stability, 2’) the investigation 

of strange matter stability and possible strange star existence. 
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1. INTRODUCTION 

The possibility that a quark core might exist in some types of stars, was first 

suggested by Ivanenko & Kurdgelaidze in 1969 [l]. Then in 1970, Itoh [2] computed 

the maximum mass of quark stars, neglecting totally interactions between quarks. 

This mass, as in the perfect neutron gas of Oppenheimer & Volkoff of 1939 ([3]), was 

very small, - 10-s M,: the interactions between quarks were poorly known. 

A few years later in 1976, after the M.I.T. bag model was invented, Brecher & 

Caporaso [4] showed that, by making use of it, higher maximum masses could be 

obtained for quark core stars. However, when first order corrections in the strong 

coupling constant were included in the quark M.I.T. equation of state, as done by 

Baym & Chin [5] and Chapline & Nauenberg [6], the density at which the quark 

phase should appear was much higher than the maximum central density reachable 

by stable neutron stars. So a a quark-hadron phase transition inside neutron stars 

could not occur and the possibility that quark core stars or quark stars might exist 

was well diminished. (However -see Kislinger & Morley [7] - both these papers made 

use of a high value of the coupling constant, obtained when fitting hadronic spectra 

and, as the coupling constant was held fixed, the equation of state contained large 

logarithms involving the density). 

In parallel to this phenomenological approach, in 1975, Collins & Perry [a] demon- 

strated that asymptotic freedom which holds for large momentum transfers, also holds 

at high density, for example inside neutron stars. Then Keister & Kisslinger [9], using 

a perfect gas equation of state, and Chapline & Nauenberg [lo] , starting from an 

expression of the energy density computed to first order in the -density dependant- 
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coupling constant, concluded again that the quark-hadron phase transition would oc- 

cur at too large a density, so that the possibility of having a pure quark phase inside 

neutron stars could be ruled out. However, these calculations were too crude for the 

first one and not completely self-consistent for the second one (see [ll]). In 1978, it 

was shown independently by Kislinger & Morley [7] and Freedman & MC Lerran [ll] 

-and checked in a different approach by Baluni [12]- that when an expansion of the 

quark matter energy in the density dependant coupling constant was done, the quark- 

hadron phase transition was predicted to occur at densities lower than the maximum 

central density for a stable neutron star. It was also noticed by Freedman & MC 

Lerran, that this result still hold if one added a vacuum constant to the equation of 

state - thus defining an improved M.I.T. bag, without divergent logarithms when a 

proper choice of the subtraction point was made. This was checked by Fechner & Joss 

1131, with and without vacuum constant, in the case of a first or a second order phase 

transition between hadrons and quarks, and for several nuclear-matter equations of 

state. They also showed that besides quark core stars, stable (pure) quark stars could 

even exist. 

In addition to these studies, a number of other phenomenological approaches have 

been tried. In a paper from 1977, Bowers & al. [14], extrapolated the Wale&a 

model ([15,16,17,18,19]) of nuclear matter to quark matter, namely they assumed 

that quarks exchanged massive scalar and vector particles and treated them in the 

Hartree, or mean field approximation. They showed that for reasonable choices of 

their parameters, quark core stars might exist but that quark stars would not be 

stable. This model was re-interpreted by Alvarez & Hakim [20,21] in the context of the 
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SLAC bag model: the scalar field was used to generate a first order phase transition 

from a state of massive particles to a state of particles of decreasing mass, the vector 

field was identified with gluons -massive from the beginning while in the SLAC model 

they acquire a mass through the Higgs mechanism. This allowed them to give an 

estimate of the parameters in their model, and they concluded that a quark-hadron 

phase transition within neutron stars was possible. Finally, starting simply from 

the QCD lagrangian with a Hartree-Fock approximation, Alvarez [22,23] computed 

another equation of state. He concluded -see also [24]- that the quark-hadron phase 

transition would occur at a higher density than allowed in stable neutron stars and 

that pure quark stars could exist but would be unstable. (In our mind, this equation 

of state always lies close to p=p/3 hence it is quite close to that of Keister & Kisslinger 

and it should not come as a surprise if the quark-hadron transition occurs at too high 

a density). 

