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ABSTRACT 

The effect of radiative corrections in supersymmetric 

grand unified theories with soft supersymmetry breaking 

terms induced by N=l supergravity is analyzed. It is shown 

that any mass hierarchy present in the limit of unbroken 

supersymmetry is stable under radiative corrections induced 

by soft supersymmetry breaking terms, provided the theory 

does not contain a light singlet field that transforms as a 

singlet under the unbroken subgroup of the theory below the 

grand unification scale. 
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I. INTRODUCTION 

In a previous paper1 (hereafter refered to as I) we 

analyzed the effect of radiative corrections in 

supersymmetric grand unified theories (GUT's) based on N=l 

supergravity. In I we ignored all the gauge interactions in 

the theory. In this paper we extend our analysis to 

theories with gauge interactions. As in I, we shall 

consider theories in which supersymmetry is spontaneously 

broken at a scale mS of order 10 10-lO1lGeV in the hidden 

sector 2 . If we freeze the hidden sector fields at the 

minimum Of the potential, then the effective theory 

involving the observable sector superfields ei is given by a 

supersymmetric theory with a superpotential W(e), together 

with some explicit soft supersymmetry breaking terms in the 

Lagrangian of the form, 

-<ma ETA 2 + m~@-3)wG!) +H.c.j -mazz~Zi 0.‘) 
i 

where s i's denote the scalar components of the observable 

sector superfields ei, m g denotes the gravitino mass which 

is of order m,2/Mps102-103GeV, and A is a constant of order 

unity, whose exact value depends on the details of the 

hidden sector superpotential. The presence of the explicit 

scalar mass term proportional to m 2 
g 

in (1.1) gives a common 
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mass m g to the scalar partners of all the light fermion 

fields, and as a result, such models may be made to be 

consistent with phenomenology. 

Since the original motivation 3 for considering 

supersymmetric models was to solve the gauge hierarchy 

problem4, we must ensure that the presence of the explicit 

soft supersymmetry breaking terms do not destroy the mass 

hierarchy. In particular, if in the supersymmetric limit 

(mg=O) the model contains some masless fields zc, these 

fields must acquire a mass<,mg after the inclusion of the 

soft supersymmetry breaking terms and the effect of 

radiative corrections in the Lagrangian. Although the 

effect of radiative corrections in specific 

models has been discussed by various authors 5 to one loop 

order, no systematic analysis has been made for the general 

class of models of this kind. In this paper we show that 

the fields zu which are massless in the supersymmetric 

limit, acquire a mass at most of order 
mg after the 

inclusion of the soft supersymmetry breaking terms and 

radiative corrections, provided there is no light 

field in the theory which transforms as a singlet under the 

unbroken subgroup. The instability of mass hierarchy in the 

presence of a light singlet field has been noted before by 

several authors 6 . 

The rest of the paper will be organized as follows. In 

Sec.11 we shall analyze the tree level potential including 
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the soft supersymmetry breaking terms. We calculate the 

effective potential involving the light fields by 

eliminating the heavy fields using their equations of 

motion, and show that the result agrees with the result of 

Hall et. al.', who calculated the effective potential 

involving the light fields by starting from the full 

potential involving the observable and the hidden sector 

fields and eliminating all the heavy fields using their 

equations of motion. The reason for this agreement has been 

discussed in I. In Sec.111 we write down all possible 

radiatively generated terms in the theory using superfield 

techniques"', and estimate the order of magnitude of 

various terms appearing in the effective potential. In 

Sec.IV and V we eliminate the heavy fields using their 

equations of motion, and obtain an effective potential 

involving the light fields only. Sec.IV is devoted to 

theories without any light singlet fields, and without any 

broken generator of the gauge group transforming as a 

singlet of the unbroken subgroup. In Sec.V we discuss the 

complications arising in the presence of a broken generator 

of the gauge group which transforms as a singlet under the 

unbroken subgroup, and show that despite this complication 

we get a stable mass hierarchy. We summarize our results in 

Sec.VI. 
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II. LOW ENERGY EFFECTIVE POTENTIAL AT THE TREE LEVEL 

We shall consider a supersymmetric gauge theory with 

superpotential W($) which is assumed to be invariant under 

some gauge group G. We shall denote by zi the scalar 

components of the chiral superfields ei. In the globally 

supersymmetric theory, the potential involving the scalar 

fields is given by, 

t/O = 5 la&q i 
’ +&c (E tz(Tb)ij tj)’ i,i 

where the sums over i and j run over all the scalar fields, 

and the sum over a includes all the generators of the gauge 

group. We assume that the potential given in (2.1) has a 

(0) supersymmetric minimum at zi=zi , where, 

awzo t/i, ati .r &77,Jij zj =o vu .i,j 

Some of the scalar fields are assumed to have a 

non-zero vacuum expectation value (vev) of order M at this 

minimum, which breaks the gauge group G to one of its 

subgroups H. We assume that M is the only mass scale in the 

superpotential W(e), hence the fields zi and their fermionic 
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partners either have mass of order M, or are massless. We 

shall denote by zA, zD, zG,.. the fields which acquire a 

mass of order M at the minimum from the F term of the 

potential (the first term on the right hand side of 

Eq. (2.1)), and by 'a' ZB' Zy'.. the massless fields which 

are not the goldstone bosons corresponding to the 

spontaneous breaking of the gauge group G to H. There is a 

third set of fields which we shall denote by zK, sL, ZM,.. 

whose imaginary parts are the Goldstone bosons corresponding 

to the gauge symmetry breaking, and are absorbed by the 

gauge bosons through Higgs mechanism. The real parts of 

these fields acquire mass of order M through the D terms of 

the potential (the second term on the right hand side of 

Eq. (2.1) 1, and become degenerate in mass with the gauge 

bosons, forming a complete vector supermultiplet. Thus, for 

each of the broken generators of the gauge group, there is 

one such field zK. 

