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ABSTRACT 

We consider snomaliea in local auperaymmetry. An expression for 
the gauge&ore&s) noninvariant part of thii anomaly for 2n dimensional 
spacetime ia given. The result agrees with explicit calculations in two di- 
meneionn. Complete expre&ona for rigid supersymmetry anomalies in two, 
four and six dimensions are also given. 

a Operated by Un~verritles Research Aasociatlon Inc. under contract with the Unlted States Department 01 Energy 



In a previous paper [l], we discussed supersymmetry anomalies for N = 1 super- 

symmetric theories. The analysis WM done in the component language or the WeakZumino 

gauge to facilitate the discussion of theories where no superlleld formalllm ia known to ex- 

ist ( such an would occur in dimensions higher than four ). It was shown how gauge and 

gravitational anomalies generically give rise to supersymmetry anomalies. The expression 

for the supersymmetry anomaly separates naturally into a gauge noninvariant part and 

a gauge invariant part. We gave an expression for the gauge noninvariant part for rigid 

supersymmetry in arbitrary even dimensional spacetime and the invariant part in four di- 

mensions. In thii paper, we report on further calculations along the came lines *. First of 

all, we discuss the case of local supersymmetry which was only briefly touched upon in ref- 

erence 1. As in the case of rigid supersymmetry, a general expression for the noninvariant 

part is derived. The invariant part depends specifically on the spacetime dimensions. For 

the cazre of two dimensions, the invariant part is zero and we reproduce known results on 

supersymmetry anomalies [3]. We also consider supersymmetric Yang-Mills theory in two 

and six dimensions. The invariant part is computed for these dimensions; this, alongwith 

the results in reference 1, complete8 the expression for rigid supersymmtry anomaly in two, 

four and slx dimensions. We conclude the paper with a few remarks on ten dimensional 

theories. 

Local Superaymmctry 

We start our discussion by wriaing down the consistency conditions on the anoma- 

lies for local supersymmetry. The consistency conditions are the infinitesimal version of 

the group composition law of the transformations, which are, in thii case, supersymmetry, 

Lorentz and general coordinate transformations. Consider the commutation rule for two 

supersymmetry transformations with parameters t and c’ [4]: 

[~s(3,W’)l = 6G(O + h(e-4 + w-w. (1) 

6o(Q denotes a general coordinate transformation with the parameter & = 3(27,c - 

s+), by is a Lorente transformation with field dependent parameter [,,wz and 6.9(-c$)i 

* Them M . number of papm dealbq with aaomalie, in mperr~mmctric theoria usin ~~pufielda [I]. 

comparison to our approach io made in (I]. 
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is again a supersymmetry transformation with parameter f,,$“. The w$ is the spin con- 

nection and $,, denotes the gravitino geld. Denoting the anomalies by S(c), G,(X) and 

Go(C), the consistency condition implied by the commutation rule (1) is 

&(+W) - M4W = ‘%tO + Gd&w) + St-E+). PI 

It la possible to write down local counterterms in tenna of the frame geld e$ euch 

that there ia no anomaly in general coordinate transformations [5]. The effect of the 

gravitational anomaly la completely captured in the anomaly of local Lorentz transforma- 

tions. (Other choices are possible but this is the most convenient for our purposes.). The 

consistency condition (2) thus becomes eimply: 

6&S@‘) - 6&‘)S(c) = G(b) + St-N,). (3) 

Compared to the ease of rigid supersymmetry, this condition haa an extra term viz. 

St-w. 

