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ABSTRACT 

We develop the theory of a passive magnetic system intended to 

suppress nonlinear orbit distortion in high energy proton storage rings. 

The system is designed insnediately to reduce "Collins distortion 

functions," which describe the size of nonlinear orbit distortion in 

first-order perturbation theory. Such a scheme could permit one 

significantly to decrease the physical aperture of a storage ring over 

most--but not necessarily all--of its length. This work was motivated 

by design needs of the proposed Superconducting Super Collider (SSC). 
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I. GENERAL PHILOSOPHY 

Concerns about the high cost of the proposed Superconducting Super 

Collider (SSC), and about discouraging results from single-beam 

numerical simulation1 of the SSC Reference Design*, have recently 

generated heightened interest in the general problem of predicting the 

dynamic aperture of a high energy proton (nonradiative) storage ring. 

Loosely speaking, dynamic aperture is the region of phase space within 

which beam can be injected without risk of being lost soon afterward. 

The small dynamic aperture predicted by orbit tracking of the SSC 

Reference Design is due largely to the rich multipole content expected 

from proposed designs for SSC dipoles. 

Hopes for an increase in SSC dynamic aperture are fueling 

theoretical research in two areas: numerical simulation, 3 
and analytic 

perturbation theory. 3,4 However, these are problematical. Simulation 

can in principle tell us when a design cannot work, but no one knows at 

present how to turn this into a concrete prescription for design 

modifications. High order perturbation theory is also not yet 

sufficiently intuitive to suggest specific remedies for orbital 

difficulties. Perturbation theory is attractive at this time mainly 

because of the hope that it may be able to provide the same sort of 

information as numerical simulation, in greater detail, in much less 

computing time. 

Recently, we proposed5 an example of a third, intermediate approach 

to dynamic aperture problems: a passive magnetic correction scheme, 

suggested by first order perturbation theory, to be applied when orbit 

tracking indicates trouble, and to be tested with further orbit 
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tracking. This would be a designer's tool, whereas simulation and 

perturbation theory are only suited at present primarily for screening. 

In this paper we analyze our proposal In detail. 

Even if this particular example is ultimately impractical, we feel 

strongly that the general philosophy of this intermediate approach is 

sound, and should be pursued further. 

Here is a quick sketch of our ideas: Our scheme is based on a 

simple reformulation of first order perturbation theory due to Collins. 
6 

In this formulation, Collins writes the first order corrections to the 

betatron amplitudes Ix and Iy (constants in zeroth order) as sums of 

terms of the form 

I1m1'2 Ip1'2 d(s)exp[i(nvx + mvy)(2ns/C)]expi$ 
X 

, 

where m and n are integers, the v's are unperturbed tunes, C is the 

storage ring circumference, + is an arbitrary constant phase, and the 

complex periodic functions--a sort of basis for first order nonlinear 

orbit distortions--generically written as d are called "distortion 

functions." As a working principle, we adopt Collins' viewpoint that a 

well-behaved storage ring has small d's, although this is not yet a 

theorem in any sense. 

Let N be the total number of dipole magnets (presumed to be the 

most important sources of unwanted higher multipoles) in the storage 

ring. If the error multipoles on these magnets are random and 

uncorrelated, with vanishing averages, then, as we shall show, the mean 

square magnitude of any particular distortion function is roughly 

(ignoring variation in beta functions) proportional to N. Our idea is 
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to decrease distortion functions by partitioning the accelerator into M 

sectors, with correction magnets in each sector powered so that the 

distortion functions in any sector receive contributions only from the 

magnets in that sector. In this way, mean square distortion functions 

become roughly proportional to N/M instead of N. I. e., we expect 

reduction by a factor l/M, times some position-dependent factor E that 

is to be determined numerically. 

In the next section we shall develop in detail the general theory 

of uncorrected sextupole distortion functions. In Section III we 

develop in detail the mechanics of our correction scheme. In Section 

IV we prove a theorem that tells us how much improvement to expect in 

certain regions of the storage ring, and a theorem that places an 

important restriction on the positioning of correction magnets. In 

Section V we apply our scheme to sextupole distortion in a (somewhat 

modified) model lattice for SSC magnet design evaluation that Norman 

Gelfand2 developed for use with the orbit-tracking program TEVLAT.7 As 

we shall see, our scheme significantly reduces distortion functions away 

from the correction magnets, perhaps permitting a reduction in physical 

aperture throughout most of the storage ring. Reduction can be much 

more modest near the correction elements. For this reason we have not 

tracked orbits in a model lattice corrected in this way, since TEVLAT at 

present assumes a position-independent physical aperture. 

