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1. Introduction

Significant progress has recently been made toward establishing ho> global
flavor symmetries are realized in vector-like gauge theories, like QCD. For
exampie, If quark confinement is assurned, then we may inveke 't Hooft's ano-
maly argument [1] and inequalities similar to those derived by Weingarten (2]
and Vafa and ¥itten [3], along with some mild technical assumptions, to show
that the SU(n); x SU(n)p x U(l)y chiral symmetry of QCD with n massless
quark flavors is spontaneously broken to the maximal nonchiral subgroup
SU(n)y x U{1}y. This demonstration is an important achievement for QCD. since
such a realization of global chiral symmetry is actually observed in Nature.

It is aiso of considerable interest to determine how global flavor symmetries
are realized in theories which are not vector-like, but chiral; theories in which
the gauge symmetry forbids masses for at least some of the elementary fer-
mions. It has been suggested that many such “chiral gauge theories" contain
massless composite fermions [4,5); physics well below the Planck scale might
conceivgbly be described by an effective chiral gauge theory in which quarks
and leptons are composite and their masses are calculable. Unfortunately, very
little is known about the behavior of chiral gauge theories beyond perturbation
theory.

The central theoretical problem concerning chiral gauge theories which we
wish to address can be formulated as follows: Consider an asymptotically free
gauge theory with gauge group G and with massiess left-handed Weyl fermions
transforming as some complex representation of G. If the fermion representa-
tion is reducible, then this theory respects a group Gy of global flaver sym-

metries. We wish to know how the G, symmetry is realized. This question has
two parts:



(1) What subgroup A, of G, escapes spontaneous symmetry breakdown?

(2) What is the representation content under Hy of the massiess fermions in the

spectrum of the theory?

The massiess fermions may be either composite or elementary, for the G
gauge interaction may or may not be exactly conflning: if, for example, the
gauge group G is spontaneocusly broken to a subgroup A, massless elementary
fermions may appear in the spectrum which are ¥ singlets but not ¢ singlets.
Indeed, Anding the realization of the gauge symmetry is itself a very important
dynamicai problem.

To determine the realization of the gauge symmetry and global flavor sym-
metry, we must have some knowledge about the intrinsicaily nonperturbative
physics involved An important step was taken by 't Hooft [1]. who argued that
the massless fermicns in the spectrum of the theory must obey a remarkable
algebraic condition: they must produce the same triangle anomalies for the
unbroken flavor group £, as the elementary ferrnions. This reasoning esta-
blished that mﬂess fermions are a necessary consequence of unbroken chirat
symmetry. If there is a generator ¢ of the unbroken flavor group H, such that
tr ¢2 # 0, then there must be physical massiess fermions that couple to the asso-
ciated current. Furthermore, the anomaly condition places constraints on the
Hy representation content of the massless fermions that, in a conflning theory.
are highly nentrivial, because compogsite fermons must typically be in different

representations of H, than the elementary fermions.

The anomaly condition alone, however, does oot uniquely determine the
realization of the global G, symmetry, even if exact confinement is assumed.
Further information is needed. In vector-like theories like QCD, this information
can be obtained in various ways. As ncted earlier, the realization of the chiral

symmetry of QCD can be determined, if confinement is assumed. by appealing to
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the QCD inequalities [2, 3]. Unfortunately, analogous inequalities have not been
derived for chiral gauge theories. Nonperturbative information about QCD can
alsc be obtained by deoing numerical calculations in lattice gauge theories. But
there are technical obstacles which make it difficuit even to formulate chiral
gauge theories on the lattice. (A possible means of surmounting these obstacles
is discussed by two of us in Ret. [8].)

Another approach to studying the nonperturbative behavior of QCD is the
expansion in 1/ N, where N is the number of colors [7]. I quark confinement is
assumed to apply in the N -+ = limit, then a surprising humber of qualitative
features of meson phencmenoclogy can be derived in this approach [7-10]. The
1/ N expansion can also be applied to the problem of finding the realization of
global flavor symmetry. Given confinement and some technical assumptions it
can be shown, without invoking QCD inequalities, that the chiral symmetry of
QCD with n massless quarks is spontaneously broken to SU(n)y x U(1)y in the
Lmit N = = [11].