Let us denote the broken generators of the gauge group 

by Tut TL, TM,.. and the generators of the unbroken subgroup 

H by Ts, Tc, Tr,... Let us define, 

t~“),,=~ zT’(TK T..),j ‘7’ , 
2 u is a real, symmetric, positive definite matrix. Let uKL 

be the positive definite square root of this matrix. Then, 

(2.4) 
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The gauge invariance of W, together with Eq.(2.2) then 

implies that, 

azw = afw = 2% ‘-0 at ;l=I(') 
at, a+-& at, at, ai!, az, 

The fields zA and za are orthogonal to the fields zR. 

Hence, 

f (TK),, ty = f (Tkldi t’;’ = 0 

.pJ,, 2: = b‘& 

Since the generators Tp of the unbroken subgroup H 

annihilates the vacuum, we have, 

z (Tp); 2:’ = f ‘j@+@)j* = o 
i Vh=o(,b,IC 

(2.7) 

Also, since the fields za are massless, and the fields 

zA acquire mass of order M, we have, 

g& =: >$“,, ‘Ls 0 ak Zi.- z; (24 

aw*p o( A 



(a&5&, = s3 

8 

(2-9) 

where MAB is a non-singular matrix with eigenvalues of order 

M. If we define, 

ii! ~-IO) 

as the real part of the field zK, then the quadratic part of 

Vo is given by, 

(2. II) 

This gives the tree level mass matrix. 

Let us now introduce explicit supersymmetry breaking 

terms in the potential of the form, 

Av= {marEi A aw + l-l-&-3 1 W(r) t H .c-j at, 

+ m,' gbAt (ZIZ) 
and write the full potential as, 

v-v, +nv 

= F 1% +YBlZi*I' +izcZ +Ei+@b)LZj)2 
rc i,j 

+(WJJ@-3) W(t) + WC.) 



We have to minimize this potential with respect to the 

fields zA and zK for arbitrary values of the light fields za 

of order m 
g' 

and eliminate them from the potential to get an 

effective potential as a function of the fields z,. The 

minimization gives, 

5 a2w ( aW + m-p*)+ az, az, at, 

=- z azw 
a ( aw t-$*ft- g a”:yt (;+ ,Ihgt,x)* ass at, at, B Y K 

- y!J ( a$ + ma 6 t*> - md(fb3) a\n/ 
6 -I3 

.g- (z+T& 2) (t+TJ* (2.14) 

z- ++ T *I h+r,)‘ -f $g pw 

i L 
at 

.i 
+ Q--v-P g* 

- ma ( a&Y + %zL*) - m&-3 ) 32 L =t, 
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Let us assume that the value of ZA and ZK at the 

minimum of the potential has the form, 

t* = $1 + tfl 0) + z ‘,” + . . (2-l< 1 

% = t, (” + t’,“‘+ . . . . (2.17) 

(n) where~ zi is of order mgn/Mn-' (i=A or K). ,A') may be 

shown to vanish using Eqs.(Z.Z) and (2.4). Eqs.(2.14) and 

(2.15) may be solved iteratively, starting from the initial 

point which~solves the equations, 

z &TJLj Zfj = 0 
i,i 

~tm~+o 
A 

We now assume that none of the light fields za 

transform as singlets of the unbroken gauge group H, so that 

Z(O) vanishes for all a. Using Eqs.(Z.Z), a (2.5)-(2.8) and 

(2.18), (2.19), we may show that the right hand side of 

Eq.tZ.14) is at,most of order mg2 M, whereas the right hand 



11 

side of (2.15) is at most of order m 3 
g * 

The term of order 

mg 
2 M on the right hand side of (2.14) is given by 

mg2(A-3)zL0)*, Hence Eqs.(2.14) and (2.15) may be written 

as, 

W -Cm zj+* 
a+ a 

= rr-g@-3) (rqcIB z’,“‘* + myJ3h) 

(2.20) 

b,, (r+r, s) = oha3) 

If we now substitute these new solutions on the right 

hand side of Eqs.(2.14) and (2.15), we get back the same 

results, except for a change in the order m 3 
4 terms, which, 

as we shall see, are irrelevant for calculating the 

effective potential to order m 4 
g * 

Eq.(2.20) may be solved exactly in the same way as in I 

to find zil' and si2'. From Eq.(2.21) we get, 

kLy (&Jt~,), < 2: + z:) + H*c- 

+ /yK CttaJ+T& ty = Oba3) 

Comparing terms of order mgM2 and mg 2M from both sides, 

we get, 
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+Z) M +zz'* = -&-'~,, 5 $")(T,)clB tr +&t & tB 

+ t;)+(T& 2N + z,+(r, jKfi i;' 3 (2.24) 

Following I, we define, 

= w (t, = z(Ao’tz;J) t,, z,= 0) - W(t,=z~+z;‘, Z4’0,ZJ4 (z-25) 

The potential may be written as, 

V-z 1 ~~+~~~~~12+~I~~+~~~*~2ti.~~(A-3)W+”-c-~ M A 

fs 1 $i$ tmpk*iz ++@T,d t-$iF+rf ~1’ 
k 

(2. ZC) 

As was shown in I, the first three terms in (2.26) may be 

expressed as, 

I 3% + ma’&* I’ t In.@-3) ( weti (Se) - w$ct,)-zw$z4)j 
a% 

(z-27) 

where WLg: and WJ'fi are the terms in Weff quadratic and 
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linear in zu respectively. 

