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ABSTRACT

Propagation of fermionic and bosonic strings in
background weak graviton field is studied, identifying the
graviton field to the massless closed string excitation
states. It is shown that for a bosonic string, the presence
of a background graviton field is equivalent to a shift in
the background metric at the first quantized level, thus
producing a bosonic sigma model. For fermionic strings, the
background graviton field gives rise to a supersymmetric
sigma model at the first quantized level. Finally, it is
shown that the presence of a background antisymmetric tensor

field associated with massless excitations of type TII
closed strings gives rise to a Wess-Zumino term for the
first quantized bosonic strings, and the supersymmetric
extension of the Wess-2umino term for the fermionic strings.

Similar results for the heterotic string are also discussed.
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String theories' are of interest at present, since they

may provide a realistic theory of nature2_5. Ccnslistency of
the theory demands, however, that these thecries should Dbe
defined either in 10 (fermioniec strings) or 26 (bosonic
strings) dimensions. In order to establish connection Wwith
nature, the eﬂtra dimensions must curl up to form a compact
space, with radius of the order of the Planck 1ength6_8. So
far, the only kncwn way to consistently define interacting
string theories with some of the extra dimensions
compactified is to consider manifolds in which some of the
extra dimensions form & multi-dimensicnal torus. Since a
torus has zero curvature, the metric can be taken to be
Minkowskian, the only new ingredient in this theory being
that the string coordinates are periodic in nature. By
compactifying the six extra dimensions 1in ten dimensional
superstring theories in this manner, we may get various
extended supersymmetric Yang-Mills and supergravity theories
in four dimensions in the zero slope limit1.

In order to make connecticon with nature, however, we
need to compactify string theorles on mnore complicated
manifolds with non-vanishing curvature, Two different
approachesg‘1u nave been taken so far in compactifying
string theories. One is the field theoretic approach, in
which we study the zero slope limit of the string theory.
Non-trivial compactificaticn is then obtained by giving a
9-11.

non-zero background value to the metric In the second



quantized string theory, this corresponds to giving a
non-zero vacuum expectation value to the field, which,
acting on the vacuum, creates a massless ¢closed string state
corresponding to a graviton. The second apprecach to string
compactification is to study the Tirst quantized string 1in

an arbitrary background metric 1H'0

In this approach, the
background metric¢ is non-dynamical, and may be treated as a
parameter of the theory.

The purpose of this paper is to study the connecticn
between these two approaches; in particular, to find a
relation between the background graviton field of the field
theory 1limit, and the Dbackground metric in the first
quantized string theory. We shall use the light-cone gauge

formalism. In this gauge, the action for the bosonic string

at the first gquantized level is given by,

S =- L’T“,joh:fd\f(afxax 5. x4 x) ()

where o' is the string tension, 1, ¢ are the two parameters
characterizing the string world sheet, and X' (1, o) are the

transverse coordinates of a particular point on the string

{(i=1,..24). In the rest of the paper, we shall denote t, ¢
by z*  (a=0,1), and raise and lower the o indices with a
diagonal metric with eigenvalues 1, -1. We shall alsc set

the string tension a' to be 1/2,



The spectrum of clcsed string states described by (1)
has massless spin 2 excitations. The vertex for the
emission of such a state from an arbitrary string state |is

given in the light cone gauge by the operator,

) A ; s k-X (T, 6
i (4o s, (3e-2) X Gera) X " )
o

(2)

where <=1/My, o . Tij is the polarization tensor of the
external graviton and k is its momentum. For simplicity, we
assume that the external graviton has only transverse
polarizations. We must also take the k' »0 limit, since the
light cone vertex given in (1) is valid ornly in this limit.
These, however, are not strong restrictions, since
ultimately we want to compactify only some of the transverse
directicns, and wWe want the components of the metric to be
different from identity only in these directions.

Let us now assume that there exists a weak graviton
field hij(x) in the transverse directions, whose Fourler
transform with respect to the transverse coordinates 1is
given by ﬁij(ki). The total ftransition matrix element from a
string state |y> to a string state |$> in light cone 'time'
T in this background 1is then obtained by calculating the

matrix element of the operator15,

-
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tk.X (T,0)
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between these twc states, Here wWe have ignored the
quadratic and higher powers of the field h. Comparing this
with Eq.(1) we see that we cobtain the same transition matrix
element to order h, if, instead of (1), we use the first

quantized string Lagrangian,

AL . .
S =gk v {do {842k by AT (X I x7)

m FC S
=- L fdv [ do g;; (x) X" 3"x (4)

Thus the presence of a background graviton field is
equivalent to shifting the background metric in the first
quantized string theory.

Let us now turn to the ten dimensional superstring
theory. In our analysis, we shall use the old formalism of
Ramond, Neveu and SchwarzT6, instead of using the new
formalism of Green and Schwarz, since the two dimensional

supersymmetry is more explicit in the old formalism. In the

light-cone gauge, the superstring action is given by,

S=-5 gafcjfto- (o X* 3% X 4 I )% P* 3, A")
’ )



i . . - . ; o
where each Al is a two dimensional Majorana spinor, and p

{a=0,1) are the two dimensional Y-matrices. We work in the

Majorana representation,

po= [0 i e'=(° z (¢)

) Q
) Q ¢

The graviton emission vertex is given by15,

.o i vt '
3#_:_! do 5, fEe-3.) X +E R X7 (+ %) XS

£, + ) x? + 3 R, el Q1-Y,) )\‘i§ eik'x“’w) (7)

where,

Y, = P°f' (8)

