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In the past five years or so progress in both elementary particle
physics and 1in cosmology has become increasingly dependent upon the
interplay between the two disciplines. On the particle physics side, the
SU(3). x su(2), «x U(1)y model seems to very accurately describe the
intergctions of duarks and leptons at energies below, say, 10 GeV., At
the very least, the so-called standard model is a satiafactory,
effective low energy theory. The frontiers of particle physics now
involve energies of much greater than 10* GeV--energies which are not
now available in terrestrial accelerators, nor are ever likely to be
available in terrestrial accelerators. For this reason particle
physicists have turned both to the early Universe with 1ta essentially
unlimited energy budget {(up to 10'* GeV) and high particle fluxes (up to
10*®*” cm ? s '), and to various unique, contemporary astrophysical
environments (centers of main sequence stars where temperatures reach
10* K, neutron stars where densities reach 10'*-10!® g em ?, our galaxy
whose magnetic field can impart 10'?! GeV to a Dirac magnetic charge,
etc.) as non-traditional laboratories for studying physics at very high
energies and very short distances.

On the coamological side, the hot big bang model, the so called

standard model of cosmology, seems to provide an accurate accounting of
the history of the Universe from about 1072 3 after 'the bang' when the
temperature was about 10 MeV, until today, some 10-20 billion years
after 'the bang' and temperature of about 3 K (= 3 x 1073 GeV).
Extending our understanding further back, to earlier times and higher
temperatures, requires knowledge about the fundamental particles
{presumably quarks and leptons) and their interactions at very high
energies, For this reason, progress in cosmology has become 1linked to
progress in elementary particle physics. :

*Lectures given at the NATO Advanced Study Institute, on Techniques of

High Energy Physics (St. Croix, VI, August 1984); to be published by
e Plenum Press (1985); T. Ferbel, editor.
a8 Operated by Universities Research Association Inc. under contract with the United States Department of Energy



In these 4§ lectures I will try to illustrate the two-way nature of
the interplay between these fields by focusing on a few selected topics.
In Lecture 1 I will review the standard cosmology, especially
concentrating on primordial nucleosynthesis, and discuss how the
standard cosmology has been used to place constraints on the properties
of various particles. Grand Unification makes two striking predictions:
(1) B non-conservation; (2) the existence of stable, superheavy magnetic
monopoles. Both have had great cosmological impact. In Lecture 2 I will
discuss baryogenesis, the very attractive scenario In which the B, C, CP
viclating interactions in GUTs provide a dynamical explanation for the
predominance of matter over antimatter, and the present baryon-to-photon
ratio. Baryogenesis is so cosmologically attractive, that in the absence
of observed proton decay it has been called 'the best evidence for some
kind of unification.' Monopoles are a cosmological disaster, and an
astrophysieist's delight. In Lecture 3 I will discuss monopoles,
cosmology, and astrophysics. To date, the most important 'cosmological
payoff' of the Inner Space/Outer Space connection is the inflationary
Universe scenario. In Lecture Y4 I will discuss how a very early (t <
10'-3 sec) phase transition assoclated with spontanecus symmetry
breaking (SSB) has the potential to explain a handful of very
fundamental cosmological facts, facts which can be accommodated by the
standard cosmology, but which are not 'explained' by it. The 5th Lecture
will be devoted to a discussion of structure formation in the Universe.
For at 1least a decade cosmologists have had a general view of how
structure developed, but have been unable to fill in details because of
the lack of knowledge of the initial data for the problem (quantity and
composition of the matter in the Universe and the nature of the initial
density perturbations). The study of the very early Universe has
provided us with important hints as to the initial data, and this has

led to significant progress in our understanding of how structure formed
in the Universe.

By selecting just 5 topies I have left cut some other very

important and interesting topies ~- supersymmetry/supergravity and
cosmology, superstrings and cosmology in extra dimensions, and axions,
astrophysies, and cosmology ~- to mention Jjust a few. I refer the

interested reader to references 1-3.

LECTURE 1 -- THE STANDARD COSMOLOGY

The hot big bang model nicely accounts for the universal (Hubble)
expansion, the 2.7 K cosmic microwave background radiation, and through
primordial nucleosynthesis, the abundances of D, *He and perhaps also
SHe and 7Li. Light received from the most distant objects observed (QSOs
at redshifts = 3.5) left these objects when the Universe was only a few
billion years .old, and so observations of QS0Os allow us to directly
probe the history of the Universe to within a few billion years of ‘'the
bang'. The surface of last scattering for the microwave background is
the Universe about 100,000 yrs after the bang when the temperature was
about 1/3 eV. The microwave background 1is a fossil record of the
Universe at that very early epoch. In the standard cosmclogy an epoch of
nucleosynthesis takes place from t # 1072 s ~ 102 s when the temperature
was # 10 MeV - 0.1 MeV., The light elements synthesized, primarily D,
*He, “He, and "Li, are relics from this early epoch, and comparing their
predicted big bang abundances with their inferred primordial abundances
is the most stringent test of the standard cosmclogy we have at present.



[Note that I must say inferred primordial abundance because contemporary
astrophysical processes can affect the abundance of these light
isotopes, e.g., 8tars very efficiently burn D, and produce “He.] At
present the standard cosmology passes this test with flying colors (as
we shall see shortly).

On the large scale {>> 100 Mpc), the Universe 1is isotropic and
homogenous, and 30 it - can accurately be described by the
Robertson~Walker line element

ds?=-dt2+R(t)2[dr2/(1-kr2)+r? de?+r? sin? ede¢?], (1.1)

where ds? 1s the proper separation between two spacetime events, k = 1,
0, or -t 1is the curvature signature, and R(t) is the cosmic scale
factor. The expansion of the Universe is embodied 1in R{t)--as R(t)
increases all proper (l.e., measured by meter sticks) distances scale
with R(t), e.g., the distance between two galaxies comoving with the
expansion (i.e., fixed r, 8, ¢), or the wavelength of a
freely-propagating photon {} = R{t)). The k > 0 spacetime has positive
spatial curvature and 1is finite 1in extent; the k < 0 spacetime has
negative spatial curvature and is infinite in extent; the k = 0
spacetime is spatially flat and is also infinite in extent.

The evolution of the cosmic scale factor is determined by the
Friedmann equations:

H? = (&/R)? = BuGp/3 - k/R?, (1.2)
d(pR®) = =p d(R*®), (1.3)

where p is the total energy density and p is the pressure. The expanzsion
rate H <(also called the Hubble parameter) sets the characteristic time
for the growth of R(t}; H™! # e-folding time for R. The present value of
H is 100 h kms™! Mpe™! # h {(10'® yr)"!; the observational data strongly
suggest that 1 > n , 1/2 (ref. ¥). As it is apparent from Eqn. 1.2 model

Universes with k < 0 expand forever, while a model Universe with k > 0
must eventually recollapse., The sign of k {and hence the geometry of
spacetime) can be determined from measurements of p and H:

k/H2RZ = p/(3H2/B7G) ~ 1, (1.4)
e—ﬂi—‘l'

where § = p/pc 1t and Pyt = 3H2/8ﬂG = 1.88 n? «x 10"29 gcm"3. The
cosmic surveyfng requ?ré& to directly determine p is far beyond our
capabilities (i.e., weigh a cube of cosmic material 102% cm on a side!).
However, based upon the amount of luminous matter (i.e., baryons in
stars) we can set a lower limit to Q: @ 2 @ = 0,01. The best upper
limit to @ follows by considering the age o}u%he Universe:

ty = 10%° yr h ! f£(n), ' (1.5)

where f(Q) < 1 and is monotonically decreasing (e.g., f(0) = 1 and f£(1)
= 2/3). The ages of the oldest stars (in globular clusters) strongly
suggest that t, > 10'® yr; combining this with Eqn. 1.5 implies that:
af?(Q) > ph®. The ‘function af? 1is monotonically increasing and
asymptotically approaches (w/2)?, implying that independent of h, Qh? <



2.5. Restricting h to the interval (1/2, 1) it follows that: gh®* < o.8
and 2 < 3,2,

The energy density contributed by nonrelativistic matter varies as
R(t) ?--due to the fact that the number density of particles is diluted
by the increase in the proper (or physical) voclume of the Universe as 1t
expands. For relativistic particles the energy density varies as R(t)™™
the extra factor of R due to the redshifting of the particle's momentum
{recall X « R(t)). The energy density contributed by a relativistic
apecies (T >> m) at temperature T is

p = geffﬂ'sz/30, (1 -6)

where g is the number of degrees of freedom for a bosonic species,
and 7/8 ghat number for a fermionic species. Note that T « R(t) !. Here
and throughout I have takenfi = ¢ = K. « 1, so that 1 Gev = (1 97 X
107" em) ' = (1,16 x 10'* K) = (E 57 % 10°2% 8)7!, G = o

1.22 x 10'® GeV), and 1 GeV* = 2.32 x 10'7 g cm ®. By the way, ?ﬁht
year B 10*®* ocm; 1 pc # 3 light year; and 1 Mpe * 3 x 102" em = 1.6 x
10%® GevV' !,

Today, the energy density contributed by relativistic particles
(photons and 3 neutrine species) is negligible: Q 1 B U x 10°° h™2
{T/2.7 K)*. However, since p R “, while p i R ?, early on
relativistic species dominagga the energy den§?9§ For R/R{today) < 4 x

107% (ph2)"! (T/2.7 K)*, which corresponds to t < % x 10'° s (Qh2?)"2
(T/2.7 K)* and T > 6 eV (gh?)(2.7 K/T)*, the energy density of the
Universe was dominated by relativistic particles. Since the curvature
term variea as R(t) 2, it too was small compared to the energy density
contributed by relativistic particles early on, and sc Eqn. 1.2
simplifies to: o

3

H = (R/R) # (Un? g*/u5)1/2 Tz/mpl, (1.7)

n

l/z 2
1.66 g, T /mpl,

(valid for t < 10!° s, T > 10 eV).

Here g, counts the total number of effective degrees of freedom of all
the relativistic particles (i.e., those species with mass << T):

By = I gi(Ty/T)* + 7/8 L gy(Ty/T)* (1.8)
Bose Fermi :

where T is the temperature of species i, and T is the photon
tempera%ur For example: g4(3 K) * 3.36 (Y o3 wv); By(few MeV) # 10.75

(Y, e¥, 3 Yv); gy(few 100 GeV) # 110 (Y, wt 2°, 8 gluons, 3 families -of
quarks and leptons, and 1 Higgs doublet)

If thermal equilibrium is maintained, then the second Friedmann
equation, Egqn. 1.3 =~ conservation of energy, impiies that the entropy
per comoving volume (a volume with fixed r, 8, ¢ coordinates) S « sR?
remains constant. Here 3 is the entropy density, which is dominated by
the contribution from relativistic particles, and is given by:

s= (p +p}/T = 20 g, T/45. (1.9)

The entropy density s itself is proportional tc the number density of



relativistic particles. Sc long as the expansion is adiabatic (i.e., in
the absence of entropy production) S (and s) will prove to be useful
fiducials. For example, at low energies (E << 10" GeV) baryon number is
effectively conserved, and so the net baryon number per comoving volume

N. « ny(= nn.-nz) R* remains constant, implying that the ratlio n,/s is a
B B R 2 " B -
constant of the expansion, Today 8 * Tn_, so that ng/s = n/7, where n ~

n /3£ is the baryon-to-photon ratio, which as we shall soon see, 13
kBo from primordial nucleosynthesis to be in the range: 4 x 107° < g

<7 x 107'°. The fraction of the critical density contributed by baryons
(2,) 1s related to n by:

Qb = 3.583 x 10" ° (n/10722)n"2(T/2.7 K)?, (1.10)

Whenever g, = constant, the constancy of the entropy per comoving
volume implies that T « R !; together with Egn. 1.7 this gives

- /
R(t) H(to)(t/to)‘ 2, (1.11)

t = 0.3 g,""“’2 mpl/Tz,

n

2.4 x 107% 5 g, 1’2 (1/GeV)72, (1.12)
valid for t < 10!® s and T 2 10 eV.

Finally, let me mention one more important feature of the standard
cosmology, the existence of particle horizons. The distance that a light
signal could have propagated since the bang 'is finite, and easy to
compute. Photons travel on paths characterized by ds®> = 0; for
simplicity (and without loss of generality) consider a trajectory with
d8 = d¢ = 0. The coordinate distance covered by this photon since 'the

bang' 1is Just J[Yqtr/R(t'), corresponding to a physical distance
{measured at time 2) of

de(t) = R(t) [ at'/R(¢") (1.13)
= t/(1 = n) [for R« t", n< 1],

If R« t" (n < 1), then the horizon distance is finite and = t = H™!,
Note that even if d (t) diverges (e.g., if R « t7, n > 1), the Hubble
radius H ! still sets %he scale for the ‘physics horizon'. Since all
physical lengths scale with R(t), they e-fold in a time of O(H™!'). Thus
a coherent microphysical process can only operate over a time interval <

0(H™!), implying that a causally-coherent microphysical process can only
operate over distances < o(H ').

