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ABSTRACT

The effect of radiative corrections in supersymmetric
grand unified theories with soft supersymmetry breaking
terms induced by N=l1 supergravity is analyzed. It is shown
that any mass hierarchy present in the limit of unbrocken
supersymmetry is stable under radiative corrections induced
by soft supersymmetry breaking terms, provided the theory
does not contain a light singlet field that transforms as a
éinglet under the unbroken subgroup of the theory below the

grand unification scale.
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I. INTRODUCTION

In a previous paperl (hereafter refered to as 1I) we
analyzed the effect of radiative corrections in
supersymmetric grand unified theories (GUT’s) based on N=l
supergravity. In I we ignored all the gauge interactions in
the theory. In this paper we extend oaur analysis to
theories with gauge interactions. As in I, we shall
consider theories in which supersymmetry is spontaneously
broken at a scale Mg of order 1010—1011Gev in the hidden
sector?. If we freeze the hidden sector fields at the
minimum of the potential, then the effective theory
involving the observable sector superfields ¢i is given by a
supersymmetric theory with a superpotential W(¢), together

with some explicit soft supersymmetry breaking terms in the

Lagrangian of the form,

-{mg 2 3¢ +m&(ﬂ—3)wcz)+H-c.}-mgzzi*zi (1)
A

where zi's denote the scalar components of the observable
sector superfields ¢i' mg denotes the gravitino mass which
is of order msz/Mpwloz-loaGeV, and A is a constant of order
unity, whose exact value depends on the details of the
hidden sector superpotential. The presence of the explicit

2

scalar mass term proportional to mg in (l1.1) gives a common



mass mg to the scalar partners of all the 1light fermion
fields, and as a result, such models may be made to be
consistent with phenomenology.

3

Since the original motivation for considering

supersymmetric models was to solve the gauge hierarchy

problem4

, we must ensure that the presence of the explicit
soft supersymmetry breaking terms do not destroy the mass
hierarchy. In particular, if in the supersymmetric 1limit

(mg=0) the model contains some masless fields z these

ar
fields must acquire a massgmg after the inclusion of the
soft supersymmetry breaking terms and the effect of
radiative corrections in the Lagrangian. Although the
effect of | radiative corrections in specific

models has been discussed by various authors5

to one loop
order, no systematic analysis has been made for the general
class of models of this kind. In this paper we show that
the fields Z, which are massless 1in the supersymmetric
limit, acquire a mass at most of order mg after the
inclusion of the soft supersymmetry breaking terms and
radiative corrections, provided there is no 1light

field in the theory which transforms as a singlet under the
unbroken subgroup. The instability of mass hierarchy in the
presence of a light singlet field has been noted before by
several authorsﬁ.

The rest of the paper will be organized as follows. 1In

Sec.II we shall analyze the tree level potential including



the soft supersymmetry breaking terms. We calculate the
effective potential involving the 1light fields by
eliminating the heavy fields using their equations of
motion, and show that the result agrees with the result of
Hall et. a1.7, who calculated the effective potential
involving the 1light fields by starting from the full
potential involving the observable and the hidden sector
fields and eliminating all the heavy fields using their
equations of motion. The reason for this agreement has been
discussed in 1. In Sec.III we write down all possible
radiatively generated terms in the theory wusing superfield

8'9, and estimate the order of magnitude of

techniques
various terms appearing in the effective potential. In
Sec.IV and V we eliminate the heavy fields using their
equations of motion, and obtain an effective potential
involving the 1light fields only,. Sec.IV is devoted to
thecries without any light singlet fields, and without any
broken generator of the gauge group transforming as a
singlet of the unbrcocken subgroup. In Sec.V we discuss the
complications arising in the presence of a broken generator
of the gauge group which transforms as a singlet under the
unbroken subgroup, and show that despite this complication
we get a stable mass hierarchy. We summarize our results in

Sec.VI.



II. LOW ENERGY EFFECTIVE POTENTIAL AT THE TREE LEVEL

- We shall consider a supersymmetric gauge theory with
superpotential W(¢) which is assumed to be invariant under
some gauge group G. We shall denote by z; the scalar
components of the chiral superfields ¢.. 1In the globally

supersymmetric theory, the potential involving the scalar

fields is given by,

2
vV = (2] (st w) @)

o A

where the sums over i and j run over all the scalar fields,
and the sum over a includes all the generators of the gauge

group. We assume that the potential given in (2.1) has a
' (0)

supersymmetric minimum at Z;=z5 where,
IW = v A b z*(’!"l.- 2 =0 Va z-2)
37. o 7 iJ AN T
A o

Some of the scalar fields are assumed to have a
non-zero vacuum expectation value (vev) of order M at this
minimum, which breaks the gauge group G to one of its
subgroups H. We assume that M is the only mass scale in the

superpotential W(d), hence the fields z; and their fermionic



partners either have mass of order M, or are massless. We
shall denote by Zps Zgs Zor.s the fields which acquire a
mass of order M at the minimum from the F term of the
potential (the first term on the right hand side of
Eg.(2.1)), and by Zy ZB' ZY"' the massless fields which
are not the goldstone bosons corresponding to the
spontaneous breaking of the gauge group G to H. There is a
third set of fields which we shall dencte by Zgy Zye ZMre-
whose imaginary parts are the Goldstone bosons corresponding
to the gauge symmetry breaking, and are absorbed by the
gauge bosons through Higgs mechanism. The real parts of
these fields acquire mass of order M through the D terms of
the potential (the second term on the right hand side of
BEg.(2.1)), and become degenerate in mass with the gauge
bosons, forming a complete vector supermultiplet. Thus, for
each of the broken generators of the gauge group, there is
one such field ZK'
Let us denote the broken generators of the gauge group

by TK, Ti» Tmr.. and the generators of the unbroken subgroup

H by Tp, TU, TT,... Let us define,

o+ o)
(Pz)m_"“ 27 (e Ty 25 @-3)