In addition to quark core stars and quark stars, the existence of another class of 

exotic dense objects has recently been proposed. In 1984, Witten [25] suggested that 

the true ground state of hadrons might be strange matter and not “Fe. Strange 

matter is bulk quark matter containing roughly equal numbers of u, d and s quarks 

plus a small admixture of electrons to insure charge neutrality. It is conjectured that 

this matter has an energy per baryon lower that that of ordinary nuclei, and is thus 

absolutely stable. If this is true, then what we usually think of as being neutron stars 

might actually be strange stars, i.e., stars made of strange matter. Contrarily to quark 

core stars and quark stars whose mass-radius or moment of inertia-mass relationships 

are quite similar to that of neutron stars, Haensel & al. [26] and Alcock & al. [27], 
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showed that strange stars have mass-radius and moment of inertia-mass curves quite 

distinct from that of neutron stars -though in the range of masses typically observed, 

namely 1.4&, they are fairly similar. Moreover, strange stars may not have a crust 

and this could give rise to interesting new phenomena. (However one should keep in 

mind that regardless of whether or not strange stars have a crust, it is not clear how 

they could produce glitches: see Alcock & al. for details). 

From what precedes, it is seen that the equation of slate of quark matter plays 

a crucial part in the possible etitence of quark corn stars, quark stars and strange 

slara, and in the determination of their macroscopic properties. So the aim of this 

paper is twofold. First we will present a generalization to several flavours of a phe- 

nomenological one flavour quark matter equation of state derived previously [28,29] 

(section 2). This equation of state exhibits a first order phase transition from a state 

of massive quarks to a state of quarks of decreasing mass -thus mimicking the onset of 

asymptotic freedom. Also, immediately after the transition, quarks are in a collective 

bound state -thus suggesting that they are just leaving the inside of hadrons. So this 

transition may be interpreted as a hadron-quark transition. In addition this equa- 

tion of state depends on just one parameter in the one or two flavour case (section 

3), two parameters in the three flavour case (section 4), and these parameters can 

be constrained by using phenomenology. Second, we will show that the use of this 

equation of state in astrophysics does not present any difficulty and we will apply it 

to the study of quark core stars and quark stars (section 5). We will also discuss the 

possibility that strange matter might be m&e stable than ordinary matter in the con- 

text of this equation state and study strange stars -two families of which are found- 
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in section 6. The new features of our approach, reservations and future problems are 

discussed in section 7. 

2. EQUATION OF STATE 

The equation of state that we will use to describe quark matter is a generalization 

to several flavours, of a one flavour quark matter equation of state derived elsewhere 

[28,29]. For pedagogical purposes, we first recall the results for the one flavour case, 

since those for the several flavour case can be derived in a similar fashion but are a 

little less straightforward to understand. 

Because it is not known how confinement arises in QCD, we suppose that in- 

teractions between quarks can be reproduced by a phenomenological potential. For 

reasons already mentioned in [28], this interquark potential may be assumed to have 

the following Lorentz structure 

where 

V(T) = V”(r)+ yd’) - Vs(r) lb” 16” (2.1) 

b(T) = l+(r) l!‘) l!” 

with Vc(rj, a confining potential, linear for instance- which dominates at long in- 

terquark distances- 

and where 

I+(T) = i&(v) xp A”(~) 

with VG(T), the one gluon-exchange potential -which dominates at short interquark 
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distances. 

(1~ designates the unity matrix in Dirac space and I., the unity matrix in colour 

space. The superscript (1) refers to one of the quarks interacting via V(r) and (2) to 

the other.) The quark (Dirac) equation of motion reads 

(i ~le-ml~le)G(z,y) = 6’(+-y)lnl.+i 
I 

d3zG(z,z;y,z+)V(1 z-z l)lq=., (2.2) 

where the notation I+ means that the time so+ is infinitesimaIIy greater than so. 