Using Eqs.(2.2), (2.5) and (2.23) we may write, 

I ?..+I 2% z (11 t (‘J 

2 at at,at a ,- zatKa$$ at, A B Y P 

+ azw z t(‘) + o(m,“/M) 
at,2t,at, * A 

(2.2 8) 

As was shown in Ref.?, both, (a3w/azKaZaaZB) and 

(a3w/azKaZaaZA) zA (1) vanish at z(O) 'due to the gauge 

invariance of the potential. zil) , on the other hand, is 

given by -mg(M-l)ABsio)* and is independent of zu (see I). 

Hence the right hand side of (2.28) is independent of zu to 

order 2 
mg - 

As a result, the fourth term on the right hand 

4 side of (2.26) is independent of zu to order m . As can be 
g 

seen from Eq.(2.21), the fifth term in (2.26) vanishes to 

order m 4 . To order m 4 
g g 

, the last term of (2.26) may be 

written as 

(2.29) 
using Eq.(2.7). 

Since MS1 must be invariant under transformations in 

the little group H, and sA must be a singlet of H in order 
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that z!" is of order M, (l)= zA -mg (M-l) ABZp * must vanish 

unless the field zA is a singlet of H. This gives, 

Wd8 8; = @3,. $1 =o V’, A (2.30) 

Hence (2.29) is given by, 

5 1 Sf ~+oJ,, zp I” (2.3 I) 

and the full potential is given by, 

V- 5 1 ~++mar,X12 + 7 lFp 2*+(~)qpylz d , 
+liia (A-3 )fw,,w-wepcJ -2 w;;(t)3 + H.C.] 

(2.3&q 

which is identical to the result of Ref.7. 
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III. RADIATIVE CORRECTIONS 

In this section we shall study the effect of radiative 

corrections that arise due to the presence of the soft 

supersymmetry breaking terms. We shall use the background 

gauge formalism for our analysis. Before proceeding 

further, however, we shall summarize the effect of radiative 

corrections ' 

supersymmetry1"12. 

a general gauge theory with unbroken 

If Fi and Da denote the auxiliary components of the 

scalar superfield $i and vector superfield V, respectively, 

the only radiatively generated terms linear in the auxiliary 

fields have the form, 

-D, P,c+,& 

where P a is some function of the scalar superfields. Terms 

containing two or more power of the auxiliary fields, on the 

other hand, do not have any important effect on the 

theory12. The total potential, expressed as a function of 

the auxiliary fields Fi, Da and the physical scalar fields 
t 

'i* zi may then be expressed as, 

vr- F;+F- - (5 s + H.c.) - 
A 

-$ DJL 

- D, c 3; (T& Z.,- - DL P, Cz, t+) 
h,J (3.4 
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Eliminating the auxiliary fields through their equations of 

motion we get, 

V=flgq+ E- 
~ ~ 1~ t,f(Ta)ij~,.+pP I2 

(3.3) 

Let ITS} denote the set of broken generators of G which 

transform as singlets under the unbroken subgroup H, and 

{TN] denote the set of broken generators of G which 

transform non-trivially under the group H. It was shown in 

Ref.ll-12 that at any point, invariant under H, 

Pe = PN = 0 VP, id 

while Ps is non-zero in general. The potential (3.3) has a 

zero at a new point G(O), given by, 

‘;c(‘) = [exb C ZA, T, )lij ty’ 
A 

(3.5 1 
.s 

where Xs 's are the solutions of the equations, 

t 
zCO) e 

)+,I Tsl r,-,, eAsta %yo) 

+ Ps C e 
X9 7;’ 

z 
(01 

> 2 
(a,+ e Ap T,* 

) 
= 0 

(3-d 

The fields zar zA and zK are no longer eigenstates of 
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the mass matrix at the new minimum of the new potential. 

However, it turns out that we may define new fields z'e, z'A 

and s' R, which are eigenstates of the mass matrix. 

2; = u,, ZL = i/, (e-x‘Tx~ii Zd 

FAi = uAi a - V,; (e h -q. z. Aj J 

2; f uki zi = V,, (,-XsT, )ii 3,. 

e.74 

(3.7b) 

(3.7c ) 

matrix 
where U is a non-singular, non-unitary (in general)nthat may 

be calculated in terms of the functions PS (see Ref.12). V 

has the property that the only non-zero off-diagonal 

elements of v-l are (V-1) RA and (V -5 Ra. The fields z'c are 

massless, the fields z'A receive mass only from the F term 

of the potential, the imaginary parts of z'R are absorbed by 

the gauge bosons through Higgs mechanism, and the real parts 

of s R receive mass only from the D term of the potential. 

