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ABSTRACT

We apply the technique of Fujikawa to solve for simple two
dimensional models by looking at the nontrivial transformation
properties of the fermion measure in the path integral formalism. We
obtain the most general solution for the massless Thirring model and
point out how the one parameter solution reduces to that of Johnson and
Sommerfield in a particular limit. We present the most general solution
for the massive vector model indicating how it reduces to the solutions
of Brown and Sommerfield for different values of the parameter. The

solution of a gradient coupling model is alsc discussed.
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I. INTRODUCTION

In the past, soluble two dimensional field theoretic models have
been studied extensively, notable among them being the massless Thirring
model, the Schwinger model and the massive vector model ([1-10]. The
solutions of these models have been obtained by various methods, namely,
by explicitly solving the equations of motion, by operator methods, by
bosonization etc. The main reason behind the solubility of these modeis
is the fact that they contain a massless fermion in the theory which

teads to classically conserved currents

L
BPJ 0
B oo WY =
ap"5 € 3pJv 0 (1)

Because of gquantum effects these conservation laws become anomalous [11]
and it is the anomaly content of the theory that leads to the nontrivial
solutions of these theories.

Recently Fujikawa has shown in a series of papers [12-15] how
various anomalies arise in the path integral formalism. The observation
essentially 1+1s the fact that the fermion measure may transform
nontrivially under various transformations leading to the anomalous Ward
identities., It is, therefore, of interest to examine how one can obtain
the already known solutions of various two dimensional models foliowing
the method of Fujikawa. The observation here is quite simple. For a
two dimensional fermion, interacting with an external vector field, one

can always redefine the fermion fields so that they decouple.
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Therefore, if the theory contains any nontrivial dynamics, it must
essentially be contained in the transformation properties of the
fermionic measure under the field redefinition.

in general, the two dimensional models can have an Abelian or a non
Abelian symmetry. We would consider only Abelian models for the
present. Further, they may possess a local gauge invariance, as is the
case with the Schwinger model [2]. Roskies and Schaposnik [16] have
studied this model from the path integral point of view. Of the models
without any local gauge invariance, only the derivative coupling model
was studied earlier [17-18] in the path integral formalism. In the
present paper we investigate the other nongauge modeis, namely, the
massless Thirring model, the massive vector model and the gradient
coupling model. Our philosphy is as follows. Since these models do not
possess any local symmetry we try to find out the most general change in
the fermionic measure under a field redefiniton which would aliow for an
anomaly even in the vector current. In section II we work out this
general change in the measure of a fermion interacting with an external
vector field. In section III we wuse the results of the change in
measure to obtain the most general solution for the massless Thirring
model. It is a one parameter family of solutions and we indicate which
value of the parameter leads to the Johnson [4] and Sommerfield [5)
result. In Sec. IV we study the massive vector model and discuss how
different values of the one parameter family correspond to the results
of Brown [6] and Sommerfieid [6]. The pseudoscalar derivative coupling
model has been studied earlier [17-18]. In Sec. V we discuss the scalar

model with a gradient coupliing. Finally we present some concluding

remarks in Sec. VI.
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II. FERMIONS IN AN EXTERNAL VECTOR FIELD.

Let us now study the case of a fermion field interacting with an
external vector field. We want to emphasize that our purpose is to
study the most general way the fermionic measure changes in such a case
and, therefore, we do not associate any dynamical local gauge invariance
with the vector field. That is, we allow for the possibility that the
vector current conservation 1in such a case may become anomalous. The
generating functional is given by
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Note that in 1+1 dimension, the vector field can be written as
A =230+ a¥ 3
w0 T Sl (3)
so that formally
g = u_18 iy
H
_ ,._~1 pv
Z =4a "7 F (4)
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Let us now calculiate the most general change in the fermion measure
if we make a simultaneous, infinitesimal gauge and chiral

transformation, i.e.,

=
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Before considering the effect of this transformation, Tlet wus
1}
establish our notations. We work in the metric, g = 1, g" = -1 and in

our notation 70 ts hermitian with (yo)2 = 1 whereas 71 is antihermitian
= 0.1
Yy

with (1% = -1. = and 1t follows that it is hermitian with

75

square egual to unity. In continuing to Euclidian space, we let
0.. 01 . e

xoe-ixa, 30+134, ¥ +174, Yg T Y Y 417174. vg 18 hermitian in Euclidian

space although the yp's are antihermitian and in Euclidian space we have

the identity

Ypyv - —apvtispv75 €14

]

+1 (6)
With these conventions, it is clear that

5= [ d’ [167“[9p—1Au]¢]

v

ot 2 (5Mfa _ia s
= | d° {19y [all i3 o-1e 9 z)v)