In order to be able to solve (2.2), one can make the Hartree approximation 

G(~,Y;G~) = G(=,z)G(y,t). (2.3) 

Then, after a Fourier transform, one gets an equation involving the two-point Green 

function only 

[,#& -mid, - Ua]G(pj = hlc 

where the Hartree field Ir, is given by the matrix 

(2.4) 

ua = U,alDl, 

and its coefficient U.$ is 

uf x - I c&V,,{) t - z ]).Tr[-iG(z,z+)l&] 

(2.5) 

In expressions (2.5-6), the one&on exchange potential has disappeared as is the 

case for any colour-dependent potential in the Hartree approximation (see [28] and 

references therein). 



To see more clearly what the effect of our approximation (2.3) is, equation (2.4) may 

be rewritten as 

[-a~” - T’$-- wz] G(P) = 1 (2.7) 

where by definition, ma E m+Uf. From this equation, one sees that the interactions 

of a given quark with all the others give simply rise to a change in its mass (in this 

approximation). 

The two-point Green function G can then be computed by standard methods [30,31,32] 

and used to calculate the Hartree field (2.5). 0 ne obtains the following self-consistent 

equation for the change of mass U.$‘, as a function of p 

uf = -i$+i(U,a,p) (2.8) 

where 

(2.9a) 

PF d3p 
V’~,P) = 61 md=& 

= &hZI 7 PF + mu - &log( 
PF+&GZ 

mli 
1 1 

(2.9b) 

and 

PF(uf, IL) = (2.9c) 



(in (2.9a), the equality is obtained by imposing the constraint ] Uf ]<_ 2~, otherwise 

pair creation occurs, see [28]. This renders U F independent of the shape of the 

interquark potential.) 

In the case of several flavour quark matter, one should replace (2.2) by 

(i i% - ~,lol.)Gq(z,y) = 

6’(2 - y)lDl, +i / 
d3e c Gq’q’(+,t;y,e+)V(~ I -z /),,==, 

q’=u,d..... 
(2.10) 

Then proceeding as for the one flavour case, it is easy to show that 

uf = 4PL). c ii*(U,a,p*) (2.11) 

where 

q=u,d.a.... 

I 
dJ+c(r)l 

2PL 
&u,d ,,,... %,(‘,a = --hk) 

(2.12a) 

p: + yz)] 

(2.12b) 

and 

PpF(UirT;r,lIq) = (2.12c) 
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In the above expressions, pr, designates the smallest among the Fermi energies of 

the various quark flavours; pairs of this flavour are created preferably to screen the 

interquark potential. 

It can be seen that the Hartree field UN is the same whatever the flavour, and the 

effective masses m> g nzs + UF, which play a similar part to running masses, will all 

have a similar decrease. 

Once (2.11) is solved, similarly to the one flavour case, the quark contribution to the 

equation of state will be obtained from 

CQ = ,=g,,+3 /,” g3 b=z + ?S] 
i 

= & (P5~/2 

+-2 ( 
T-G+?!+,) [pq/~,22!g~og(P:+vyz)]} 

(2.14~) 

PQ = ,=~,,,,, 3 (- $$ - + -y!mq] 
1 

= & (p’,“&3/6 

+ 2- ( 
Ii& 

4% P’F )I 
Lhs-L*log Pb+&$Tq 

2 
( 111 

(2.14b) 
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= ,=i.I* 5 . . *... 
(2.14~) 

If electrons must be included to insure charge neutrality, their contribution to the 

equation of state wilI be taken to be that of a perfect Fermi gas 

I 
Pe e. = - 

479 
1 

A 
pa = 12a’ 

3 
PL, 

ne = 3*1 

(2.15a) 

(2.15b) 

(2.15~) 

Let us see how to apply this model in a few examples. 

3. CONVERSION OF NEUTRON MATTERTO TWO FLAVOURQUARK 

MATTER 

In the case of neutron matter undergoing a phase transition to quark matter, 

weak interactions do not have time to settle, so there are only two flavours of quarks. 

