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DEPRIT'S ALGORITHM, GREEN'S FUNCTIONS, 
AND MULTIPOLE PERTURBATION THEORY. 

LEO MICHELOTTI 
Fermilab, P.O. Box 500, Batavia, IL 60510 

Abstract Within the context of accelerator multipole 
theory, we describe a method for solving Deprit's equations 
using a periodic Green's function. This procedure, imple- 
mented in a MACSYMA program, has been applied to a Hamil- 
tonian with a normal sextupole term, and the "averaged" or 
"renormalized" Hamiltonian has been calculated to fourth 
order in sextupole strength. Anticommutativity of the bracket 
algebra explains the observed slow growth in the number of 
induced resonances with order. 

DEPRIT'S LIE TRIANGLE ALGORITHM 

In 1969 Deprit* used the Lie transform to develop a procedure 
for bringing Hamiltonians perturbatively into normal form, or at 
least as close to it as possible. Compared to the more familiar 
"generating function" techniques, Deprit's algorithm possesses the 
singular advantage of being completely explicit. It therefore can 
be implemented simply in a symbolic algebra code for analytically 
expressing the transformation to any desired order in the 
perturbation parameter. The algorithm has been studied and used 
extensively in celestial dynamics and plasma physics. 2 We shall 
present a possible application to accelerator theory. 

Letx_= (xl, 2 x ) denote transverse particle coordinates in an 
accelerator, the sense being defined by saying that (i) (1,2,3) 
form a right handed system, (ii) 2 is "up", and (iii) 3 lies along 
the beam current. The canonically conjugate momenta are 

x' = dx_/ds, where s = arc length along the reference orbit. We 
change immediately from rectangular to polar coordinates: 
(&,I') -) (&*,I*). 

* l/2 
Xk = ( 21k Bkce, ) sinC G,(e) + Sk *7 r k = 1,2 (1) 

ii,(e) = uk(e) - vke 
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Here, 8 is the angular coordinate on the design orbit (ds = RdS ), 

Bk and 1cI, are the linear (decoupled) lattice functions, and v k the 
horizontal and vertical tunes; the asterisks on the polar 
variables serves to distinguish them from yet another set of 
coordinates to be introduced shortly. The Floquet transformation 
that gives rise to the definitions of Sk and mk also transforms 
the linear part of the Hamiltonian into that of a harmonic 
oscillator. 

To set up the perturbation theory, let us assume that the 
full Hamiltonian depends on a "small parameter", E, and admits a 

power series expansion about E = 0. 

H = & en H, , ii-r Hot&*, I*; 8) = u.I* (2) 
n=O 

Our objective is to transform the coordinate functions, 
C&* ,z*‘, -> C&,1), so that the (6, I) dynamics are generated by a 
simpler Hamiltonian. 

K=$y g 
n=O KOn 

The transformation is constructed as a Lie transform with 
generator S. As part of the perturbation theory, S also is 
expanded in a power series. 

m 

s = % g sn+l 
n = 0 

(The shifted index is conventional.) The relationships between Sn, 
Hn and Ken comprise Deprit's equations. 

DSn = Hn + IAH) - Z;’ - Ken , 

z(H)= n-&! 
n L CH 

m=l n-m ' sml , 

z(K)= n. 
n L. K m n-m I 

m=l 
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K m n-m = ESj,K m-j n-m 3 I 
j=l 

Df = af/ae + Cf,H03 . 

The partial differential equations to be solved for the 
unknown functions S n and Ken have the same form at all orders. 

DSn = rhs n 

Each rhsn is assembled by taking Poisson brackets of functions de- 
veloped at earlier orders and subtracting KOn. A minimal Ken will 

(H) contain only those terms in Hn + In - p not in the range of 
the operator D, assuring the existence of Sn. As we shall see in 
the next section, these turn out to be shear and resonance terms. 

GREEN'S FUNCTIONS 

We now solve Deprit's equations by using a Green's function. 
Under the assumption that Ho is as in Eq.(Z), D simplifies to 

D = a/se + u.a/as , 

whose 2x-periodic eigenfunctions are the complex exponentials. 

DC f(I) .i(ne + m-5) i(n0 e + m_.&) 
- 3 = i(n + g-y) f(I) 

Taking our cue from this, we shall expand functions of 5 and I in 

3 

the following basis. 

c “em 1 e = (el,e2) , m = (ml,m2) ; el,e2,ml,m2 : integers 

Qem( sr L ) = I1 
e2/2 

I2 
elm*6 , m-5 = mlSl + m2S2 

e1/2 

By employing these the bracket operation becomes a matter of 
bookkeeping, not differentiation; the algebra is defined by 
specifying it on the basis. 
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,. lbem r (0 e'e!' 3 = + ( elmI - elmi ) o(e +e,-2 
11 , e2+e;1, m+nJ' 

+ $ ( ejm2 - e2m2 ) @(el+e;, e2+e;-21, m+m_' 

Because the operator D is linear and does not mix the @em, we 
can solve Deprit's equations one component at a time. 

