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ABSTRACT

We develop a Tomonaga—Schwinger—Dirac type formulation of
the first quantized free bosonic string. The wave functional
depends not only on the curve along which the string lies in coordi-
nate space, but also the curve along which it lies on the world sheet.
In this formalism the Virasoro operators have natural geometric
meanings. We speculate about how one might construct interacting
field theories of strings on the basis of symmetries of an appended

loop space.
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As a consequence of reparametrization invariance the momenta P40, 1)

canonically conjugate to (0, T) are constrained

PHP, + 24z, = 0
zHP, = 0. (1.5)

If we impose the standard communication relations between P# and z*, we find
that these momentum constraints generate reparametrizations. Specifically, in

terms of the Fourier transforms of the constraints® [1]

+n
L,= fdcre""lP“ + p4)2 (1.5a)
-n

+n '
Lp= fdo e Wnoips — k)2 (1.5b)

one has for the open string in the orthonormal gauge,
Lo+ L., z#] = (T + cosno ,0) (1.7a)
(Ln- L 2#] = z#(1,0 + sinno) . _ (1.7b)

The simple forms for (1.5) and (1.6) follow from the fact that in the orthonormal

gauge P* = " and the Nambu action (1.2) has the simple form

S = ——é— fd'rda(z"‘x“' -i'z,). (1.8)

Note that in the classical theory T and o enters the formalism in an essen~
tially symmetric manner. There is nothing to distinguish between T and ¢ apart

from the timelike character of T (z¥%, <0) and the spacelike character of o
Tft:e_s;-e;-[a;;;s-};ns are for the closed string with usual periodic boundary conditions. These are

also valid for the open string if one extends the interval 0 S 0 = Mto — 71 £ 0 £ +7 by im~-

posing ¥(—0) = 7#(0) in which case Lao=L_n



I. Introduction

The dynamical variables describing the bosonic string are the continuously
infinite set of spacetime coordinates which tell how the string's two~dimensional

worldsheet is embedded in spacetime:
* = z%(1,0), (1.1)

where T and o are, respectively, timelike and spacelike parameters. If the classi-

cal equations ol motion of the string arise from the Nambu action,
§ = —% [ drdol(#*z,)? - (2 )z T, 32
- 2 n w B » (1.2)

the dynamics of the string will be invariant under arbitrary reparametrization of

cgand T

(1.3)

since the value of the action (1.2) is unchanged by the transformation (1.3).

Reparametrization is a fundamental symmetry of the first quantized theory
as well. To quantize the theory we must first make a specific choice of parame-
ters ¢ and 7; this is referred to as "choosing a gauge.” The orthonormal gauge is,
for example, a class of parameter choices for which the following constraints

hold
i, +z8z =0 (1.4a)

.x“zp'=0- (1.4b)



- -

(z'#z,' > 0). In & canonical first quantization we begin to see a distinction arising
between the two; however, reparametrizations of 7 and o still treat the two

parameters ""democratically.”

When we pass to the second quantized formalism - that is '"string field
theory'' — the democracy disappears. This can be seen to occur at the very first
step of second quantization: one usually defines a Schrédinger picture wave
functional y[z#(c),7]* which gives the probability amplitude for finding the
string lying along the spacelike line z#(c) at parameter time 7. Subsequently, in
the field theory, ¥ becomes a quantum operator. In the Schrddinger picture the

action of the canonical momentum on the wave functional is represented by

by - ————
P 1'6::“(0) i (1.9)
so that the Virasoro operators become
fd.ae"“’i—té per e ) z'4)2 (1.10a)
no(__ — etid)2
fdoe i 1'6::“( j TiHe (1.10b)

As we have seen, the Virasoro operators have their origin as generators of
infinitesimal reparametrizations of both T and o0. The invariance of the theory

under such reparametrization is expressed, in the Schrddinger picture, by

imposing the following constraints on physical states |¢>:

LnH/>=0 n>0

* The dependence on T can be removed by a fourier transform leading to a wave functional

o(z(o)] 2]



and for closed strings, in addition
Lal¥)=0 n>0.