The commutation rule 

[W),&T(~ = a,(;~“~) (4) 

leads to 

6&9S(c) - 6&)G5(X) = S(+E). (5) 

tkrc ia an infinitesimal Lorentz transformation of r; being only a parameter and not a 

dynamical field, the variation of c ia not included in the definition of AL. Let UB define a 

total variation by A, i.e. A = 6 +6’ where 6’ denotes variation of the parameter. Equation 

(5) can then be written as 

A,(x)S(c) - 6&)Gr.(X) = 0. (6) 

Taking care of the other commutators, the consistency conditions can be gathered together 

aa 

AdW(3 = 0 (74 

&W’(c) - &(4G~(4 = 0 (74 

b(++‘) - &(+7(4 = GtW + St-N,). (7c) 
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The &st condition viz.(7a) simply states that S(c) is coordinate invkant. To solve (7b) 

for 2n dimensional spacetime, we start off with the expression for the index of the Dirac 

operator in 2n + 2 dimensional spacetime. The index density Al,,+* is a homogeneous 

polynomial of traces of the curvature R and is given by the appropriate term in the 

expansion of the i-genus IS], that is, ey ,.,. ,,, ,,,.., below are determined by the i -genus. 

AZ*+1 = c cy ,...) Y (,... (trR*Q)...(trRzvO . . . . (8) 
v‘2o,p=* , 

Although we can write down a-genus in 2n + 2 dimensions, it vanishes except in 4k 

dimensions with k as an integer. We define flr,+r by 

d&,+1 = h+a. (9) 

A Lorentz variation of nz,+r gives 

~L(W-~+I = dgd4, (10) 

where gL(X) is a 2n-form. Integration of gL(X) over the 2%dimensional spacetime gives 

the Lorentz anomaly CL(X) [5,7]. ( Appropriate fall off conditions on c, X and the fields 

are assumed so that spacetime is, effectively, San). 

A supersymmetry variation of Clr,,+r can be written as 

W%n+1 = (4 + 4d)f-hn+1 

= da(c) + lcdn,,+l 

= da(c) + Lh+z, (111 

where t,R = 6s(c)w, I,w = 0 [5] and s(c) = IrDrn+r. Making a Lorentz transformation on 

equation (ll), we obtain: 

AL(~)6s(~)nzn+r =+,($'(d) +A~(~)Lhn+z- (12) 

4h&t2 involves traces of products of as(c), and R and, since these are Lorentz covariant, 

A&)I,Az,,+z = 0. Also we have 

~&+%(+-hn+l = hd+~Wrmt~ 
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= &44hP) = d(W)iu(~& (13) 

The 5rzt step follows from A~(X)63(c) - 69(~)6~(X) = 0 and we use (10) in the second 

step. Using (13), equation (12) becomes 

46st4d~) - A~(xb(d) =a (14) 

Integrating thii over a 2n + 1 dimensional disc whose boundary iz spacetime San, we get 

W+L(~ - AtA) L.,, 44 = 0. 

Thii equation tells uz that (7b) can be solved by: 

(15) 

s(f) = SO(C) + sinvtc) 

so(c) = /,,. "td = /,,, hfhntl, (16) 
and Si,,(c) iz invariant under local Lorentz transformations. Sin.(c) has to be determined 

by (Ic), to which we now turn. Using as(c) = dl, + l,d, we em write 

(6&)63(4 -6s(+%(‘#‘,,,, = 46st~bt3 - W4~ll+ (6s(@Jr,tr -6s(c)Vr~). 

(17) 
From the commutation rule (1) ( and remembering that differential forms are invariant 

under coordinate tansformationz ) the left hand side of (17) can be written M 

&L(&J~ + 6s(-0Wk.r = &A&) + da(-Ftlr) -I- ~-@'zntl 

= dtd&) + 4-W) + ~-~~ht~. 

Equation (17) thus simplifies az 

081 

d(b(v).+) - ~~(3477) - 4-N) - oL(&)) = -(MI)~ - &(44 - ~-~~)htz~ (19) 

Ar..+z iz a polynomial in traces of the products of curvatures. 