4

u2 is a real, symmetric, positive definite matrix. Let Ugy,

be the positive definite square root of this matrix. Then,

W = (P:')kL.{(TL)iJ Z‘;]}*ZA (2-4)



The gauge invariance of W, together with Eq.(2.2) then

implies that,

at Z2-z“°

QJB-O
3
i
v
b3
]
Y
s
i
o]

@-5)

The fields 2 and z, are orthogonal to the fields zp.

o

Hence,

T (M 20 = 2T, 7] =0
,;,Z(T‘—)K‘L 2L = Pk (z¢)

Since the generators 'I‘p of the unbroken subgroup H

annihilates the vacuum, we have,

T (), 2 = Z 20N 20 vi-xak
5] L)

(2-7)

Also, since the fields z, are massless, and the fields

Zn acquire mass of order M, we have,

QZW —4 —_azw = 0 Qk z'?: Ef:l (28)
3Z 3% >Z 37,



22w = M 2.9
(;JEAEBZh‘) ) A8 ( )

where MAB is a non-singular matrix with eigenvalues of order

M. If we define,

=z =

¥
KR \["3 (ZK *Z ) @1o)

as the real part of the field Zg, then the quadratic part of

Vg is given by,

t+, 1
%4 (M M)Ae Zg +q"‘z’|<l- Zxr Tig (z-w)

This gives the tree level mass matrix.
Let us now introduce explicit supersymmetry breaking

terms in the potential of the form,
AV = imy 2z W +m (-3 W) +H.e.§
zw

+m,? g_‘liﬂlz (2-12)

and write the full potential as,

V=V, +AV

A

P
.l.
= 2 I._;_“! 62&*| +-21.-§(§ 2, QTL)AJZ

+(mé(n-3.) Wi(z) +H-c.) (213)



We have to minimize this potential with respect to the

fields zp and zyp for arbitrary values of the light fields Zy

of order My and eliminate them from the potential to get an

effective potential as a function of the fields z,. The

minimization gives,

> W (AW 4 z*)"

" 37,07, 9% I "
=-Z azzgz <aw %E*} kZ::z :IE,( (:;er *)
- (§:+mé B")-—m(ﬂs] 3}_‘;‘;
N %‘(z To2)@m), (2.14)

+
%’(z T, z)(z**r,(),_

=- T@Emea) () -3 3w aw * Yt
a3 SZ, o, (552; *-Ytg'zi )

- m AN *) - oW
c} <32.L +nh'zl.) md.(ﬂ 3) «-a—é—b

@.15)
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Let us assume that the wvalue of z, and zg at the

minimum of the potential has the form,

_ (o) () 2
2, = 2 b 2 20 2-1¢<)
<) (2)
Be = 20 42 4 (2-17)
where zén) is of order mgn/anl (i=A or K). zéo) may be

shown to vanish using Egs. (2.2) and (2.4). Egs. (2.14) and

(2.15) may be solved iteratively, starting from the initial

point which solves the equations,

+ .
z Z ("I"K)“ Z;, = O (z-18)
A9
oW *
-é-—é: + mé'zﬂ = 0 (2-'9)

We now assume that none of the 1light fields Z,
transform as singlets of the unbroken gauge group H, so that
z{9) vanishes for all a. Using Egs.(2.2), (2.5)-(2.8) and
(2.18), (2.19), we may show that the right hand side of

2

Eq. (2.14) is at most of order mg M, whereas the right hand
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side of (2.15) is at most of order mg3. The term of order

mgzM on the right hand side of (2.14) 1is given by
*
mgz(A-3)zé0) . Hence Egs.(2.14) and (2.15) may be written

as,

W * 2/n. ~ (a) ¥ 3
W amygt -y @-3)(17"),, 28 +o(mg/m)

(2-20)

. (z*"f‘k 2) = OCm;) (2.21)

If we now substitute these new solutions on the right
hand side of Egs.(2.14) and (2.15), we get back the same

3

results, except for a change in the order mg terms, which,

as we shall see, are irrelevant for calculating the
effective potential to order mg4.
Eg. (2.20) may be solved exactly in the same way as in I

te find zél) and z;Z). From Eg. {2.21}) we get,

Po @M m) (29 +2®) + e

M M ™
mt ) _ 3
+ ,'\'l.k (z TL),;?-L '—-O(mé ) (2-22)
Comparing terms of order mgM2 and mg2M from both sides,
we get,
o) y*

2, +2.7 =0 (2-23)
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v, 2, w2 fma,, 203 (2:24)

%A

Following I, we define,

W (2x)

) (] <t - -
= W(’Zh = -Z{: +2(Rl): Zu) fk=°)'w('zﬂz'z;+gn : -Zd-o,i,(-o) (2'25)

The potential may be written as,

2 2
= oW *
V= Z 138 e mgz T T 12 sy + fmg(ans) wH <3

Sw * 2 § + z + z
+'%;-| §§£;+‘n1§iﬁ< '+jf;§;h3 qlgzw +'é'%572 'T;'Z,

(z-2¢)

As was shown in I, the first three terms in (2.26) may be

expressed as,

2
[ 2Wes + g 2 X +my (A-3) { W, (20 - W 2 )-2w @)}

22

(z-27)

where Wé%% and Wé%% are the terms in Weff guadratic and
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linear in 2y respectively.