This ensures that the matrix elements of all L, and I:,. between physical states
vanish. In the Schrddinger picture, "half’ of the Virasoro generators still have

simple physical interpretations as reparametrization generators. These are

+7
(Lpn=Lyp)+(L-p —L-,.)=_f"docosnaz'“3;“i(a—) (1.11a)

i[(Ln - En) -‘(L -n = E-u)] = Zd'OSinnoz'“ 6:3(0.) : (l-llb) ,

(The first combination, of course, vanishes for the open string.) These

correspond to reparametrizations of ¢ of the form

sinno
00+ &l 0enal- (1.12)
However, the remaining Virasoro generators
- ~ 62 2
(La+Lp)+(Lp+Llp)= jdacosna(—é—g + z12)
- - . &2 2
(La+Ln)—(L-p +L-,.)=fd.asmno(~a7+z' ), (1.13)

do not have a simple geometric interpretation.

The reason for this is clear. In our canonical quantization in the
Schrédinger picture, 7 plays a special role. The state of a string is described by
picking a constant—7 slice on the world sheet and specifying the wave functional
¥[z#(c),T]. Given the initial data on any such c.onstant—*r line, the wave func—

tional at any other constant—7 line may be obtained by integrating the
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Schrodinger equation. The restriction to straight lines of constant v - i.e. the
same T for each value of o - renders the notion of a c—dependent reparametri-
zation of T meaningless. And that is what the "other half" of the Virasoro gen-

erators implement in the Heisenberg picture.

This asymmetric treatment of ¢ and 7 is totally contrary to the spirit of
Nambu’'s original formulation of string theory as the dynamics of the world
sheet. It would be ideal to have a formulation in which o and 7 are treated sym-
metrically. In such a formalism duality would be manifest. Nambu himself has

taken some steps towards such a formulation.[3]

In this paper we strive towards a similar goal, but adopt a rather different
approach. We introduce a new Schrddinger picture for the string which is a direct
logical extension of that used by Feynman {4] in describing a Klein-Gordon par-—
ticle. In the latter, the wave function ¥[z*, 7] is a function of the particle coordi~
nate as well as the parameter 7 which denotes the position on its world line. A
natural extension to strings would be a wave functional y[z#(¢),0(¢), 7(£)]. This
depends on not only the position of the string in space—time, but also on the
world sheet. The latter curve is described by the two functions o(¢) and 7(¢) and
hence may be of arbitrary shape — provided it is everywhere spacelike. Now,
arbitrary deformations of this curve capture the notion of o and T reparametri~
zations. That is why in this formalism the relationship of the ""other half” of the
Virasoro generators to 7 reparametrizations is maintained. We construct this
formalism in Section I following Kuchar's presentation [5] of the Tomonaga-—
Schwinger—Dirac method {6].

The potential importance of such a formulation becomes clear when we pass

from the first quantized Schrddinger picture to the second quantized string field

theory in which ¥ is itself a dynamical variable. Consider the conventional string



field [z#(¢)). This scalar functional is equivalent to an infinite number of ordi-
nary tensorial fields in space~time [7,8,8]. It has recently been shown that the
linearized gauge transformations of the massless fields are contained in '"chor-
dal” gauge transformations generated by Virasoro operators [2,9-11]. Thus for

the open string this chordal transformations are

¢[z(0)] - #[z(0)] + Z, e-nlonQ-nla(0)], (1.14)

where Q,'s are arbitrary scalar functionals. In particular the analog of (1.14) for
closed strings contains the linearized gauge transformations of the graviton
field. No;v. gravitational gauge transformations are usually thought of as arising
from gleneral coordinate transformations; however no such geometrical principle
seems to be operating here. Finding the geometrical principle which leads to
these transformations is important for obtaining the nonlinear transformations
of the interacting theory. This can only be made easier by formulating the

theory in such a way that all the gauge generators have explicit geometric mean-

ings to begin with.

Another way of seeing this is to note that while the expressions (1.11) for
(Ln- I:,.) +(L-y — Z-n) does not involve the space-time metric, the expression
(1.13) for (L, + 1:,.) +(Ly+ f.,.) requires a flat metric 7,, to contract space-
time tensor indices. It is widely believed that in string theory, the string field
itself contains all information about space-time geometry [10]. S'uch a theory,
together with its chordal transformations, should not depend a priori on a pre-
ferred background metric—flat or otherwise. A string field theory based on the
formulation described here would satisfy this requirement. In Section III we dis—
cuss one approach towards a geometric string field theory inspired by the recent

work of Bardakeci [14].
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I. Tomonags-Schwinger-Dirac Formulation of Orthonormal Gauge String

