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ABSTBACT 

We study porrrrible cosmological solutions to N = 1 D = 10 supergravity with a constant 

dilaton mode and show that it is possible to integrate Einstein’s equations exactly for flat 

physical and internal spaces. We then present a detailed analyeia of the possible trajectories 

in the phase plane of the Hubble factors and 6nd the allowed regions for a physically 

acceptable cosmology, which are remarkably small. 
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In the quest for the unification of the fundamental interactions, Superstring theories1 

are presently considered ae the beat candidate. Indeed, while the alliance of local super- 

symmetry with higher dimensional theories offered the pceeibility of obtaining the full N=g 

supergravity action in four dimensions via dimensional reduction of N=l supergravity in 

I1 dimensions2, the ultra violet divergences that were already present in four dimensional 

calculations of graviton and matter loop corrections did not get appreciably milder when 

going to higher dimensional supersymmetric theories. Thus, the proof that superstrings 

are anomaly free at I loop for SO(22) or Eo x E.z 3; p lus their finiteness’ to at least that 

order, has triggered a great deal of action in the complete formulation of the correct theory 

with acceptable phenomenological predictio&. 

A related question of great importance iz the cosmological implications of string theo- 

ries. Beyond the Planck scale, the drastic changes that are brought up by the inclusion of 

the massive modea aa intermediaries of gravitational interactions are surely going to have 

important consequences in our understanding of the initial singularity, 85 .zome recent work 

on the subject has shown6, although still in a superficial way. As we lower the energy, the 

massive modes are frozen out of equilibrium and the string is thought to collapse to a 

point, with the massless modes being related to massleas fields described by a local field 

theory. 

The type of field theory obtained is related to the way the string theory is formulated, 

i.e. being it an open or closed string theory or by the number of supersymmetry generators 

(if any) involved. 

In this letter, we propose to study possible cosmological solutions arising from the 

bosonic sector of N=l D=lO supergravity theory’ (or equivalently the Chaplin*Manton 

action* with the Yang-Mills field strength set to zero) which describes the massless bosonic 

sector of the type I superstrings and of the phenomenologically more promising heterotic 

stringa. As a simplifying first step, we are going to take a constant dilaton mode, thus 
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effectively concentrating on the graviton and Kalb-Ramond fields. The complete model 

with a more general dilaton mode and a non-vanishing Yang-Mills field is presently under 

studylo. 

The action can be written as 

S = - 
/ 

d”zp & - ~gMNa&a~~ - $8FMNpFMNP 
{ > 

(1) 

Setting 8nG = 1 and taking the dilaton field r#~ to be constant, the field equations, 

after some convenient resealing take the form 

1 
&UN - ZSmR = -TMN P-1) 

with 

TMN = F,up~Fz~ - iFpqRFPQRgMN cw 

ifIM [&=FMNp] = 0 (3) 

where capital latin indices run from 0 to 9, greek indices run from 0 to 3 and small 

latin indices from 4 to 9. 

In order to obtain a compactified solution of the field equations, we follow Myung end 

Kim” and write the Kalb-Ramond field components as 

F PP = fww w (4.1) 

F -F -F mnp - /wp - pnp = 0 (4.2) 

where au = Pn(z) can be thought of as being the gradient of a space-time dependent 

scalar field n(z). Thii ansatz is consistent with the requirement of having a torsion free 
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internal manifold if we want to preserve SU(S) holonomy.. It is easy to check that the 

Kalb-Ramond afield equation (eq. (3)) is t rivially satisfied with the above snsatz. 

We note that the no-go theorem for 10 into 4 compactification” will not apply here 

since the four dimensional space-time is not maximally symmetric and the dilaton plus the 

Kalb-Ramond fields can, in principle, be functions of time. 

In order to obtain a suitable cosmological description of the above model, we assume, 

ss usual, that the line element is given by the generalized Robertson-Walker metric13, 

Ok2 = -OTt2 + R3(t)2&j(Z’) + R6(t)2!?mn(YP) (5) 

If we additionally impose the field n(z) to be only time dependent, we obtain the 

following field equations, for flat 3 and 6 dimensional spaces, 

- _ 

3~+g92 (6.1) 

We note that in choosing a flat internal manifold (end not only Ricci flat as in Calabi- 

Yau) the model will not describe chiial fermions. We believe though, that at thii point 

flatness is more crucial than chiiality. 