4Azntz = 4% RI, P3) 

where A(%,R) iz the sum of terms obtained by replacing each R in Ar,,+r in succession 

by a, = 6s(c)w. It iz a 2n + 1 form. For example, when n = 3 

A8 = e,trR’ + 2co,I(trR’)z (214 
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A,(&, R) = 4(elqR3 + co,ltrR*trcqR). CW 

Thus 

6s(dUb,+~ = -Ws(r))a,, R) + 4% Da,,R) 

and (b(rl)h - 6s(c)k,)Ar.tr = @z,tz + I-&ntr - Wag, aI), RI, (22) 

where if denotes interior contraction with &. A(acr a,,, R) is the aum of terms obtained 

by replacing each R in A(a 
e 

succession by aq. We have used 

[63(4,6s(rl)]w = i<R + &(-W~J. (33) 

On a 2n + 1 dimensional disc itAr,+r = 0. Use of (22) in equation (19) then gives 

d(6s(tl)e(c) - SS(C)S(V) -s&J) - n(b) - A(a,,a,,R)) = 0. (34) 

Upon integration over a 2n + 1 dimensional disc with apacetime aa boundary, 

6,(9)S,(c) - 63(+,(v) - sot-t+) - GL(W = /S,“A(-aq* R). (35) 

Using this for So(c), equation (7~) simplifies aa 

6s(V)%v(3 - 6s(3sim(V) - sinv(-<ti) = -/,.. A(%,%R). (26) 

Thii ia the equation to be satis5ed by the invariant part of the anomaly. The expression 

for A(cq, act, R) ia very much diiension dependent and there seems to be no general way 

of solving thii equation. In two dimensions, J A(a,, 4, R) ia zero. Thii can be seen aa 

follows. The index density in four dimensions is [a] 

A4 
1 

= -trR’, 
192x* (37) 

Thii gives immediately 

Ada,,ati,R) = &~Wk(4w ~s(~)w). (28) 

Using 6s(r)w$ = 2~y,,4*, we find 

As= & (Ebr,pFy”+g’)6”2 
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Using rl = +yer5 and the Weyl nature of the spinom, we see that A, is zero. Thus in two 

diiensions, equation (26) is homogeneous with respect to Sin.(c). A solution is Sin.(t) = 0 

and the entire anomaly is given by So(c) which can be written out aa 

So(c) = & / Str6s(c)w w = &/ %z(c”“~~~~y,~~‘). (29) 

Thii result agrees with explicit computation of the anomaly [3]. 

Gauge theory in two and siz dimensions 

We now consider (rigid) supersymmetric gauge theories. In thii case, the super- 

symmetry anomaly is given by [l] 

s(f) = SO(C) + sins(f), (304 

where, upto a overall normalization factor, 

so(c) = n(n+ 1) /,., /,' dttStr(6s(c)A,A,ET;-'), 

and Sin”(t) satisfies the equation 

(3Ob) 

6s(tl)Sino(c) - 6s(C)Sino.(q) = -n(n + 1) /,,. W6skM,s,(%b’-1~. (304 

In the reference 1, equation (3Oc) was solved for four dimensions to give* 

S(c) = /,, Strag(c)A(AdA + dAA + iA3 + ~~‘“‘)’ 
(31) 

We shall now do the same for two and six dimensions. 

The two dimensional gauge multiplet has the fields (A;, Xa,P”) where Pa is a 

pseudoscalar 5eld [S], X0 ia a Majorana spinor. The transformation rules are 

Gg(c)A, = iTQ 

6s(~)X = &,,F,r - ir#Pc 

* In m.faram 1, the coef5cht of the fermicdc trilincar tenm of the anomaly in four dimemiom wan given 

an one half. Thin in corrected hem to one qnater. 
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6s(c)P = XT& (32) 

Thii in in fact a N = 2 model and so the equation for Sin-(c) is changed. The modification 

comes from the modified commutation rule 

[~3(~),&7(~)1 = 47(C) + 6~9 

where A = 2i~fy,cA, - 2~y59P. 

The term in i depending on P changes the equation for Sin.(c) to 

bs(tl)Sinv(E) - 6s(~)sino(V) = -4z’~su/TrPF. 

A similar equation holds for other extended supersymmetric theories. 