We shall now proceed to discuss the effect of the 

supersymmetry breaking terms. As in I, it is convenient to 

express the explicit supersymmetry breaking terms in terms 

of the spurion superfield' n, 
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The Lagrangian density, including the soft 

supersymmetry breaking terms, but ignoring the gauge fixing 

and the ghost terms, may be written as, 

j Sdr@ WC+) + H-c.3 t + { sd’s L,/# wq + H.c.$ 

+ 0’6 2s’ ? e”cp -C.$d2~f7Q$ +rl(A-3)wc++~.c.] 
i 

-$d’e d% q 7 & & (34 

Here $i 's are the chiral superfields, V=V,T, is the vector 

superfield, and, 

w, = 5E e-"De e" (3- IO) 

where D, ij are the covariant derivatives in the superspace. 

Let us now notice that we may replace $i by $i+ll;i (O' 

everywhere in (3.9) without changing the theory. This is 

due to the fact that the above replacement amounts to 

replacing Fi bY - (0) Fi+mgzi everywhere in the Lagrangian, 

and, hence, after elimination of the Fi fields, yields the 

same potential. If we define, 

izw = WC+) + m&K”* % (3.1 I) 
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then the new Lagrangian density may be written as, 

f s dLe E <+) + u.C.3 + + f $& hq Wq+ H.C.f 

+ 3 d*e dzZi Fi (evjii q4. 

+ Id26 AZ3 [ f z Zf’*<e”- ljLj qi t H .c.j 

+ 7 7 y* ( &l)Lj zy ] 

-(d’e (‘1 & $’ 
i 

t7, (A-~)WC~)+H.C.) 

- ~cL% A'i3 f '1 ( qi q+ - zpJ+z;ol) (3.12) 

where, 

(3.13) 

Let us now divide each of the fields I$~, Ti and v, into 

background and quantum superfields as follows", 

e VFT,/z e Q- A e ‘t’T./% PT 
(3.14) 

(3.15) 

+ = -+<bl + +(t!i 
(34) 
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and define, 

r-v (b, 2) 
9 

v(‘T /z 
= e&a 43 

Cb,tl 

= (b,P) 
P 

= q(bXJ &kh 

@ 17) 

(3.18) 

The action (3.12) is invariant under a background gauge 

transformation, the details of which have been discussed in 

Ref.11. We may choose the gauge fixing term to be also 

invariant under background gauge transformation (see 

Ref.12 for a particular choice). As a result, the full 

effective action, including the quantum corrections, must 

also be invariant under the background gauge transformation. 

Using the background gauge transformation we may bring the 

background gauge fields in the Wess-Zumino gauge. The full 

effective potential may then be considered as a function of 

(b) the auxiliary components Da of V, and Fi, Fi of +i, Ti, as 
t well as the physical scalar components zi, si . 

The possible radiatively generated terms in the 

effective action in this theory is 

constrained due to a theorem due to Grisaru, Rocek and 

Siege18, which states that it must be of the form, 

J@- d4%)jA4@ f <#“(me)> +‘“‘(q), ~(~)(r,,e),~,$ 
(3.19) 
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where f is a function of various superfields and their 

covariant derivatives at different space-time points, but at 

the same point in the 9, g space. For the time being, we 

shall analyze the effect of only those terms which contain 

at most one power of the auxiliary field. In the absence of 

supersymmetry breaking, the only possible terms of this kind 

are the ones given in Eq.(3.1), since we need two powers of 

0 and two powers of 0 in order to saturate the d49 integral 

in (3.19). In the presence of explicit supersymmetry 

breaking terms in the Lagrangian , we may use some powers of 

0, B from the spurion fields n, 5 to saturate some of the 8 

integrals in (3.19). The most general radiatively generated 

term in the effective action, linear in the auxiliary 

fields, is then given by, 

3, P,cs,z+) + “BD- $hG,Ztj +(m,F;&Ct,z+)+ W.) 

- n-II’ f (3 z+I 
In the above equation we have dropped the superscript 

(b) from all the fields. In the rest of the paper, 

any field without a superscript will always 

refer to background field. Adding (3.20) to (3.12), and 

using the equations of motion for the Fi and the Da fields, 

we get, 

F.* r 
h 

(3.21) 

D, = -C~+r,t+p~tmg;b)~-~~(3,z;t) (3.22) 
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and the full effective potential is given by, 

V 
eff 

=y$i+ f ii& s, + [tiJ <z, - 2;’ ) zg -I n-a3 (Q-3) w-l lr-c:] 

h 

t m&= f ct, t+) + m*‘z;“~~ 

Sum over repeated indices is implied in the above equation. 

We shall now estimate the order of magnitude of the 

various functions f, gi and k,, and their derivatives with 

respect to the various fields. Since all the ultraviolet 

divergences in this theory are logarithmicll, naive 

dimensional arguments tell us that the functions f, gi, ia, 

af/azi, aGa/azi and aPa/asi are at most of order M2, M, M, 

M, 1, and M respectively in general, up to logarithmic 

factors. This is based on the assumption that these 

functions do not contain any extra power of M/m ' 
g' 1-e. they 

do not suffer from any power law infrared divergence in the 

m +O g limit. Since all the operators under consideration 

have mass dimension less than or equal to 4, this is a 

reasonable assumption13. Gauge invariance puts further 

constraints on these functions. First, note that since all 

the light fields sa transform non-trivially under H, g, and 

af/az, must vanish at z=,(O), and must be of order mg for 

arbitrary values of su of order mg' 
Stm, Ii&T &Yguments 
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show that pN vanishes at i(O), whereas PS is in general of 

order M2. On the other hand, 8PN/aza may, in general, be of 

order M, whereas aPS/azu must be of order mg for zu of order 

mgp since it transforms non-trivially under H. The z, 

dependent part of PS is thus of order mg2 for arbitrary vev 
II ,. 