Thus, in a weak graviton field, the transition matrix
element from one string state to another is obtained by

calculating the matrix element of the operator,

- 1L . .
i_ngof ‘W! do [ 3, x* JF X' hyy (X)
N

=33 X5 AT Ry, - i XA X Ry (%)
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where the comma denotes the derivatives of hij(X) with

respect toc the x'’s, The second and the third term in (%)

may be combined into the form,

~2 a,,..x"‘ -5\& P“A‘i ’\-j“;g_ ('0)

Wwhere,
")"\".t. — L+ p° )

Since A's are the Majorana spinors, they are real in

the Majorana representation. Using this ~fact and the

explicit representations for po and p1, we may sShow that

XQQGAJ is antisymmetric in £ and j. Thus hij ) in (10) may
y

be replaced by,
- . = = _1 —_ -a. -
£ Chyig h i = R = S 34‘-,&)
= .. .
- 2K P.EAJ 62)

where gij has been defined in Eq.(4), and Flij is the affine

connection, with gij as the background metric. Using the
same antisymmetry property, we may replace hijynl in (9) by,
L
i ( - - -
gk g)u, Lm g—(.\ A g,im,f.j 3,¢m,u

- L R+ O (h?) (3)



Using explicit representation for p0 and p1 we may show

that,
. L4

ey X oty N

= - Xt e Y,.))\L tee Ge) Y (14)

Finally, note that we may add to (9) a term proportional to,

ik, (X) R* P73, X as)

whose effect vanishes to order h, since p“aakj vanishes Dby
equations of motion. Thus the full effective action at the

first quantized level is given by,

: v DX

S = - 5L ch'ch do [ x* 3% x* g, (X]

.- ; . &Y d
FIAL PYO N Gy (X) +TAXAN N T 0

b Ry SR CH%) A T Gen) 4]
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which is precisely the action for a supersymmetric sigma

model in two dimensicns'! 12 with a background metric € ;-

Next we consider the effect of introcducing a background



antisymmetric tensor field which corresponds to massless
excitations of type Il closed strings. The emission vertex
for such a field is given by the same expressions as Eq.(2)
and Eq.(7), wexcept for ths fact that the external
polarization temsor is antisymmetric instead of symmetric in
the indices i1 and j. Thus 1if bij(x) denotes a Dbackground
antisymmetric tensor gauge field, the action for the first

quantized bosonic string has an extra piece given by,

w xB A J ‘
"'T"?SM,{ doo €77 Q X" I X b..(x) @)

which 1s precisely the Wess-Zumino termzo for the bosonic
sigma model in two dimensions, with tovsion pdenﬂqu b -

In the case of superstring, straightforward algebraic
manipulation shows that the effective action for the first

quantized string acquires an extra term besides (17),
v . A 1 k
-T..‘.:'._— fd.'f_( do [“Z A P« )\J 6«@ QPX S.;“',k (X)
3 ‘

-1 3 (3R e X by ()
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This is precisely the supersymmetric extensicn of the
Wess-Zumino term,

Thus we have shown that in the presence of Dbackground
weak graviton field hij(x), and antisymmetric tensor field

bij(x), the bosonic string theory reduces to a bosonic sigma

model with a background metric 6ij+2Khij(x) and a
Wess-Zumino term proportional to bij(x), at the first
quantized level. The superstring theory reduces to a two
dimensional supersymmetric sigma model with metric
Gij+2xhij(x), and a supersymmetric extension of the
Wess-Zumino term propertional to b. The appearance of the

Wess-Zumino term In the presence of the anti-symmetric

tensor field is not surprising, since, as was shown in
Ref .21, a background anti-symmetric tenscr field may be
interpreted as the presence of torsion in the manifold. on
the other hand, the presence of the Wess-Zumino term may

alsoc be interpreted as the presence of torsion 1In the
manifold18. This probably shows that the string theory has a
much richer geometrical structure than even Einstein
gravity, although we do not see 1t at pr‘esentz.z

One may try to repeat our analysis with background

gauge flileld,. In the old way of introducing gauge group in a
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string theory, the gauge bosons are identified with zero
mass excitations of the open strings, and couples only to
the ends of the open strings. If we repeat our analysis
with a background gauge field, we find that the effective
two dimensional field theory at the first quantized level
has new terms only at the end points of the string, and
hence the presence of the background gauge field cannot be
interpreted as a change of the geometry of the internal
manifold. For the heterotic string, however, the gauge
charge 1is distributed on the string, and the presence of a
background gauge field may be interpreted as the change 1in
geometry of the internal manifold. It may be shown that in
the presence of background graviton and antisymmetric tensor
field, the string action is given by Egs.(16), (17) and
(18), the only new feature being that the li's satisfy

the congtraint (1—YP)Ai=0, whereas in the presence of
background gauge fields AiI(x) associated with the diagecnal
generators of the gauge group, the effective action acguires

an extra term,

_k gowo_( do [ AL (X) (0r-0,) X" (x4 9-) X

hy

. v A ° f < I

~ A, CxD) AT@TEe )N (Bt )X (20)
2 AJK

where XI’S are the internal coordinates (10£I<25) satisfying
the constraint (BT*BG)XI=O. The effective action in the

presence of +the off-diagonal gauge fields may be obtained
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from (1) using the generators of global gauge transformation

derived in Ref.23.

I wish to thank S. Das and M. Rubin for useful

discussions.
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