Theory*

We begin with the classical bosonic string theory in orthonormal gauge, i.e.

with the action (1.7) and the gauge conditions (1.4). Denoting

g°=-o'°=1'; 0‘x=01=0. (2.1)

the action reads
S = “"fdz dz* 0Ty o
0% 305 (2.2)

while the orthonormal gauge constraints are

a:c“
B3a° aa‘

BdzH dz
Fra '—&7‘;-= ) (2.3)

We introduce a new set of arbitrary curvilinear coordinates on the world

sheet, (£2)

¢ =¢(0%) a=0,1, (2.4)

¢° and ¢! are, respectively, timelike and spacelike

az+ ax,,
BET 3¢y

8z#  Odzy
3% %o

<0; >0. (2.5)

The transformation (2.4) must be nondegenerate, i.e.

J = Idet( )| #0. (2.6)

a¢
¥ A ;:IJ.-T.ZZZG;ZS: this section is contained in Ref. [13].



We shall refer to of as the "flat" parameters, and the ¢° as the curved parameters.

Using (2.4) and (2.8) the action may be rewritten as

s = [a%L (2.7)
where
L= -LJ uﬁa_z“ . &
2V 9 3= orf
ap g:gg_ﬁ_
g*f = a0t 0% (2.8)

Equations (2.7) and (2.8) present us with a dynamical system with dynamical
variables z“(¢) and a timelike parameter ¢° the o%s acting as fixed non-

dynamical functions of the {*'s. We therefore define new canonical momenta as

_ oL
~ 8(az*/a¢)

= g 980 8¢ 0z
7 30t 30 g (2.9)

The action may now be written as
5 = fa?(m.i* — h) (2.10)
where #* = 3z#/3¢° and h is the curved hamiltonian

0 .
h_=J%§—,.T;aJ, (2.11)

where T} is the flat energy momentum tensor

ozH . az“

77 = %o do; 2 }[ao‘ do: |- (2.12)
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The key observation to be made at this point is that h is linear in the "Kinemati-

cal velocities” ¢/.* If we define "kinematical momenta" Py

3 0
P;""-’gﬁy?". (2.13)
the action becomes
S = [d%(m," + P.d") . (2.14)

Formally (2.14) is the action for a system with (a) dynamical variables z4(¢=)
and 0'(¢%); and (b) a vanishing Hamiltonian so that z* and o* are independent of
the time ¢£°. In fact, we are perfectly justified in regarding (2.14) in this manner
- provided the momenta conjugate to the ¢'s are not independent, but con-

strained by equations (2.13).

The meaning of these constraints becomes transparent if we decompose
(2.13) into components normal and tangent to the spacelike lines of constant ¢0
on the world sheet (using a Lorentzian metric). The tangent to the curve

£° = constant is given by d0%/3¢! so that the unit normal n' satisfies

ning = -1 (2.15)

and

no*=0, (2.16)

* Consider the first two factors on the right—hand-side of (2.11). One has J—ﬁ gg: g::
_ 80° Aaco'|ag _ 3ot since 80° 8¢ 1 an Oa"’ .8& o, Sumlarly J 5

o g aat ag OE" T o ot aat af' Fro
Hence J is independent of ¢%. A calculation similar to that leading to eq. (2.22) shows that

T}isalso mdependent of o',
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where primes denote partial differential with respect to ¢!. The components of n'

are therefore

n’ - (al‘a‘l)‘x/zoll

n! = (oro;') V2010 (2.17)

The constraints (2.13) may be thus replaced by

P=0, H=0, (2.18)
where
0
P=a"(P¢—J§§7T{) (2.19a)
0
H =n‘(P,-—J§§7T{). (2.19b)

are referred to, respectively, as the supermomentum and the superhamiltonian.