Using Egs. {2.2), (2.5) and (2.23) we may write,

2w 4 My & F = L W gL 1 Fw gz

SZ, d 2 32,22, 3% " 232,02, 32, M B
k 4
+ 2w _ oz 2?4 o(m&"’/ﬂ) (229)
é)akéazdééfn A .
As was shown in Ref.7, both, (33W/82Kazaaz8) and

0)

(33W/32K8zaazA)ZA(l) vanish at z( ‘'due to the gauge

invariance of the potential. zgl), on the other hand, 1is

. _ =1 (0) * . .
given by mg(M }ABZB and is independent of Z, (see TI).
Hence the right hand side of (2.28) is independent of z, to
order mgz. As a result, the fourth term on the right hand

side of (2.26) is independent of Z, to order mg4. As can be

seen from Eg. (2.21), the fifth term in (2.26) wvanishes to

4 4

order mg . To order mg r the last term of (2.26) may be

written as
ot 'd art t o, ot 2
Tz (T2, + 2 ('Tf)mao( +2, (T, ) 25 +2, @’)«(AEF'

(2.29)
using Eq. (2.7).

Since M'l must be invariant under transformations in

the 1little group H, and z, must be a singlet of H in order

A
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that zéo) is of order M, zél)=ﬂmg(m'l)ABzé0)* must vanish

unless the field z, is a singlet of H. This gives,

(T, )ve E (’T 2) =0 v« A (2-30)

Hence (2.29) is given by,
dp P

and the full potential is given by,
V=3 | o my 2P+ 2 2 () 7]
x| 2E, 3= £ ap " =

+[m (A-3){w, Weg (Z)- w Ca() 2 W <§)}+H.c.] (2.32)

which is identical to the result of Ref.7.



15
IITI. RADIATIVE CCRRECTIONS

In this section we shall study the effect of radiative
corrections that arise due ¢to the presence of the soft
supersymmetry breaking terms. We shall use the background
dauge formalism for our analysis, Before proceeding
further, however, we shall summarize the effect of radiative
corrections in a general gauge theory with unbroken

supersymmetrylo"lz.

If Fi and D, dencte the auxiliary components of the
scalar superfield ¢i and vector superfield vy respectively,
the only radiatively generated terms linear in the auxiliary

fields have the form,

-D, R ca,z2t) -1)

where P, is some function of the scalar superfields. Terms
containing two or more power of the auxiliary fields, on the

other hand, do not have any important effect on the

theorylz. The total potential, expressed as a function of

the auxiliary fields F., D, and the physical scalar fields

a

z;, zi+ may then be expressed as,

V=-F'F -(F W tHe)-L D D

-D, = z: (T, 2 - D« Facg zt) (32)
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Eliminating the auxiliary fields through their equations of

motion we get,

Let {Ts} denote the set of broken generators of G which

transform as singlets under the unbroken subgroup H, and

{TN} denote the set of broken generators of G which

transform non-trivially under the group H. It was shown in

Ref.11-12 that at any point, invariant under H,

P =P =0 Ve, N G@-4)

N

while Pg is non-zero in general. The potential (3.3) has a

zero at a new point 5(0), given by,

¢ = [exp( Z A s )] (35)

A

where ls's are the solutions of the equations,

z‘°’+ exs. Te T eJ\s,,"F..E(o,
<

» T, # ben
+ Ps( e>‘s s E(OJ Zfﬁl+e)‘5 IT.S ) :_-O (3‘6)

2

The fields z,, z, and zy are no longer eigenstates of
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the mass matrix at the new minimum of the new potential.

However, it turns out that we may define new fields z'a, z'

A
and z'K, which are eigenstates of ;he mass matrix.
- AT
2o Un =\ @M G
! — ‘AST}
Za = U & 7 Vg (e );.323' @-72)
S i
EI: = Uk,{, Z2. = \/|I<JL (e s 03 )f\_; Z; (3’?(.‘)

matrix

where U is a non-singular, non-unitary (in general)ﬁthat may
be calculated in terms of the functions PS (see Ref,12). V

has the property that the only non-zero off-diagonal

elements of V™1 are (V"l)KA and (V-l)

The fields z'., are

Ka-

massless, the fields z'A receive mass only from the F term

o]

of the potential, the imaginary parts of z'_  are absorbed by

K
the gauge bosons through Higgs mechanism, and the real parts
of Zp receive mass only from the D term of the potential.