During the radiation-dominated epoch n = 1/2 and = 2t; the
baryon number and entropy within the horizon at time t are easily
computed:

SHOR = (uﬂ/3)t3 S,

= 0.05 g, 7’2 (m;/T)%; (1.14)

No-nor = (np/8) X Syggs
~iL2 s,
10 (mpl/T) ; (1715a)

L]

1072 Mo(T/MeV) ™ %3 {1.15b)
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Fig. 1.1 'The Complete History of the Universe'. Highlights include:

‘decoupling (t = 10** s, T # 1/3 eV) - the surface of last
scattering for the ¢osmic microwave background, epoch after
which matter and radiation cease to interact and matter
‘recombines’ into neutral atoms (D, *He, “He, ’L1i); also marks
the Dbeginning of the formation of structure; primordial
nucleosynthesis (t = 1072 s, T # 10 MeV) - epoch during which
all of the free neutrons and some of the free protons are
synthesized into D, *He, “He, and 7Li, and the surface of 1last
scattering for the cosmic neutrino backgrounds; quark/hadron
transition (t # 10°% s, T = few 100 MeV) - epoch of 'quark
enslavement' [confinement transition 1in SU(3)]; W-S5-G epoch
associated with electroweak breaking, SU(2) x U(1) =+ U(1);
GUT epoch (??2 t = 10°%** s, T ® 10** GeV??) =~ SSB of the GUT,
during which the baryon asymmetry’ of the Universe evolves,
monopoles are produced, and ‘'inflation' may occur; the
Quantum Gravity Wall (t #107** s, T=10'° GeV).




where I have assumed that n_/s has remained constant and has the value #®
107°, A solar mass (Me) of baryons is = 1.2 x 10°7 baryons (or 2 x 10*°
g).

Although our verifiable knowledge of the early history of the
Universe only takes us back to t # 102 s and T = 10 MeV (the epoch of
primordial nucleosynthesis), nothing in our present understanding of the
laws of physics suggests that it {s unreasonable to extrapolate back to
times as early as = 10°*? s and temperatures as high as # 10'? GeV. At
high energies the interactions of quarks and leptons are asymptotically
free (and/or weak) justifying the dilute gas approximation made in Eqn.
1.6. At energies below 10!? GeV quantum corrections to General
Relativity are expected to be small. I hardly need to remind the reader
that ‘'reasonable' does not necessarily mean 'correct', Making this
extrapolation, I have summarized 'The Complete History of the Universe!'
in Fig. 1.1. [For more complete reviews of the standard cosmology I
refer the interested reader to refs. 5 and 6.

Primordial Nucleosynthesis

At present the most stringent test of the standard cosmology is big
bang nucleosynthesia,. Here I will briefly review primordial
nucleosynthesis, discuss the concordance of the predictions with the
observations, and mention one example of how primordial nucleosynthesis
has been used as a probe of particle physics-~counting the number of
light neutrino species.

The two fundamental assumptions which underlie Dbig bang
nucleosynthesis are: the validity of General Relativity and that the
Universe was once hotter than a few MeV. An additional assumption
(which, however, is not necessary) is that the lepton
number, (n__~n_, }/ + (n =-n~=)/ = n +{n_~n=-)/n,, like the baryon
number =2‘ 18" shall, Haviﬁg Vswallowed tHes¥ as umptions, the rest
follows like 1-2-3. |

Frame 1: t ® 10°2 gsec, T = 10 MeV. The energy_ density of the
Universe 1S dominated by relativistic species: Y, e e, vy, (i = e, u,
Tye+-); B4 = 10.75 (assuming 3 neutrino species). Thermal equilibrium_is
maintained by weak interactions (e + e ++ v, + y,, e+ +n +«+p+ Vs

— + -

e + p++*n+t v ) as well as electromagnetic in%erac ions (¢ + e +«+ 'Y
+ Y, Y + p + Y + p, ete., ) , both of which are occurring rapidly
compared to the expansion rate H = R/R. Thermal equilibrium implies that
T = T, and that n/p = exp(-Am/T); here n/p is the neutron to proton
rdtio ana Am = m_ ~ m ., No nucleosynthesis is occurring yet because_ of
the tiny equil?briuﬁ abundance of D: nD/nb = n exp(2.2 MeV/T) # 10719,
where n_, n,, and are the baryon, deuterium, and photon number
densitigs, and 2. MeV is the binding energy of the deuteron. This is
the so-called deuterium bottleneck. '

Frame 2: t =1 sec, T # 1 MeV. At about this temperature the weak
interaction rates become slower than the expansion rate and thus weak
interactions effectively cease occurring. The neutrinos decouple and
thereafter expand adiabatically (T « R !). This epoch is the surface of
last scattering for the neutrinos;vdetection of the cosmic neutrino seas
would allow us to directly view the Universe as it was 1 sec after 'the
bang'. From this time forward the neutron to proton ratioc no longer
ttracks' its equilibrium value, but instead 'freezes out' a value ¥ 1/6,



very slowly decreasing, due to occasional free neutron decays. A 1little
bit later (T # m_/3), the et pairs annihilate and transfer their entropy
to the photons, heating the photons relative to the neutrinos, so that

from this point on T = (h/11)‘/’T7. The ‘'deuterium bottleneck'
continues to operate, prgventing nuclecsynthesia.

Frame 3: t # 200 sec, T # 0.1 MeV. At about this temperature the
'deuterium bottleneck' breaks {n_/n & n exp(2.2 MeV/T) # 1], and
nucleosynthesis begins in earnest. Ess&ntially all the neutrons present
{n/p # 1/7) are quilckly incorporated first into D, and then into “He
nuclei. Trace amounts of D and ?He remain unburned; substantial
nucleosynthesis beyond “He is prevented by the lack of stable isotopes
with & = 5 and 8, and by coulomb barriers. A small amount of 7Li is
synthesized by “He(t, Y¥)’Li (for n < 3 x 107'°) and by “He(’He, v)"Be
followed by the eventual g-decay of ?Be to Li (for n > 3 x 10 *°).

The nuclecsynthetic yields depend upon n, N (which I will use to
parameterize the number of light (< 1 MeV) specigs present, other than Y
and et), and in principle all the nuclear reaction rates which go into
the reaction network. In practice, most of the rates are known to
sufficient precision that the yields only depend upon a few rates, "“He
production depends only upon n, N, and 1,,,, the neutron half-life,
which determines the rates for all thé weak processes which interconvert
neutrons and protons. The mass fraction ¥ of “He produced increases
monotonically with increasing values of n, N'J and 1,,, - 2 fact which
is =imple to understand. Larger n means thal the 'deﬂterium bottleneck'
breaks earlier, when the value of n/p is larger. More 1light species (
i.e., larger value of N ) increases the eéxpansion rate (since H «
(Gp)!/2), while a larger value of T, , means slower weak interaction
rates (x t, :‘) - both effects cause’ the weak interactions to freeze cut
earlier, when n/p is larger. The yield of “He is determined by the n/p
ratio when nucleosynthesis commences, Y & 2(n/p}/(1 + n/p), so that a
higher n/p ratio means more “He is synthegized. At present the value of
the neutron half-life is only known to an accuracy of about 2%: t,,, =

10,6 min + 0.2 min. Since v_ and v, are known (from laboratory
measurements)  to be 1light, 2 2. Blsed upon the luminous matter in
galaxies, n is known to be > p.3'x 10"!°. If all the mass in binary
galaxies and small groups of galaxies (as inferred by dynamical
measurements) is baryonic, then n must be > 2 x 107 '°.

To an accuracy of about 10¥, the yields of D and *He only depend
upon n, and decrease rapidly with increasing n. Larger n corresponds to
a higher nucleon density and earlier nuecleosynthesis, which in turn
results in less D and 3¥He remaining unprocessed. Because of large
uncertainties in the rates of some reactions which create and destroy
’Li, the predicted primordial abundance of ’L1 is only accurate to
within about a factor of 2.

In 1946 Gamow’ suggested the idea of primordial nucleosynthesis. In
1953, Alpher, Follin, and Herman® all but wrote a code to determine the
primordial preduction of “He. Peebles® (in 1966) and Wagoner, Fowler,
and Hoyle!® (in 1967) wrote codes to calculate’ the primordial
abundances. Yahil and Beaudet!! (in 1976) independently developed a
nucleosynthesis code and also extenslively explored the effect of large
lepton number (n_ - n~ # 0(n,)) on primordial nucleosynthesis. Wagoner's
1973 code'? ha3 bedome tﬁ! tstandard code' for the standard model. In
1981 the reaction rates were updated by Olive- et al.'®, the only



significant change which resulted was an Iincrease in the predicted L1
abundance by a factor of 0(3). In 1982 Dicus et al.!* corrected the weak
rates in Wagoner's 1973 code for finite temperature effects and
radiative/coulomb corrections, which led to a systematic decrease in Y
of about 0,003. Figs. 1.2, 1.3 show the predicted abundances of D, ’He?
"He, and ‘L1, as calculated by the most up to date version of Wagoner's
1973 code.!® The numerical accuracy of the predicted abundances is about
19. Now let me discuss how the predicted abundances compare with the
observational data. [This discussion is a summary of the collaborative
work in ref. 15.]

The abundance of D has been determined in solar system studies and
in UV absorption studies of the local interstellar medium (ISM). The
solar system determinations are based upon measuring the abundances of
deuterated molecules In the atmosphere of Jupiter and inferring the
pre-solar (i.e., at the time of the formation of the solar system) D/H
ratio from meteoritic and solar data on the abundance of *He. These
determinations are consistent with a pre-solar value of (D/H) & (2 ¢
1/72) x 1075. An average ISM value for (D/H) # 2 x 10”% has been derived
from UV absorption studies of the 1local ISM (5 few 109 pe), with
individual measurements spanning the range (1 - 4) x 107 %, Note that
these measurements are consistent with the solar' system "determinations
of D/H.

The deuteron being very weakly-bound is easily destroyed and hard
to produce, and to date, it has been difficult to find an astrophysical
site where D can be produced in its observed abundance.'® Thus, 1t is
generally accepted that the presentlyrobserved deuterium abundance
provides a lower bound to the primordial abundance. Using (D/H)_ > 1 x
107% it follows that n must be less than about 10 ° in ordeP for-the
predictions of primordial nucleosynthesis to be concordant with the
observed abundance of D. [Note: because of the rapid variation of (D/H)
with n, this upper bound to n is rather insensitive to the precise lowe
bound to (D/H) used.] Using Eqn. 1.10 to relate n to @, this implies
an upper bound tb @ _: g < 0.035n *(T/2.7K)® < 0.19 -~ "baryons alone
cannot close the URiveRse. One would like to also exploit the sensitive
dependence of (D/H)_  upén n to derive a lower bound to n for
concordance; this i3 not possible because D 18 so easily destroyed.
However, as we shall socon see, this end can be accomplished instead by
using both D and *He.

The abundance of 2He has been measured in solar system studies and
by observations of the *He* hyperfine line in galactic HII regions (the
analog of the 21 cm line of H). The abundance of *He in the solar wind
has been determined by analyzing gas~rich meteorites, lunar soil, and
the foil placed upon the surface of the moon by the Apollo astronauts.
Since D is burned to *He during the sun's approach to the main sequence,
these measurements represent the pre-solar sum of D and *He. These
determinations of D + 3He are all consistent with a pre-solar [(D +
3He)/H] # (4.0 + 0.3) x 1073, Earlier measurements of the *He* hyperfine
line in galactic HII regions and very recent measurements lead to
derived present abundances of *He: °*He/H F (3-20) x 10" %, The fact that
these values are higher than the pre-solar abundance is consistent with
the idea that the abundance of >He should increase with time due to the
atellar production of ?He by low mass stars,

e is much more difficult to destroy than D. It Is very hard to
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Fig. 1 2 The predicted primordial abundances of D, *He, “He, and ’Li.