Using (2.9) and (2.13) the supermomentum (2.19a) reduces to
P=0o"P;+ z'"n,, (2.20)
while (2.17) and (2.19b) yields

) L A0
H = (0%i0y)"/2{g Pg + 0P, — a'1J gi—,.ra' "y %57 TH . (2.21)

Using the chain rule T} becomes -

7= 0z BZuloe  0gf 1 .08 3¢
77 3¢s 9¢f |80 90?7 2 Y3o* Odop |’

so that
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__g_ah + _.£_o°o

do®

[} 0 [ 0
ovngsTT6+o°'J_g.§TTt=%i“i Eg_ig_

“3gt do,

_a_§i b 4 __§_a°l

+Jz* z,' aa‘ aailao°

0 1
o gy |26 08

_%a ! 1 ifl_ 0,
do* do; |do o+ 307

é 357.33? _a_gvo»vl + _Laloll . (2.22)

To simplify this expression, note that 3¢%°/30* is normal to the tangent vector o

a¢° ot _

Thus the unit normal may be written as

o LEBR A Y 220
éomparing this with (2.17) we find
% =a go" (2.5a)
g‘E’f =-a gﬁ: (2.25b)
where
a = (orto)1/? g—g— . %f,% - (2.26)

From (2.25) and (2.6b) one has



J=a. (2.27)

Using (2.25-2.27) in (2.22) one has for H
H = (0/0") 13011 Pg + 00P, + L(mums + zz,1)] | (2.28)

Similarly using (2.13) and (2.25-2.27) the orthonormal gauge conditions (2.3)

become

1

m(”; :I:Po)=0. (2.29)

Since the Hamiltonian of our system vanishes the dynamics is determined
entirely by the supermomentum and superhamiltonian constraints and the

orthonormal gauge constraints (2.29).

Canonical quantization now proceeds by imposing the standard commuta-
tion relations between the coordinates z#(¢) and ¢(¢) and their momenta (&)
and P*¢). In the Schrddinger picture, dynamical variables do not depend on time

¢° and the momenta are represented by
— % . p(f) s —ib
"u(f) - 627“(6) ’ Pt(é) 1 60'(5) .

(Henceforth ¢ shall denote ¢!.) The state of the system is described by the wave
functional @[:r“(&),o‘(f),?] ~ however ¥ is actually independent of ¢° since the
Hamiltonian vanishes. The quantum dynamics are thus purely governed by the
constraints which are imposed'on the wave functional. The quantum super-

momentum and superhamiltonian constraints become®

[ ¢ [ _6__ 7 i -
(0 &)y * =) gy V=€) o)) = 0 (2.31a)
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é

1 éx#(¢) 6’:“7 + :'“(G)zu'(f)]f‘i/ -0,

{—teVolt) 7 60’(5) 2[

(2.31b)

where we have removed an overall factor from (2.31b). We can equally well mul-
tiply the orthonormal gauge constraints (2.29) by the factor i(o'° + o'1)2 obtein-

ing the quantum constraints

[0%(¢) + 011(2)] do‘(f) af(s) ¥=0. (2.32)

Equivalently, we can use the fourier transformed versions of (2.32)

Qn';’ =0, 51&‘;’ =0 (2,33)
where
- = né( i _ o4 [}
fdee R e
. 1 +n 5
=1 W 4 g ) g (¢)—O =
O = g Jatenn? + eNov(t) gy (m=0.51,22, ), (2.34)
(where £¥ is the antisymmetric tensor £%! = —¢g10 = 1), Actually in analogy with

(1.10) we should impose the constraints (2.33) only for n > 0.

The commutators of Q,'s may be easily worked out. We find



- 14 -

[(Qm.Qal = (M = n)Qmin
[5m- 6’\] = (m - n)Qmsn
[va Q-n] =0, (2.35)

which is the same algebra as that obeyed by the Virasoro operators L, and i...
except for the central charge. (The absence of the central charge is not surpris-
ing since in the usual theory the normal ordered Virasoro operators obey the
algebra with central charge. The operators @, and Q.,L are not normasl ordered —
in fact we have not introduced a vacuum state with respect to which one may
normal order.) Furthermore the operators (2.34) manifestly generate shifts of
the o%“s. We have thus constructed a formalism in which both ¢ and T

reparametrizations are represented in a simple geometric manner.*

What does the wave functional "J'[:t(s),o‘(f)] mean? o%¢) denotes a spacelike
line on the world sheet while z#(¢) denotes a curve in space-time. If ¢
parametrizes the position along the string, 1';'/ describes the probability amplitude
that the string occupies a curve z#(¢) in coordinate space as well as a curve o%(¢)
in parameter space (i.e., the world sheet). The lines o*(¢) are of course arbitrary,
so long as they are spacelike. Since the ¢! are coordinates on the world sheet,
changes in the functions 0%(¢) (i.e., changes in the curves on the world sheet)

incorporate the notion of reparametrizations on the world sheet.
The equations (2.31) are of the general form

ay =AY,

* In fact, in this formalism it is possible to think of reparametrizations of 0 and T which do not
involve any transformation of the T#(¢{)'s.
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where q acts on variables in '; which specify the string in parameter space while A
acts on the real dynamical variables z4(¢). These operators may be shown to obey

the consistency conditions derived by Dirac [8].