We shall now proceed to discuss the effect of the
supersymmetry breaking terms. As in I, it is convenient to

express the explicit supersymmetry breaking terms in terms

of the spurion superfield9 N,

Z

T1="™49 -¢)
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The Lagrangian density, including the soft
supersymmetry breaking terms, but ignoring the gauge fixing

and the ghost terms, may be written as,

{§d%6 wep) +HeF +4 { §d?ew, W +H.c}
+ (d% 46 ¢ e"'cp —Efdzsqus‘%; +n(A-3)Wplg+HC]

-§d*ed’s 7 7 ;’::. P | G-9)

Here ¢i's are the chiral superfields, V=VaTa is the vector
superfield, and,

W = P e'VD« eV ®-10)

where D, D are the covariant derivatives in the superspace.
Let us now notice that we may replace ¢, by ¢i+nEi(0)
everywhere in (3.9) without changing the theory. This is
due to the fact that the above replacement amounts to
replacing F, by Fi+mg§i(0) everywhere in the Lagrangian,

and, hence, after elimination of the Fi fields, vyields the

same potential. If we define,

W) = wip) +m, F* ¢, (3.11)
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then the new Lagrangian density may be written as,

{SdPo W) +HeF +4 £Sd% W w +Hed
+ S 48 g (@), ¢,

+ §d’ A8 [ E"Ce¥-1) ¢, +H-C53
oy ¥

+ 1 EN e ), 2]

-§d% (¢, 2 49 (A-3) W) +H.c)

-§dP0 48 T (g B - EETEN) G12)
where,
¢ = P -2 (3.13)

Let us now divide each of the fields ¢, Ei and Vv, into

background and gquantum superfields as followsll,
(b) (2 (b}
\V v, T, /2 vt Vo, To./2
e = e °* e~ e * (3. 14)
b (2
75-:- qbc ,+ qb , (?-LS)

F= FMy (3-1€)
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and define,

(b
(b, 2) Vo T, /2 (b, 2)

$ 77 = @17)

7) (be) _ CPCI:,?] ev“ T, /2 (3.|9)

The action (3.12) is invariant under a background gauge
transformation, the details of which have been discussed in
Ref.ll. We may choose the gauge fixing term to be also
invariant under background gauge transformation (see
Ref.12 for a particular choice). As a result, the full
effective action, including the gquantum corrections, must
also be invariant under the background gauge transformation.
Using the background gauge transformation we may bring the
background gauge fields in the Wess-Zumino gauge. The full
effective potential may then be considered as a function of
(b) ¥ Py

5  and F., F; of ¢,, ¢

i as

the auxiliary components Da of v i

well as the physical scalar components Z:, zif.
The possible radiatively generated terms in the
effective action in this theocry is

constrained due to a theorem due to Grisaru, Rocek and

Siegels, which states that it must be of the form,

SOT d'x) (e £ (¢ 0), F%x,0), vk, 60,7, T)
| (3-19)
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where £ is a function of wvarious superfields and their
covariant derivatives at different space-time points, but at
the same point in the 6, § space. For the time being, we
shall analyzé the effect of only those terms which contain
at most one power of the auxiliary field. In the absence of
supersymmetry breaking, the only possible terms of this kind
are the ones given in Eq. (3.l1l), since we need two powers of

& and two powers of B in order to saturate the a4

8 integral
in (3.19). In the presence of explicit supersymmetry
breaking terms in the Lagrangian, we may use some powers of
8, B from the spurion fields n, 1T to saturate some of the 8
integrals in (3.19). The most general radiatively generated

term in the effective action, linear in the auxiliary

fields, is then given by,
D Pczz*)*- D 11’53‘(:‘5&'{')4-(7*»'1 F zzt)+H.c)
e 4 T'Yb' o ‘oo 3 &Agg ,f i

- ‘méz £z 2) (3.20)

In the above equation we have dropped the superscript

{b} from all the fields., 1In the rest of the paper,
any field without a superscript will always
refer to background field. Adding (3.20) to (3.12), and
using the equations of motion for the Fi and the D, fields,

we get,

Fa¥
= ~C g\%, M 6'3;.) =-F,C5, 3; J (3.21)

2 t
D, = "CE+T“-Z-+R+T“&|%~)_—"_‘-Da(-EJ,EJ) (3-22)

O
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and the full effective potential is given by,

A* A A A _ o
Veff = FFo+ 4 D&D,.+[m3<zk-zi )g.;_i#rmé(ns)ww.cf]
2 t 2. %
+my tfE2T) Fme T2l @ 23)

Sum over repeated indices is implied in the above equation.
We shall now estimate the order of magnitude of the

various functions £, g; and ﬁa, and their derivatives with

respect to the various fields. Since all the ultraviolet

divergences in this theory are 1ogarithmicll, naive

-~

dimensional arguments tell us that the functions £, g P

i a’
3f/3z ., aga/azi and 3P_/3z; are at most of order M2, M, M,
M, 1, and M respectively in general, up to logarithmic
factors. This is based on the assumption that these
functions do not contain any extra power of M/mg, i.e. they
do not suffer from any power law infrared divergence in the

mg+0 limit. Since all the operators under consideration

have mass dimension less than or equal to 4, this is a
reasonable assumptionl3. Gauge 1invariance puts further
constraints on these functions. First, note that since all
the light fields Zy transform non-trivially under H, Iy and

af/aza must wvanish at z=;(0), and must be of order mg for

arbitrary values of =z of order m

a g Sreilar a.*rgumen{:s
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show that Py vanishes at 2(0), whereas Pg is in general of

order M2, On the other hand, SPN/aza may, in general, be of

order M, whereas 3PS/aza must be of order m, for z, of order

9

mg' since it transforms non-trivially under H. The Zy

dependent part of PS is thus of order m 2 for arbitrary vev

g
of z, of order M- Similar analysis for P_ shows that Py is

awmg, whereas Pg may be of order M at z(o)-

The z, dependent part of Ps is, of course, again of order

of order mg for z

m
9

The analysis of Pp and Pp is more tricky. As was shown
in Ref.l2, in a theory with unbroken supersymmetry, the

dependence of the radiatively generated terms linear in Dp

on viP) must come through the fields $(b), $‘b’ defined in

Egs. (3.17) and (3.18). As a result, Pp must be of the form,

P = Z ( k&(Zy z”f(rpe)ij z; + H.C-) (‘3'2'”