[Note Tiy, = 10.6 min was used; error bar shows At,,, = * 0.2

min; = mass of “He; N = equivalent number of light neutrino
specieg 1 Inferred primordial abundances: Y = 0.23-0. 25 {D/H)>
1 x 107%; (D + *He)7H < 10 *7 7Li/H = (1.1 1+ 0.4) 107107

Concordance requires: n = (4-7) x 107'° and N, < B,
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efficiently dispcse of ?*He without also producing heavy elements or
large amounts of “He (environments hot enough to burn *He are usually
not enough to burn protons to “He). In ref, 15 we have argued that in
the absence of a Pop III generation of very exotiec stars which process
essentially all the material in the Universe and in so doing destroy
most of the 3*He without overproducing *He or heavy elements, *He can
have been astrated (i,e. reduced by stellar burning) by a factor of no
more than f_= p, [The youngest stars, e.g. our sun, are called Pop I;
the oldest observed stars are called Pop II. Pop IlI refers to a yet to
be discovered, hypothetical first generation of stars.] Using this
argument and the inequality

[(D+’He)/H]p < pre-gsolar(D/H)+f_ pre-solar(*He/H) (1.16)
S (1-f )pre-solar(D/H)+f pre-solar(D+’He)/H;

the presolar abundances of D and D + *He can be used to derive an upper
bound to the primordial abundance of D + "He: [(D + *He)/H] < 8 x 10 °.
[For a very conservative astration factor, f_ =y, 6 th apper limit
becomes 13 x 107%,] Using 8 x 107% as an upper bound on the primordial D
+ 3He production implies that for concordance, n must be greater than 4
x 1071° (for the upper bound of 13 x 10”%, n must be greater than 3 x
1071%), To summarize, consistency between the predicted big bang
abundances of D and 3He, and the derived abundances observed today
requires n to lie in the range # (4 ~ 10) x 107'°,

Until very recently, our knowledge of the L1 abundance was limited
to observations of meteorites, the local ISM, and Pop I stars, with a
derived present abundance of 7Li/H # 10°°® (to within a factor of 2).
Given that 7Li is produced by cosmic ray spallation and some stellar
processes, and 1s easily destroyed (in environments where T > 2 x 10°K),
there is not the slightest reason to suspect {or even hope!) that this
value accurately reflects the primordial abundance. Recently, Spite and
Spite!? have observed 7Li lines in the atmospheres of 13 unevolved halo
and old disk stars with very low metal abundances (Z_./12 - Z./250),
whose masses span the range of = (0.6 - 1.1)M_, Stars less massive than
about 0.7 M. are expected to astrate (by factors 2 0(10)) their ’Li
abundance during their approach to the MS, while stars more massive than
about 1 M_ are not expected to significantly astrate ’Li in their outer
layers, ndeed, they see this trend in their data, and deduce a
primordial ’Li abundance of: 7Li/H # (1.12 &+ 0.38) x 107'°, Remarkably,
this 1s the predicted big bang production for n in the range (2 - 5) x
1071°, If we take this to be the primordial 7Li abundance, and allow for
a possible factor of 2 uncertainty in the predicted abundance of Li {(due
to estimated uncertainties in the reaction rates which affect 7Li), then
concordance for ’Li restricts n to the range {1 -~ 7) x 107!'°, Note, of
course, that their derived 7L1 abundance is the pre-Pop II abundance,
and may not necessarily reflect the true primordial abundance (e.g., if

a Pop III generation of stars processed significant amounts' of
material).

In sum, the concordance of big bang nucleosynthesls predictions
with the derived abundancess of D and *He requires n = (4 - 10) x 10 !'?;
moreover, concordance for D, *He, and ’Li further restricts n: n & (4 -
7) x 107 °,

In the past few years the quality and quantity of “*He observations
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has increased markedly. In Fig. 1.4 all the “*He abundance determinations
derived from observations of recombination 1lines in HII regions
(galactic and extragalactic) are shown as a function of metalicity 2
(more precisely, 2.2 times the mass fraction of '%0).

Since *He is also synthesized in stars, some of the obaerved “He 1s
not primordial. Since stars also produce metals, one would expect aome
correlation between Y and Z, or at least a trend: lower Y where I 1is
lower. Such a trend is apparent in Fig. 1.4. From Fig. 1.4 it is also
clear that there is a large primordial component to “He: Y = Q.22 -
0.26. Ia it possible to pin down the value of Yp more precigely?

There are many steps in going from the 1line strengths (what the
observer actually measures), to a mass fraction of “He (e.g.,
corrections for neutral “He, reddening, ete.}. In galactic HII regions,
where abundances can be determined for various positions within a given
HII region, variations are seen within a given HII region. Observations
of extragalactie  HII regions are actually observations of a
superposition of several HII regions. Although observers have quoted
statistical uncertainties of AY = ¢ 0.01 {(or lower}, from the scatter in
Fig. 1.4 it is clear that the systemati¢ uncertainties must be larger.
For example, different observers have derived “*He abundances of between
0.22 and 0.25 for I Zwi8, an extremely metal-poor dwarf emission line
galaxy. )

Perhaps the safest way to estimate Y is to concentrate on the “He
determinations for metal-poor obJects.pFrom Fig. t.4 Y = p.,23 -~ 0.25%
appears to be consistent with all the data (although Y a5 low as 0,22
or high as 0.26 could not be ruled ocut). Recently kBnth and Sargent!®
have studied 13 metal-poor (Z  Z./5) Blue Compact galaxies. From a
weighted average for their samplg they derive a primordial abundance Y
= 0.245 + 0.003; allowing for a 3¢ variation this suggests 0.236 £ yp
0.254,

_ For the concordance range deduced from D, *He, and 7Li (n > 4 x
10 '%) and 1, ,, 2 10.4 min, the predicted “He abundance is

0.230 N =2,
Y > 4 0.284 V.3,
P 0.256 _—

[Note, that N = 2 is permitted only if the t-neutrino is heavy (> few
MeV) and unstabfe; the present experimental upper limit on its mass is
160 MeV.] Thus, since Y = 0.23 ~ 0.25 (0.22 - 0.26?) there are values
of n, Nv' and 1,,, for which there is agreement between the abundances
predictéd by blg bang nucleosynthesis and the primordial abundances of
D, *He, “He, and "Li derived from observational data.

To summarize, the only isotopes which are predicted to be produced
in significant amounts during the epoch of primordial nucleosynthesis
are: D, ?He, “He, and "Li. At present there is concordance between the
predicted primordial abundances of all U4 of these elements and their
observed abundances for values of N , 1, ,,, and n in the_following
intervals: 2 < N < 4; 10.4 min ¢ T?/, < 10.8 min; and & x 10" < n ¢ 7T
x 1072° (or 10 x"1072° if the ’L1 ablndance is not used). This is a
truly remarkable achievement, and strong evidence that the standard
model is valid back as early as 10”2 sec after 'the bang'.
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compact galaxies (Lequeux etal.®),.



The standard model will be in serious straights if the primordial
mass fraction of “He is unambiguously determined to be less than 0.22.
What alternatives exist {f ¥ ¢ p.22? If a generation of Pop III stars
which efficiently destroyed pHé and 7Li existed, then the lower bound to
n based upon D, *He, (and ’L1i) no longer exists. The only solid lower
bound to n would then be that based upon the amount of luminous matter
in galaxies (i.e., the matter inside the Holmberg radius): n 2> 0,3 x
107'°, In this case the predicted ¥ could be as low as 0.15 or 0.16.
Although small amounts of anisotroBy increase!?® the primordial
production of “He, recent work?® suggests that larger amounts could
decrease the primordial production of *“He. Another possibility is
neutrino degeneracy; a large lepton number (n -~ p- = O(nT)) drastically
modifies the predictions of big bang nucleoSynth¥sis.?!' Finally, one
might have to discard the standard cosmology altogether.

Primordial Nucleosynthesis as a Probe

If, based upon its apparent success, we accept the validity of the
standard model, we can use primordial nucleosynthesis as a probe of
cosmology and particle physics. For example, concordance requires: 4 x

107'° < n < 7x10 '° and N <4, This is the most precise determination
we have of n and implies th¥t -

0.018h72(T/2.7K)® ¢ 2, & 0.024n 2(T/2.7K)? (1.17)
0.01.‘4 S Q £ of'!u,
ng/s # n/7 ® (6 = 10) x 10711, (1.18)

If, as some dynamical studies suggest, { > 0.4, then some other
non-baryonic form of matter must account for the difference between
and Qb‘ [For a recent review of the measurements of {Q, 3ee refs. 22,
23.1 “Numerous candidates have been proposed for the dark matter,
ineluding primordial black holes, axions, quark nuggets, photinos,
gravitinos, relativistic debris, maasive neutrinos, sneutrinos,

monopoles, pyrgons, maximons, ete. [A discussion of some of these
candidates is given in refs. 3, 24.]

With regard to the limit on N Schvartsman2?® first emphasized the
dependence of the yield of “He¥on the expanzaion rate of the Unjverse
during nucleosynthesis, which in turn is determined by g,, the effective
number of massless degrees of freedom. As mentioned above the crucial
temperature for “He synthesis i1s # 1 MeV -~ the freeze out temperature
for the n/p ratio. At this epoch the massless degrees of freedom
include: Y, v, ef pairs, and any other light particles present, and so

By=gy+T/8(ggt + N g =) + I gy (T{/T)*+7/8 1 g (T4/T)"
Bose Fermi
=5.5 + 1.75N + I g(Ty/T)*+ 7/8 I g;(T{/T)". (1.19)
o Bose Fermi Co

Here T, 1is the temperature of species i, T is the photon temperature,
and the total energy density of relativistic species is: p = g,a2T*/30,
The 1limit N < 4 is obtained by assuming that the only species present
are: Y, e*, afld N neutrinos species, and follows because for n 2 4 x
10 *°, 1,,, 2 10.4 min, and N > 4, the mass fraction of “He produced is
> 0.25 (which is greater than the observed abundance). More precisely,
Nu € 4 implies ‘
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By £ 12.5 (1.20}

or
1.75 2 1.75(8-3) + L g (Ty/T)* + L gy(T;/T)". (1.21)
. Bose Fermi :
At most 1 additional light (< MeV) neutrino species can be tolerated;
many more additional species can be tolerated if their temperatures T
are < T. [Big bang nucleosynthesis limits on the number of light (5 MeV§
species have been derived and/or discussed in refs. 26.]

The number of neutrino species can also be determined by measuring
the width of the Z° boson: each neutrino flavor less massive than
0(m,/2) contributes = 190 MeV to the width of the 2°. Preliminary
resilts on the width of the Z° imply that N_ ¢ 0(20)27. Note that while
big bang nucleosynthesis and the width Yof the 29 both provide
information about the number of neutrino flavors, they 'measure'
slightly different quantities. Big bang nucleosynthesis is sensitive to
the number of 1light (< MeV) neutrino species, and all other light
degrees of freedom, while the width of the z° is determined by the
number of particles less masaive than about 50 GeV which couple to the
2° (neutrinos among them). This issue has been recently discussed in
ref. 28.

GCiven the important role occupied by big bang nucleosynthesis, it
is clear that continued scrutiny is in order. The importance of new
observational data cannot be overemphasized: extragalactic D abundance
determinations (Is the D abundance universal? What is its value?); more
measurements of the *He abundance (What 1s 1ts primordial value?);
continued improvement in the accuracy of “He abundances in very metal
poor HII regions (Recall, the difference between ¥ = 0,22 and Y_ = 0.23
is crucial); and further study of the 7Li abundanBe in-very oldPstellar
populations (Has the primordial abundance of Li already  been
measured?). Data from particle physics will prove useful too: a high
precision determination of t,,, (i.e., A1, ,, £ ¢ 0.05 min) will all but
eliminate the uncertainty in’ the predicted “He primordial abundance; an
accurate measurement of the width of the recently-found z° vector boson
will determine the total number of neutrino species (less massive than
about 50 GeV) and thereby bound the total number of light neutrino
species. All these data will not only make primordial nucleosynthesis a
more stringent test of the standard cosmology, but they will also make
primordial nucleosynthesis a more powerful probe of the early Universe.

*Freeze—-out' and the Making of a Relic Species

In Egns. 1.19, 1.21 I allovwed for a species to have a temperature
T, which {8 “léss than the photon temperature. What could lead to this
héppening? As the Universe expands it cools (T = R"!'), and a particle
species can only remain in 'good thermal contact' if the reactions which
are important for keeping it in thermal equilibrium are occurring
rapidly compared to the rate at which T is decreasing (which is set by
the expansion rate -1/T = R/R = H). Roughly-speaking the criterion is

r > H, (1.22)

where I' = n<ov> 1s the interaction rate per particle, n 1is the number
density of target particles and <ov> is the thermally-averaged cross
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section, When T drops below H, that reaction is said to 'freeze-out' or
*decouple'. The temperature T, (or T.) at which H = T 1is called the
freeze-out or deccupling tgmperatﬂre. [Note that if [ = aT? and the
Universe is radiation-dominated so that H = (2t)7? = 1.67 g*l/szlmpl,

then the number of interactions which occur for T ¢ Tr is just: Ig rdt
= (I‘/H)|T /(n-2) * (n=2)"'1. If the species in question is relativistic
f

(Tf >> m,;) when it decouples, then its phase space distribution

(in mome%tum space) remains thermal (i.e., BoserEinatein or Fermi~Dirac)
with a temperature T, « R*'. [It is a simple exercise to show this.] So
long as the photon teﬁperature also decreases as R ', 'I‘i = T, as if the
species were still in good thermal contact.