Ideally, one would like to correct nonlinear orbit distortion 

actively, using model orbit tracking--or even post-construction 

measurements of real orbits in the real storage ring--directly to 

determine correction strengths. Active and passive schemes alike might 

be improved by combination with magnet shuffling.8 
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Originally, we had wanted to develop a completely optimized 

procedure for reducing distortion functions with a restricted number of 

correction magnets. To this end, we explored schemes that determined 

correction strengths by minimizing quadratic figures of merit of the 

form 

8 MS IW12Wd(s) , (1.2) 

(in an obvious notation) where the W's are positive weight functions. 

The W's might be chosen, for example, to emphasize regions with some 

beta function large. However, we eventually abandoned this idea, for 

two reasons: 

(i) It required a great deal of computing time. One must invert an LxL 

matrix in order to arrange for L normal sextupole magnets to reduce the 

five normal sextupole distortion functions by minimizing (1.2). By 

contrast, the M-sector scheme detailed below, with 12M=L, requires 

inversion of L/12 matrices, each only 12x12; thus, computing time grows 

only linearly with L. 

(ii) We know of no way, short of large-scale calculation, to make even 

a crude preliminary estimate of the extent of the distortion-function 

reduction in this least-squares scheme. In particular, we therefore 

could not a priori justify to ourselves the expected large expenditure 

of computing time. By contrast, in the scheme described below we can 

say with confidence that reduction will be substantial in certain 

regions of the storage ring. 
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Of course, there may be some variation on this minimization theme 

that does not suffer from these defects. 



-7- FERMILAB-Pub -85/112-T 

II. DEFINITION OF DISTORTION FUNCTIONS 

We derive Collins' 
6 

formulation of first order betatron 

perturbation theory assuming, for simplicity, that non-linearities are 

due only to normal sextupole magnets, and ignoring skew quadrapole 

magnets. 

The general Hamiltonian for this problem is 

H = + (p$ kx(s)x2) t + (p; t ky(s)y2) 

eB "(s) 
t + (x3 - 3XY2) , (2.1) 

where most notation here and below is standard' (By" is s2By/ax2 on the 

design orbit). The usual canonical action and angle variables for this 

system are 

I, = (213x)-1[x2 + (B,P, - ; t?,'x)21 

0 x= - ox(s) - Arctan [6,p,- i B,'x]/x I 

where ex is defined by 

Ox(S) = 1; * 3 
X 

(2.2) 

and similarly for y. (The reference point s=O is arbitrary.) In terms 

of (2.2), (2.1) becomes 
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II 

H = Ix(2nvx/C) f Iy(2nvy/C) + 3EJ2 e”Y { $ (IxBx)3’2cos 3[ex + exl 

t ; (1x~x)3’2cos [ex + ex] - 3(Ixsx)“2(~yBy) ~0s [“x + exl 

(2.4) 

- 3(Ix~x) l’2(IyBy) cos I@, + 2ey+ tex + 2ey11 

- 3(Ix~x) l/2( IyEy) cos [ex- 2oy + (ex-20y) I} . 

To first order in the sextupole strengths, the actions Ix and Iy 

are given by 1: + 61x and 1; + 61 
Y’ 

where 1: and 1; are independent of 

s, and where 61x satisfies 

&Ix = - aH aex I 
I 
eX 

= +x t 2n~x~/c, ey = oy + 2rvys/C , 

and similarly for 61 y. Since the general differential equation 

($ + io)d(s) = R(s) 

has, for periodic R(s), the unique periodic solution 

d(s) = $Gw(s,s')R(s')ds , 

with 

(2-6) 

(2.7) 
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Gw(s,s,) = ei~(s'-s)[l-eieCl-l . j eiwc O<s'CsCC 
(2.8) 

\1 O<s<s’<C, 

we can integrate (2.5) to obtain 

61 = x &Im 1 
$ d30W;)3’2 exp3i(+x + 2nvxs/C) 

+ $ dlO(s)(Ix) O 3'2expi(+x + 2avxs/C) 

- 3d10(s)(Ix) O 1’21iexpi(px + 2nvxs/C) 

- 3d12(s)(Ix) y O I'*I"expi(~ 
X 

+ 2$ 
Y 

+ 2n(v x +2vy)s/c) 

- 3dl-2(s)(I~)1'21$xpi($x - 2$y + 2s(vx - 2vy)s/C)} 

where, for example, d12 is defined by (2.7) with w = 2n(vx + 2vy)/C, and 

R(s) given by 6; 8x1/2 sy . expi(ex t 2Qy), etc. In a similar fashion, 

61y is formed from d12 and dIm2 alone. 