of z a of order m 
g' Similar analysis for Pa shows that PN is 

,. "(0). of order mg for z,smg, whereas PS may be of order M at z 

The zc dependent part of PS is, of course, again of order 

. 
The analysis of Pa and P As was shown 

P 
is more tricky. 

in Ref.12, in a theory with unbroken supersymmetry, the 

dependence of the radiatively generated terms linear in D 
P 

on x/(b) must come through the fields Gtb), ;(W defined in 

Eqs.(3.17) and (3.18). As a result, PP must be of the form, 

pp= ~ ( k,(t, t’l+(T~)ij ‘j + ‘.C.) 
> 

where K. is t 
1 some function of 2, 2 . Since (3.24) is 

quadratic in the fields Ki, zj t both of which transform 

non-trivially under H, P is at 
P 

most of order m 
g 

2 for 

arbitrary values of the z fields of order mg. app/azi, on 

the other hand, is at most of order m 
g' 

In order to carry out a similar analysis for P , we 
P 

must find out how the radiatively generated terms due to the 

presence of explicit soft supersymmetry breaking terms in 

(3.12) may depend on Vjb). The analysis may be done by 
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setting all the background gauge fields except the ones 

lying in the unbroken subgroup H to zero, since we are only 

interested in terms linear in the auxiliary fields D P' The 

analysis is best carried out by using the improved 

supergraph rules developed by Grisaru and Zanon 14 . According 

to their analysis, the contribution from all the 

supergraphs, except the one loop graphs with only background 

gauge fields as external lines16, may be cast in a form so 

that that the Feynman rules for evaluating the graph depend 

on Vjb) only through the combination WAb), Fib), rig), G(b) 

or zfb), but not explicitly through the connections I'Ab) or 

F.(b) 
a ' or the gauge potential V(b). P Here, 

Since the terms linear in D p appear with coefficient 93 

in Tcrir, 8 in Wu and g in Wk, none of these terms, by 

themselves, may saturate the d48 integral in (3.19) to give 

a non-zero result. We may try to saturate this integral by 

picking up some power of n from the explicit supersymmetry 

breaking terms, but we need at least one power of n and one 

power of ij. This gives a contribution of order m 2 
,. 

g 
to mp. gP 

The dependence of the effective action on V (b) through the 

fields i(b) and ;(b), on the other hand, hasp the form of 
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(3.241, and must be of order m g2 for arbitrary values of xu 

of order m 9' One may also wonder whether the dependence of 

the Lagrangian (3.12) on Vib) through the explicit soft 

supersymmetry breaking terms linear in n may produce a 

contribution to 6 of order M. The 
P 

only potentially 

dangerous term is the fourth term in (3.12). HOWeVeK, the 

vertex generated by this term has the same structure as the 

vertices of a supersymmetric theory, except that the 

external background field @lb' is replaced by nzj'). Hence 

the dependence of the effective action on VCb) through P this 

vertex may be analyzed in the same way as in the theory with 

unbroken supersymmetry, and the contribution to P 
P 

may be 

shown to be at most of order m g for z,fimg. Thus the net 
,. 

result of our analysis is that P +m p p g p is at most of order 

mg 
2 for arbitrary values of 2 a of order m 

g' whereas its 

first derivative with respect to any field is of order mg. 
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IV. ELIMINATION OF THE HEAVY FIELDS 

In this section we shall eliminate the heavy fields zlA 

and ztK from the potential by minimizing the potential with 

respect to these fields, and find an effective potential 

involving the light fields only. Let us define, 

&’ = Sd. (U‘l)jL 

;:y = ;a? &r’)ji =(a$$ + rrrcg& ) J 

(4.1) 

(4-4 

where the matrices U.. 11 are as defined in Eq.(3.7). The 

potential (3.23) may then be written as, 

v = (u u+,,; FL* iy + &$& 
S[$ f 2; ark$ +(A-3) Wj t H.c.] t --I$ 1 f t (u u+)-‘iij t;“tJI] 

i 

where, 

$.' = 
h 

(4.3) 

k-4) 

We now have to minimize the potential with respect to 
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the fields z' A and zIK for arbitrary values (zmg) of the 

fields za. Minimization of V with respect to the fields zIC 

gives, 

(““+),, a%* i,; ar;, 
= - ((J”+)& &* p- -(i.Ju+)k, ;;I g;*- (Vu+),, $ii* s; 

ar;: C =C 

- ( vu+),, a&* p; - YY7&“+)ij 3” $*-&a&? 

at; , 

-y-n 2 as 

a a’- - 

ma2(~ul),‘c z;*-ma(A12~ci$-ma4?~a~, 

6 h c 

Minimization of the potential with respect to the fields zIK 

yields, 

-m 
s 

2 af -- 
at;, 

md2(uUt)-.’ z-*- m4(A-2) a!$ 
LIc a*, 

- m Si’ “SW 
a *i at;, 
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As in Sec.11, we seek solutions of the above equations 

of the form, 

2; = tfi &I + t /A(‘) + , 12) l A + . - . 