Such a description is, of course, highly redundant. But that is what we are -
trying to achieve - introduce enough redundancy so as to make the symmetries

of the theory manifest.

Some of this redundancy may be removed without loss of generality — but at
the cost of treating ¢ and T asymmetrically. Note the description of our string in
coordinate space and on world sheet depended on the parameter ¢. Under an

arbitrary change of the parameter ¢
£~ ¢+ 0¢, (2.36)

the wave functional changes by
sv = [deotP(ely . (2.37)

The supermomentum constraint P@ =0 thus means that @ is insensitive to

changes in our choice of §£.

Therefore, without any loss of information we may choose
§=0. (2.38)

The wave functional is now ';/[z:(a),'r(a),o]. However, the supermomentum con-

straint relates explicit dependence on ¢ to dependence on z(o) and 7(o)
[-ii -i7'(0) - t‘:c“(a)————-‘s =0 (2.39)
éo 67(0) éz*(o) :

(where ' now denotes differentiation with respect to ¢). One may now use (2.39)
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to remove any explicit dependence on o¢. Thus plugging (2.39) into the

superhamiltonian equation (2.31b) one obtains an equation for the functional

y[z*(o,7(0)],

which reads

6 : 1
— e Ak Ll —_— i []
i3 “(0) T'T } + 5tz }V (2.40)

. 0y _ 1
t31(o) T |21 - T)°

The constraints (2.29) acting on the wave functional ¥ become (after removing a

nonzero factor)

l_m‘l’da + 7'(0)?‘;%3 + :c"‘(o)a,‘i(a”‘w =0. (2.41)

The fourier transforms of the operators within the brackets

S p——

S N é o
Rpn= _f"do e"“’{m - T'(U)W + z'#(0) éz#{0)

Rn.= idae"“’lﬁa + ‘r'(a)g,r—c(s;y + I"‘(U)é—_,:f(';,—) } (2.42)

once again form a Virasoro algebra without central charge. Just as in conven—

tional quantization we shall not impose the full equations (2.41) but only
Rav=0 n>0, (2.43a)
for open strings and in addition
R.y=0 n>0, (2.43b)

for closed strings.
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Even though ¢ and 7 have been trealed asymmetrically the R,'s generate ¢

and 7 reparametrizations. In fact the combinations
(Rn—Ra) 2 (Rop - R.p)
generate reparametrizations of o, while
(Rn+Ra) £ (R +Rop)

generate o dependent reparametrizations of 7. In this framework the latter are
simply deformations of the spacelike curve 7(¢) which describe the string on the

world sheet.

The wave functional ¥[z(¢), 7(c)] denotes the probability amplitude tha;t the
string lies along z#(0) in coordinates space and along 7(c) on the world sheet.
Given the functional on any such spacelike curve on the world sheet, equation
(2.40) may be integrated to obtain the functional on any other curve - provided,

of course, the constraints (2.43) are simultaneously satisfied.

The standard formalism may be now recovered by restricting to ''flat"

spacelike curves
7{0) = 70 (constant).

The wave functional now becomes a functional of z(c) and a function of 7o, and
the relevant question is to study dependence on 7o. This may be done by noting

that

oy _ 61(c) ¢
810 fdo T drias ’ (2.44)

and using 6y /67(c) from (2.40). In this case 7/(c) = 0 and one obtains



Oy 1 LIS
a'ro—2fd° et

V. (2.45)

Since the operator on R.H.S. does not involve 7o one may perform a fourier

transform
‘= ey
V[z(0), o] = [ dmze™ e _[z(0)], (2.45)
to obtain
L [aol- + L2216 = Lot = m2e (2.46)
2 W 2 0 » .

and the usual string is obtained for m? = 1.