However, due to the entropy release when various massive specles
annihilate (e.g., ef pairs when T # 0.1 MeV), the photon temperature

does not always decrease as R™L. Entropy conservation (S o«

S*T’=constant) can, however, be used to calculate its_evolution; if g,
is decreasing, then T will decrease less rapidly than R 1, As an example
consider neutrino freeze-out. The cross section for processes like-ete™
«» VU 18: <gv> ® 0.2G2T2, and the number density of targets n ® T, so
that T = 0.2 GZTS. Equating this to H it follows that

T, & (30 mpIIG;=)1/= (1.23)
F few MeV,

i.e., neutrinos freeze out before et annihilations and do not share in
subsequent entropy transfer. For T < few MeV, neutrinos are decoupled
and T « R ', while the entropy density in e* pairs and Ys s « R ’,
Using“the fact that before ef annihilation the entropy density of the et
pairs and Ys is: s « (7/8g + + )T* = 5.5 T* and that after et
annihilation s « g T% = 27, it follows that after the e¥ annihilations

T /T = g,/ (g, + /8 ge)1*
= (u/11)1/3, (1.24)

Similarly, the temperature at the time of primordial
nucleosynthesis T, of a species which decouples at an arbitrary

temperature Td can be calculated:

T /T = [(gy+7/8(ggt + Nyg,5))/Bxgl"

& (10'75’3*¢)1/3 (for N = 3). (1.25)

Here g,, = g4(T,) 1is the number of species in equilibrium when the
species ?n questioﬂ decouples. Species which decouple at a temperature
39 MeV = m /3 ¢ T ¢ few 100 MeV do not share in the entropy release from
w* anninildtions, and T /T = 0.91; the important factor for limits based
upon primordial nucledsynthesis (T,/T)* # 0.69. Species which decouple
at temperatures T, > the temperature of the quark/hadron transition #
few 100 MeV, do not share in the entropy transfer when the quark-gluon

plasma [8*=SY+gGluon + T/8(gyt + gyt * By Y 8uh * 843 * 83 +ff) > 62]

—

hadronizes, and Ti/T = 0,56 (TifT)“ £ 0.10.
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'Hot' relics- Consider a stable particle speciles X which decouples

at a temperature T, >> m , For T < T, the number density of Xs n_ just
decreases as R™? as Ehe Unfverse expands. In the absence of eﬁtropy

production the entropy density s also decreases as R™*, and hence the
ratio n /s remains constant. At freeze-out

nx/S = (Sxefr5(3)/‘ﬂ’2)/(Eﬂzg*d/l\lS):

F 0.2788 _.o/Bxys (1.26)
where g = g, for a boson or 3/4 g, for a fermion, geq = g«(Ty), and

)
£(3) = 1%86506..% Today s # 7.1 n,, so that the number densigy and
mass density of Xs are '

nx & (ngeff/g*d)nT! (1 -27)
R = py/pg = T-6(my/100eV) (8ygre/Brgih *(T/2.7K)*. (1.28)

Note, that if the entropy per comoving volume S has increased since the
X decoupled, e.g., due to entropy production in a phase transition, then
these values are decreased by the same factor that the entropy
increased. As discussed earlier, h? must be < 0(1), implying that for a
atable particle species :

m,/100 eV < 0.13 8xy/Byepss (1.29)

for a neutrino speclies: T # few MeV, g4,  10.75, Byopr = 2 X (3/4), so
that n ~ = 3/11 and m_ must be £ 96 ee. Note that for a species which
decoupt¥s Very early (sa) 8xq = 200), the'mass limit (1.7 keV for g cp
= 1.5) which « g, . is much less stringent. '

Constraint (1.29) obviocusly does not apply to an unstable particle
with 1 < 10-15° billion yrs. However, any species which decays
radiatively Is subject to other very stringent constraints, as the
photons from its decays c¢an have varicus unpleasant astrophysiecal
consequences, e.g., dissociating D, distorting the microwave background,
'polluting’ various diffuse photon backgrounds, ete. The
astrophysical/cosmological constraints on the mass/lifetime of an
unstable neutrinc species and the photon spectrum of the Universe are
shown in Figs. 1.5, 1.6.

'Cold' relics— Consider a stable particle species which is still
coupled to the primordial plasma (I’ > H) when T % m_. As the temperature
falls below m_, its equilidrium abundance is given by

N/, & (g pp/2)(x/8)172(m /1) 2exp(-m /1), (1.30)
n/s = 0.17(gxeff/g*)(mx/T)’/zexp(me/T), (173?)

and in order to maintain an equilibrium abundance Xs must diminish 1n
number {by annihilations since by assumption the X {s stable). So long
as T #n(ov),,, > H the equilibrium abundance of Xs is maintained.
When P nn ~ H, when ?aT , the X3 'freeze-out' and their number density

h.  decreases only due to the volume increase ¢of the Universe, so that
tdr T < Ty

n/s & (nx/S)ITf° : (1.32)
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The equation for freeze-out (Fann & H) can be solved approximately,
giving

-/
m /Te & En[O.Ou(aV)omxmplgxg*1 ]

- =1/2
-+ (1/2 1'1) an{gn[O-Ou(UV)omxmplgxg* ]]’,

# 39+2nl(av) m 1+(1/2 - n)an(39+&n((ov) m, 1], (1.33)
n./s # 5[1n[0.04(av)omxmplgxg*F‘/ZJ}?+n/[(ov)omxmplg*1/z]'
B4 ox 10""§39+£n£(ov)omx]}1+“/[(ov)omxg*l/2] (1.34)
where (gv) is taken to be (ov) (T/m,)", and in the second form of

each equatifh g_ . 2, gx & 100, and a1l dimensional quantities are to be

measured in GeV units.

[The 'correct way' to solve for n /s is to integrate the Boltzmann
equation which governs the abundance, da/dt (n_ss) =

~(ov)s[(n_ss)2~(n,../s)?]. This has been done in ref. 29, Xnd  the
'freeze-olit’ app%ggimation used 1in Eqns. 1.33, 1.34 is found to be an
excellent one.] . ..

As an example, consider a heavy neutrino species (m_ >> Mev), for

which (ov) & 0(1) m?GZ, In the absence of annihilations this specles
would decouple at T & féw MeV which 18 << m and so the X will become a

tcold relic'. Using Eqns. 1.33, 1.34, we rifid that today:
n/s &5 x 10"/ (m /GeV)?, (1.35)
.h? & 2(m,/GeV) s (1.36)

implying that a stable, heavy neutrino species must be more massive than
a few GeV. [This calculation was first done by Lee and Weinberg,®® and
independently by Kolb.®!] Note that p_ « n.m_ « (gv). ' -- lmplying that
the more weakly~interacting a part¥cle fsf the moge tdangerous' it is
cosmologically. If a particle species is to saturate the mass density
bound and provide most of the mass density today (2_n? = 1) then its
mass and annihilation cross section must satisfy the refation:

(ov)og*lh A jo“°g39+£n[mx(ov)o]}‘_+“ (1.37)

where as usual all dimensional quantities are in GeV units.
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LECTURE 2 -~ BARYOGENESIS

I'1l begin by briefly summarizing the evidence for the baryon
asymmetry of the Universe and the seemingly insurmountable problems that
render baryon symmetric cosmologies untenable. For a more detailed
discussion of these I refer the reader to Steigman's review of the
subject®?®, For a review of recent attempts to reconcile a symmetric
Universe with both baryogenesis and the observaticnal constraints, I
refer the reader to Stecker®*.

Evidence for a Baryon Asymmetry

Within the solar system we can be very confident that there are no
concentrations of antimatter (e.g., antiplanets). If there were, sclar
wind particles striking such objects would be "the strongest Y-ray
sources in the sky. Also, NASA has yet to lose a space probe because it
annihilated with antimatter in the solar system.

Cosmic rays more energetic than 0(0.1 GeV) are generally believed
to be of "extrasclar" origin, and thereby provide us with samples of
material from throughout the galaxy (and possibly beyond)., The ratioc of
antiprotons to protons 1in the cosmic rays is about 3 x 10™*, and the
ratio of anti-*He to “"He is less than 10™% (ref. 35). Antiprotons are
expected to be produced as cosmic-ray secondaries (e.g. p + p + 3p + p)
at about the 107" level. At present both the spectrum and total flux of
cosmic~ray antiprotons are at variance with the simplest model of their
production as secondaries, A number of alternative scenarios for their
origin have been proposed including the possibhility that the detected ps
are cosmic rays from distant antimatter galaxies. Although the origin of
these ps remains to be resolved, it is clear that they do not provide
evidence for an appreciable quantity of antimatter in our galaxy. [For a
recent review of antimatter in the cosmic rays we refer the reader to
ref, 35.]

The existence of both matter and antimatter galaxies in a cluster
of galaxies containing intracluster gas would lead to a significant
Y-ray flux from decays of w°s produced by nucleon-antinucleon
annihilations. Using the observed Y-ray background flux as a constraint,
Steigman®?® argues that clusters like Virgo, which is at a distance =20
Mpe (= 102® cm) and contains several hundred galaxies, must not contain
both matter and antimatter galaxies.

Based upon the above-mentioned arguments, we can say that if there
exist equal quantities of matter and antimatter in the Universe, then we
can be absolutely certain they are separated on mass scales greater than

and reasonably certain they are separated on scales greater than

(19180) M = 10'2-10%"M As discussed below, this faet 1is
virtually $apd8¥ible to reconcife with a symmetric cosmology.

It has often been pointed out that we drive most of our direct
knowledge of the large~scale Unlverse from photons, and since the photon
is a self-conjugate particle we obtain no clue as to whether the 3source
is made of matter or antimatter, Neutrinos, on the other hand, can in
principle reveal information about the matter~antimatter composition of
their source. Large neutrino detectors such as DUMAND may someday
provide direct information about the matter-antimatter ~composition of
the Universe on the largest scales.
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Baryons account for only a tiny fraction of the particles in the
Universe, the 3Kremicrowave photons being the most abundant species (yet
detected). The number density of 3K photons is n_ = 399(T/2.7K)® em .
The baryon density 1s not nearly as well detgrmined. Luminous matter
{baryons in stars) contribute at least 0.01 of closure density (Q >
0.01}), and as discussed in Lecture 1 the age of the Universe re%ﬁ?res
that ﬂt (and @) must be < 0(2). These direct determinations place the
baryon*?gﬂphoton ration = n /n, in the range 3 x 10 '! to 6 x 10°*, As
I also discussed in Lecture 17th yields of ©big-bang nucleosynthesis
depend directly on n, and the production of amounts of D, *He, “He, and
?Li that are consistent with their present measured abundances restricts
n to the narrow range (4-7) x 1071°,

Since today it appears that n_ >> ng, n is also the ratio of net
baryon number to photcons. The numBer of "photons in the Universe has not
remained constant, but has increased at various epochs when particle
species have annihilated (e.g. ef pairs at T =~ 0.5 MeV). Assuming the
expansion has been isentropic (i.e. no significant entropy production},
the entropy per comoving volume (= s8R*) has remained constant. The
"known entropy" is presently about equally divided between the 3K
photons and the three cosmic neutrine backgrounds (e, u, t). Taking this
to be the present entropy, the ratic of baryon number to entropy is

ng/s = (1/T)n = (6-10) x 107, (2.1)

where ﬂg =n, - nr and n is taken to be in the range (4-7) x 10" '°. So
long a thg expansion 1s isentroplc and baryon number is at least
effectively conserved this ratio remalns constant and 1is what I will
refer to as the baryon number of the Universe.