¢ =5

where K, is some function of z, z+. Since (3.24) is
quadratic in the fields K., zy, both of which transform

non-trivially under BH, Pp is at most of order mg2 for

arbitrary values of the 2z fields of order mg. app/azi, on

the other hand, is at most of order mg,

~

In order to carry out a similar analysis for Pp, we
must find out how the radiatively generated terms due to the
presence of explicit soft supersymmetry breaking terms in

{3.12}) may depend on Véb). The analysis may be done by



24

setting all the background gauge fields except the ones
lying in the unbroken subgroup H to zero, since we are only
interested in terms linear in the auxiliary fields Dp. The
analysis is best carried out by wusing the improved

14. According

supergraph rules developed by Grisaru and Zanon
to their analysis, the contribution from all the
supergraphs, except the one loop graphs with only background
gauge fields as external 1ine316, may be cast in a form so
that that the Feynman rules for evaluating the graph depend
on ng) only through the combination Wéb), Wéb), rég), g(b)

or $(b), but not explicitly through the connections Péb) or

féb), or the gauge potential Véb). Here,
-y, (h) (b)
- /2 — v.om /2
r':j e '~ *""{p,,D.ye~ ° (3.25)

Since the terms linear in Dp appear with coefficient 5%

in T 8 in W and 9§ in Wd’ none of these terms, by

an’ a

themselves, may saturate the ats integral in (3.19) to give
a non-zero result. We may try to saturate this integral by
picking up some power of n from the explicit supersymmetry
breaking terms, but we need at least one power of n and one

power of 7M. This gives a contribution of order mg2 to mggp.

The dependence of the effective action on v(b) through the

(&
(b}

fields ;‘b) and ¢ on the other hand, has the form of
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{3.24), and must be of order mg2 for arbitrary values of Z,

of order Mmy. One may also wonder whether the dependence of
the Lagrangian (3.12) on Véb) through the explicit soft
supersymmetry breaking terms linear in n may produce a
contribution to ﬁp of order M. The only potentially
dangerous term is the fourth term in (3.12). However, the
vertex generated by this term has the same structure as the
vertices of a supersymmetric theory, except that the
externél background field ¢éb) is replaced by nzéo). Hence
the dependence of the effective action on Véb) through this
vertex may be analyzed in the same way as in the theory with

unbroken supersymmetry, and the contribution to Pp may be

shown to be at most of order mg for z.vm.. Thus the net

a g
result of our analysis is that Pp+mgPp is at most of order
mg2 for arbitrary values of z, of order m_, whereas its

first derivative with respect to any field is of order mg,
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IV. ELIMINATION OF THE HEAVY FIELDS

In this section we shall eliminate the heavy fields z'A

and Z'K from the potential by minimizing the potential with
respect to these fields, and find an effective potential

involving the light fields only. Let us define,

. = 34-. (A ()

A A _ ~ ,
Fiofo= R, =(§_\‘;.+m<38.;) (-2)

where the matrices are as defined in Eq.(3.7). The .

potential (3.23) may then be written as,

A

V= UU'), F*E +5DD,
Ay -1 ’ ’
+[ma R Z; %L;_\_{ +{(A-3) W} +He.] + r\r\é,,Z [+ ') iy z—i*zd-]

b-3)

where,
N ~le)y d RN O
= U, (z-%") =2 -U T =2/ -2 “-v)

~ A

We now have to minimize the potential with respect to
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the fields Z'A and z'g for arbitrary values (mmg) of the
fields Z,- Minimization of V with respect to the fields z'C
gives,
+ ATE SN
(UU )BA QFB e
D2, A
C
2% + 2 2 /¥ 1% A
= —CuUt) 2R B -UT)  F3RT_(uu),, 2R TE
24 224 3z,
A :* N + [* A A
-CuUl),, 3T Rl - m (UUT), 28 B oD 30
[ ’ A ’
! A
- 2 of 2(udt 2% emy(A-2) W -m, 7/ W
™ =3 - - ’
S p 3 ( )AC d 2o * 32/ 32,

Minimization of the potential with respect to the fields z'K

yields,
9__-‘- Ar..
2,
A A + ’ 2 / *
= = ]%'(52—4,) B (L’LJ )AJ FS EiE;' = GJlJ+Lu ﬁ1*°5i§?
= F =1 =L
-m,23f _wm Z(uu*)'_' 2'*_m,(A-2) 3w
3 3z 3 i P 32’
?K K
2/ *w
-m, Z 4.€)
Ca A ‘aéf E)Z' (;
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As in Sec.lI, we seek solutions of the above equations

of the form,

/ _ +{0) /1) ¢ (2) . ..

2, =2 +2 0+ &+ (4-'7)
’ - ,(o) 1 Cr} +£2)

Fo= F 42+ E T+ G -©)

We start from the ansatz that at the minimum of the

potential, for arbitrary values of z'OI of order mg,

A 2 A 2 ’
Fa S Mg, De $™y “-2)

We shall now try to estimate the various terms on the
right hand side of Eq.(4.5) and (4.6) for arbitrary vev of

the shifted fields z'., of order m.,. For this we use the

i g

equations,

dW -0 at a'=-z2'“ (t;-lo)

oz’ T

A
W Pw _ dw o dw | 2’w g
a2’ aai‘, 32,32, 2| 52, 2,02, a2 22
ok & = 20 G.11)

{(These eguations have been derived in Ref.l12). The matrix

Uij is a singlet under the unbroken subgroup H, hence the
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fields z'a transform non-trivially under H if Zy S do.