Our aim in this paper is to determine, as far as possible, the realization of
the global flavor symmetries of various chiral gauge theories in the limit ¥ -.u.
We restrict our attention. of course, to theories which remain asymptotically
free as ¥ - =; thus, all fermions lie in one of the irreducible representations
S. A, or F (or their complex conjugates) of the gauge group SU(N). Here S
denoctes the symmetric two-index tensor, A the antisymmetric two-index tensor,
and F the fundamental representation of the group SU(N). (In principle, the
adjoint representation is also allowed, even though it is real, if we define a chiral
gauge theory as one in which masses for some, but r;ot necessarily all, of the ele-

mentary fermions are forbidden by the gauge symmetry.}

We have reached two main conclusions. First. we have found that, if we

assume the existence of an N -+ = limjt given by a sum of planar diagrams, and
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also assume confinement {all physical states are SU(N) singlets), then there are
models which necessarily respect unbroken chiral symmetries, and contain
‘massless composite fermions, {n the N -+ = limit. This is the strongest argument
we lmow that massless composite fermions can reaily exist. The key point is
that thers will be massiess composite fermions unless all global flavor sym-
metries with anomalies are spontaneously broken Associated with each spon-
taneously broken symmetry is a Goldstone boson state which must be able to
appear as an intermediate state in cut planar diagrams. But for some chiral
symmetries with anomalies. we find that there is no candidate gauge-singlet
Goldstone boson available -in the ¥ - = limit. Thus, the symmetry is unbroken,

and there are massless composite fermions.

Our second main conclusion is that there are models in which the two
assumptions underlying our first main conclusion are incompatible; either
confinement, or the existence of an N -+ = limit dominated by planar diagrams,
or both, must fail. In these models, there are chiral symmetries with anomalies
for which neither a candidate gauge-singiet Goldstone boson nor a candidate
multiplet of massiess gauge-singlet composite fermions oceurs in the cut planar
diagrams. Thus, no possiﬁle realization of these symmetries is consistent with
our assumptions. In previous papers [12, 13], we have considered realizations of
the glo&l flavor symmetries of such models that are consistent with
confinement, at the expense of the existence of a cunventioﬁal large ¥ lmit. It
actually seems more plausible to us, though. that confinement is the incorrect
assumplion, and that the gauge symmetry is realized in a Higgs or Couiomb

meode.

Although our second main conclusion may appear at first to undercut the
assumpticns which were the basis of our first main conclusion. such is not really

the case {as we will argue in the concluding section). Rather, our second



conclusion provides the strongest argument known to us that there are some
chiral gauge theories which break their own gauge symmetry. And our first con-
clusion provides highly persuasive evidence that certain other chiral gauge

theories really do contain massless composits fermions.

In Section 2, the N -+ = limit of QCD is reviewed. Chiral gauge theories
which are likely to contain massless compesite fermions are analyzed in Sec-
tions 3 and 4, and a noncoafining chiral gauge theory is discussed in Section 5.

Section 6 contains our conclusions.

2. The Vector-like Case

Before turning to examples of chiral gauge theories, let us briefly review the
analysis of the large N behavior of QCD, a vector-like theory.

QCD is an SU(N) gauge theory coupled to left-handed Weyl fermions
(quarks) that, in the notation introduced earlier, transform under the SU(N)

(color) group as
n{F + F); (2.1)

here F signifies the fundamental representation of SU(N) and F its conjugate.
The 1/ N expansion is carned out with g?N fixed and taken to be order one,
where g is the conventionally normalized gauge coupling.

Counting the powers of N associated with a given Feynman diagram is factli-
tated by 't Hooft's double line notation [7], in which the SU(N) gauge theory is
approximated by a U(N) gauge theory, and gluons are represented by two lines
of opposite orientation, each carrying an index which runs trom 1 to N. (See

Figure 1). In this notation, each closed "index loop” of a diagram indicates a fac-
tor of N.



With every connected vacuum bubble diagram, we may associate a two-
dimensional surface, regarding each index loop as a face of the surface, each
gluon propagator as an edge where two faces meet, and each quark propagator
as an edge where only one face ends, part of the boundary of the surface. A
graph with £ faces, £ edges, and V vertices carries F powers of N and
L ~1=FE -V powers of g%, where L is the number of loops contained in the
diagram (that is, the number of independent momentum integrals, not the
number of index loops). Thus, this graph scales like

Gra.ph ~ NF-—EO-V (gZN)E-V_ (2.2)

With g?N considered of order one, we see that the number of powers of N car-
ried by the graph turns out to be a topological invariant of the surface on which
the graph can be drawn, the Fuler characteristic x = F ~ £ + V. By a well-
known theorem of topology, we obtain x = 2 — 24 ~ B, and

Graph ~ N®- -3 (2.3)

where A is the number of "handles” on the surface and 5 is the number of
*holes” or boundaries, that is, the number of quark loops. Evidently, in the
N - = limit with g?N fixed, the "planar” vacuum diagrams dominate; these are
the diagrams containing no quark leops which can be drawn on a sphere, without
any crossing of gluon lines. The contribution due to graphs with one quark lecp
is suppressed by one power of 1/N: "nonplanar’ gluon exchanges are
suppressed by 1/ &2