Assuming charge neutrality (we have in mind the study of the interior of neutron 

stars), one gets 

2 
=(p” - $“,j = 0 (3.1) 

Bence, denoting 

Pu = P (3.2~~) 

and using expressions (2.14~) for densities and (2.12~) for Fermi momenta, we get the 

following relation between pd and p 
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else 

jbd = [2q? + (1 - 2”3)m;]“’ (3.2b) 

cld = P (3.26’) 

One sees that there is just one independent chemical potential P, and that pd is greater 

or equal to p, so uti pairs will be created rather than dd pairs, i.e. in (2.11-12a), L=u. 

Equation (2.11) for the change of mass Uf may be solved numerically as a function 

of the only independent chemical potential p. In figure (l), the effective mass rn~ 

( i.e. the initial mass plus its change), is shown aa a function of the Gibbs energy 

per baryon G = Cp=u,d,,,,..~~n~/n~/3 = p, + 2pd. Its general behaviour is quite 

similar to that of the one flavour case, so one expects that the quark plasma will 

undergo a first order phase transition. This transition (represented by the solid line) 

corresponds to a passage from a state of massive particles to a state of particles of 

decreasing mass -thus mimicking the onset of asymptotic freedom. In order to check 

that such a transition actually takes place and compute the Gibbs energy per particle 

at which it occurs, the pressure as a function of G is plotted in figure (2.a). The 

thermodynamically preferred state (i. e. G minimum for a given p) is p=O from’ 

G=O to G=l.575, and then p starts to increase abruptly. So there is indeed a first 

order phase transition [33] and it happens when G = 1.575. In order to know at 

which density this corresponds, the baryon density has been depicted as a function of 

‘The fact that the pressure is rem in the interval [O&575] is due to the fact that we assume T=O. 
Aa a consequence, the integral (2.14b) for the pressure is null for a whole range range of chemical 
potentials (p, < m&), therefore of Gibbs energy. In reality, T#O and the pressure is approximately 
cero. 
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G in figure (2.b). One sees that when G = 1.575, the density is nt = 0.0085. We do 

not show the energy density per baryon versus the baryon density because it is very 

similar to the one flavour case: immediately after the transition, the quarks are in a 

collective bound state, (~/no 5 3my), which we interpret as a manifestation of the 

fact that they just start to “go out” of the baryons. 

In what precedes, all the quantities have been computed in unit of the quark 

mass, m,, and indeed this is the only parameter of the two flavour model. It is in 

fact possible to find a lower bound for this parameter: nr should be greater or equal 

to the nuclear matter density, so we must have 

nt X rni 2 nnus.m.tt. = 1.28 10” MeV’ (3.3) 

hence 

m, 2 532. MeV (3.4) 

The fact that we obtain 532. MeV as a lower bound for the u-d constituent mass 

-usually thought to be of the order of 340. MeV- is an indication that our model is 

reasonable but crude. 

It is also possible to obtain a higher bound for n,, as follows. In figure (3), p(e) is 

plotted. The behaviour of this curve is very different from the one which one would 

obtain by doing a perturbative calculation. On the other side, one may compute the 

approximate value of the baryon density, r+,,, at which quark matter should start 

to be describable with a perturbative equation of state. Ideally one would like to 

know npIt fr om experiment. In practice, &is quantity is not known but we can get 
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an estimate of it by solving 

ah4 = (33 - 2 jr)ln(@/h) 
= 0.999... (3.5) 

(This is the expression of the running coupling constant in the case of quarks of mass 

much smaller than p.) 