, 2, = ZK ,w + p K + t/E’ + _ 

We start from the ansatz that at the minimum of the 

potential, for arbitrary values of z'a of order m 
4' 

;;\ srna2) 6, g ma2 (4-9) 

We shall now try to estimate the various terms on the 

right hand side of Eq.(4.~5) and (4.6) for arbitrary vev of 
A 

the shifted fields zli of order m 
g- For this we use the 

equations, 

aa!Y f 0 
at,) 

at ti' = p * (4- 10) 

a’w azW azw =& = a2w =o 
as, at’ 7 = .&a$ = 

P 
at;2 z; at;ar:, - at: a,z; 

(These equations have been derived in Ref.12). The matrix 

U ij is a singlet under the unbroken subgroup H, hence the 
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fields z'c transform non-trivially under H if zc s do. 

Using this and Eqs.(4.10), (4.11) we may show that, 

;i = i$ + ma & r~ ma2 for gi’ ~9 (4.12) 
o( 

Next, let us turn to G1 K, which may be divided into two 

classes, GIN and iUs. Since the generators TN transform 

non-trivially under the gauge group H, glN as well as zIN 

transform non-trivially under H, and are at most of order 

mg’ G/az', may 

be shown to be o(mgZl, using Es. (3.7), together with the 

property of V d iscussed below Eq.(3.7). However gls may, in 

general, be of order M. As a result, Fls is, in general, of 

order mgM at the minimum we are considering. The stability 

of mass hierarchy in the presence of such terms will be the 

subject of discussion in the next section. In this section, 

however, we shall consider only those theories where none of 

the broken generators of the group transform as singlet 

under the unbroken subgroup of the gauge group, so that, 

%aUy, Since both, ztTpz and P +m p 2 p g p are of order mg I DP must 

be of order m 2 
g - 
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Let us now turn to the various derivative terms. We 

have, 

4s; = $L, + cm-& = MBC t Ocm,) (4J4) 
a+; % c 

All other 9F' i/a Z’j are, in general, also bounded by terms 
1 

of order M. (3Dp/3z'i) is of order mg, since fip is of order 

mg 
2 for arbitrary values of gBi of order mg. (af;,/as*,) may 

be written as, 

c a ct+r,t+P,)l tm a (SK) s; 2 55; (4.4 

Since all the z' fields are defined in such a way that zlC 

does not receive any contribution to its mass from the D 

term of the potential in the limit of unbroken 

supersymmetry, the term inside the bracket in Eq.(4.15) must 

vanish at z =zt").12 Hence (4.15) is at most of order m g for 
,. 

arbitrary Z'iSm 
g' Similar arguments show that a;)K/3x1a is 

also of order 
“57. aGK/aZIL, on the other hand, is a 

non-singular matrix with eigenvalues of order M, whose first 

term in the perturbation expansion is given by uKL. 

Using the ansatz (4.9), and the estimate for various 

functions given above,' we can show that the right hand sides 

of Eqs.(4.5) and (4.6) are of order 
mg 

2 
M at most: Since 



31 

and &,/azlK are both non-singular matrices with 

eigenvalues of order M, the solutions of Eqs.(4.5) and (4.6) 

give CSmg2 ;I and 6 KSmg *. These satisfy the ansatz (4.9), 

showing that self consistent solutions of the equations of 

motion may be obtained which satisfy (4.9). 

The solution of the first of the Eqs.(4.9) may be 

obtained as in I. This gives, 

fi/ zfi = -(M-‘)AB rn& f i-2;’ + 8; (t’ ‘= d?,j + oom$/rl) A b 

Thus we see that siC1) is independent of z'u. The second 

equation of (4.9) gives, 

(4.17) 
AS has been argued before, both (aGK/az~,) and 

(a6,/azla) 
,. 

are of order m g' AlSO, since DK(z I(')) vanishes 

in the limit of unbroken supersymmetry, we have, 

ii, ( r: PI = ms fiK &Lp”‘) 

Thus, 
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Qz I(O)) is of order m g for K=N, and is of order M for 

K=S. This O(M) contribution, however, is independent of zc. 

As a result, we get, 

*I4 - 
4' J _ 0 IO) 

7 zs = co ns+ant 

We may now proceed to evaluate the effective potential 

involving z'u. Contribution from the first two terms in 

(3.23) is at most of order mg4. The contribution from the 

term in the square bracket may be analyzed by using Taylor 

series expansion of these functions about the point 

z*=z'('). The contribution to order mg3M is given by, 

rv-)#& r z';'J(a~;y;;)o 3/i) (h-3) wczw t 

+ q3 (~;~~)a 2';' t'y + H-c. 
( 1 4.21 

This contribution, however, is independent of z'u, 

since z' (1) 
A is independent of z'c. In other words, the z'u 

dependent contribution from these terms is at most of order 

mg4. 
Finally, let us turn to the last two terms in (3.23). 

Contribution from the mg2f term may be written as, 

ma2f (z, =qcq) +mazf Jf I’;k)d; + (g )* c ‘((g.J.‘3 

+ 0 Im,lf) (4.22) 
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The term proportional to (af/az;)O vanishes, whereas 

the other terms are independent of zb, to order m 
g 3M. The 

mg2(UD+);~z1i*zBj term may be analyzed in the same way, and 

shown to be independent of z'u to order m 3M. g 
This shows that the net effective potential involving 

the fields z; is of order m 4 
4 

for arbitrary valies of z' of a 
order m g. As a result, the massless particles of the 

&CP u&he 
unbrzoken supersymmetric theorybmasses of order m 

g or less, 

after we add the supersymmetry breaking terms, and include 

the effect of radiative corrections. 