It has not yet proved possible to sum the pLa:iar diagrams and determine
the leading contribution in the 1/ ¥ expansion. But a surprising number of qual-
itative properties of the N -+ « limit can be extracted if we make the plausibie

assumption that color is conflned in this limit; that is, that ail physical states
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ares color singlets [7-10]. The physics of the theory can then be probed with
Green's functions of gauge-invariant composite operators. For example, con-

sider
Mo = 7y D Fa £, (2.4)

a generic color singlet meson operator, appropriately normalized to couple with
strength of order one to a color-singlet state. (The index 1 is a color index run-
ning from 1 to ¥, o and b are flavor indices, and spin indices have been con-
tracted in an unspecified way.) The leading diagrams as N -+ = contributing to
the connected k-point function for & have one quark loop which is the boundary
of the graph. and are of order N!~*/2, It tollows that, in the leading order of the
1/ N expansion. the operator X couples only to one meson states, and that the
mesens are noninteracting (7, 10]. The leading k-meson scattering amplitude, of
order N!“*/2 s a sum of pole terms (tree graphs). This analysis is readily
extended to incorporate glueball states (the k-meson, {-giueball amplitude is of
order N'~*2-! for k » 0, N2~} for & = 0) and one concludes that QCD becomes,
in the ¥ + = limit, a theory of an infinite number of noninteracting zero-width
mesons and giueballs. (The number of states must be infinite, in order for the
Green's functions to behave at large momentum as predicted by

renormalization-group-improved perturbation theory.)

While the conciusion that # couples only to one-particle states follows from
just the scaling properties as N -+ « of the # Green's functions, it is instructive
to note that this conclusion is reinforced by an argument based on the structure
of the planar diagrams [8, 8]. Whenever a planar diagram is cut, the intermedi-
ate state that occurs contains a quark-antiquark pair and some number of

gluons with color indices contracted as

— 1
Fy Ah “ % o A"";; Fm, (2.5)



{See Fig. 2.) This state consists of a single system of color-singiet particles; it
cannot be split into two or more color-singlet states. Thus, if color is confined,
the intermediate state must be a perturbative approximation to a one-particle
state, not a multiparticle state. One concludes again that & couples only to
one-particle states in the ¥ -~ = limit.

In the ¥ -+ = limit, QCD with n massiess quark flavors has a U(n); x Uln)p
global flavor symmetry. (The effects of the axial anomaly are not felt until the
next-to-leading order in the 1/ N expansion) If conflnement is assumed. it
immediately follows that this symmetry must be spontaneocusly broken to an
anomaly-free subgroup {11]. The ‘t Hoolt ancmaly condition requires that, if
there is a flavor symmetry generator that has an anomaly and is not spontane-
ously broken, then the corresponding current must couple to a pair of massless
fermions. But, in the N - = limit. assuming confinement, all quark bilinears

couple only to one-meson states.

That the unbroken symmetry is actually the diagonal U(n)y can be inferred
from a few additional rmild assumptions (and without invoking QCD inequalities).
The pattern of symmetry breakdown is characterized by a nonzero value for
some gauge-invariant parameter, or "condensate.” Since all mesons are quark-
antiquark states, any Goldstone bosons are such states, and the condensate, to
which Goldstone bosons must couple, may be regarded as a quark bilinear. The
value of the condensate is determined by minimizing some potential. obtained
by summing an infinite number of connected planar diagrams. But each
diagram contains a single quark loop. 30 the potential can be written as a sum of
terms, each involving a single quark flavor. The potential is minimized by
minirnizing it for each quark favor separately, and therefore the minimum
retains the U(n)y flavor symmetry. We conciude that the maximai nonchiral

flavor symmetry, U(n)y, is unbroken [11].



A similar conclusion can be obtained by appealing to QCD inequalities, pro-
vided, again that confinement iy assumed. According to 't Hooft's anomaly
argument [1], there must be massless fermions coupling to the axial flaver
currents if the associated flavor symmetries are not spontaneously broken. If
all physical states are color-singlets, then these massless fermions cannot be
quarks; they are baryons. But rigorous inequalities similar to those derived by
Weingarten [2] and Vafa and Witten [3] show that the lightest pseudoscalar
meson (the pion) is no heavier than the lightest baryon. Thus, the pion must be
massless, and, barring the possibility that f, "accidentally” vanishes, it is a Gold-
stone bos;:n. The SU(n), x SU(n)g x U(1)y chiral symmetry is therefore spon-
taneously broken, and QCD inequalities can be inveked to determine that the
unbroken symmetry must be SU(n)y x U(1}y [3]. This argument is readily gen-
eralized to show that, in vector-like gauge theories, global flaver symmetries are
always spontaneously broken to maximal nonchiral subgroups.