The authors of ref. (11) claimed to have found a particular solution to equation (6) 

where the physical S-space would expand exponentially while the internal space would 

oscillate in time. However, the solutions were obtained under the assumption of having 
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constant expansion rates (Hs and Hs constants), which is a strong constraint in the dynam- 

ical system. Furthermore, we would like to point out that their solution is inconsistent 

with the field equations, as these do not accept an oscillating solution for the internal 

manifold. 

It is also important to mention the work by Freund and Oh on cosmological solutions 

for N = 1 D = 10 supergravity coupled to Yang-Mills 14. The authors looked for power 

law solutions with a four dimensional anti de-sitter space-time (which automatically con- 

straints the physical radius to go as R3 - t) end the Kalb-Ramond and Yang-Mills fields 

taking values in the internal space, and found both spaces expanding but with a slower 

rate for the internal space. It would be interesting to apply our method developed in the 

following to their dynamical system. 

Here, we shall integrate eqn.(B) in an exact way and later analyse the dynamical 

behaviour of the system. If we introduce the logarithmic variables H3 = !%!J$d and 

He = v we can rewrite eqn.(0) es a 6rst order quadratic differential system as 

follows, 

I&+611,1+ 3zi3&=-ii' 

substituting (7.1) into (7.2) and (7.3) we get 

3 
ri, = zH3’ + 21H3He + ;H; 
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3 
tie = -;H; - 12HsHe - TH; 63.2) 

In order to solve eqn. (8.1) and (8.2) exactly, we write H3 and He in terms of the 

new variables r and 8 &S 

H3 = rsine (94 

He = rc0.9e WI 

After some algebra, eqn.(8) reduces to 

i = ~r2(3sin3t9+39.Gn2Bmse+21sine cos2e -27 ~0~~8) (10.1) 

rd = $2(3&23t9 + 278in2B ~08 e + 695inem2 e + 45 ~08~ e) (10.2) 

Upon introduction of a new variable z = tan@, eqn.(lO) can be writen se a single 

equation relating r and x as follows 

dr 

( 

z3+13z2+7z-9 dz 
-= zs+92~+232+15 1+z2 > r (11) 

By using partial fractions, eqn.(ll) can be easily integrated to give 

r = ~(2 + 3)A(z + l)B(~ + 5)c(1 + z2)Dezp(Etan-‘z) (12) 

with 
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As is well known from the theory of non-linear differential equations, the zeros of 

eqn(10.2) give the invariant lines in the phase plane H3 x He Is. These invariant lines are 

solutions of eqns. (8.1) and (3.2) where H3 = aHs (a = constant), which in our case will 

be simply 

H3 = -He ; H3 = -3Hs ; H3 = -5H6 (14) 

These lines are shown in fig. 1 with the labels al, a2 and a3 for a = -1, -3, -5 

respectively. 

Fig. 1 

Another important property of our dynamical system is that H3 = HG = 0 is a critical 

point. Using this information together with the invariant lines and the solution (12), we 

can construct the phase plane diagram H3 x Ha as shown in fig.1. Note that the lines a2 

and as were not drawn on scale to allow an easier reading of the trajectories. 

In what follows we will try to extract all the possible information from the dynamical 

analysis of the phase plane diagram. 

First we note that along the invariant lines we can obtain the exact solution for the 

scale factors se functions of time; 

i) a1 = -1, we End that 

Ha(t) = 
H30 

; Hs(t) = 
Hso 

1 - 3H& 1 + 3Hsot 
; R3-t-- : ; a-t+ 

ii) a2 = -3, we find that 

H3@) = 
H30 

; Hs(t) = 
Hso 

1 + 3Hsot 1 - 9Hsot 
; R3-t!; &Nf-i 

iii) aa = -5, we 6nd that 

Ha(t) = H30 ; G(t) = 
f&o 

1 + ;Haot 1 - 9Hsot 
; R3 w tt ; & w t-i 

(15.1) 

(15.2) 

(15.3) 
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where Ha0 and He0 are the initial values for H3 and He respectively. 

The arrows for the critical limes are obtained by analysing the sign changes in Ha(t) 

and He(t) for each solution. The reader can easily verify that only solutions (15.1) and 

(15.3) are compatible with the field equations for rj = 0. It is not sufficient to find the 

power law solutions from the critical lines since the consistency condition, eqn. (6.1) has 

to be satisfied together with eqns. (6.2) and (6.3). Alternatively, we could see that the 

whole region between the al and as lines is excluded (shadow region in fig.1) since it would 

produce a negative radius. 