Finally, we shall discuss the effect of the terms with 

two or more powers of the auxiliary fields. We may analyze 

the effect of these terms by using an iterative procedure, 

in which we first calculate the effective potential, as well 

as FLand D,without the terms with two or more powers of the 

auxiliary fields; then substitute these values of F and D in 

the new terms with two or more powers of the auxiliary 

fields to get a new value of F and D, and a new effective 
,. ,. 

potential. Using the fact that FIi and Da are all of order 
2 of 

mg at the minimumThe potential with respect to the heavy 

fields, we see that the new terms will contribute at most a 

term of order 
mg 

4 to the effective potential. Also since 

aa;/az; and ahD,/az; are both at most of order M, the effect 

of these new terms on Eqs.(4.5) and (4.6) would be to add 

terms of order 
mg 

2M on the right hand side of these 

equations. Since such terms did not have any effect on our 
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analysis, we conclude that the terms involving two or more 

powers of the auxiliary fields do not change the results of 

this section. 
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YEFFECT OF RADIATIVE CORRECTIONS IN THE PRESENCE OF BROKEN 

GENERATORS WHICH COMMUTE WITH THE UNBROKEN SUBGROUP: 

In this section we shall consider theories in which 

some of the broken generators TS of the gauge group 

transform as singlets under the unbroken subgroup of the 

gauge group. If we minimize the potential with respect to 

the heavy fields, then, as was pointed out in Sec.IV v the 

values' of F s at the minimum of the potential may be of order 

m M. 4 Hence, in analyzing the effect of radiative corrections 

in such theories, we not only have to include terms linear 

in the auxiliary fields, but must also include terms 

quadratic in F, F*. (we shall argue later that terms 

involving cubic and higher powers of F, F* do not change any 

of the results that we shall derive). The important 

radiative corrections may then be written as, 

- c D-3 p,~z,z$) + ‘ms 6aCqs+)j -hJF;g;Ct,tS~J-‘-c.~ 

+ n-@t,t+) •I F. ** ~;j Fj 

Let us define, 

FL’ = U, j F. J b4 
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Adding (5.1) to (3.12) and using Eqs.(3.7), (4.1) and (5.2), 

we may express the full potential as, 

- F,“#J+)“(I + h) U-‘jLj F” - (5’ a&, + J-KC.) at, 

-(ma 5’3 ; + W.C.) t m&2fct,tt.) 

++rll~zi-~~) 32 
i 

+ m&3) wtsj +H.c.~ +-‘~~*t~ 

- $D,D, - D,( pk+m&) (5.3 1 

Eliminating the Fi and Da fields, we get, 

v= $*f u(J+h)-‘VtS,j F4! + m&2fe,t+)r~~a~~ 

-,(z)+ Y-@&J) WCs) + H.c.3 
i 

+ ma2 t,* izi 
,. n 

with F' i and Da as defined in Secs.111 and IV. 

Let us define, 

(5.4) 

NAi = {u a+q-’ uyj 
We shall now study some properties of the functions 

N ij' At z=;('), N. 
lj 

connects fields belonging to the same 

representation of the unbroken subgroup H. For zd*m g' Nij 
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may connect fields belonging to the different 

representations of H. However, as we shall show now, the 

contribution to (N-l) sj for j=u, K, or A depends on z; only 

at order mg/M, and as a result, -1 (N jsj is of order mg/M 

unless the field z j transforms as a singlet under H. As a 

corollary of the above result, we also get (N-1) SaSmgiM for 

zaSm 
g- 

In order to show that (N-l)sj depends on zb only at 

order mg/M, we must first study the coupling of Fl to the 

various fields of the theory. The tree level coupling of F; 

is given by the Fi(aW/az:) term in (5.3). Let us define, 

z.” = 
h Ce - As Ts lij 2; = (~-l)~~ t; (S-6 1 

using Eqs.(3.7 . Then, ‘) 

t a> z 
A aty 

5’ (v-l );; r&!, (5.7 1 
+i 

F! 

Using the gauge invariance of W under complex gauge 

transformation we may show that W(z)=W(z"). Also, since 

20)=exp(XsTs)z (0) , z"=z(o) at z=Z(O). Thus we may write, 

aw = dw 
97; ( 1 at; ff*a”l 

+ c J a2W 
( 

-i =i t=tio) 

zL’- zy ) 

+* 
( 

PW 
aJ atA azk 1 

(zi;” 3;‘“’ ) (s!; - q, CT-4 
*= p 
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assuming that W is a cubic polynomial. As was shown in 

Ref.7, 

.a3w 5 a=w = a3w =o 
a*, at, asp atK at, at, ate at, at, 

v =$ K, L, M (s* 9) 
On the other hand, aw/azK as well as (a2w/azKazi) 

vanish at z=z('). Using Eqs.(5.6) and the fact that the only 

non-vanishing off-diagonal elements of V-l are W1i KA and 

w-l)Ka, we may conclude that (aW/az$, when expressed in 

terms of the Z; fields, do not contain any term with more 

than one power of the light field z;. Since (V -1 bs =0 except 

for j=S , we see from Eq.(5.7) that the term involving F; 
has the form F;(aW/az;). Hence we may conclude that there is 

no Fiz;zi coupling in the Lagrangian, in other words, any 

radiative correction involving FA has at least one heavy 

line in the loop. 