Although the argument based on QCD inequalities applies for any N, we find
the argument based on the 1/ N expansion more useful for cur purposes,
because it is more easily generalized to chiral gauge theories. -

If the N + = limit is taken with the number n of quark flavers held fixed,
then QCD becomes a theory of an infinite number of noninteracting zero-width
mesons and glueballs. But it is also interesting to consider the N - = limit with
n/ N held fixed; that is, with the number of quark flavors of order N [8]. In fact,
we will see later that the meson phenomenology of some chiral gauge theories
resembles that of QCD with order N flavors.

For n/ N of order one, a typical diagram contributing in leading order to
the connected k-point Green's function for the meson operator ¥ is pianar, but
contains many fermion lecops: all the # insertions occur on a single loop, which

may be taken to be the edge of the diagram. {See Figure 3.) The color factor
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L/ N associated with a fermion loop 13 compensated by the n-fold flavor degen-
sracy of the ioop.

The sams counting as before shows that the k-meson amplitude is of order
N'"*/%  But the mesons nonetheless acquire finite widths. The rate for the
decay of 2 meson resonance into k —1 mesons is of order one, because the order
N*=3 flavor degeneracy of the final meson state compensates for the smallness
of the amplitude. (See Fig. 4a.) Only the massiess mesons, the Goldstone
bosons of the spontaneousiy broken flaver symmetry, are exactly stable, and
these mesons are noninteracting. {The two-meson total cross secticn is of order
1/ N.} It n/ N is smail but non-zero [B), then there is an infinite tower of meson
resonances with typical widths of order n/ N, and a tower of glueball states with
typical widths of order (n/ N)? (Fig. 4b).

In the N = = limit of QCD with n/ N of order one, the flavor symmetry is
SU(n), xSU(n}e x U(1)y; the effects of the axial anomaly cannot be ignored.
Although quark loops are unsuppressed for n/ N of order one, it is still true that
quark bilinears do not couple to baryon-antibaryon pairs in the N ~ e limit; they
couple only to multi-meson states. We may therefore conclude as before, if
confinement is assumed, that the giobal flavor symmetry must be spontaneously
broken to an anomaly-free subgroup. However, because connected graphs wth
many fermion loops occur, we cannot argue as before, without invoking QCD ine-

qualities, that the diagonai subgroup SU(n)y x U(1)y must be unbroken.

3. AChiral Gange Theary with Hassiess Composite Fermions

As a first example of a chiral gauge theory, we consider a model with gauge
group SU(N) and left-handed Weyl fermions transformirg under SU(N) as the

representation

S+(N+4)F,

—
L
PN

~——
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a symmaetric tensor and (N + 4) N's. The number N + 4 is chosen to cancel the
SU(N) gauvge anomaly.

This model respects a global flavor symmetry
Gy = SU(N + 4) x U(1); (3.2)

the SU(N + 4) mixes the different F flavors, and the U(1) is that combination of

S number and F number, with charges
@s=N+4 Qp=-(N+2), (3.3)

which survives in the presence of SU(N) instantons. We would like to determine

bow this symmetry is realized in the N + = limit, assuming exact confinement.

‘The N - = limit is dominated by planar diagrams, but both S loops and F
loops are unsuppressed. The S propagator, like the gluon propagator. carries
two color indices, and the color factor 1/ N associated with an F loop is compen-
sated by the (N + 4)-fold flavor degeneracy. Thus. the meson phenomenociogy of
this model resembles that of QCD with order N flavors, discussed in the last sec-
tion. There are giueball resonances and meson resonances coupling to the bil-
inears F'F' and STS, but all but the lightest states can decay into light F'F
mescns at a finite rate. All meson and glueball scattering cross secticns vanish
inthe N -+ = limit.