The solution to thii equation is found to be 

S&(C) = / d%tr(CXP) 

(33) 

(34) 

(35) 

giving 

S(c) = 1 Str[6g(c)AA + SAP]. (36) 

The N = 1 case is obtained by truncation of this theory: X is now tahen to be a Majorana- 

Weyl spinnor and P is set to zero. 

We now turn to six dimensions. In this case, since we do not have auxiliary 5elds, 

Si,v(c) satisfies equation (3Oc) for n = 3 only up to terms which vanish when the equations 

of motion are satisfied. The complete solution ia given by ( up to overall normalization ). 

S(c) = sot4 - ; /,* Str(6g(c)A&f3)q6F) 

= 
/ 
ss Str6g(t)A(3A(dA)’ + yA(A’dA + dAA*) + 2A5 - &(‘)$F]. (37) 

A few words about the algebra of verifying equation (30~) for thii case are in order. By 

taking variations of the invariant part of expression (37) and using standard Fierz identities, 

we get 

Js(I))&nn(E) - 6s(~)sinv(V) 

= -12 /,. Str(Gs(E)A,69(9)A,F’) - i /,,, Str(6s(E)A6s(r))AD~(‘)~). (33) 
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Thus we have to show that the second term on the right hand side vanishes when the 

fcrmionic equations of motion ?$I = 0 are imposed. Fierz transformations again reduce 

thii term as follows: 

Str(6g(c)A6g(n)AD($$3)$)) w 3!Str(6s(c)A,6s(rl)Av(Da~rB~- %~D=$)6$)3 (39) 

where M means equality up to terms which vanish when D$J = 0. The following Fierz 

identities in six dimensions ( which can be proved by judicious use of the standard one ) 

then show that the above expression is a total derivative, upto terms which are zero when 

QJ,=O. 

(P&~-& - z-ypj~qq,JI)fipD~$ B total derivative 

(&&q,yt) - &~c&n)&~D,cl, w total derivative 

(&,c~-& - $-ypc+7~01/1)&,rDoI$ fil total derivative. 

Thus (37) is indeed a solution to the consistency conditions. One can also show that (37) 

is unique upto terms which can be written as the supervariation of the local terms. 

In ten dimesions, one needs the snalogues of the identities (40) to obtain a solution 

for Siav(c). Thii is under investigation. We are considering supersymmetry anomalies 

induced by gauge and gravitational anomalies. Thus theories which are free of gauge and 

gravitational anomalies will be free of these anomalies too. More specifically, consider 

the field theory lit of the anomaly free superstring theories[Q]. The vacuum persistence 

amplitude for these theories is given by 

<010>=/dp(Q)exp(-/(Co+C1+C3+C3+C’)) , (41) 

where Co is the supersymmetrized tree level action, C’ gives gauge 6xing and ghost terms 

and Cl, Cr, Cs are the local counterterms constructed by Green and Schwarz [Q]. The mea- 

sure dp(@) contains, in particular the gaugino and gravitino terms; these are to be deBned 

by standard eigenmode expansions. Equation (41) is to be interpreted as an effective action 

endowed with a cutoff for the zero mass sector of the string theory. The interpretation of 

the cancellation of anomalies would then be that the natural measure of integration emerg- 

ing from string calculations is not dp(Q) but dp(@) cxp(- J(Cr + Cr + Cz)). This measure 

is invariant under gauge and local Lorentz transformations ( for gauge groups SO(32) and 



Es x Es ). It in then invariant under supersymmetry transformations also, no additional 

counterterms are necessary.(see slso [lo]). The argument of course does not constitute a 

proof of the absence of supersymmetry anomaly since other candidates for S(c) not linked 

to gauge and Lore&z transformations have also to be ruled out. These candidatea must 

be gauge and Lore&z invariant and must satisfy a homogeneous consistency condition ( 

eq.(26) or eq.(3Oc) with the right hand side put to zero ). In two and four dimensions, 

one can show that there are no such solutions [ll]. In ten dimensions, although it is very 

likely that this is the case, there is no conclusive proof yet. 

V.P.N. and H.C.R. thank N.Seiberg for discussions. This work was supported in 
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