DC S n em(') ' 7 = rhs n em(*) @ - em - em 

S n em(e) = d9' Gm(8 - 8') rhs, am 2’) 
For m_.u f integer --- that is, off resonance --- the Green's 

function Cm must satisfy the differential equation, 

DC G,(B - 9') @em7 = 6(0 - 8’ - 2rn) 0 
- - n=-m em 

= Gper (9 - 8') I$ . 
em 

The solution is found easily. 

Gm(-r) = -i- + 
.inT e -ig*l ( mod(T) - a ) 

n+m-v = - 2ni &fm -- 2i sin( 71 m_.u ) 

where mod(T) = T (mod 2n) s C0,2n). 
Near a resonance, the situation is only a little more 

complicated. Suppose that for some integer no we have 
" ,~ + g-y = 0. Then, because D annihilates the function e ino0 d em' 
we must have 

(8) eeinoe = 0 , for all g. 

As we mentioned before, this is accomplished by filtering any 
offendinq terms into the definition of Ken. The Green's function 
can be modified as well by subtracting the contribution coming 
from the resonance term under consideration. 

-im_.v( mod(T) - 1~ ) 1 einoT -- 
- 28i no + m.u (3) 
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This assures a finite result as the resonance is approached. 
Even in the absence of non-trivial resonances, one must 

perform a subtraction for m_ = 0, no = 0. Applying Eq.(3) in this 
limit we get the result 

GQ(') = i C 1 - i mod(T) 1 

SEXTUPOLE INDUCED TUNE SHIFT 

Consider the normal sextupole Hamiltonian, 

1 BOR 
H=y.I+s-- b2Mx; - 3x1x2 2 ), 

3 IBPI 

where xl and x 2 are the functions given in Eq.(l). We write this 
in terms of our set of basis functions as follows. 

H1 = -i/6J2 E cem lattem(e) 9, I 
Ce,m3 

,im.$ce) 
r latt ,(6) = (BOR/Bp) b2(8) pl(61)~l'~ 82(e)e2’2 e 

c(30)(30) = -l ’ c(30)(10) = c(12)(12) = c(12) 

c(12)(10) = -6 * 

(1 -2) = 3 ' 

Deprit's algorithm has been implemented in a MACSYMA program and 
applied to this Hamiltonian. So far, calculations have been 
carried out to fourth order in E and assuming that the working 
point (tunes) was far from induced resonances. The lowest order 
non-trivial term in the new Hamiltonian, K 02 = (EHl,Sll), is 
sufficiently simple to display here. Begin by defining the 
following integrals. 

f(@s;e';!J) = d6 de' Re 
(2TJ2 

latt 
e -m 

(6) 2ni Gm(0 - 8') latt 
e’ m 

(8’ ) 
- 1 
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n 
= sin(n m*y) II 

dg(e,efl) b2(e) b2(e') 

i31(e)e1'2 Bl(eY=i'2 82(e)e2'2 B2(e’,ei’2 

COST lm-(9(e) - Q(~‘))I - ?I E-X I 

dg(e,e', = (BOR/BoJ2 g g' , e,e’ E co,2~) 

The new Hamiltonian is written below to second order as a super- 
position of these integrals. 

K(r) = u*L - s2 c I"1 c ; f( 3, 0; 3, 0; 3, 0 ) 

+ 2 f( 3, 0; 3, 0; 1, 0 1 I 

+ I2 2 c ; f( 1, 2; 1, 2; 1, 0 ) 

+ ; f( 1, 2; 1, 2; 1, 2 1 

+ ; f( 1, 2; 1, 2; 1, -2 ) 7 

+ 1112 c - f( 3, 0; 1, 2; 1, 0 ) 

+ $ f( 1, 2; 1, 2; 1, 2 ) 

- $ f( 1, 2; 1, 2; 1, -2)3 3 

+ O(E4) 

The number of induced resonances grows more slowly with order 
than one would predict naively. For example, at the fourth order 
we may have expected resonances as high as 12vl to appear; in. 
fact, 6~1 is the highest. Anticommutativity of brackets explains 
this phenomenon. We tabulate below the actual resonances 
(m*u = integer, ml 1 0) that do appear at each order of the 
calculation. 

CONCLUSIONS 

There is reason for optimism that Deprit's algorithm will be 
useful for doing perturbation theory on accelerator Hamiltonians. 
Because of its connections with resonance theory, it is not 
difficult to interpret its mathematical structure physically. The 
algorithm is most useful in the presence of at most one induced 
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TABLE I Sextupole resonances induced at each order. 

1 2 3 4 = order 

ml m2 ml m2 ml m2 ml m2 

+6 
+4 i4 
?2 F2 

+4 
1 +2 : 72 
1- 1- 

; 
+4 

2 +2 i2 
- - 2 2 

3 
4 +2 

- 4 4 
5 

6 

resonance, for we can construct constants of the motion in such 
cases. Nevertheless, we benefit from it even with multiple 
resonances, because the final Hamiltonian contains only slowly 
varying terms, all rapidly fluctuating terms having been filtered 
out by the transformation. The algorithm tailors equations of 
motion for use with standard (but symplectic3) numerical 
integrators. One then can hope to reap more information per 
computational step, simply because all that is known analytically 
about the system has been utilized before invoking numerical 
procedures. 
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