If we take A to be 200. MeV for instance and N, = 3, the solution of (4.5) is 

n = 402.MeV. This corresponds to a baryon density (for non-interacting particles) 

nP-t N $/37rs = 2.19 10”MeV3. So, the following constraint should be satisfied 

nt x rnz 5 npnt = 17.8 10s MeV’ (3.6) 

hence, 

m, 5 63KMeV (3.71 

This upper bound is compatible with the lower bound (3.4); m, must belong to 

the interval [532.MeV,636.MeV] and accordingly, the transition density nt lies in the 

inte*d [nnus.m.tt.rl.71nnus.m.tt.. Note that while the nuclear matter density is (rather) 

well known, the calculation of n,( is more unaccurate. Had we taken A = 500MeV 

instead of 200.MeV, we would have obtained an upper limit for the u mass equal to 

1592. MeV and an upper limit for nt equal to 26.78 nnuc.m.tt.. 

As a final remark, let us recall how the formulae (2.14a-b) for p and E were obtained 

[28]. The energy momentum tensor was computed from the effective Lagrangian 

describing the quarks, then results from the Hartree approximation were inserted in 

it and (2.14a-b) followed. It is therefore not obvious that p and e would obey the 
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thermodynamical equalities. We computed numerically the energy density 

evrri, = Gn,g - p. 

On the plot of p(e) (figure 3), it could not be graphically distinguished. 

(3-B) 

4. THREE FLAVOUR QUARK MATTER IN CHEMICAL EQUILIB- 

RIUM 

We have seen in the previous section that neutron matter undergoes a phase 

transition to two flavour quark matter. This two flavour quark matter will then, 

on a weak interaction timescale, transforms to three flavour quark matter and reach 

chemical equilibrium, via the following reactions 

d-u+e+& (4.14) 

awu+e+ii. 

s+u-d+u 

This implies that 

Pd = ,h = p 

IL + PL. = P 

and overall charge neutrality requires that 

(4.lb) 

(4.lc) 

(4.2~~) 

(4.2b) 

- +, - 7te) = 0 

Thus again, there is only one independent chemical potential, which we choose as 

being /L. In addition, one sees that py = ~1 - p. is smaller or equal to p, therefore 
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uti pairs will also be created preferably. Note that in the three flavour case, there are 

two parameters: m E m, and T c m,/m,. Since m, and m. are constituent masses, 

we expect that P x 500./340. = 1.47. 

Equation (2.11) for V,R and (4.3) can be solved numerically simultaneously, with 

the input (4.2a-b). Once this is done, the thermodynamical quantities (pressure, 

energy density, baryon density, electronic density) can be computed by using (2.14a- 

c) and (2.15a-c) The behaviour of these various functions is rather similar to that 

of the two flavour quark matter, so we do not show them. (This does not mean 

that there will be another phase transition, once u and d quarks start to appear with 

a given density, they wilI be gradually depleted, the pressure needs not vary abruptly.) 

5. QUARK CORE STARS AND QUARK STARS 

Now that we have an equation of state, expressed as a function of m, and r, and 

bounds or orders of magnitude for these parameters, we may try to apply it to stellar 

objects. First let us consider neutron stars with high central density, thus possibly 

containing a quark core. 

Usually, to study such objects, one starts with two equations of state, one for the 

neutron phase and one for the quark phase. Then to see if a first order transition is 

possible, a Maxwell construction may be done to determine the transition pressure; 

under this pressure, the neutron equation of state must be used, above, the quark 

one. If a second order transition is assumed, the two equations of state are matched 

at some transition pressure. In our case, a first order transition is already embodied 
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in the equation of state that we computed, so in principle we do not need a second 

equation of state. However, because we neglected temperature, the whole neutron 

(/massive quark) phase, is at zero pressure. We may circumvent this by replacing the 

p=O branch of our equation of state by the Baym-Bethe-Pethick equation of state [34]. 

In figure 4, this has been matched at the transition density computed in section 3, to 

our quark equation of state. For comparison, we also represented the usual matching 

of the Bethe-Johnson equation of state (35) to the Baym-Bethe-Pethick equation of 

state. (We chose m, = 532.MeV, i.e. a quark-hadron phase transition occurring at a 

low density N nnuc.m,,tL. In the case where m, would have a higher value, the matching 

would simply occur at a higher density.) 