- 2 ToM[a - -
[ d% (10r*{o 12 o-1v5d £]v)



-6~ FERMILAB-Pub-85/105-T
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so that

=

Zz=[Diye ©

(8)

To find the change in the measure we have to choose a set of basis
states 1n which to expand ¢ and ¥. It is clear that if we choose the
same basis states for both ¢ and ¢, then that would Jead to a gauge
invariant result. And since we are interested in finding the most
general change in the measure, i.e. , since we are allowing the vector
current to be anomalous, we must expand ¢ and ¢ in terms of basis states
which are eigenstates of different operators [19]. Because of the dual

nature of AIl and Ai, namely

the covariant Dirac operator can be written as
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o= 4M(a - 1A
A TR ( B u)
= %5 - 1A - nyAd)
n ® 5n
with n+ £ =1 (9)

With this the energy operator in the Euclidean space becomes

5
W

= b = g - 1A - i 0
g 0, rp( " £ y inygA ) (10}

Here n and £ are arbitrary parameters with the constraint in
Eq. (9) and as we will show later, they essentially measure the gauge
and chiral noninvariance of the functional measure. As can be seen
easily, the operator P in Eq. (10) is not hermitean in Euclidean space.

In fact

+ R 5
= 3 - fgA + A
P 7u( " £ " inyg P)

t

v 0 (A, - Ag) (11)

In recent Titerature {15], there has been a lot of controversy over
the wuse of nonhermitian operators. In fact, when one uses nonhermitian
operators, the orthongormality and the completeness of the basis states

is not guaranteed. Therefore, to avoid all such criticism we use the

two hermitian operators
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a=0'p

a=pp (12)
in whose eigenstates we expand the fields ¢ and y. Thus for example [see
ref. 15]

8 = Ay

T L2

dx, = Aox, (13)
and

o(x) = Fanty,

- +

(x) = b (14)

Following the method of Fujikawa [12,13,15], one can show quite

simply now, that under the combined transformation of Eq{5)

Dy =

J¢D¢

where the Jacobian of the transformation has the form
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_ IR B _ S
L](fJ = exp [ 7 Id XE {E(X)( 1£3pAu + 5 SvaPv)
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+e(x)( = Ing A0+ o F )] (15)

Similarly one can show that the change in measure associated with ¢

under a combined gauge and chiral transformation is given by

Dy = J_DY’
¥
where
. g2 ; N R
JE =exp [ op Jdixple(){ - 168 A - —-e F )
S e A%+ 5 ¢ F )] (16)
A A

Thus under a combined gauge and chiratl transformation
(infinitesimal), the most general change in the fermion measure is given

by

J=Jd
7 Y

H

+ Ee(x)e F )] (17)

i 2 5
exp [ - e Jjd XE(“E(X)Evapv vl
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It is clear from Eq. {17) that both the vector and the axial vector

currents become anomalous as

'p:_ﬂ_ H
aug T apAS
T 1
Bujs - BpAS
with n+ £ =1 (18)

Since we have omitted the tedious, but rather straightforward
technical details of the calculation [12,13,18], several comments are in
order. First of all, the arbitrariness in the choice of the operators
in  whose basis we expand the fields simply corresponds to the
arbitrariness in the choice of the regularization scheme in conventional
calculations. Therefore, we must choose the basis states to respect all
other symmetries the theory may have, for example, Lorentz Invariance,
translation invariance etc. In addition the basis states must also be
chosen such that the anomalies satisfy the consistency conditions [20].
However, in this case since the anomalies are Abelian, this does not
lead to any particular restriction. However, we can make connection
between our result of Eq. (18) and the perturbative result in the
following way. For example, from Lorentz invariance and Bose symmetry

we can write the current correlation function as+

We would T1ike to thank Prof. W. Bardeen for a clarifying discussion on
this point.
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SRR [( Y5>~ -4g ) +ng ] (19)
TRgY n 2 nv

Here the coefficient of the finite transverse part 1is unique and the
arbitrariness of any regularization scheme can only reflect in the
longitudinal part. This form of the correlation function leads to the

vector anomaly as

M -0
K<y 3> = -4 &

By using the duality relation, we can obtain the axial

vector-vector correlation function as

5 _ A .
<Jpjv> = ep <Jkav>
1 kkkv
- LT e, e ] (20)

This determines the axial anomaly to be

HeiBs s = 1
k <Jp3v> .