To close this section, let us discuss how one might construct a second quan-
tized field theory in our framework. It is natural to take the superhamiltonian
equation as the mass shell condition and the rest as constraints. It is not clear
at this moment how the 7—¢ symmetric formalism can be elevated to a field
theory. In the formalism based on ¥[z(0),7(c)], the latter may be regarded as a

quantum field constrainted by
Ray=0 n>0

and having an action

JoaHo)Dr(o)ao v i 500y - 0w, (2.47)

where

1

. 0
— (—
0= 2T =77 " %(0)

— gy + Lo, (2.48)

Just as a field theory of scalar particles based on a wave function ¥[z#, 7] actually
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corresponds to an infinite number of usual Klein-Gordon particles labeled by
their mass, the string field theory (2.47) is expected to contain an infinite
number of conventional string fields. In the free theory this is, of course, not
problematic, since there is no interaction. To extract out the usual string field
theory one may write (2.47) as a sum over paths of constant t(o) plus all the
other paths. The first term then yields a class of fields ¢_,[z(0)] in the way out-
lined above. One may hope that analogous to the theory of relativistic particles,
interaction terms do not m.ix up the various string fields and the above method

of extraction still works.

One may write down a gauge invariant theory by introducing a projector
analogous to Ref. [2] and [9-11]. The resulting theory would have a chordal

invariance of the form

¥lz(0),7(0)] » ¥[z(0). 7(0)] + ¥ £_nR_aQu[z(0).7(0)]. (2.49)

n>0

The advantage is that, as shown above, R, has simple geometric meanings.

Some Speculations about Field Theories

In the previous sections, we found that one possible natural arena for string
field theory is the appended loop space {z%(c),T(0)]. Acting on functionals living
in this space, the Virasoro operators have simple geometric meanings; viz. they

generate ¢ and T reparametrizations of the form
o-+>7=0+do0(o)
7(a) » 7(o) = (o) + 67(0) . (3.1)

It is tempting to speculate that the dynamics of strings field theory is intimately
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related to the differential geometry of "appended” loop space. As yet, we do not
know whether this is true. In this section we briefly describe the first steps
toward developing a calculus of objects that transform as tenaors under o and
7(0) reparametrization. Our work is an extension of that of Bardakci [14] who

constructed a tensor calculus for c—reparametrizations alone.

The transformation in (3.1) may be called ‘global” reparametrizations since
the transformation functions do not depend on the particular string on which

they act. A "local” reparametrization would be
o -7 = g(z¥(0), 7(0),0) (3.2a)
7(0) » 7(0) = h(z*(0),7(0),0) . (3.2b)

It is natural to consider transformations which depend on both z#(¢) and 7(o)

since in our formalism the string field depends on both.

Under a o0 reparametrization(3.2a) the string coordinates transform as
z#(c) » TF) = z#(0)
7(0) » 7(c) = 7(0) . (3.3)

Consider general objects in this space: these are functionals of z#(c) and 7(o)

and, in addition, functions of ¢
prm)z#(0), 1(0), 0] . (3.4)

The superscript (n,m) means that ¢ is a vector of weight » under o transforma-
tions and of weight m under T transformation. Actually ¢*™) should also carry
m additional indices o; - - - o,. Let U denote the action of o transformations

(3.2a). Then



-21 -

Ugr™[z(0)7(0)0]U"! = [-33 g™ [2(7),7(7),7] . (3.5)

Similarly if V implements the transformation (3.2b)

V¢:l’."?.,‘[z(o).'r(a).cr]V" = fdal' - - day! _(—Tii(?;)
. %:7(2—':% o o[z T 0] (3.6)

These transformations may be called tangent space transformations. One can
also define coordinate space transformations analogous to those defined in Ref.
[14], except one now has an extra coordinate 7(c). We shall not consider these
here, though the full machinery is necessary to actually write down a string field

theory.