Although the matter~antimatter asymmetry appears to be "large"
today (in the sense that n, < ng >> ng), the fact that ng/s # 107 '°
implies that at very early timesS the asymmgtry was "tiny" (n_ << n, ). To
see this, let us assume for simplicity that nucleons are the fundaBental
baryons. Earlier than 107® s after the bang the temperature was greater
than the mass of a nucleon. Thus nucleons and antinucleons should have
been about as abundant as photons, nN = ng - . The entropy density s
1s =gyn, = gyny ~ 0(10%)ny. The constancy 2¥ np/s = 0(10 1) requires
that for t < 10 *'s, ( = ng)/m(=102n /8) = 0(10 °). During its
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earliest epoch, the ‘neafly (but not quite) baryon
symmetric.

The Tragedy of a Symmetric Cosmology

Suppose that the Universe were initially locally baryon symmetric.
Earlier than 10°% s after the bang nucleons and antinucleons were about
as abundant as photons, For T < 1 GeV the equilibrium abundance of
nucleons and antinucleons is (nN/nY)E - (mN/'r)S"2 exp(-m,/T), and as
the Universe cooled the number of nugleons and antinu2§eons would
decrease tracking the equilibrium abundance as long as the annihilation
rate T_ = ng(ov) = n,m_2 was greater than the expansion rate H. At
a temperaturg T annihilations freeze out (T = H), nucleons and
antinucleons being so rare they can no longer aP?nd each other to
annihilate. Using Egn. 1.33 we can compute T_: T, # 0(20 MeV). Because
of the incompleteness of the annihilationg. ;esidual ‘nucleon and
antinucleon to photon ratios (given by Eqn. 1.34) n=/n. = n./n. = 10 '*®
are "frozen in." Even if the matter and antimatter gﬂuTX subgequently be
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separated, n./ is a factor of 10° too small, To avoid ‘'the
annihilation catastrophe', matter and antimatter must be separated on
large scales before t =~ 3 x 107% s(T = 20 MeV).

Statistical fluctuaticns: One possible mechanism for doing this is
statistical (Poisason) fluctuations. The co~moving volume that
encompasses our galaxy today contains #10'* M_ . 10%° baryons and =107°
photons. Earlier than 107% s after the bang this same comoving volume
contalned =107? photons and #107% baryons and antibaryons. In order to
avolid the annihilation catastrophe, this volume would need an excess of
baryons over antibaryons of * 10%%, but from statistical fluctuations
one would expect N -~ Ng = o(Nllz) # 3 x 10*? ~ a mere 29 1/2 orders of
magnitude too small?

Causality constraints: Clearly, statistical fluctuaticns are of no
help, so consider a hypothetical interaction that separates matter and
antimatter. In the standard cosmology the distance over which 1light
signals <{(and hence causal effects) could have propagated since the bang
{the horizon distance) 1s finite and = 2t. When T ~ 20 MeV (t A= s V
107? s) causally coherent regions contained only about 10 % M_. Thus, in
the standard cosmology causal processes could have only separ ted matter
and antimatter into 2lumps of mass < 10"% M, << M =« 10! [In
Lecture 4 I will discuss inflationary scenarios; 1n3%ﬁ35¥ scenarigs
is possible that the Universe 13 globally symmetric, while asymmetric
locally (within our observable region of the Universe). This is possible
because inflation removes the causality constraint.]

It should be clear that the two observations, n,_ >> ns on scales at
least as large as 10'2 M_ and n,./n, ~ (4=T7) x 10 '°, effectively render
all baryon~symmetri¢ cosmdlogies untenable. A viable pre~GUT cosmology
needed to have as an 1initial condition a tiny baryon number, n /s ~
(6~ 10) X 10 11—r~a very curious initial condition at that!

The Ingredients Necessary for Baryogenesis

More than a decade ago Sakharov®® suggested that an initially
baryon~symmetric Universe might dynamically evolve a baryon excess of
0(107t%), which after baryon-antibaryon annihilations destroyed
essentially all of the antibaryons, would leave the one baryon per 10!°
photons that we observe today. In his 1967 paper Sakharov outlined "the
three ingredients necessary for baryogenesis: (a) B-nonconserving
interactions; (b) a violation of both C and CP; (c¢) a departure Cfrom
thermal equilibrium,

It is clear that B(baryon number) must be violated if the Universe
begins baryon symmetric and then evolves a net B. In 1967 there was no
motivation for B nonconservation. After all, the proton lifetime is more
than 35 orders of magnitude longer than that of any unstable elementary
particle—~rpretty good evidence for B conservation. Of course, grand
unification provides just such motivation, and proton decay experiments
are likely to detect B nonconservation in the next decade if the proton
lifetime is < 10%*® years.

Under C (charge conjugation) and CP (charge conjugation combined
with parity), the B of a state changes sign. Thus a state that is either
C or CP invariant must have B = 0, If the Universe begins with equal
amounts of matter and antimatter, and without a preferred direction (as



in the standard cosmology), then its initial state is both C and CP
invariant. Unlesas both C and CP are violated, the Universe will remain C
and CP invariant as 1t evolves, and thus cannot develop a net baryon
number even if B 1s not conserved. Both C and CP violations are needed
to provide an arrow to specify that an excess of matter be produced. C
is maximally violated in the weak interactions, and both C and CP are
violated in the K°-K° system. Although a fundamental understanding of CP
viplation 1s still lacking at present, GUTs can accommodate CP
violation. It would be very surprising if CP violation only occurred in
the K°~K° system and not elsewhere in the theory also {including the
B-nonconserving sector). In fact, without miraculous cancellations the
CP violation in the neutral kaon system will give rise to CP violation
in the B-nonconserving sector at some level,

The necessity of a departure from thermal equilibrium is a bit more
subtle. It has been shown that CPT and unltary alone are sufficlent to
guarantee that equilibrium particle phase space distributions are given
by: f£(p) = [exp(u/T+E/T)x1]7!. In equilibrium, processes like Y + Y «+ b
+ b imply that u,_ = ~ug, while processes like (but not literally) Y + Y
+« b +D requirB that U, = 0. Since E? = p2 + m?* and m, = mg by CPT, it
follows that in thermgl equilibrium, n = ng. [Note, n =
Jaspe(p)/(2n)®.] b

Because the temperature of the Universe 1is changing on a
characteristic timescale H !, thermal equilibrium can only be maintained
if the rates for reactions that drive the Universe to equilibrium are
much greater than H. Departures from equilibrium have occurred often
during the history of the Universe. For example, because the rate for Y
+ matter -+ Y' + matter' Is << H today, matter and radiation are not in
equilibrium, and nucleons do not all reside in ®*%Fe nuclei (thank God!).

The Standard Scenaric: Outrof-Equilibrium Decay

The basic idea of baryogenesis has been discussed by many
authors.®’™*? The model that incorporates the three ingredients
discussed above and that has become the "standard scenario" is the

gso-called out-of-equilibrium decay scenario I now describe the scenario
in some detail.

Denote by "X" a superheavy (> 10'* GeV) boson whose interactions
violate B conservation. X might be a gauge or a Higgs boson (e.g., the
XY gauge bosons in SU(5), or the color triplet component of the 5
dimensional Higgs). [Scenarios in which the X particle is a superheavy
ferm109 have alsc been suggested.] Let its coupling strength to fermions
be a!‘?, and its mass be M. From dimensional considerations its decay
rate I = 1 ! should be

Iy ~ aM. (2.2)

At the Planck time (F 107** 3) assume that the Universe is baryon
symmetric (n_ /s = 0), with all fundamental particle species (fermions,
gauge and Higgﬁ bosons) present with equilibrium distributions, At this
epoch T # *m 1 F3x 10'® GeV >> M, (Here I have taken g, & 0(100);
in minimal SU(S) E = 160.) So at the Planck time X, X bosons are “very
relativistiec and up to statistical factors as abundant as photons: nx =
n; = ny. Nothing of importance occurs until T = M.
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Fig. 2.1 The abundance of X bosons relative to photons, The broken

“eurve shows the actual abundance, while the solid curve shows
the equilibrium abundance.
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Fig. 2.2 Important rates as a function of z = M/T. H i3 the expansion

rate, I'n the decay rate, Ty, the inverse decay rate, and I'; the
2 ++ 2 B scattering rate. ﬁpper line marked H corresponds to

case where K << 1; lower line the case where K > 1. For K << 1,

Xs decay when 2 = z,; for K > 1, freeze out of IDs and S occur
at z = z;, and zg.
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For T < M the equilibrium abundance of X, b bosons relative to
photons is

Xgq = (W/T)*/2 exp(-W/T),

where X =n/ is just the number of X, X bosons per comoving volume.
In order for i bosons to maintain an equilibrium abundance as T falls
below M, they must be able to diminish in number rapidly compared to H =
|T/T[.'The most important process in this regard is decay; other
processes {e.g. annihilation) are higher order ina. If T, >> Hfor T =
M, then X, X bosons can adjust their abundance (by decay) Fapidly enough
so that X "tracks" the equilibrium value. In this case thermal
equilibrium is maintained and no asymmetry ls expected to evolve.

More interesting is the case where I'y < H » 1.66 g*l/’TZ/mpl when T

= M, or equivalentiy M > g;'/’a10" GeV. In this case, X, X bosons are
not decaying on the expansion timescale (1t > t) and so remain as
abundant as photons (X = 1) for T { M; hence they are overabundant
relative to their equilibrium number. This overabundance (indicated with
an arrow In Filg. 2. 1) is the departure from thermal equilibrium. Much
later, when T << M, T '~ H ({.e. t = 1), and X, X bosons begin to
decrease in number gs a result of decays. To a good approximation they
decay freely since the fraction of fermion pairs with sufficient
center—-of-mass energy to produce an X or Ris = exp(~M/T) << 1, which
greatly spresses inverse decay processes (T D= exp(-M/T)I, << H). Fig.
2.1 summarizes the time evolution of X; Fii. 2.2 shows th relationship
of "the various rates (rD, ryps and H) as a function of M/T(= t!

Now consider the decay of X and X bosons: suppose X decays to
channels 1 and 2 with baryon numbers B, and B,, and branching ratios r
and (1-r). Denote the corresponding quantities for X by -B,, ~B,, I, and
(1=F) {fe.g. 1 = {(qq), 2 = (q2), B -2/3, and B, = 1/3]. The mean net
baryon number of the decay products of the X and x are, respectively, B
= rB, + (1-r)B, and B- a ~pB,~(1-F)B,. Hence the decay of an X, X paif
on average produces a béryon number £,

€ = B, + Bz =~ (r-r)}(B,~B,). (2.3)

if B, = B,, £ = 0. In this case X could have_been assigned a baryon
number B,, and B would not be violated by X, X boszons.

It is simple to show that r = P unless both C and CP are violated.
Let & = the charge conjugate of X, and r o T, denote the
respective branching ratios in the upward and downward direotions. [For
simplicity, I have reduced the angular degree of freedom to up and
down.] The quantities r and I are branching ratios averaged over angle:
ro={r.r,)/2, r = (F +r+)/2 and ¢ = (r+wr++r rF,)/2. If_C is conserved,

r, = r+ and r,=r, and e =0, If CP is conserved r, = r+ and r, =

r*,
and once again € = O.

When the X, 2 bosons decay (T << M, t = 1) n : . Therefore,
the net baryon number density produced is n_ g ;ﬁe eg{ropy density

8 = E*nY, and so the baryon asymmetry produced is nB/s =~ £/8x = 1072 €.

Recall that the condition for a departure from equilibdrium to occur

is K = (Ip/H)[py < 1 or M > gz am ). If X is a gauge boson then a =



1/45, and so M must be > 10!® GeV, If X is a Higgs boson, then o is
essentially arbitrary, although a = (m ~ 10 * =~ 107% {if the

/M a

X is 1in the same representation as Ehewiighgaﬂfggs bosons responaible
for giving mass to the fermions (here m_. = fermicn mass, M = mass of
the W boson = 83 GeV). It is appapently easier for HYggs besons to
satisfy this mass condition than it 1s for gauge bosons. If M > g:‘/=
am ., then only a modest C, CP-violation (e =~ 107*) is necessary to
exB}ain N./s = (6-10) x 10 ''. As I will discuss below e is expected to
be large? for a Higgs boson than for a gauge boson. For both these
reasons a Higgs boson Is the more likely candidate for’ producing the
baryon asymmetry.

Numerical Results

Boltzmann equations for the evolution of n_/s have been derived and
solved numerically in refs. 43, Uu4. They basically confirm the
correctness of the qualitative picture discussed above, albeit, with
some 1mportant differences. The resulis can best be discussed in terms
of '

K

- /
Tp/2H(M) = amy,/3gx*" *M, (2.4)

n

3 x 107 a GeV/M.