This, in turn, shows that the radiatively generated 

terms in the effective action of the form F; *(N-l)SjF; are 

free from infrared divergence, and their first derivative 

with respect to some field zi is at most logarithmically 

divergent in the mg+O limit. Thus N-' Sj depends on the light 

fields "A only at order mg/M. Similarly, one can show that 

4; and ag;/az; are free from infrared divergences, and 

ca2gyazjaz;) is at most logarithmically divergent in the 
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m +0 g limit. This shows that gk depends on zC; only at order 

mg2/M. Thns, in 4vrn, shows that pl dchendr 0” t; only at w&r m,'/M. 

We may now proceed to analyze the potential given in 

(5.4). Let us define a matrix i in the AB space such that 

NAB=NAB* Then V may be written as, 

v = 6-i + s,, :; t .tf i:+(NAr :; + Nnq?-)t l4.e.j 

+ 4 S& +mg2fh,z+) +{m& &-u, zy) t+, 
; 

-+ ma (A-3) W(t) + H.c..j +rna2tr t, 

(s-10) 

Let us define, 

;1," = 

v may then be written as, 

(N,, 6; + NBP e; ) t ( ctit* Ntie $ + 2* N&K 6; 
hlw + F, %, e; t$%l~‘ 6;) +*&-rE,+ “ls%cw+~ 



40 

(s- 12) 
We may now minimize the potential with respect to the 

heavy fields for arbitrary values of the light fields zk. 

Following the same steps as in Sec.IV, we may show that a 

self-consistent solution may be found for, 

+OII~ ifA , 6 .y-r-na2 t/k K (5. I3 1 

At this minimum, ii $, all of order 2 
P' are mg ' 

whereas gi is, in general, of order mgM. The value of 

";-Zi (0) at this minimum is independent of zk to order mg' 

Using these results, we may show that the only possible z: 

dependent term in V, which may be of order m;Mfor z&.rm 
g 

is, 

f-(N+ I,, (G-‘lRB (h$ t NSa 5 e* ?’ + l-f.=- 

I3 (5.4 

However, using the relations NN-l=I, and 

(N-l) uss (N-l) Sa* (mg/M) , we get, 

N AB ( ) N-’ Bs + NAY (N-I),, = G<md/M) ( ) 5-l 5 

Na @-‘&s + Nd, (N-I),, = 0 (ma/M ) (546) 
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Identifying NAB with iAS, we get, 

frdtiB(??‘)84 NAK + N,, 5 (f’dk, = 0 Cm, /M ) 

(5-17) 

Since S refers to generators which 'transforms as 

singlets of the unbroken subgroup H, (N-')KS is of order 

(mg/M) unless K also refers to a generator which is a 

singlet of the unbroken subgroup. Since (N-l) ss, is a 

non-singular square matrix, we get from (5.17), 

I~~~(NN-‘)~~ N,, + Nacs = oCm,h) 
A 

Using Eq.(5.18) and that F;$I~M, we see that (5.14) is 

at most of order m 4 
g - 

Finally, we must discuss the effect of terms of order 

F3. The only potentially dangerous contribution comes from 

terms involving FS. However, since Fi does not have any 

coupling of the form F'z's' S a B,terms involving FS must receive 

contribution from loops involving heavy fields. As a 

result, terms of order F3, which involve one or more FL, are 

suppressed by powers of M, and these contributions are 

completely harmless. 
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VI. CONCLUSION 

In this paper we have studied the stability of mass 

hierarchy in a general supersymmetric grand unified theory 

with explicit soft supersymmetry breaking terms in the 

Lagrangian, induced by supersymmetry breaking in the hidden 

sector. We have shown that any mass hierarchy present in 

the model in the limit of unbroken supersymmetry, is stable 

under the addition of soft supersymmetry breaking terms 

induced by the hidden set tor , and radiative corrections, 

provided that the model does not contain any li ght field 

that transforms as a singlet under the unbroken subgroup of 

the theory above the scale m 
g' 

Before concluding, we wish to make the following 

comments. 

i) In our analysis we have only considered the effect 

of radiative corrections involving the observable sector 

superfields, but have ignored the radiative corrections due 

to the hidden sector fields, as well as the graviton, 

gravitino, and the other fields in the supergravity 

multiplet. 

ii) We have used background field method in order to 

analyze the effect of radiative corrections, and hence have 

assumed that the effective background field action correctly 

reproduces all the physical results. Although the result is 

plausible, there is no rigorous proof to this result. 
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iii) In estimating the order of magnitude of various 

terms generated by radiative corrections, we have assumed 

that the maximum infrared divergence in any graph is given 

by (the total mass dimension carried by external lines - 4). 

However, a supersymmetric gauge theory in a supersymmetric 

9-w usually suffers from severe infrared divergences. In 

Feynman like gauge, such divergences do not occur at the one 

loop level, but appears at the two loop level. We have 

assumed that such singularities are gauge artifacts, and 

cancel in the sum over all graphs. In order to make our 

results rigorous, however, we must find a gauge in which the 

power law infrared divergences are absent in all orders in 

perturbation theory. A class of non-local gauges, proposed 

recently15, may provide a solution to this problem. 

iv) Finally, we must mention that although the absence 

of light singlet fields is a sufficient condition for the 

stability of mass hierarchy, it is, by no means, a necessary 

condition. An example of a model with a light singlet in 

the supersymmetric limit, and which has a stable mass 

hierar.chy, is given in Ref.17. 
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