Consider now tangent space tensors of weight (0,0). We shall use the nota-—

tion

¢ z(0), 7(c), 0] = ¢o(z, 7). (3.7)

Under the local transformations of (3.2) the derivatives of ¢ transform inhomo-

geneously under U:

U6¢a(z.‘r) o1 _ 68,(Z.7) . 89o(T) 004(Z.7)
dz4(s) T 6z3) ' 67"(5) 4o

8oz, 7) . _,  OBs(Z.T)  89.(T,T) 0¢5(Z,T)
31#(s) T 87(s) - 6T(s) F

(3.8)

Under V, however, there are no such inhomogeneous terms
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p88e(a.7) 88e(z. )

6xH(s) T dzM(s)
Spolz.7) ,_, _ 87(a) | 6¢0(z. T)
1% 37(s v-i= fdo‘ 51(s W . (39)

Thus, one needs to define covariant derivatives and connections to define objects

that transform as tensors under U. Let us define these as follows:

Dus¢aE 6%, _ . (1) 0¢q

SxH(s) Wuso 55

— 6¢° (2) a¢a
vs¢a=m-ws.a 3o - (3.10)

It may be easily checked that these covariant derivatives transform homogene-

ously, provided the connections w(!) and w® transform as follows

-1
W) o1 (99 Loy 690
UVw, U™ = 30 lw“m+ 65“(5)}

-1
- g dg
vl = |G| u+ 22). @10

S
0l

Furthermore, the connections must be invariant under 7 reparametrizations

(i.e., under V transformations) in order to maintain tensorial property of the

covariant derivatives (3.10) under Vv
(1 -1 _ 1)
‘_’wus).av 1= w:w-v
VwByi- = @ (3.12)

Under linearized transformations w(!’ and w'® transform as
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69,

1) 1)
w -w +
“we o Mue .0 6:‘0(3)

~ull s gots

2
@ -4 6Tis ; N

w} (3.13)

Looking back at the linear chordal transformations of the free theory it is sug-

gestive to identify the string field as
¥z(0) 7(0)] = fdaf(l - o' ywlD + 2w} (3.14)

Thus, at least in the linearized limit, chordal transformations are nothing
but local reparametrizations of o, the transformation function g[z(o),7(c),0]
taking the role of the functionals (,[z(¢), 7(¢)]. (In fact the Q,'s are fourier com-

ponents of the g's.)

It may be noted that in a geometry of loop space defined by z#(¢) alone, one

would have

¢[z(0)] = fda:c'{,‘w“)

wa.o

as in the work of Bardakci. In that case the linearized transformations of lega

lead to
60[z(0)] = fdaz'“-‘-s?i%zy

which are mot symmetries of the gauge—invariant theory. (For open strings
6 ~(Lsn —L-n)g and not L_,g as required.) In our formalism, however, the
identification (3.14) ensures that local reparametrizations of ¢ lead to the full

chordal transformations of the string field in the linearized limit.
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It is tempting to conjecture that the identifications (3.14) also holds in a
suitable constructed interacting theory. Then the full nonlinear transforma-
tions of w would reduce to nonlinear gauge and general coordinate invariance of
the massless modes of the string. At present, it is not clear whether this is
indeed true. Note that T reparametrizations do not play any role in chordal
invariance. This might seem a bit strange. On the other hand, the nature of T
reparametrizations is rather different from o reparametrizations and one should
not expect that the two play similar roles. One might have 8 more symmetric

situation in a field theory based on the fields y[z(¢), o(¢). 7(£)] of Section II.

In any case, the geometry in appended loop space has to be developed
further to see whether a string field based on (3.14) can lead to the correci field
theory. We have discussed tangent space transformations so far. One has to
construct, in addition, the calculus of coordinate space tensors. So far as U
transformations are concerned, it is sufficient to simply repeat the work of Bar—
dakci with an additional coordinate z%*!(¢)= 7(0). The structure of V-
transformations is, however, very different. We hope to report on the full

geometry in a later communication.

Finally let us mention some speculations as to how a field theory may be
constructed. Once the tensor calculus of coordinate space is developed one can
define a vielbein which relates coordinate space to tangent space. An analog of
zero torsion condition would relate the coordinate space affine connections to
the spin connections defined above — and geometric objects like the curvature
tensor may be expressed in terms of the latter. Hopefully constraints consistent
with T and ¢ reparametrizations may be imposed which reduce the number of
independent components of the curvature and which allow the spin conhection

to be expressed in terms of the string field ¥. This would allow one to write an
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invariant action in terms of ¥.

The field y[z(c),7(0)] has, of course, many more modes than required.
However, once a field theory in terms of ¥ has been written down it is straight-
forward to write down the theory in terms of the conventional fields $[z(c)] by
choosing constant r(c) paths in the functional iniegral defining the action. What
the formalism based on ¥[z(c), 7(¢)] might buy us is a natural geometric way of

constructing interacting theories.
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