In this way, first order perturbation theory has been decomposed 

into the effects of initial conditions (IO's and e's) and intrinsic 

properties (V’S and d's) of the storage ring. The periodic functions 

“10 and the d's are the normal sextupole distortlon functions. Note 

that these functions are normalized differently here than in Reference 

[61. However, the equations that follow are not sensitive to 

normalizations. 
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III. DEFINITION OF THE CORRECTION SCHEME 

Imagine now partitioning the storage ring into M nonoverlapping 

sectors. For simplicity we imagine them to be of equal length, although 

this is not necessary. According to (2.6), the contribution of any 

magnet within a sector to a distortion function outside that sector is a 

constant times exp(-i&s), for some W. If, in the sector in question, we 

place two real correcton magnets (of the appropriate multipolarity) for 

every one complex distortion function that we want to reduce, we can 

ensure that all the constants add to zero. In this way, we ensure that 

no magnet contributes to any designated distortion function outside that 

magnet's own sector. This procedure is formally equivalent to an "orbit 

bump" calculation. 

In the case of d3D, for example, the cancellation of these 

constants takes the specific form 

o = Jdss~'2(s)6~(s)exp3iJ~ & 
x ' 

where the integration is restricted to the sector in question. The 

cancellation conditions for the other distortion functions are similar. 

If we imagine that the sextupole moments are lumped 

B;(s) = 2 a(s-si)bi + 1 a(s-sC)bC , 
i i j j 

where the bC's correspond to correction magnets, then (3.1) becomes 



-ll- 

'; ds' 
2 bcs3'2(si)exp3i Jo B , 
j JX X 

= - T bisi'2(si)exp3i sEi fi , 
X 
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(3.3) 

The sum in (3.3) is of course restricted to locations within the sector 

in question. 

We now explain why this scheme leads to the l/M scaling law claimed 

in Section I. We suppose, for fixed {si) (the centers of dipoles, for 

example), that the various bi, whose distorting effects we want to 

supress, are independent random variables, with zero mean and comnon 

2 mean square c . Then the mean square magnitude of any sextupole 

distortion function is a sum of contributions due to the various si, 

with no cross terms, with each contribution proportional to 0'. If there 

were no correction magnets at all, then we would have, for example, 

2 
<ld12ts)l 2 > = ii 5: 6x(sI)By(s,) 2 3 

4sin p(vxt2vy) i 
(3.4) 

using (2.8). Ignoring variation in the B'S, this is proportional to N, 

as claimed earlier. 

When correction magnets are in place, the contribution of any si to 

any <id12> must take into account the correction strengths that the 

pre-existing random sextupole at si induces according to (3.3) etc. The 

additions that arise in this way are formed from the beta functions at 

the si in question, and from betatron phase advances from some reference 

point to si, and from the elements of the inverse of the matrix of 

coefficients, in (3.1), of the bjc in si's sector. 
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How do these ingredients vary from one si to another? If the 

uncorrected storage ring is composed of identical (up to random 

multipole errors)cells--as it is in the model discussed in Section 

V--then beta functions repeat from cell to cell. Further, if betatron 

phase advances per cell are close to simple fractions of 291 (n/3 in the 

model of Section V) then, when exponentiated, the betatron phase 

advances from a fixed reference point (s = 0 in (3.3)) repeat after 

several cells. Thus, In any sector, the full contributions of different 

random multipoles to some <(d(s)12> at any s very nearly repeat after a 

number of cells that is independent of M. 

(According to (2.8), this last statement is complicated by a phase 

shift when the random-multipole si passes the point s at which <idi2> is 

evaluated. Strictly speaking, we should say that the contributions very 

nearly repeat as s, moves away from s in either direction.) 

Finally, if correction magnets are placed in sectors in a way that 

is independent of M in some sense (for example, four per cell in the 

first three cells, as discussed below) then it follows from the 

foregoing that any <id(si)2> is roughly proportional to the number of 

cells per sector--itself proportional to l/M--times an s-dependent 

factor that is independent of M as long as s is taken to refer to the 

same point relative to the correction system (for example, in the middle 

of the seventh cell from the start of the sector, in the configuration 

discussed below) for all M. We report on a check of this scaling law in 

Section V. 