In 1ts "baryon” phenomenoiogy, however, this model departs greatly from
the behavior of QCD. There are composite fermions with the quantum numbers

of
By = Fg SY Fp (3.4)

which are not decoupled from the meson physics. {Here i,; are color indices

running from ! to N, and g & are flavor indices running from 1 to N + 4.) The
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intermediate states £B' can occur in cut planar diagrams (Fig. §). Thus, meson
and glusball resonances can decay into the Z8' channei with rates of order cne.
If there are massiess baryons (and there are - see below) we expect a]l mesons
and glueballs with nonzeroc mass to have finite widths for ¥ -+ =; the only stable
particles in the spectrum of the theory are the massless baryons, and the mass-
less mesons, if any. Excited baryon rescnances can decay to the massiess
baryons by emission of 'F mesons. And the baryons are noninteracting; all
scattenng amplitudes vanish in the N -+ « limit,

To see that the spectrum of this theory reaily contains massiess composite
fermions (assuming confinement), we now consider the realization of the global
Gy symmetry. If the G, syrnmetry is compietely unbroken, then there are four
flavor anomaly conditions which must be satisfled — there are SU(N + 4)3,
SU(N + 4)2U(1), U(1)3, and U(1) ("gravitational” [14]) anomalies. All four condi-
tions impose nontrivial constraints on the flaver quantum numbers of the mass-
less composite fermions, but they admit a remarkably simple solution [5]. A
state coupling to the cperator Be, antisymmetrized in its flavor indices, has
U(1) charge @ = — N. and is readily found to produce Aavor anomalies which

match thosa of the elementary termions S and F.

This solution to the anomaly conditions is so natural and appealing that it is
very tempting to conjecture that the G, symmetry is actually realized in this
way, that G, is completely unbroken and that there are % {N + 4)(N + 3) mass-
less fermions transforming as the antisymmetric tensor representation of flaver
SU(N + 4), with U(1) charge @ = — N. In fact, if we assume confinement and the
existence of an N -+ « limit dominated by planar di;agrams. we can reach a con-
clusion nearty. this strong. The point is that, in the ¥ -+ = limit, the global U{1),
symmetry cannot be spontaneocusly broken. and the only compesite fermions in

the spectrum have U(1) charge @ = — ¥. Since the U(1)Y and U(1) anomalies



-13-

are - -é- NN + 4){(N +3) and ~ % N{N + 4)(N + 3) respectively, we know that

% (N + 4)(N + 3) of the fermions must be massiess.

To argue that the U(l)g symmetry remains unbroken we consider candi-
date order parameters which could signal the spontanecus breakdown of this
symmetry. If a gauge-invariant operator with nontrivial flaver quantum
numbers condenses, then there must be a Goldstone boson which couples to the
condensate, and appears in the spectrum of the theory. (That is the Goldstone
boson couples to the “lmaginary” part of the operator whose "real” part con-
denses.) Thus, if an operator is to condense in the N - = limit, we demand that a
state with the quantum numbers of that operator appears in the cut planar
diagrams. This requirement, along with confinement {the operator which con-

denses must be a gauge-singlet), greatly restricts the possible realizations of
the flavor symmetry. -

The key feature of the cut planar diagrams is that, along the cut, an index
line pointing out through the cut is always followed by one pointing in. It is thus
easy to see that the only color singlet states with U(1)4 charge that can cecur in
the cut planar diagrams are the baryon state £, the a.ntiba.ryo:i B, and multi-
baryon states constructed from them. Furthermore, while a baryon-antibaryon
state BF' can occur, a two-baryon state BB cannot (Fig. 6). (We should not
expect BF to condense any‘way because the baryons are noninteracting.) We
conciude that, if the only allowed condensates are Lorentz-singlet gauge-sinzlet
operators which appear as intermediate states in cut planar diagrams, then

there is no candidate condensate to break the U(l)o symmetry; this symmetry
must be unbroken.
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As we have noted, the unbroken U(1)q symmetry ensures the existence of
-é- (N + 4)(N + 3) massless composite fermions. But we cannoct argue that the
SU(N + 4) favor symmetry is unbroken, however plausible this may seerm.
without making further assumptions. Confinerment and the existence of an
N -+ = limit dominated by planar diagrams do not, in principle, exclude the pos-
sibility that an operator with the flavor quantum numbers of F'F, condenses.
(A Lorentz-singlet operator with this structure is, for example, 7y, F D, G¥,
where G is the gluon fleld.) It is even possible for several such condensates,
misaligned, to break the SU(N + 4) symmetry completely.

Arguments identical to those above can be used to show, assuming

confinement, that an SU(N) gauge theory with fermions transforming as
A+ (N—-4)F

contains % {N — 4)(N¥ - 3) massless composite fermions in the limit N -+ .