Using this and Egs. (4.10), (4.11) we may show that,

l;l _ ;W + ] ™ 2 f falld (4'2)
« = 37 M 3 ~ Ty ov # ~My '

Next, let us turn to %'K, which may be divided into two
classes, g'N and §|S' Since the generators Ty transform
non-trivially under the gauge group H, g'N as well as Z'N
transform non-trivially under H, and are at most of order

M- aﬁ/az's may
be shown to be o(rQ%zJ) using E9.(3.7), together with the
property of V discussed below Eq. (3.7). However g's may, in
general, be of order M. As a result, F'S is, in general, of
order mgM at the minimum we are considering. The stability
of mass hierarchy in the presence of such terms will be the
subject of discussion in the next section. 1In this section,
however, we shall consider only those theories where none of

the broken generators of the group transform as singlet

under the unbroken subgroup of the gauge group, so that,

N
Fr < m&"‘ vV K (4-13)

finally, Since both, z T z and P_+m 2, D must
Anatly, r 0 0 gPp are of order mg r b, u
2

be of order mg .
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Let us now turn to the various derivative terms. We
have,
A/ 2
SF, = DWW +00mg)=M™M__ +0(m,) (4.19)
y) ’ I é 1 3
32, éi‘aééc

All other 3F';/3z'; are, in general, also bounded by terms

of order M. (BDp/az'i) is of order Mg o since D. is of order

p
ng for arbitrary values of £|i of order My (3BK/3Z'C) may
be written as,
A
[ ¢&'T z+R)] tmy 2 (B) (4.15)
o2, 2,

Since all the z' fields are defined in such a way that z'C

does not receive any contribution to its mass from the D

term of the potential in the limit =~ of unbroken

supersymmetry, the term inside the bracket in Eg. {(4.15) must
i =z(0) 12 ;

vanish at z =z . Hence (4.15) is at most of order m_ for

g
arbitrary z';,s m,. Similar arguments show that 3Dg/3z', is

179
also of order mg' BBK/az'L, on the other hand, 1is a
non-singular matrix with eigenvalues of order M, whose first
term in the perturbation expansion is given by Mgr,-
Using the ansatz (4.9), and the estimate for various
functions given above, we can show that the right hand sides

of Egs.(4.5) and (4.6) are of order mgzM at most.  Since
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A A
OF'p/3z'c and 3Dy /3z'y, are both non-singular matrices with
eigenvalues of order M, the solutions of Egs. (4.5) and (4.6)
ive F'wm % and D
give c mg | an D K mg
showing that self consistent solutions of the equations of

2. These satisfy the ansatz (4.9),

motion may be obtained which satisfy (4.9).
The solution of the first of the Egs.(4.9) may be

obtained as in I. This gives,
N, - -1 (o) 7 ( A
zg = (M )RB mé- f 2‘8 + 83 (E}E-:- E:,)}"' O(Yhé/f“l)

(4-16)

Thus we see that zi(l) is independent of z'u. The second

equation of (4.9) gives,

D (2 + (9_9:) ' +{3D 10} (DD ') _ 2
K o) = 535.0;.:“ +§_E_Eoz,_ o(mg*)
(- 17)

As has been argued before, both (aSK/az'c) and

(BSK/az'a) are of order mg - Also, since DK(z'(o)) vanishes

in the limit of unbroken supersymmetry, we have,

A N
D (2=2) =y P (aia®) (4.12)

Thus,
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~

PK(z'(o)) is of order my for K=N, and is of order M for
K=S. This O(M) contribution, however, is independent of za.

As a result, we get,

10}

2{ =0 Z_' = constant (4.20)

N ’

We may now proceed to evaluate the effective potential
involving z'a. Contribution from the first two terms in
{3.23) is at most of order mg4. The c¢ontribution from the
term 1in the square bracket may be analyzed by using Taylor

series expansion of these functions about the point

z'=z'{0) | The contribution to order mg3M is given by,

wm, [, azwm) )+ (B-3)wE?)
o2, 225 le

+ A-3 ( gzww)) ;_z’:l z—'g)] + H.c.
/
2 \oz2,22,/,

G2

This contribution, however, 1is independent of z'a,

since z'(IA is independent of z',. In other words, the z',

dependent contribution from these terms is at most of order

m 4_
g

Finally, let us turn to the last two terms in (3.23).

Contribution from the mg2

~ 0 2 ‘ <
) +m, {(;Q__E:F)-zd +(5§

d. A

f term may be written as,

r0) 1 £ (1)
) 2, ’r(__.f_ ) ¢
] o

’
g1

"

2
™yt F (2

+0 (m&" ) - (4.22)
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The term proportional to (3£/3z ), vanishes, whereas

3

the other terms are independent of z; to order mg M. The

- *
mgz(UUT)i?j‘z'i Z'j term may be analyzed in the same way, and
3

shown to be independent of z'a to order mg M.

This shows that the net effective potential involving

4

the fields z& is of order mg for arbitrary wvalies of z& of

Ordér mg. As a result, the massless particles of the

ACTUARR :
unbr-oken supersymmetric theory;masses of order mg or less,
after we add the supersymmetry breaking terms, and include
the effect of radiative corrections.