Notice that we have ignored sextupole magnets that are deliberately 

included in designs in order to cancel the storage ring's natural 

(quadrupole-induced) chromaticity. The strengths of these chromaticity 
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correction magnets are not uncorrelated random numbers. In the original - 

SSC model that we modified for the discussion in Section V, they repeat 

from cell to cell (with strengths comparable to those of the random 

sextupoles), so that their contributions to distortion functions add 

coherently. With betatron phase advances close to 60' per cell, it 

follows from (2.7) and (2.8) that their contributions to sextupole 

distortion functions nearly cancel in groups of six cells (for dIO, ii,,, 

dI+,) or two cells (for d30 and dIB). Thus the total chromaticity 

correction contribution to any distortion function in any sector is 

comparable to the contribution of just a few cells of random sextupoles; 

and therefore any associated non-l/M piece in the scaling law should be 

negligible unless the total number of cells in a sector is small. For 

this reason, standard chromaticity correction magnets are ignored in the 

calculations described in Section V. 

A real storage ring may also need correction magnets to cancel 

chromaticity induced by random, construction-related sextupole 

inaccuracies. Accordingly, in the calculations of Section V, we include 

two such magnets per sector, beyond the minimal ten needed to reduce the 

five complex normal sextupole distortion functions. Sector-by-sector 

cancellation of chromaticity induced by random fields requires 

1 a,(s;)b; = - I: ax(si)bi 
j i 

(3.5) 

j Y j 
Z 6 (sc )b; = - F By(si)bi , 

where each sum covers only one sector at a time, and where standard 

natural-chromaticity-compensating sextupoles are not included. 
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IV. TWO THEOREMS 

The model storage ring discussed in the next section consists of 

480 identical (up to random sextupole moments) cells, each with 

approximately 60' horizontal and vertical betatron phase advances per 

cell. The number 480 was chosen for its many factors that could serve 

as the number M of structurally identical correction sectors. (This is 

a variant of an SSC model due to N. Gelfand, which has 481 cells.) For 

progranrning simplicity, we imagined each sector beginning with several 

cells in which identical numbers of correction magnets are placed in 

identical positions, followed by a long string of cells containing no 

corrections at all. Of course other configurations are possible. 

The following theorem describes in quantitative terms the 

distortion function reduction to be expected from this sort of 

arrangement, at least in certain parts of the storage ring. 

Theorem 1: Call the correction end of a sector its head, and the 

other end its JaiJ. Assume that the random sextupole moments (we state 

the theorem in terms of sextupoles only for concreteness; an analogous 

theorem can be proved for any multipole moment) are concentrated in 

Dirac delta functions, as in (3.2), with assumptions on the bi as stated 

in the previous section. Number the discrete random-sextupole sites in 

a sector from the tail. Then, with corrections, ignoring variation in 

the beta functions, the mean absolute square of any sextupole distortion 

function, between random sextupoles K and K + 1 in any sector, is at 

most equal to 4(K/N)sin*wc/Z times the mean absolute square of that 

distortion function with all correction magnets absent (U is the 

combination of frequencies appearing in the definition of the d's 
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according to (2.7) and (2.8)), as long as random magnet K + 1 is not in 

a correction cell. 

This is significant because even if our scheme does not markedly 

decrease distortion functions everywhere, we may still be reassured that 

distortion functions can reliably be reduced by at most a factor 4/M 

over a substantial fraction of the storage ring. For example, if M is 

24 and WC/Z is nearly n/2 mod 2n (as it is in our model for dSO and 

d12)* 
and if the correction magnets occupy the first three cells in any 

sector, then on the average distortion functions in 85% of the ring can 

reliably be reduced in absolute square by anywhere from 0 to 

4(17/480)-.14, roughly in steps of 4/480 - .008. Of course one would 

like to have tightly focused orbits everywhere. Failing that, perhaps 

our scheme can enable one to cut SSC cost by reducing physical aperture 

In, say, 85% of the machine. 

Proof of Theorem 1: By the definition of our correction scheme, the 

corrected distortion function in question vanishes identically between 

the last magnet at the tail of a sector and the first magnet in the 

adjacent head of the next sector. Integrating the defining equation 

(2.6) into the tail of a sector, past the K tail-most random sextupoles, 

yields e 
IWS 

times 

for some integers m and n, so that its mean absolute square is 

(4.1) 

(4.2) 
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Comparison with (3.4), and its generalization to the other d's, yields 

the desired result. 

Theorem 2: In this scheme, when the betatron phase advances per 

cell are exactly 60°, a necessary condition for linear independence of 

the equations that determine the correction strengths (the bC's) is that 

every correction cell at the head of a sector contain at least four 

correction magnets. 

Thus, with nearly 60' phase advances per cell, as in the model of 

the next section, we cannot spread out sextupole corrections too much 

without paying the price of very large correction strengths, since they 

would arise from inversion of a nearly singular matrix. 