4. More Exampies

In this section. we investigate the behavior of several more chiral gauge
theories in the ¥ -+ = limit. We assurne, as before, that the gauge interaction is
exactly conﬂ.mng .
(i) The Bars-Yanidielowicz Model

Bars and Yankieiowicz [15)] proposed a generalization of the model dis-

-

cussed in Section 3. Their model is an SU(N) gauge theory with left-handed Weyti

fermions transforming under SU(N) as the representation
S+(N+)F +n(F+F) (4.1)

that 1s. the same representation as before, except for a vector-like piece

appended on.
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This model respects a group of flavor symmetries
Gy = SU(N + 4 + n) x SU(n) x U(1) x U(1). (4.2)

In Ref. [15), a remarkably beautiful solution to the anomaly conditions was
found. All G, anomaly conditions are satisfied by the set of color-singlet compe-

site fermicns
FSF + F'S'F + FISF?', (4.3)
transforming as the representation
By+@o+e.a). (4.4)

under the SU(N + 4 + n) x SU(n) flaver symmetry.

Unfortunately, in the N - = limit with n held fixed, this realization of the G,
symmetry is not possible. Because an F loop costs a factor of 1/ N, the FISF'
fermions do not appear in the leading cut diagrams, and the G, symmetry must
break. An argument similar to that applied earlier to the case of QCD shows that
the SU(n) symmetry of the F's should remain unbroken. Therefore, the n F's

must condense with n of the F's, leaving the unbroken symmetry
H,=SU(N + 4) x SU(n) x U{1) x U(1). (4.5)

or perhaps a subgroup of K, Only the FSF fermions are massless.

If the NV - = limit is taken with n/ N of order one, however, then F loops
are unsuppressed, and the realization of the G, symmetry advocated in Ref. [15]

is not excluded by our arguments.

(ii) Georgi's Models

Georgi (18] has recently emphasized that there are chiral generatizations of

QCD with nonsimpie gauge groups which are quite likely to contain massless
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composite fermions. Consider, for example, a model with gauge group SU(N) x
SU{M) and left-handed Weyl {ermions that transform under the gauge group as

the representation
H(N, )+ (N M)+ N(LH). (4.5)

(This representation is free of gauge anomalies.) We will denote these elemen-

tary fermions as
FO p@an pad (4.6)

Here a is a flavor index running from | to 4 and b is a flavor index running {rom
1 to N color indices are suppressed. This model respects the group of glebal

flavor symmetries
Gy = SU(M) x SU(N) xU(1)q .
where the U(1)g charge assignmgnts are
QUFM VY=, QUFWIy= oy, QFiDy=y (4.7)

It is suggested in Ref. [168] that the G, symmetry is unbroken, with the G, ano-

maly conditions satisfied by the massiess cormposite fermion multiplet
Bay = FN-0 F—c}v.mpgl.il _ (4.B)

which transforms as the (M, N)! representation of G;.

In the N - = limpit, with M/ N fixed, the only gauge-singlel states with
nonzere U{l)g charge which appear as ifitermediate states in the leading
diagrams are the baryon 57 and the antibaryon 5% (Fig. 7). Since there is no
candidate gauge-invariant Lorentz-invariant condensate to break the U(l)g sym-

metry, this symmetry must be unbroken. The U(l)¢ symmetry has an anomaly,
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tr @ = NM. Thus, all N of the g 's must be massless, in agreement with Ref.
(18). Some breakdown of the SU(H) x SU(N) symmetry cannot be exciuded by

our arguments, however.

Next, consider a model with gauge group SU(N) x SU(H) x SU(N), and left-
banded Weyl fermions transforming under the gauge group as the representa-

tion
MN. L)'+ (N M D)7+ (LE N+ M1, LN (4.9)
This model respects the flavor symmetry group
Gr=SU(M); x SU(M)p x U(1)y, (4.10)

where the U(1)y charge assignments are indicated as superscripts in (4.9).

In the ¥ » = limit, with #/ N fixed, there are no gauge-singlet fermion
states which appear as intermediate states in the leading diagrams. Thus, G,
must be spontaneously broken to an anomaly-free subgroup. Since U(1)y has no

ancmaly, the obvious choice for the unbroken symmetry is
Hp=SU(M)y x U(1)y . (4.11)
as suggested in Rel. [18]. Indeedq, the candidate condensate

F®Y ﬁ(N.H.I)F{LF.N)Fé‘- L (4.12)

capable of breaking G, to H, occurs as an intermediate state in the teading
diagrams. But our arguments do not exclude the possibility that the unbroken

symmetry is some other anomaly-free subgroup of Gy

It is obvious that this analysis can be extended to models with any number
of sumple gauge groups. supporting the conclusion of Ref. [16] that "even linear

Mooses"” like (4.5) contain massless composite fermions, while “odd linear



- 18~

Mooses” like {4.9) do not.