K measures the effectiveness of decays, 1i.e., rate relative to the
expansion rate. K measures the effectiveness of  Benonconserving
processes 1In general because the decay rate characterizes the rates in
general for B nonconserving processes, for T < M (when all the action
happens): _ :

Tip ® (WT)*/? exp(-W/T) T, (2.5)
Py # aa(T/M)® T, : (2._6)

where T p is the rate for inverse decays (ID), and T'_ is the rate for 2
-~ 2 ﬁ nonconserving scatterings (S) mediated by X. [A is a numerical
factor which depends upon the number of scattering channels, ete, and is
typically 0(100~-1000).3

[It is simple to see why ' « g(T/M)SrD « q2T*/M*, T # n{gv); n ¥
T* and for T <M, (ov) « a2f2/M, Note, 'in some supergymmetric GUTs,
there exist fermionlec partners of superheavy Higgs which mediate B (and
also lead to dim5 B operators). In this case (ov) = a?/M? and ro =

Aa(T/H)’FD, and 2 «+ 2 B scatterings are much more important.]

The time evolution of the baryon asymmetry (nB/S vg z = M/T « tl/z)
and the final value of the asymmetry which evolves are shown in Figs.
2.3 and 2.4 respectively. For K < 1 all B nonconserving processes are
ineffective (rate < H) and the asymmetry which evolves is just e/g, (as
predicted in the qualitative picture). For Kc > K > 1, vwhere Kc is
determined by ‘ :

K, (an K,)"21* # 300/Aq, (2.7)
S 'freeze out' before IDs and can be ignored. Equilibrium is maintained

to some degree (by Da and IDs), however a sizeable asymmetry still
evolves -
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ng/s & (e/gy) 0.3 K™1(enK) s, (2.8)

This is the surprising result: for K > K >> 1, equilibrium is not well
maintained and a significant n_/3 evolves, whereas the qualitative
picture would suggest that for K >§ 1 no asymmetry should evelve, For K

> K, 8 are very Iimportant, and the ng/s which evolves becomes
expoﬁentially small:

ny/s & (e/gy) (AKa)}/? explmi/3 (aka)'/*1. (2.9)

[In supersymmetric models which have dim~5 B operators, K (inKe)"fz F
18/Aa and the analog of Egqn. 2.9 for K> Kc is: nB/s # (£/8%) AaK
expl-2(AaK)?/2].]

For the XY gauge bosons of SU(5) a ® 1/45, A # few x 10°, and M F
few x 10'* GeV, so that K,, & 0(30) and K, # 100. The asymmetry which
could evolve due to these boégns is ® 1072 ( xy/8x): For a color triplet
Higgs «, = 10" % (for a top quark mass of HO GeV) and A = few x 10%,
leading Yo K, = 3 x 10* GeV/My and K, = few x 10%. For My < 3 x 10"
GeV, K, < 1 and the asymmetry which cOuld evolve 1s & €,/gy.

Very OutiofrEquilibrium Decay

If the X boson decays very late, when M >> T and .px > Ppads the
additional entropy released in its decays must be taken into ggcount.
This is very easy to do. Before the Xs decay, p = Py * Ppad R ooy = Mnx;
After they decay p_ & p = (n2/30)gy Ton = (3/4)8T H (8,Tyy = entropy
density and temperafure E?Eer the X decaygg. As usua assugg that on
average each decay produces a mean net baryon number €. Then the
resulting ny/s produced is

HB/s = enx/s,
& (3/8)¢ TRH/@ (2f?0)

[(Note, I have assumed that when the Xs decay px >> Pp q S° that the
initial entropy can be ignored compared Lo entroby proﬁuced by the
decays; this assumption guarantees that T H < M. I have also assumed
that T << M so that IDs and S processes can bé Iignored. Finally, note
that how the Xs produce a baryon number of ¢ per X 1s irrelevant; it
could be by X » q's &'s, or equally well by X + ¢3 + q's 1's (¢ = any
other particle apecies).]

Note that the asymmetry produced depends upon the ratio T_ /M and
not T itself-~this 1is of some interest in inflationary scenarios in
which %ﬁe Universe does not reheat to a high enough temperature for
baryogenesis to proceed in the standard way {out-of~ equilibrium
decays). For reference TRH can be calculated in terms of 1, = I' '; when
the Xs'decay (t * 1, HR t ! #T): I'* = H® = Svpx/3mp§. ﬁsing the fact
that p & gy(m?/30)Tpy* it follows that :

-~/ /
Toy F 8% (Pmpl)l 2 (ZT?T)

ch
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4 The final baryon asymmetry (in units of e/g,) as a function
of K ® 3 x10' o GeV/M. For K <1, nB/s is independent of K
and # €/g,, For K, > K > 1, np/s decreases slowly, «
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The C,CP Viclation ¢

The crucial gquantity for determining n_/s is g~~the C, CP violation
in the superheavy boson system. Lackin 'The GUT', ¢ cannot be

calculated precisely, and hence n,/s cannot be predicted, as, for
example, the “He abundance can be.

The quantity € « (r-F); at the tree graph (l.e., Born
approximation) level r-F must vanish., Non-zero contributions to (r-r)
arise from higher order loop corrections due to Higgs couplings which
are complex.*!***:*%® For these reasons, it is generally true that:

N .
€Higgs S Ofa’) 8in &, (2.12)

€gauge < 0(a¥*!) sin s, (2f?3)

where a is the coupling of the particle exchanged in loop (i.e., a =
g*/4m), N > 1 is the number of loops in the diagrams which make the
lowest order, non-zero contributions to (r~¥), and § is the phase of
some complex coupling. The €, CP violation in the gauge boson system
occurs at 1 loop higher order than in the Higgs because gauge couplings
are necessarily real, Since a 4 ¢ 1s at most 0{10 ?)r~which is
plenty large enough to explain n 1332“?8‘1°. Because K for a Higgs 1Is
likely to be smaller, and beoauge C, CP violation occurs at lower order
in the Higgs boson system, the out-of-equilibrium decay of a Higgs 1is
the more likely mechanism for producing n./s., [No additional
cancellations occur when calculating (r-¥) in supe%symmetric theories,
so these generalities also hold for supersymmetric GUTs.]

In minimal SU(5)--one 5 and one 24 of Higgs, and three families of
fermions, N = 3, This together with the smallness of the relevant Higgs
couplings implies that €, ¢ 10" !® which is not nearly enough,*!2%%:%¢
With 4 families the relgvant couplings can be large enough to obtain e
& 107®-~if the top quark and fourth generation quark/lepton masses are
U(EH) (ref. U47). By enlarging the Higgs sector (e.g., by adding a second
5 or a 45), (er) can be made non-zero at the 1~1loop level, making €y =

-

10" ® easy to achieve,

In more complicated theories, e.g., E6, S(10), ete., ¢  107* can
also easily be achieved. However, to do 8o restricts the possible
symmetry breaking patterns., Both E6 and S0(10) are C-symmetric, and of
course C-symmetry must be broken before g can be non-zero, In general,
in these models e is suppressed by powers of M_ /M. where Mo (M ) is the

scale of C(GUT) symmetry breaking, and so ¢ cannot be significantly
smaller than M

G*

It seems very unlikely that £ can be related to the parameters of
the K°-K° system, the difficulty being that not enough C, CP violation
can be fed up to the superheavy boson system. It has been suggested that
e could be related to the electric dipole moment of the neutron.*®

Although baryogenesis {s nowhere near being on the same firm
footing as primordial nucleosynthesis, we now at least have for the
first timg a very attractive framework for understanding the origin of
n./s & 10 '*. A framework which is so attractive, that in the absence of
observed proton decay, the baryon asymmetry of the Universe is probably
the best evidence for some kind of quark/lepton unification. [In writing



up this lecture I have borrowed freely and heavily from the review on
baryogenesis written by myself and E. W. Kolb (ref.49) and refer the

interested reader there for a more thorough discussion of the details of
baryogenesis, }
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LECTURE 3: MONOPOLES, COSMOLOGY, AND ASTROPHYSICS

Birth: Glut or Famine

In 1931 Dirac®® showed that if magnetic monopoles exist, then the
single-valuedness of quantum mechanical wavefunctions require the
magnetic charge of a monopole to satisfy the quantization condition

§=Ngy, n =0, 41, £2 ...
gD = 1/29 = 699-

However, one 13 not required to have Dirac monopoles Iin the theory--you
can take 'em or leave ‘'em! In 1974 't Hooft®!' and Polyakov®?
independently made a remarkable discovery. They showed that monopoles
are obligatory in the low~energy theory whenever a semi-simple group G,
e.g., SU(5), breaks down to a group G' x U(1) which contains a u()
factor [e.g., SU(3) x SU(2) x U(1)]; this, of course, 1s the goal of
unification; These monopoles are associated with nontrivial topology in
the Higgs fleld responsible for SSB, topological knots if you will, have

4 mass mﬁ = 0(M/a) [® 10'® GeV in SU(5); M = scale of SSB], and have a
magnetic charge which is a multiple of the Dirac charge.

Since there exist no contemporary sites for producing particles of
mass even approaching 10'® GeV, the only plausible production site is
the early Universe, about 10"%* s after 'the bang' when the temperature
was # 0(10'* GeV). There are two ways in which monopoles can be
produced: (1) as topological defects during the SSB of the unified group
G; (2) in monopole~antimonopole pairs by energetic particle collisicns.
The first process has been studied by Kibble®?, Preskill®", and

Zel'dovich and Khlopov®®, and I will review their important conclusions
here.

The magnitude of the Higgs field responsible for the SSB of the
unified group G is determined by the minimization of the free energy.
However, this does not uniquely specify the direction of the Higgs field
in group space. A monopole corresponds to a configuration in which the
direction of the Higgs field in group space at different points in
physical space is topologically distinct from the configuration in which
the Higgs field points in the same direction (in group space) everywhere
in physical space {which corresponds to no monopole) :

+ = direction of Higgs field in group space

*

+ + ¢ . + +
4+ 4+ ¢ +
no monogole monogole

Clearly monopole configurations cannot exist until the 3SB [G+ G
x U(1)] transition takes place. When spontaneous symmetry breaking
occurs, the Higgs field can only be Smoothly oriented (i.e., the no
monopole configuration) on scales smaller than some characteristic
correlation length £. On the microphysical side, the inverse Higgs mass
at the Ginzburg temperature (TG) sets such a scale: £ # m"‘(TG) (in a
second-order phase transition)®®, [The Ginzburg temperatﬂre is - the



temperature below which it becomes improbable for the Higgs fleld to
fluctuate between the SSB  minimum and ¢ = 0.] Cosmological
considerations set an absolute upper bound: § < d.,(* t in the standard
cosmology). [Note, even 1if the horizon distancg dH(t) diverges, e.g.,
because R « t® (n > 1) for t < t ., the physics horizon H ' sets an
absolute wupper bound on g, wh?%h is numerically identical.] On scales
larger than £ the Higgs field must be uncorrelated, and thus we expect
of order 1 monopole per correlation volume (= £®) to be produced as a
topological defect when the Higgs field freezes out,

Let's focus on the case where the phase transition is either second
order or weakly#first order. Denote the critical temperature for the
transition by T_ (= 0(M)), and as before the monopocle mass by
0{M/a). The age of -the Universe when T # T s given in the stagﬁap
cosmology by: t = 0.3 g*"/‘m 1/T 2, ef. _Egn. 1.12, For SU(5): T,
101%  Gev, = 101 Gev Bhd € = 10"°" s.'Due to the fact that®the
freezing of the Higgs field must bec uncorrelated on scales 2> f, we
expect an initial monopole abundance of 0(1) per correlation volume;
using d,(t ) as an absolute upper bound on £ this leads to: (ng)% ®0(1)

n h

t 2. tomParing this to our fiducials S and Ny oo, we fi at the
Humber ratios are:

ifiitial monopele~to~entropy and monopoler?grbaryog

d
=

ny/s 2 102 (Tc/mpl)’, (3.1a)
My/ng 2 1012 (Ty/my;)° . (3.1b)
[Note: <F_,>, the average monopole flux in the Universe, and @, the
fraction oy eritical density contributed by monopoles, are related to
Ny/s and ny/ng by:
Fy> # 1ol°(nM/3) em 2 sr ! sec’! , (372a)
® (ny/ng) em * sr! sec”! , (3.2b)
Qyh? # 102“(nM/s)(mM/10"GeV) , (353a)
= 101 <F>(my/101°GeV) (3.3b)
where the monopole velocity has been assumed to be & 107 % (this
assumption will be discussed in detail later).
Preskill®* has shown that unless /s is > 107 1®

monopole~antimonopole annihilations do not significantly reduce the
initial monopole abundance. If n,/s > 10 '°, he finds that /s 1is
reduced to = 107!° by annihilations. For T ¢ 10'3 GeV our estimate for
n,/s is < 107'°%, and we will find that in tfe standard cosmology T must
be << 10'% (CeV to have an acceptable monopole abundance, so for our
purposes we can ignore annihilations, Assuming that the expansion has
been adiabatic since T & TC' this eatimate for nM/S translates into:

Fy> & 10" ° (T /10" GeV)? em 2 sr’? 871, ' (3.4a)

nﬁ R 1011 (To/101* GeV)® (my/10%¢ GeV) (3.4p)

Hmg fluk that would make any monobole hunter/huntress ecstatic, and an

0., that 1s wunacceptably large (except for T _ << 10'* GeV). As was
dﬁscussed previously, 1 can be at most O(few), so Wwe have a very big



problem with the simplest GUTs (in which T_# 10'* GeV). This is the
so~called 'Monopele Problem'. The statement thgt &, & 10!t for T, = 10"
GeV is a bit imprecise; clearly if k < 0 (corresponding to § < 1)
monopole production cannot close the Universe (and in the process change
the geometry from being infinite in extent and negatively-curved, to
being finite 1in extent and positively=curved). More precisely, a large
monopole abundance would result in the =~ Universe becoming
matter-dominated much earlier, at T & 10? GeV (T ,s10!* GeV)® (m,/10'®
GeV), and eventually reaching a temperature of 3 K St the young age of ¢
F 10 yrs(T /101 Gev)™*/? (my/10%¢ GeV)™'/2, The requirement that Ry <
O(few) impligs-that : :

T, ¢ ?0" GeV (Qy < few)

where I have taken to be 0(100 T ). Note, given the generous estimate
for E, even this 1s probably not”safe; if one had a GUT in which Tc &
10! GeV a more careful estimate Tor £ would be called for.