- 5
(-1 + n)e K

Comparing this with the form of the axial anomalty in Eq. (18) we obtain
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- £ =-1+nq

or, n+ &g =1

This now completes our derivation of the most general change in the
fermion measure under a combined infinitesimal gauge and chiral

transformations and is given by

J=exp [ - fdzx(ne(x)apA” + £e(x)a AE)]

with

ntE=1 (21)

At this point we would 1ike to make contact with conventional
calculations. In that case, there does exist a regularization scheme
which leads to these general results. This 1is the point splitting
method where one defines the fermion current with a phase factor which
neither preserves the gauge invariance nor the chiral invariance ([7,8],

namely

o 1%, dx" (A% - ny AE)
M(x) = Lin  ¥(x JPe(x) e XM >
x! X

xé XO

Let us note here that if we take the action of Eq(7) and make a

field redefinition
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1o + ¥l
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then the fermion fields decouple completely. Namely,
S. = fd%x. (i%y (9 ~ 18 0 ~ Qred C)¥)
2 £ TR TR 57
= fd%x. ixy 8 x (23)
E Mun

However, in this case, the field redifinitions correspond to a
finite gauge and chiral transformation. Therefore, the measure changes
nontrivially. The calculation of the change of measure under a finite
transformation 1s slightly tricky and has been studied eariier [16,18].

In this case, it can be shown in a straightforward manner to be equal to

-1

DiDy = DXDX exp [ - _%;— Jd%x A (n g*g"® + €c*%e™)a 2 aTTA ] (20)

B

Therefore, after the field redefinition the effective action in

Minkowski space becomes
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= 2 sV H L ].l'U
Seff fd™x {iXy apx t AuD Av)
where
we o _ 1, ome VB pe_vB -1
b . (ng" g + Ee" e )BaQBu
with n + £ =1 {25)

Since the fermion fields have now decoupled, they can be integrated
out Jeading to an unimportant constant. Thus the generating functional

of Eq(2) becomes

Z=Cexp { o fdx A OMA} (26)

This is the most general form of the generating functional in the
absence of any local symmetries and conforms to eariier calculations by

other methods [7,8].
IIT. MASSLESS THIRRING MODEL

The generating functional for this theory is given by
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. . = 1 H
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If we want to compute the current correlation functions 1in this

theory, we can add a source term for the currents and write

Y PP Tt AT . Al
Y + 3 A
P x {1y aum /2 3, Jy )

~
il

TH IDWE¢ e

2 4= 1 g
2 ifd x{tyy (3}l 1Au)¢)

: } DD

1

exp { —%ﬁ— fdzx
sAp(x)GA“(x)
(28)

The functional integral on the right hand side 1is what we have
already calculated in Eq(26). Substituting the value for that we obtain
[21]
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2
ir 2 8 i 2 1
Z.. = C exp { —2 1d% Yy exp {— fd"x AD"A_}
TH z 5Au(x)5Au(X) ‘ K K
we_ w8
- oA 2 I b e
= K exp { on [ d7x Ap [ 1= An/n Y RE
-1
BGBB a Av} (29)

This gives the most general solution of the massless Thirring
model. We note that there is a one parameter family of solutions as had
been observed earlier {7]. Furthermore, the particular solution of
Johnson [4] and Sommerfield [5] simply corresponds to the values of our

parameters n = 1/2 and £ = 1/2.
IV. MASSIVE VECTOR MODEL

The Lagrangian for this theory is given by

2
| _ BpV _ oVgh B n
LMV 2 (ava ava)(a B 3By + 5 BPB

+ 19 y*a - 1g B 30
wr(p gp)w (30}
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Both the Schwinger model and the massiess Thirring model can be
thought of as limiting cases of this theory. For example, in the limit
of u =+ 0, we obtain the Schwinger model. On the other in the infinite

mass limit if we let

A = —§~ = fixed

Then we recover the massless Thirring model.

The generating functional for this theory is given by

; R
Zyy = 0B DiDu e

i1S(B.) _  Ayd®x(ity*(a. - 1g B )v)
= 0B e M [DiDye H g

(31)
Here S(Bu) is just the action for the vector field. Furthermore, we can

substitute for the functional integral on the right hand side from

Eq{26) to obtain

1S(B ) /2 fd°x 8 DMVB
=C o8, e B L

Pt
t

MV

1Seff(8p)

C /o8, e

where
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2
1 _ oV_ Vol B B
Seff(Bu) I (Bva BVBP)(B B'- 3B") + 5 BPB

1

2
t -8 (e g - (n+ ) M) B

H

. - MgV_ oVgh
& (2B, - 28 )(a"8"- 2V

+ L { 2, WQQE_ ) B BM - _EE_ B aHaV '13 (32)
2 \¢ n B 2 T % 5
Note that here we have made use of the constraint equation n + £ = 1.