Our next example is an SU(N) gauge theory with left-handed Weyi fermions
transforming under SU(N) as the representation

S+A+2NP). (4.13)

The number of F's is chosen to ensure cancellation of the SU{N) gauge anomaly.

This model respects the group of flaver symmetries
G,-': SU(BN) XU(l)q XU(I}R . (4-.14)

Under the U(l) symmetries the fermions carry the charges
QS=]_ Q.:]_ .QP'-'-]"
Rs=(N-2) Ry=—=(N+2) Rp=0. (4.15)
The only color-singlet states carrying nonzerc U{1)g charge which appear in

the cut planar diagrams of this model are the baryon states

and the corresponding antibaryons. Since there is no candidate order parame-
ter, the U(l)g symmetry cannot be spontanecusly broken. And because the
U(1)e symmetry has an anomaly, &+ @ = —N? and the baryons all carry @ = -1,
we know that N2 of the baryons must be massless. It follows that the SU(2N)
symmetry must be spontaneously broken, because Bs and B; transform as ten-

sor representations of SU(2N), with more than N2 components.

Qur arguments cannot determine precisely how the G, symmetry is real-
ized, so we will be content with presenting one possibility. The U{l)s symmetry

can be spontaneocusly broken by a condensate with the structure
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FRSARF, . (4.17)

such a state appears in the cut planar diagrams. Further condensates with the
flaver quantum numbers of F*F can break the SU(2N) flavor symmetry down to
the SU(N) subgroup such that 2N transforms as N + N¥. The anomaly conditions

for
Hy = SU(N) x U(l)q (4.18)
are then satisfied by massless baryons transforming under A, as
af+54. (4.19)

These massless baryons are presumably a dynamically determined mixture of
the states Hgs and 5.

5. AChiral Gauge Theory with Spontaneously Broken Gauge Syrnmetry

Cur analysis of chiral gauge theories in the 1/ N expansion has made essen-
tial use of the assumption of color confinement. This might be regarded as a
weakness of the analysis, [or one can plausibly argue that chiral gauge theortes
shouid not be expected to be confining in general [4]. One might expect instead
that gauge-nonsinglet bilinear condensates form which break the gauge sym-
metry. Such a scenario is especially credible in view of recent Monte Caric cal-
culations [17] that indicate that condensation of fermion pairs can occur at
surprisingly short distances. Our next example emphasizes that it is not always

sensibie to assume that the gauge interaction is confining.

The example [12, 13] is an SU{N) gauge theory with left-handed Weyl fer-

mions transforming under the gauge group as the representation

S+A+8F (5.1}
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The number of s is chosen to ensure cancellation of the SU(N) fauge anomaly.

This model respects a group
Gp = SU(B) x U(1)g x U(1)p (5.2)

of global flaver symmetries. The charges of the fermions under the U(1) sym-

metries, which are preserved in the presence of instantons, may be chosen to be
s =N-2 Ri=-(N+2) Rp =0 (5.3)

This model has a potentially interesting feature {12, 13]; one can construct

& sequence of "baryon’” operators of the form
Fle S% (A S5 A i, 5™ P (5.4)

The operators in this sequence all have the same flavor SU(B) quantum numbers,
but carry different U(1l)p charges. Thus. one might expect the massless fer-
mions in the spectrum of this model to exhibit a sort of generation structure.
Indeed, solutions to the anomaly conditions can be found for chiral subgroups of
Gy such that the same representation of the unbroken nonabelian faver sym-
Imetry occurs repeatedly, tagged by a U(1) quantum number which serves to dis-

tinguish the “generations” [12, 13].

Unfortunately, such a realization of the flavor symmetry is not allowed in
the ¥ + = limit. Although these baryons can occur as intermediate states in cut
plapar diagrams, the diagrams require an F loep, which costs a factor of 1/ N
relative to the leading diagrams. In fact, the large N limit of this model, assum-
ing confinement, is a theory of an infinite number of noninteracting zero-width
mesons and glueballs, containing no baryons at all, just like the large N limit of
QCD.
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Perhaps we should be willing to modify slightly the rules for counting
powers of 1/ N, as applied to this model. For if there are order N massless
baryon species (as required to satisfy the anomaly condition il a chiral subgroup
of Gy is unbroken), all seiected from the sequence (5.4), then ths dynamlca.lljr
generated degeneracy could compensate for the formal 1/ N suppression of the
F loop. and allow baryon-antibaryon thresholds to occur in the N = = limit. But
even with this medification, the analysis of the model runs into trouble.