Finally, we shall discuss the effect of the terms with
two or more powers of the auxiliary fields. We may analyze
the effect of these terms by using an iterative procedure,
in which we first calculate the effective potential, as well
as F, and D,without the terms with two or more powers of the
auxiliary fields; then substitute these wvalues of F and D in
the new terms with two or more powers of the auxiliary

fields to get a new value of F and D, and a new effective

potential. Using the fact that F'i and D, are all of order

of
mg2 at the minimUﬁFhe potential with respect to the heavy
fields, we see that the new terms will contribute at most a

term of order mg4 to the effective potential. Also since

~

3F£/3z5 and aﬁa/azj are both at most of order M, the effect
of these new terms on Egs. (4.5) and (4.6) would be to add
terms of order mgzM on the right hand side o¢f these

equations. Since such terms did not have any effect on our
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analysis, we conclude that the terms involving two or more
powers of the auxiliary fields do not change the results of

this section.
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V. EFFECT OF RADIATIVE CORRECTIONS IN THE PRESENCE OF BROKEN
GENERATORS WHICH COMMUTE WITH THE UNBROKEN SUBGROUP:

In this section we shall consider theories in which
some of the broken generators TS of the gauge group
transform as singlets under the unbrcken subgroup of the
gauge dgroup. If we minimize the potential with respect to
the heavy fields, then, as was pointed out in Sec.IV, the
values of Fg at the minimum of the potential may be of order

mgM. Hence, in analyzing the effect of radiative corrections

in such theories, we not only have to include terms linear
in the auxiliary fields, but must also include terms
quadrétic in F, F*. (Wwe shall argque later that terms
involving cubic and higher powers cf F, F do not change any

of the results that we shall derive}. The important

radiative corrections may then be written as,
A
- % D.§ Fczzt) + My Py z2')3 -Imy F; 3G & HHeS

+ rréz f(z,z*) + F}_\* "\;J F (5-1)

Let us define,

F = U.. F. (5-2)
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Adding (5.1) to (3.12) and using Egs. (3.7), (4.1) and (5.2),

we may express the full potential as,

-E s (14w U"j“_ Fi-(F g_% + H.c)

(s F g/ +He )+ my® sz et

+3 g C?;-Aéf’) %5% + My (A-3)w(zj +H.c.§ +n32,_z;*-z£
-+ D, D, - DL (Pt ) (5-3)

Eliminating the Fi and D, fields, we get,

- ¥ -1, t -/ u D T
V= E*¥5U(T+r)'v }“ F/+m2fezz')+4D,D.

' ' - T} dwWE) _ ‘
4+ 3 ™My (2 - U - Ej ) 537 +~mé(A 3) W) +H.c.3
M

2 4
-+ 7715 Ea; 2&: CSLQ)
with F! and D, as defined in Secs.III and IV.

Let us define,
-1t .
Ny, = U+ 'S &-5)

We shall now study some properties of the functions

ije At z=z(0), Nij connects fields belonging to the same
representation of the unbroken subgroup H. For z&wmg, Nij

N
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may connect fields belonging to the different
representations of H. However, as we shall show now, the
contribution to (N"l)sj for j=a, K, or A depends on z& only
at order mg/M, and as a result, (N—l)sj is of order mg/M
unless the field z5 transforms as a singlet under H. As a
corollary of the above result, we also get (N"l)SGmmg/M for
Zyrmg . |

In order to show that (N"l)Sj depends on z& only at

order my/M, we must first study the coupling of F} to the

various fields of the theory. The tree level coupling of Fi

is given by the F{(3w/3z]) term in (5.3). Let us define,

-2 T -
z;l = (e $ s)}.,j Z; = (V ')JLJ i‘:- (5-6)
using Egs. (3.7). Then,
¢ / -t
R g;: = K v )JL 3—5{ (5'7)
A J

Using the gauge invariance of W under complex gauge

transformation we may show that W{z)=W(z"). Also, since

;(0)=exp(ASTS)z(O), 2"=20) at 2220 Thus we may write,
> - [SWw + 2w (Z."—E.(o’)
32" S2; @  \dz. oz ~"

J o Z=Z v A 1-532,["

n 2°w (o) v o) 5.8
* é (;éd' a&i\aak )izz(o) (Z;‘”- Eﬂo ) (Ek = %y ) ( )
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assuming that W is a cubic peolynomial. As was shown in
Ref.?7,
3 3 3
"W = "W — "W -0
32,32, 3% 32,32 I, 3z 02 33,
Vo k,L, M G-2)

On the other hand, aW/azK as well as (32W/BzKazi)

vanish at z=z{(0), Using Egs. (5.6) and the fact that the only

-1,

non-vanishing off-diagonal elements of vl are (v )KA and

(V-l)Ka, we may conclude that (BW/azgj, when expressed in

terms of the z;/ fields, do not contain any term with more

1

than one power of the light field z&. Since (V™ bs =0 except

for j=5 , we see from Eq. (5.7) that the term involving Fé

has the form Fg(3w/3z§). Hence we may conclude that there is
no Féz&zé coupling in the Lagrangian, in other words, any

radiative correction involving Fé has at least one heavy

line in the loop.