As a second step we have to follow the allowed trajectories for all possible initial 

conditions for H3 and Hs. We can do this by studying each of the quadrants of the phase 

plane, taking special care in quadrants II and IV for the various possible subregions. We will 

concentrate in the region H3 2 0 since we consider that only an initially expanding 3-space 

is of physical relevance. Nevertheless, once the behaviour for quadrant II is understood, 

the behaviour in quadrant IV follows from symmetry arguments, while trajectories starting 

at quadrant III are bound to produce a shrinking 3-dimensional and internal space-time. 

If the initial conditions are such that that both H3 and He are positive (quadrant 

I), the physical radius undergoes an ever decreasing expansion rate until it eventually 

alternates a brief contraction (top of quadrant IV) with a brief expansion (bottom of 

quadrant II), while the internal radius grows at a rate that is increasingly faster, reaching 

a maximum and then slowing down until it eventually starts to contract at a rate that is 

initially faster but slows down until it stops asymptotically at a constant value. 

For the region IIa, the physical radius undergoes a decreasing expansion rate es be 

fore, until it reverses expansion into contraction towards en asymptotic singularity (at the 

bottom of quadrant IV), while the internal radius will do exactly the opposite. This kind 

of model may remind us of a closed Friedmann universe (but without the bounce at the 

8 



singularity) with the interesting feature that the internal dimensions will eventually grow 

enough to be observed after the physical radius has entered the contracting phase. 

The next possible region of interest ue the lines a1 and as, which were shown to 

represent power law solutions for the scale factors. In fact, thii method of integration, 

when applicable, produces a powerful way of finding power law solutions with due care 

taken. For example, we have seen that the whole region between these two lines, including 

the a2 line, has to be excluded from the analysis since for this region eqn. (12) would give 

a negative radial coordinate. 

We are thus left with region IIb. In this case, all trajectories will fall into the third 

(III) quadrant, which unfortunatelly does not provide a very hospitable universe for Me to 

develop, as we mentioned earlier. 

Going back through all the analysis, we End a surprisingly small region of the whole 

phase plane to be of possible physical relevance. If we assume a strictly conservative point 

of view, only the a3 line in the IInd quadrant provides an expanding open universe, with 

a power law behaviour very similar to the radiation dominated scenarios of conventional 

4-dimensional cosmologies, and a shrinking internal space, es desired from observations. 

We expect that when the internal radius approaches the singularity, quantum effects will 

play a balancing role, stopping the collapse. 

Although this is a highly simplified model, it is resauring to know that thii behaviour 

is not completly ruled out a priori. Relaxing our point of view, we may considere regiow 

IIa of some interest since we could well be living in the allowed portion of the diagram, 

i.e., before the shrinking of the physical radius and related expansion of the internal radius 

has started. 

In any case, it does not seem possible to obtain an exponential inflation in thii model. 

If we start with en unaturally large internal space, assume adiabatic expansion for the 
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whole lo-dimensional space-time and wait long enough (since a power law expansion is 

relatively slow), the shrinking of the internal space may generate the correct amount of 

entropy, as we intent to show in a forthcoming work. 

It must be said that quantum effects coming from one loop corrections on the matter 

fields, or the Casimir forces, will probably play an important role at these energies, and 

were neglected for simplicity. We intend to gradually add more structure to the field equa- 

tions to understand precisely the function of each of the extra terms. For example, with 

the inclusion of the Yang-Mills field plus a gaugino condensate as an effective cosmological 

c,onstantm, the internal radius will acquire a potential that may lead to an inflationary 

phase in the physical space-time. If this is correct, superstrings will be ss viable cosmo- 

logically as they are as candidates for a finite theory of gravity. And, surely, these two 

aspects should be manifestly unified in a coherent theory of physical interactions. 

We would like to thank R. Holman for useful comments and suggestions. One of us 

(M.G.) would lie to thank The National Research Council of Brazil (CNP,) for financial 

support. 
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Figure Caption 

Fig. 1 The Phase Plane trajectories are shown for a variety of possible initial values 

for Hs and Hs. Note that the shadow region is excluded from analytical considerations. 

13 