The Parker bound (to be discussed below) on the average monopole

flux in the galaxy, <F> ¢ 107'% cm 2 sr™! s7!, results in a slightly
more stringent constraint:

T, £ 10'° GeV (Parker bound)

The most restrictive constraints on T follow from the neutron star
catalysis bounds on the monopole flux (afso to be discussed below) and
the most restrictive of those, <F> ¢ 10727 em"2 sr”! 57!, implies that

Tc < 10% GeV (Neutron star catalysis bound)
Note, to obtain these bounds I have compared my estimate for the
average monopole flux in the Universe, Eqn. 3.4a, with the astrophysical
bounds on the average flux of monopoles in our galaxy. If monopoles
cluster in galaxies (which I will later argue is unlikelz), then the
average galactic flux of monopoles is greater than the average flux of
monopoles in the Universe, making the above bounds on T more
restrictive. ¢

If the GUT transition is strongly first order (I am excluding
inflationary Universe scenarios for the moment), then the transition
will proceed by bubble nucleation at a temperature T_ (<« Tc)' when the
nucleation rate becomes comparable to the expansion rate H. Within each
bubble the Higgs field is correlated; however, the Higgs  field 1in
different bubbles should be uncorrelated. Thus one would expect 0(1)
monopole per bubble to be produced. When the Universe supercools to 'a
temperature T _ bubbles nucleate, éxpand, and rapidly fill all of space;
if r_is the gygical size of a bubble when this occurs, then one expects

o be & r Y. After the bubbles coalesce, and the Universe reheats,
ERe entropy dengity is once again s ® g, T *, a0 that the resulting
monopole to entropy ratio 1is: ny/s & (8ery.*T 2)"'. Guth and Weinberg®’

have calculated ry and find that ry & (mglf c* /1ln(d l*ch”), leading to
a relatively accurate estimate for the mbrnopdle abunfiance:

n/s ¥ [ln(mpl‘/Tc”)(Tc/mpl)]’ , (375)

which 13 even more disasterous than the estimate for a second order
phase transition [recall, however, estimate 3.1 was an absolute lower
bound]. :



The bottom line 1s that we have a serious problem here-—the
standard cosmology extrapolated back to T ®# T and the simplest GUTs are
incompatible (to say the 1least), One (or ®both) must be modified.
Although this result 1is discouraging (especially when viewed in the
light of the great success of baryogenesis), it does provide a valuable
plece of information about physics at very high energies and/or the
earliest moments of the Universe, in that regard a 'window' to energies
> 10** GeV and times ¢ 10" sec,

A number of possible solutions have been suggested. To date the
most attractive is the new inflationary Universe scenario (which will be
the subject of Lecture 4). In this scenario, a small region {size < the
horizon) within which the Higgs field could be correlated, grows to a
size which encompasses all of the presently observed Universe, due to
the exponential expansion which occurs during the phase transition. This
results in less than one monopole in the entire observable Universe (due
to Kibble production},

Let me very briefly review some of the other attempts to solve the
monopole problem. Several people have pointed out that if there is no
complete unification [e.g., 1f G = H x U(1)], or if the full symmetry of
the GUT is not restored in the very early Universe (e.g., if the maximum

temperature the Universe reached was < T , or if 'a large lepton

number®®,  n / > 1, prevented symmetry restoration at high
temperature), thén there-would be no monopole problem. However, none of
these possibilities seems particularly attractive.

Several authors®® €2 have studied the possibility that
monopole-antimonopole annihilation could be enhanced over Preskill's
estimate, due to 3-body annihilations or the gravitational clumping of
monopoles (or both). Thus far, this approach has not solved the problem.

Bais and Rudaz®?® have suggested that large (fluctuations in the
Higgs field at temperatures near T  could allow the monopole density to
relax to an acceptably small valué&. They do not explain how this
mechanism can produce the acausal correlations needed to do this.

Scenarios have been suggested in which monopoles and antimonopoles
form bound pairs connected by flux tubes, leading to rapid
monopole~antimonopole annihilation. For example, Linde®* proposed that
at high temperatures color magnetic charge is confined, and Lazarldes
and Shafi®% proposed that monopoles and antimonopoles become c¢onnected
by Z° flux tubes after the SU(2) x U(1) SSB phase transition. In both
cases, however, the proposed flux tubes are not topologically stable,
nor has their existence even been demonstrated.

Langacker and Pi®® have suggested a solution which does seem to
work. It is based upon an unusual {although perhaps contrived} symmetry
breaking pattern for SU(5):

SU(5) + SU(3) x SU(2) x U{1) » SU(3) =+ SU(3) x U(1)
Tc E 10" GeV T

superconducting phase

{note T, could be equal to T ), The key feature of their scenaric is the
existence of the epoch (T ‘& T, =+ T,) in which the U(1) of
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electromagnetism 1s spontaneously broken {a superconducting phase);
during this epoch magnetic flux must be confined to flux tubes, leading
to the annihilation of the monopoles and antimoncpoles which were
produced earlier on, at the GUT transition, Although somewhat contrived,
their scenario appears to be viable (however, 1'l1 have more to say
about 1t shortly).

Finally, one could invoke the Tooth Fairy (in the guise of a
perfect annihilation scheme). E. Weinberg®’ has recently made a very
interesting point regarding ‘'perfett annihilation schemes', which
applies to the Langacker-Pi scenario®®, and even to a Tooth Falry which
operates causally. Although the Kibble mechanism results in equal
numbers of monopoles and antimonopoles being produced, E. Weinberg
points out that in a finite volume there can be magnetic’ charge
fluctuations. He shows that if the Higgs field 'freezes out' at T # T
and is uncorrelated on scales larger than the horizon at that time, the
the expected net RMS magnetic charge in a volume V which is much bigger
than the horizon is

b, & (V/tc’)‘/’. (3.6)

He then considers a perfect, causal annihilation mechanism which
operates from T = T, + T, (e.g., formation of flux tubes between
monopoles and antimonopoles). At best, this mechanism could reduce the
monopole abundance down to the net RMS magnetic charge contained in the
horizon at T = T,, leaving a final monopole abundance of

Ny/s & 10% T,T,*/m,*, (3.7

resulting in
@y 2 0.1(T /10" GeV)(my,/10* GeV)(T,/10° GeV)?, (3.8a)
<Fy> 2 1071 *(T _/101*GeV)(T,/10°GeV)2cm *sr 's"'. (3.8b)

It i3 difficult to imagine a perfect annihilation mechanism which could
operate at temperatures < 10* GeV, without having to modify the standard
SU(2) x U{1) electroweak theory; for T # 10'* GeV and T, = 10°® GeV, E.
Weinberg's argument®’ implies that <F.> must be >10 2% em? sr’! 87,
which would be in conflict with the most stringent neutron star
catalysis bound, F, < 10727 em™2 ar”! s7!,

Finally, I should emphasize that the estimate of nM/s based upon £
< dy(t) 1s an absolute (and very generous) lower bound to ny,/s. Should a
model be found which succeeds in suppressing the monopole abundance to
an acceptable level (e.g., by having T << 10'* GeV or by .a perfect
annihilation epoch), then the estimate f6r £ must be refined and
scrutinized.

If the glut of monopoles produced as topological defects in the
standard cosmology can be avoided, then the only production mechanism is
pair production in very energetic particle collisions, e.g., particle(s)

+ antiparticle(s) -+ monopole + antimonopole. [Of course, the 'Kibble '

production' of monopoles might be consistent with the standard cosmology
(and other 1limits to the monopole flux) if the SSB transition occurred
at a low enough temperature, say << 0(10!°® GeV).] The numbers produced
are intrinsically small because monopole configurations do not exist in



the theory until SSB occurs (T _ = M = gcale of SSB), and have a mass
0(M/a) # 100 M # 100 T_, For this reason they are never present In
equilibrium numbers; “however, some are produced due to the rare
collisions of particles with sufficient energy. This results in a
present monopole abundance of %87 7°

Dy/s = 107 (my/Tpay)® explr2my/Tpay), (3.9a)
QM = 102‘(mM/10“GeV)(mM/Tmax)’exp(~2mM/Tmax). {3.9b)
<Fy> & 10'2om 2or '™ (my /T 3P exp(r2my /Ty ), (3.9¢)

where Tmax is the highest temperature reached after S3B.

In general, my/T

- “wo
max = 0(100) so that @y & 0(10 ) and <F,> ¢

0(107%2 em™2 gr”! 87!)-ra negligible number of monopoles. However, the
number produced is exponentially sensitive to /Tm , 80 that a factor
of 3~5 uncertainty in m /T introduces an enormous uncertainty in the
predicted production, For example, in the new inflationary Universe, the
monopole mass can be « the Higgs field responsible for SSB, and as that
field oscillates about the SSB minimum during the reheating proceas
also osclllates, 1leading to enhanced monopole production [m, /T in

Eqns. 3.9a,b,c is replaced by fmy/Tm where £ < 1 depends upon the
detalls of reheating; see refs, 71, 7§j.

Cosmology seems to leave the poor monopole hunter/huntress with two
tirm predictions: that there should be equal numbers of north and south
poles; and that either far too few to detect, or far too many to be
consistent with the standard cosmology should have been produced. The
detection of any superheavy moncpoles would necessarily send theorists
back to their chalkboards!

From Birth Through Adolescence {tF107*“sec to t#3x10'7sec)

As mentioned in the previous section, monopoles and antimonopoles
do not annihilate in significant numbers; however, they do interact with
the amblent charged particles (e.g., monopole + e~ ++ monopole + e*) and
thereby stay in kinetic equilibrium (KE # 3T/2) until the epoch of e*
annihilations (T # 1/2 MeV, t # 10 8). At the time of et annihilations

monopoles and antimonopoles should have internal velocity dispersions
of:

<yM2>l/2 # 30 cm 87! (?0“ GeV/mM)l/z?

After this monopoles are effectively collisionless, and their
velocity dispersion decays « R(t)"!, so that if we neglect gravitational
and magnetic effects, today they should have an internal velocity
dispersion of

<v'r“|=>l/2 # 107 cm 87 (10'® GeV/mM)lfz.

Since tﬁey are collisionlesa, only their velocity dispersion can support
them against gravitational collapse. With such a small velocity
dispersion to support them they are gravitationally unstable on all

" ™10
scales of astrophysical interest (lJeans & 10 LY)T
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After decoupling (T = 1/3 eV, t # 10'* s8) [or the epoch of matter
domination in scenarios where the mass ¢f the Universe i3 dominated by a
nonbaryonic component], matter can begin to clump, and structure can
start to form, Monopoles, too, should clump and participate in the
formation of structure. However, since they cannot dissipate their
gravitational energy, they cannot collapse into the more condensed
objects (such as stars, planets, the disk of the galaxy, ete.) whose
formation clearly must have involved the dissipation of gravitational
energy. Thus, one would only expect to find monopoles in structures
whose formation did not require dissipation (such as clusters of
galaxies, and galactice haloes). However, galactic haloes are not 1likely
to be a safe haven for monopoles in galaxies with magnetic fields;
monopoles less massive than about 10%° GeV will, in less than 10'% yrs,
gain sufficient KE from a magnetic field of strength a few Xx'107% G to
reach escape velocity”®., We are led to the conclusion that initially
monopoles should either be uniformly distributed through the cosmos, or
clumped in clusters of galaxies or in the haloes of galaxies with weak
or non+existent magnetic filelds. Since our own galaxy has a magnetic
field of strength # few x 107% G, and is not a member of a cluster of
galaxies, we would expect the local flux of monopoles to be not too
different from the average moncpole flux in the Universe.