To appreciate the trouble, we must consider the realization of the U(1)g
symmetry. The U{1)p charge of a state simply counts the difference between
the number of upstairs color indices and downstairs color indices carried by the
state. Thus the U(1)o charge vanishes for any gauge-singiet state which can be
constructed without the aid of an N-index £ symbol. Since states involving the
£ symbol cannot occur in cut planar diagrams {an upstairs index- is always fol-
lowed by a downstairs index), all gauge-singlet states which appear in cut planar
diagrams have vanishing U{1)g charge.

The U{1)q charge has no U{l)3 anomaly, but it does have a U{l)g ('-'gravita*
tional") anomaly; we have frQ = — 8N for the elementary fermions. Since no
cendidate gauge-singlet condensate with a U(1}, charge occurs in the cut planar
diagrams, the U(1)y symrmetry cannot be spontanecusly broken in the N + =
limit, if confinement, is assumed. On the other hand, the U{1)o symmetry cannot
be unbroken, because there are no gauge-singlet baryon states with Uf1).
charge in the N - = limit with which to satisfy the U(1), anomaly condition. We

have reached a contradiction.

The simplest way out of this difficuity is to give up the assumption of color
confinement; if the theory is in a Higgs phase or Coulomb phase, then there can
be physical states which are not SU(N) singiets. It is, in fact, not at all implau-

sible that the gauge symmetry of this model shouid be speontaneously breken In
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perturbation theory, there is an attractive interaction in the adjoint channel

between S and 4. [f the adjoint order parameter
SY Aa (5.5)

condenses, it can be expected to break the gauge symmetry in a manner which
admits no "complementary' confinement interpretation [5, 18]. (And indeed, in
the N -+ = limit, this channel is as attractive (n perturbation thecry as the chan-
nel SYFy; it ties for the distinction of being the most attractive channel) For
example, the adjoint order parameter could break SU(N) down o the
(nonconfining) abelian subgroup U(1)¥~!; the thecry is then in a Coulomb phase.
This choice might be supported by a “"tumbling” picture [4]: the adjeint erder
parameter might first break SU(N) to SU(N-1) x U(1). Then SU(N-—1), getting
strong at a slightly lower scale might become broken to SU(N -2} x U(1). And so

on.

But we cannot say, on the basis of our large ¥ arguments, exactly how the
gauge symmetry is realized in the N -+ = limit. We can say only that the SU(N)
gauge interaction must be nonconflning; there are physical states ﬁch are not
SU(N) singlets.

8. Conclusions

In Section 5, we described a chiral gauge theory in which coler fails te be
confined in the N - = limit. That model differs from those considered earlier in
this paper in that there is an attractive channel in perturbation theory in which
a bilinear fermion condensate can form that ;;ra.nsforms as the adjoint represen-
tation of the gauge group. If such a condensate actually forms, it can be
expected to break the gauge symmetry in a manner which admits no comple-

mentary conflnement interpretation [5.18]. (The condensate preserves a Zy
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symmetry by which states can be classified.) Thus, by appealing to the 1/ N
expansion, we have merely verified by a nonperturbative argument what might

have been naively expected on the basis of perturbation theory.

In the models considered in Sections 3 and 4, however, it is not possible to
construct any scalar fermion bilinear which transforms trivially under the
center Zy of the gauge group. The condensation of a fermion bilinear in one of
these models should admit a complementary conflnement interpretation [5, 18).
Thus, our assumption that all physical states are color singlets seems sensible,
and the conclusion that these models contain massless composite fermions car-

ries some force,

Much remains to be learned about the nonperturbative dynamics of chiral
gauge theories. Present attempts to determine how these theories behave
involve some éuesswork. But we have found that formal arguments based on the
1/ N expansion provide reinforcement for what might otherwise be expected

merely on the grounds of simplicity, and put these expectations on a firmer
basis.
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Figures
Propagators and vertices in the “"double-line” notation.

A typical cut through a planar diagram that contributes to the meson two-

point tunction, in the "double-line” notation.

A typical planar diagram that contributes to a many-meson amplitude if the

number of quark flavors is of order N. Solid lines are quarks and wavy lines

are gluons.

Typical diagrams contributing to the decay amplitudes of (a) mesons and
(b) glueballs. The indices &, b, ¢ denote quark flavors.

A cut pianar diagram in which a “baryon-antibaryon” intermediate state

appears.

A cut dia.gran; in which the intermediate state 5 B B'B' appears. This

diagram is nonplanar and is suppressed by 1/ N2,

A cut planar diagram of the SU(N) x SU(M) model in which the B B! inter-
mediate state appeai:-s. Fermions are denoted by solid lines, SU{N)} giuons

by wavy lines, and SU(M) gluons by broken lines.
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