Furthermore, the Euler-lagrange equations for this theory require

for consistency. If we put this condition back we note that the
effective vector boson theory is a free theory with the mass

renormalized to

me =’ + (33)

This is also the result obtained earlier {8} by using point splitting.
In particular note that for £ = 1, the mass renormalization corresponds
to the result of a gauge fdnvartant regularization and is the vatue
obtained by Brown [6] whereas Sommerfield's result [5] corresponds to

the particular value of £ = 1/2.
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We also note that if we set u = 0, then we obtain the Schwinger
model and 1if we regularize in a gauge invariant manner, i.e., if we

choose n = 0, £ = 1, then we cbtain

which one immediately recognizes as the Schwinger solution [Z2].
V. GRADIENT COUPLING MODEL

In ref. 18 the most general solution was worked out for a
pseudoscalar field interacting with a massless fermion field through a

derivative coupling. The Lagrangian is given by

_ 1 1 m22 18 =-
L= 570 0970 = 4" + 1073 b + glygred ¢ (34)

We only quote the result of ref. 18 where it was shown that after a

field redefinition the effective Lagrangian for the theory becomes

2 2
- *%_ (1- E“ ) Bu¢3p¢ B g ¢2 (35)

Lots
This can be derived in a straightforward manner from the result of
section Il and it shows that the massive field ¢ 1is effectively free

with a renormalized mass given by
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2
me = m (36)

(1 - Egz/w)

Let us now consider the gradient coupling model where we consider ¢

to be a scalar field and, therefore, the Lagrangian is given by

1

2
S p,o om0 2
Lgc = 2 2,09 ¢ - 5o

+ ipyPa ¢ + giyt 37
iy uw guy wau¢ (37)

Note that we can rewrite this lLagrangian simply as

2
.1 p, _ _m 2
Lgg = 77 3,080 - 5 ¢

+ 13y¥ (a8 - 1gA
Py { w " g P)w
tth A = 3 38
N H u¢ (38)

The generating functional, therefore, can be written as

i$

_ - ) 6C
Z = [DADIDWDS 6(A - 2 .9) e

= - i5(¢)
jDAuD¢ :s(JD«‘1 au¢) e

2 4z B
1 - igA
1fd™x(1uy (3}jl g u)w)

. DDy e (39)

Using the result of Eq(26) for the functional integral on the right hand

side and then integrating over the functional delta function we obtain



-21- FERMILAB-Pub-85/105-1

2 2
= 1 _nd poo_ M
where Seff il (1 + - } ap¢a $ > ¢

Again this shows that the effective scatlar field is a free, massive

field with a renormaiized mass given by

2
mg - m 5 (40)
(1 + ng”/n)

VI. CONCLUSIONS

We have shown how one can obtain solutions of simple Abelian models
like the massless Thirring model, massive vector model and the gradient
coupling model in the path integral formalism following the methods due
to Fujikawa. Roskies and Schaposnik [16] had already used these methods
in connection with the Schwinger model which has a Tlocal gauge
invariance. We have shown how these methods should be extended in a
general manner to cases where no local symmetries exist. One general
feature, 1in the absence of Tlocal symmetries, is that the solutions
involve a generally arbitrary parameter.

Although the solutions of the derivative coupling model and the
gradient coupling model are new, those for the massless Thirring model

and the massive vector model have been derived before by other

techniques [7,8]. We have only presented a different way of Tooking at
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them and hope that these methods would help our understanding of more
complicated models possessing complicated non-Abelian structure.

This work grew out of conversations with Prof. C.R. Hagen and we
would 1ike to thank him for his suggestions. One of us (A.D.) would
tike to thank Profs. 5. Adler, W. Bardeen, E. D'Hoker and W. Weisberger
for discussions. He would also 1ike to thank the hospitality at the
Aspen Center of Physics where part of this work was done. This work 1is
supported by the U.S. Department of Energy and A.D. is supported by an

Qutstanding Junior Investigator Award.

Note added: After this manuscript was written, we became aware of a
recent preprint (M.A. Rubin, Fermilab~Pub-85/76~T) where the author
studies the most general anomaly structure in the case of the massless
Thirring model by making a Pauli-Gursey-Pursey transformation 1in the
path integral formalism. We would tike to thank Prof. K. Tanaka for
bringing this to our attention. While we are not sufficiently familiar
with the methods used 1in that paper, to be able to comment on the
similarities, we believe that the approach and the spirit of our
calculations are quite different. G. Duerksen has also studied the

gauge invariant solution of Thirring model, Phys. Lett. 103B (1981) 200.
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