In addition, in figure 4, at high density, our quark equation of state is matched 

smoothly with the equation of state of massless u-d quarks and massive s quarks, 

computed (for simplicity) to order zero in the strong coupling constant. We have 

taken the s mass to be 250. MeV because if rnf = 0 then UaE = -m, and rnf = 

(r + U!r)m,=250.MeV (for our choice of m,=532.MeV and r=1.47). Our equation 

of state provides a bridge between the equation of state for quarks confined inside 

hadrons at low densities, and the equation of state of non-interacting quarks at high 

densities. 

In order to calculate the effects of the appearance of a quark phase in the deep 

interior of neutron stars, the matched equation of state has to be used in the solution 

of the so-called Oppenheimer-Volkoff system. These are the differential equations of 
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static equilibrium in general relativity and read (see for example 1361) 

p’(r) = -G(p(r) +p(~));l’l;$;[l;) T 

M’(r) F 4&p(r) 

2P’ Y’=--.- 
fSP 

(5.la) 

(5.lb) 

(5.lc) 

These equations have to be solved with the boundary conditions 

P(’ = 0) = P(k) 
M(T = 0) = 0 
u(R) = 1 - 2GM(R)/R 

The integration of this system is stopped when a radius R is reached where the 

pressure becomes lower or equal to zero. A unique solution exists for each value of 

the central density PC. In figure (5a), th e mass-central density relation is presented. 

One sees that it has two extrema: as usual the first corresponds to neutron stars and 

the second to quark stars. As can be seen in figure (5b), the curve for the mass-radius 

relation curls counterclockwise, so these quark stars have unstable oscillation modes 

[37]. However, the so called neutron stars of the stable peak, consist of a very massive 

quark core, surrounded by a thin shell of more conventional neutron matter. 

If the neutron star is slowly rotating (which is usually the case for pulsars, see 

e.g. [38]), they perturbe the metric only slightly and one has just one more Einstein 

equation to solve [39,40] 

$-&r4j$ + +&I = 0 (5.9) 

where 

j(r) = e-+~~ 
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This second order equation must be integrated with the boundary following conditions 

1 

3(O) = constant 

Q(R) + t$f,, = cl 

(where R is the angular velocity of the fluid in the star with respect to remote stars). 

Once this equation is solved, the moment of inertia is obtained from 

In figure (5c), the moment of inertia-mass relation is plotted. 

Because our equation of state is very stiff (see figures 3 and 4), the maximum 

masses and maximum moments of inertia reachable may be fairly high: M,.. - 

3.35Mo and I,.. - 9.7 10’sgcm’ if m, = 532.MeV. For comparison, a neutron 

star with a Wale&a equation of state at high density, has M,, - 2.6Ma and 

LM - 3 1O’sgcms -see e.g. [38], [41]. The precise location of the maxima in fig- 

ures 5a-c, depends sensitively on the matching with the neutron equation of state: 

the higher the transition density (e.g. the higher the value of m,), the lower these 

quantities. 

6. STRANGE MATTER STABILITY AND STRANGE STARS 

As suggested by Witten [25], the true ground state of matter may be matter 

formed of u,d and s quarks because at T=O 

G(u, d),,o 2 Gnud.m. p=o (6.1~~) 

(ordinary matter is formed of nucleons and not of u-d quarks) 

18 



but it is possible that, due to the Pauli principle, 

G(u, d, s),=o I Gnuci., P=O (6.lb) 

This hypothesis has been studied more closely in the framework of the M.I.T. bag 

equation of state by Fahri & Jaffe [42]. They concluded that there exist reasonable 

windows in the ranges of their parameters (the strange quark mass, the strong cou- 

pling constant and the vacuum constant), for which inequalities (6.la-b) are satisfied. 