Note, incidentally, that linear independence may impose different 

constraints on correction placement In the case of multipoles other than 

sextupole, and also when the phase advances per cell significantly 

differ from 60'. 

Proof of Theorem 2: The real and imaginary parts of the linear 

conditions d30 = d12 = 0 have coefficients of the bC that change sign 

from one correction cell to the next, when phase advances are close to 

60'. If there were less than four correction magnets per cell, then the 

real coefficients in these four real equations, restricted to any one 

cell, would be linearly dependent, since any four n-tuples with n L; 3 

are linearly dependent. Linear dependence of d30 = d12 = 0 would follow 

imnediately, since only the signs change in moving to other correction 

cells. 
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Had we applied that same viewpoint to dIO, a,,, and the complex 

conjugate of dI-2, we would have spoken about three complex conditions 

whose coefficients would each have been multiplied by the same exp tin/3 

in moving from cell to cell. Real linear dependence of these six (real 

and imaginary) real conditions sector-wise would imply only complex 

linear independence of these three complex conditions cell-wise, which 

would imply at least three correction magnets per cell. Similarly, 

linear independence of the two chromaticity constraints (in which 

coefficients of the bC in adjacent cells are identical) would require at 

least two corrections per cell. Thus, the strongest constraints comes 

from the argument in the preceding paragraph. 
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V. NUMERICAL RESULTS 

Theorem 1, above, justifies our "E/M" intuition outside cells that 

contain correction elements. In this section we report a check of our 

intuition globally, including the correction cells. 

In particular, we have applied our scheme to the normal sextupole 

distortion functions in a model SSC containing 480 cells as shown in 

Figure 1. The random sextupole moments are concentrated in the centers 

of the dipoles, with 

U/BP s .OIl , (5.1) 

(Gaussian distribution) where BP is the magnetic rigidity of a 20 TeV 

proton. Following Theorem 2, four correction magnets are placed in each 

of the first three cells in each sector: At the centers of each of the 

two dipoles, and at the centers of the 0 and F quadrupoles. 

For a particular choice of the 960 random sextupole moments, we 

have computed the ratios of the maximum values of the absolute squares 

of the five normal sextupole distortion functions with corrections to 

their maximum absolute values without corrections, for M equal to every 

factor of 480; and we have least-squares fit each ratio to the 

functional form k/M. The results for k are, approximately, 24.1, 41.5, 

16.9, 9.2, and 10.2 for dIU, d30, d12, dlv2, and alo, respectively. The 

computed with-correction-to-without-correction ratio and the k/M fit for 

d10 are shown together in Figures 2 and 3. Agreement is encouraging, 

for such a rough theory. 
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Strictly speaking, this is not a fully statistical calculation, 

since we have used only one configuration of 960 random magnets. 

Presumably, fluctuation effects can average out for large values of N/M. 

For large M, on the other hand, only a small number of random magnets 

contribute in any one sector, so that fluctuations may be important. 

Note that the data point for M = 1 in Figure 2 is far below the 

smooth fit. This is true for the other d's as well. The computer 

program that generated our random sextupoles constrained their sum to be 

zero, for reasons unrelated to the present project. Presumably, this 

had its most dramatic effect for M = 1, which ought to be the sector 

multiplicity most sensitive to biases connecting c the magnets. 

Accordingly, M = 1 was omitted from the least-squares fitting procedure. 

Our results indicate that global reduction of &l sextupole 

distortion functions is not achieved until M is significantly greater 

than about forty, at which point one worries about the cost of so many 

correction elements in so many sectors. Significant reduction of 

distortion over a large (but not exhaustive) fraction of the ring, as in 

Theorem 1, may be the best that one can afford to do with this scheme. 

Ultimately, one should submit a lattice corrected in this way to a 

numerical orbit-tracking program with physical apertures that are not - 

constant throughout the model machine. Moreover, since the small 

dynamic aperture of the SSC Reference Oesign appears to be due not only 

to sextupole errors, but also' at the same time to skew quadrupole, 

octupole, and even decapole, a fair test of this scheme should also 

include correction magnets for some of these multipoles as well. 
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FIGURE CAPTIONS 
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1. Standard cell in our version of N. Gelfand's SSC model. 

Lengths are approximate. F and D quadrupoles have strength 

- .04 mp2. A dipole has bend angle - 6.5 mrad. 

2. Ratio of maximum square modulus of distortion function d10 with 

corrections to maximum square modulus without, vs. number M of 

correction sectors, by numerical computation (squares) and by 

least squares fit (ignoring M=l) to (const.)/M. 

3. Continuation of Fig. 2. 
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