This, in turn, shows that the radiatively generated

1

x .
terms in the effective action of the form Fé (N are

’stﬁ
free from infrared divergence, and their first derivative
with respect to some field z; is at most logarithmically
divergent in the mg+0 limit. Thus N;B depends on the 1light
fields =z, only at order mg/M. Similarly, one can show that
gé and 3gé/3z{ are free from infrared divergences, and

(azgé/aziazj) is at most logarithmically divergent in the
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mg+0 limit. This shows that gé depends on z, only at order

2 . -l , 2
mg /M. This, in turn, shows that F c‘.e[:-em‘ls on Z_ only at ardey ™y 7™

We may now proceed to analyze the potential given in

(5.4). Let us define a matrix N in the AB space such that

~

NAB=NAB' Then V may be written as,

A/# ~ Dy Do Ny Ay,
V= F;* Ny F. +2 FTON,, F'K+NMF;)+H.C'.§

+(|§;*N P’+F Fot

/% o 7 % N,
«B f K Kk NKn.'Foc"— k. NKLF)

A A 2 n F o ) W
+4 D, D, +my*§ (22t +{mé (2/-U, 2)

2, ¥
+m, (A-3)w(z) +H.e.F +m 2 2,

Let us define,

Aﬂ‘

A _ A, ~
A - Fl: *(ﬁ l)Ma’ (Nn'z P *NA'u( Ec')

G-11)

V may then be written as,

A’ ns AM PR |
V= F N Fl - (N, F2 4N, Y (R )ag

Al r¥
(NBLF-‘L+NBP (’)J'(F N“PFP+F'*N F
A

A AL A A
+ P Ny FL 4+ RN FL) 43D, 4 mePfea2t)
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{m&(z;— g E 2 +my@-3)wz) 4 Heftmga*z,

~
(5-12)
We may now minimize the potential with respect to the
heavy fields for arbitrary values of the light fields z&.
Following the same steps as in Sec.IV, we may show that a

self-consistent solution may be found for,

N A
Fawm® vA , D _~m,? vk (5:13)

2
g ’

whereas Fé is, 1in general, of order mgM. The wvalue of

~ A

At this minimum, D, F Fy are all of order m

[}

o?
zi—zé(o) at this minimum is independent of z& to order mg.
Using these results, we may show that the only possible z&

dependent term in V, which may be of order mJPifor z&wmg is,
hut) (R
-(N ). (N )i (N)B(3 + Nspi f;’* f‘l; + H.c.
(5:14)

However, using the relations NN'1=I, and

(N_l)asf(N—l)Saw(mg/M), we get,

Nag (NTge + N (N7, =Q(my/M)  (515)

N, g (N-l)es + N, (N")ks = OCT\’\C}/M) (S-IC)
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Identifying NAB with EAB' we get,
f’\{:(B(?(}-.)(a;n\ NAK + quf(N")KS =0 Cma /™)

(s:17)

Since S refers to generators which "transform as
singlets of the unbroken subgroup H, (N'l)KS is of order
(mg/M) unless K also refers to a generator which i§ a
singlet o©f the unbroken subgroup. Since (N"l)ss, is a

non-singular square matrix, we get from (5.17),

N«B(ﬁ- )BA Nas + Ny = 00my /™M) (5."8)

Using Eq. (5.18) and that FéﬁmgM, we see that (5.14) is

at most of crder m 4.

g
Finally, we must discuss the effect of terms of order
F3. The only potentially dangerous contribution comes from
terms involving F., However, since Fé does not have any
coupling of the form Féz;zé,terms involving Fé must receive
contribution from loops involving heavy fields. As a
result, terms of order F3, which involve one or more F’, are

suppressed by powers of M, and these contributions are

completely harmless.
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VI. CONCLUSION

In this paper we have studied the stability of mass
hierarchy in a general supersymmetric grand unified theory
with explicit soft supersymmetry breaking terms in the
Lagrangian, induced by supersymmetry breaking in the hidden
sector. We have shown that any mass hierarchy present in
the model in the limit of unbroken supersymmetry, is stable
under the addition of soft supersymmetry breaking terms
induced by the hidden sector, and radiative corrections,
provided that the model does not contain any 1li ght €field
that transforms as a singlet under the unbrcken subgroup of
the theory above the scale mg,

Before concluding, we wish to make the following
comments,

i) In our analysis we have only considered the effect
of radiative corrections involving the observable sector
superfields, but have ignored the radiative corrections due
to the hidden sector fields, as well as the graviton,
gravitino, and the other fields 1in the supergravity
multiplet.

ii) We have used background field method in order to
analyze the effect of radiative corrections, and hence have
assumed that the effective background field action correctly
reproduces all the physical results. Although the result is

plausible, there is no rigorous proof to this result.
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iii} In estimating the order of magnitude of various
terms generated by radiative corrections, we have assumed
that the maximum infrared divergence in any graph 1is given
by (the total mass dimeﬁsion carried by external lines - 4).
However, a supersymmetric gauge theory in a supersymmetric
gauge usually suffers from severe infrared divergences. 1In
Feynman like gauge, such divergences do not occur at the one
loop 1level, but appears at the twd loop level. We-have
assumed that such singularities are gauge artifacts, and
cancel in the sum over all graphs. In order to make our
results rigorous, however, we must find a gauge in which the
power law infrared divergences are absent in all orders in
perturbation theory. A class of non-local gauges, proposed

recently15

,» may provide a solution to this problem.

iv) Finally, we must mention that although the absence
of 1light singlet fields is a sufficient condition for the
stability of mass hierarchy, it is, by no means, a necessary
condition. An example of a model with a light singlet in

the supersymmetric 1limit, and which has a stable mass

hierarchy, is given in Ref.1l7.
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