More precisely, as they explained, the following criteria for strange matter stability 

are fulfilled 

G(u, d&o 2 GF= + 4.MeV = 934.MeV (6.21~) 

and 

G(u, d, a),=~ 5 GF~ = 930.MeV (6.2b) 

It is possible in the context of our equation of state, to see if these last inequalities 

can hold. We saw in section, that G(u,d),,e = 1.575 x m,, so that (6.la) holds if and 

only if 

m, 1593.MeV (6.3a) 

As for inequality (6.2a), if r=l for instance, G(u,d,s),,s = 1.3825m,, so it is satisfied 

if only if 

m, 5 673.MeV. (6.3b) 

Other values for r lead to other upper bounds for m,. In figure 6, we have depicted 

the surface in the (m,,r) plane, for which strange matter would be more stable than 

ordinary matter. As can be seen, if r- 1.47, (which is expected as mentioned in 
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section 4), the chance that strange matter be the true ground state of hadrons is 

small. A similar conclusion ~8s reached in a different approach by Bethe, Brown k 

Cooperstein [43) 

If one assumes though for instance r w 1.3 and m,=595.MeV, then strange matter 

would be more stable than ordinary matter at zero pressure. Strange stars might 

then exist, they could be formed either because after the neutron-quark transition, 

s quarks would appear in the core and this strange matter could eat the neutronic 

matter in the star up to its surface [25], or via some other more exotic processes as 

suggested in reference [27]. Their properties have been studied in the context of the 

M.I.T. bag equation by Haensel, Zudnik & Schaeffer [26] and by Alcock, Farhi & 

Olinto [27]. In figures (5a-c), we plotted for our equation of state, the results of the 

integration of the Oppenheimer-Volkoff system (5.la-c) and of the equation for the 

moment of inertia (5.2), in a case where strange matter would be more stable than 

nuclear matter. Our results are in qualitative agreement with those of the authors 

mentioned above. M(p.) has a vertical asymptote, at p<=5 10” g cm3 (corresponding 

to stars with zero pressure, i.e. for which gravity is not important) and it reaches 

a maximum beyond which no stable configuration can be found: the second strange 

star peak in figure 5a is unstable, like the quark star peak of the previous section. 

The mass-radius relation is different from that of neutron stars for low mass (because 

then gravity does not matter and Ma R3, while for low mass neutron stars, the grav- 

itational pull is small and the star can expand far), but is fairly similar in the range of 

maSses (1.4Mo) typically observed. The same remark holds for the moment of inertia. 
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7. CONCLUSION 

In this paper, we generalized to several flavours, a one flavour quark matter equa- 

tion of state derived recently [28,29]. It was shown that the main features of the 

one flavour case still hold. Precisely, as density increases, the quarks undergo a first 

order phase transition from a state of massive particles to a state of particles of de- 

creasing mass -thus mimicking the onset of asymptotic freedom. Also, immediately 

after the transition, the quarks are in a collective bound state, thus suggesting that 

they just started to go out of the hadrons. As mentioned in section 5, it is not a 

common feature for quark equations of state to exhibit a phase transition , even 

though this is what one expects. One usually has to compare two different equations 

of state to determine if there is indeed a phase transition and at which density (see 

for exemple[5,6,11-14,20-24,261). H ere the answer to these questions comes out more 

simply. 

Because of screening through pair creation, our results depend on just one pa- 

rameter, the u quark constituent mass, in the two flavour case, and two parameters 

on the three flavour case, the u quark constituent mass and the ratio of the s mass 

and u mass. While parameters in usual quark matter equations of state (M.I.T. 

S.L.A.C., . ..). are usually fitted to reproduce static properties of hadrons (mass spec- 

trum, magnetic momenta, mean radii...), we fitted ours by using properties of the 

hadrons-quarks phase transition : nnuc.m.lt, < nt 5 nprr(. 

The three flavour equation of state was’matched with the Feynman-Metropolis- 

Teller plus Baym-Pethick-Sutherland plus Baym-Bethe-Pethick neutron matter equa- 
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tion of state at low density, and with a perturbative quark matter equation of state at 

high density. This matched equation of state was applied to the study of the hadrons- 

quarks phase transition in dense stars. It was shown that neutron stars have a big 

quark core and that their inertia parameters could be larger than in usual models 

of high density matter. How large they really are, depends on the exact transition 

density. However, in any case, quark stars are not stable. 

This equation of state was also applied to the investigation of strange matter 

stability. It was shown that within the range of values expected for our two parame- 

ters, strange matter should not be more stable than ordinary matter at zero pressure 

(contrarily to what may be predicted within the framework of the M.I.T. bag model 

[42]). One may however make a choice of parameters such as to ensure strange matter 

stability. In that case, two families of strange stars (i.e. stars entirely made of stable 

strange matter), can be found. The first one would be qualitatively similar to that of 

[ZS] and [27], which were studied in the context of the M.I.T. bag equation of state. 

The second one corresponds to unstable objects. 

In our mind, the results obtained above should be considered as indicative only. 

Rather than trying to get definitive numerical results, the emphasis in this paper was 

on how the one flavour equation of state could be generalized to seversl flavours, and 

how it could be applied to dense objects. This equation of state can be (and should 

be) improved (for details see [28]). 

As a final remark, we would like to recall that if asymptotic freedom settles early, 

i.e. if nFt - some %,,srt., the M.I.T. bag equation of state may not be applicable 

to the study of dense objects. To be more precise, the solution of a,(ps)=0.999..., is 

22 



@ = 402.MeV if A=200.MeV, which corresponds to nB - 4.81 10” g cm-s 

p = 1005.MeV if A=sOO.MeV, which corresponds to nn - 75.10 10” g cme3. 

So if A = 200.MeV, the perturbative regime is reached in the center of quark core 

stars and strange stars -not to mention pure quark stars. This would rule out the 

use, for these objects, of the M.I.T. bag equation of state -because it represents con- 

fined quarks- but would favor an equation of state relating the confined regime to 

the perturbative regime stiffly -as in our case. If A = SOO.MeV, an equation of state 

like the M.I.T. one, could be used safely. At present, there is no consensus on the 

actual value of A. In addition, current estimates come fron analyses of experiments 

involving space-like momenta, it is not clear that these values of A can be used when 

dealing with density as a variable. 
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FIGURE CAPTIONS 

Fig. 1 Plot of the effective mass as a function of the Gibbs energy per particle in the 

case of two flavours of quarks with similar mass (dotted line). There is a phase 

transition from the massive quark state to the phase of quarks of decreasing 

mass takes place (solid line). 

Fig. 2a Plot of the pressure as a function of the Gibbs energy per particle. The 

transition is seen to be first order and occurs when G/m,=1.575. It is associated 

to the change of mass (see solid curve in figure 1). 

Fig. 2b Plot of the baryonic density as a function of the Gibbs energy per particle 

(dotted line). When G/m, = 1.575, the density jumps to n/m: = 0.0085 (solid 

line). 

Fig. 3 Plot of the pressure as a function of the energy density for two quark flavours 

(solid line). For comparison, the M.I.T. equation of state has been plotted as 

well (dotted line). 

Fig. 4 Plot of the pressure versus energy density for u,d,s quarks and electrons in 

chemical equilibrium, with m,=532.MeV and r=1.47 (solid curve labeled Qs). 

It is matched (dotted line) to a perturbative equation of state at high den- 

sity and to the Feynman-Metropolis-Teller plus Baym-Pethick-Sutherland plus 

Baym-Bethe-Pethick equation of state at low density. For comparison, the usual 
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matching with the Bethe-Johnson equation of state is also shown (dashed-dotted 

curve). 

Fig. 5a Plot of the mass-central density relation for the matched equation of state 

for two values of m, and m=1.47 (solid line). Plot of the mass-central density 

relation for a stable strange matter equation of state for m, = 595. MeV and 

r=1.30 (dotted line). 

Fig. 5b Plot of the mass-radius relation for the matched equation of state and for a 

stable strange matter equation of state (see figure 5.a for curve designation). 

Fig. 5c Plot of the moment of inertia-mass relation for the matched equation of 

state and for a stable strange matter equation of state (see figure 5.a for curve 

designation). 

Fig. 6 Contour in the (m,-r) plane inside which strange matter would be more stable 

than ordinary matter. The numbers on the right indicate respectively the value 

of the hadronic electric charge per baryon and the strangeness per baryon. 
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