Although monopoles initially have a very small internal velocity
dispersion, there are many mechanisms for increasing their velocities.
First, typical peculiar velocities (i.e., velocities relative to the
Hubble flux) are 0(107* ¢), leading to a typlical monopole-galaxy
velocity of 10”%*c. Monopoles will be accelerated by the gravitational
fields of galaxies (to & 107® c & orbital velocity in the galaxy), and
if they encounter them, clusters of galaxies (to # 3 x 10°* e). A
typical monopole, however, will never encounter a galaxy or a cluster of
galaxies, the respective mean free paths being: Lgal (& 102% em # 10" 2 ¢

x age of the Universe) and L F 3 x 10%®% om.

cluster

Monopoles will also be accelerated by magnetic flelds. The
intragalactic magnetic field strength is < 3 x 10°'' G (ref. 74), and
results in a monopole velocity of

Vy 3 X 10’" c (3/10’1' G)(jo" GeV/mM)T
The galactic magnetic field will accelerate'monopoles in our galaxy to
velocities of7?

vy F 3 x 107 ¢ (10% GeV/mM}l/zt

Taking all of these 'sources of velocity' into account, we can make
an educated estimate of the typical monopole~detector relative velocity
(see Table 3.1). From Table 3.1 below it should be clear that the
typical monopole should be moving with a velocity of at least a few x
107? ¢ with respect to an earth-based detector. It goes without saying
that 'this fact' 1s an important consideration for detector design.

Although planets, stars, etc. should be monopole-free at the time
of their formation, they will accumulate monopoles during their
lifetimes, The number captured by an object is



NM = (4nR2)(n=sr)(1 + 2GM/RVM3)<FM)ET, (3.10)

Table 3.1 Typlcal Monopole~Detector Relative Velocltles

DETECTOR VELOCITY MONOPOLE VELOCITY
orbit in 2/3 x 107 ¢ galactic 3 x 107% ¢ (10“GeV/mM)1/’
galaxy ' B~field
orbit in 107" ¢ grav. acceleration 1072 ¢
solar system - by galaxy '
grav. acceleration 107 ¢
by sun :
monopole-galaxy 107 ¢

relative velocity

where M, R and t are the mass, radius and age of the object, v, is the
monopolée velocity, and € is the efficiency with which the objec% astops
monopoles which strikes its surface. The efflciency of capture e depends
upon the mass and velocity of the monopole, and its rate of energy 1loss
in the object. The quantity (1 + 2GM/R v_2) is just the ratio of the
capture cross section to the geometric cross section. Main sequence
stars of mass (0.6 - 30)M, will capture monopoles less massive than
about 10'* GeV with velocities < 10 * ¢ with good efficiency (e ¥ 1); in
its main sequence lifetime a star will capture approximately 10%* F_,.
monopoles’® (essentially independent of its mass). Here <F» = F_,,
10718 om 2 sr"! 57!, Neutron stars will capture monopcles less massive
than about 102° CeV with velocities < 10 ° ¢ with unit efficlency,
capturing about 102' F_ . monopoles in 10'° yrs. Planets like Jupiter
can stop monopoles less massive than about 10'® GeV with velocities <
107*, accumulating about 1022 F_ . monopoles in 10'® yrs.”’®. A planet
like the earth can only stop light or slowly-moving monopoles’® (for

= 10'® GeV, v, must be < 3 x 10 ° ¢). Once inside, monopoles can do
interesting things, like catalyze nucleon decay (to be discussed below),
which keeps the object hot (and leads to a potentially observable photon
flux), and eventually depletes the object of all its nucleona. A
monopole flux of F_,, ]’{)”“'cm—2 sr ' 87! will cause a neutron star to
evaporate in 1Q'' F_,, '“? yrs, a Jupiter-like planet to evaporate in 5
X 19‘; F‘_u‘/z yrs, and an Earth-like planet to evaporate in 10*
F_,, '“? yrs””. Accretion of monopoles by astrophysical objects,
however, does not significantly reduce the monopole flux; the mean free
path of a monopole in the galaxy is * 10*? cm.

What are Monopoles Doing Today?~—-Astrophysical Constraints

The three most conspicuous properties of a GUT monopole are: (i)
macroscopic mass (® M/q-~10'® GeV = 107? g for SU(5)}); (ii) hefty
magnetic charge h 2 n 6%e (n = 1, 2, ...); (1ii) the ability to
catalyze nucleon decay. Because' of these properties, monopoles, If
present, should be doing very astrophysically interesting things
today-~30 interesting and so conspicucus that very stringent
astrophysical bounds can be placed upon their flux (summarized in Fig.
3.1).
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Theoretical prejudice strongly favors the flat cosmological model
(i.e., ® & 1). As I discussed in Lecture 1 big bang nucleosynthesis
atrongly suggests that baryons contribute 2 < 0.,15. In addition, the
flat rotation curves of galaxies provide strong evidence that most of
the mass associated with a galaxy is dark and exists in an extended
structure (most likely a spherical halo). Monopoles are certainly a
candidate for the dark matter in galaxies and for providing the closure
density.

As I discussed in the first lecture the age of the Universe implies

that @h®* < 0(1); if monopoles are uniformly distributed in the cosmos,
then this constrains their average flux to be

<FM> < ?o”‘“ cm-’srh’s”‘(mM/?oas Gev)™t, (3111)

cf. Eqn; 3.3b. For comparison 10™'* em2 s s7' & 30 monopoles
{soccerfield)™ yr.m! '

If monopoles are clustered in galaxies the local galactic flux can
be significantly higher. The mass density in the neighborhood of the sun
is about 1072% gecm™?; of this about 1/2 is accounted for (stars, gas,
dust, ete,). Monopoles can at most provide the other 1/2, resulting in
the flux bound - ‘

Fyy €5 % !o"° em 2 srt 37! (mM/Tols Gev)": (3f12)

Actually the bound is probably at least a factor of 10~30 more
stringent. The unseen material has a column density (= fpdz) of no more
than about (30 kpe)(10°2% gem™®) (as determined by studying the motions
of stars in the stellar neighborhood’®). Since monopoles are effectively
collisionless, if present, they would be distributed iIin an extended
spherical halo. Flat rotation curves indicate that the scale of galactic
halos is 0(30 kpe), so that the local column density of halo material 1s
p?alo x 30 kpe. Comparing this to the bound on the 1Ecal colugn density
of “unseen material it follows that locally Phalo $ 10 2% g om 3. Using
this as the limit to the density contributed Eyomonopoles the flux bound
3.12 becomes

“11pam Zap' lag 1 18 51
Fy ¢ 10 "tom *srts (mM/10 GeV) " - (3.13)

A monopole by virtue of its magnetic charge will be accelerated by
magnetic fields, and in the process can gain KE. Of course, any KE
gained must come from somewhere. Any gain in KE is exactly compensated
for by a loss in field energy: AKE = ~A[(B%/8n) x Vol]. Consider a
monopole which 1s initially at rest in a region of uniform magnetic
field. It will be accelerated along the field and after moving a
distance & the monopole will have

KE = hBL # 10''GeV(B/3x107%G)(£/300pc), (3.14)
/2
VmagF (ZhBE/mM)'
# 3%10730(B/3x107%G) /2 (2/300pe) /2 (10" Gev/m,) 1 2. (3.15)
If the monopole is not initially at rest the story 1s a bit

different. There are two limiting situations, and they are characterized

by the relative sizes of the initial velocity of the monopole, vo. and

2



the velocity Jjust calculated above, Vmag‘ Firat, if/the monopole is
moving slowly compared to v , Vo <K ¥ & (2nBe/m)'’?, then it will
undergo a large deflection dul@28o tRe magﬂggic field and its change in
KE will be given by 3.14., On the other hand, 1f v_ 5> v , then the
monopole will only be slightly deflected by the magnegic fi@fﬁ. and its
change in KE will depend upon the direction of its motion relative to
the magnetic field. In this situation the energy galned by a spatlally
isotropic distribution of monopoles, or a flux of equal numbers of north
and south poles will vanish at first order in B~some poles will lose KE
and some poles will gain KE. However, there is a net gain in KE at
second order in B by the distribution of monopoles as a whole:

<AKE> & (hBL) (vo/Vmag)z/u {per monopole). (3.16)
For the galactic magnetic field B # 3 x 10" G, & # 300 pc, and v &3
x 10 %c (10%¢ Gev/m)*”2, Since v_ # 10" ¢, monopoles less massi¥28than
about 107 GeV will undergo largeodeflections when moving through the
galactic field and their gain in KE is given by Eqn. 3.14., Because of
this energy gain, monopoles less massive than 107 GeV will be ejected
from galaxies in a very short time, and thus are unlikely to cluster in
the haloes of galaxies. In fact the second order gain in KE will
"evaporate" monopoles as massive as 0(102°GeV) in a time less than the
age of the galaxy’?. Although consideration of galaxy formation would
suggest that monopoles should cluster in galactic haloes, galactic
magnetic fields should prevent monopoles less massive than 0{10%° GeV)
from clumping in galactic haloes. [These conclusions are not valid if
the magnetic field of the galaxy is'in part produced by monopoles, a
point to which I will return.]

The "no free-lunch principle" (AKE = ~A Magnetic Field Energy) and
formulae 3.15 and 3.16 can be used to place a limit on the average flux
of monopoles' in the galaxy.”?:7%7°° If, as it is commonly believed, the
origin of the galactic magnetic field is due to dynamo action, then the
time required to generate/regenerate the field is of the order of a
galactic rotation time # 0¢(10® yr). Demanding that monopoles not drain
the field energy in a time shorter than this results in the following
constraints:

My < 1077 GeV:
' f < 107 fem2sr"tsT1(B/3 x 107¢ G) (3 x 107 yr/1) x
| (r/30 kpe)'/2 (300 pe/g)t’?, (3.17)
m, > 107 GeV:
F < 10—“cm_zsr#’s-‘(mM/10‘° GeV)(3x107yr/1) (300pc/L), (3.18)

where v has been assumed to be 10" ¢, T is the regeneration time of
the fiela, 2 1s the coherence length of the field, and r is the size of
the magnetic field region in the galaxy. Constraint 3.17 which applies
to 1015 GeV monopoles is very stringent (less than 3 monopoles soccer
field™! yrh‘) and is known as the "Parker bound." For more massive
monopoles (> 107 GeV) the "Parker bound" becomes less restrictive’®’”?
(because the KE gain 1s a second order effect); however, the mass
density constraint becomes more restrictive (cf. Fig. 3.1). These two
bounds together restrict the flux to be ¢ 1071 em 2 sr’t &"' (which is
allowed for monopoles of mass # 3 x 10'? GeV).



Analogous arguments can be applied to other astrophysical magnetic
fields, Rephaeli and Turner®' have analyzed intracluster (IC) magnetic
fields and derived a flux bound of 0(107'® em™? sr'! s™!) for monopoles
less massive than 0(10'® GeV). Although the presence of such fields has
been inferred from diffuse radlo observations for a number of clusters
(including Coma), the existence of IC fields is not on the same firm
footing as galactic fields. It is also interesting to note that the IC
magnetic flelds are sufficlently weak so that only monopoles lighter
than 0(10'® GeV) should be ejected, and thus {t i1s very likely that
monopoles more massive than 10'® GeV will cluster in rich clusters of
galaxies, where the local mass density is 0(10%*-10%*) higher than the
mean density of the Universe., Unfortunately, our galaxy is not a member
of a rich cluster. ‘

Several groups have pointed out that the 'Parker bound' can be
evaded if the monopoles themselves participate in the maintenance of the
galactic magnetic field.?*r22"e3 I sych a scenario a moncpole magnetic
plasma mode is excited, and monopoles only 'borrow the KE' they gain
from the magnetic field, returning it to the magnetic field a half cycle
later. In order for this to work the monopole oscillations must maintain
coherence; if they do not 'phase-mixing' (Landau damping) will cause the
oscillations to rapidly damp. The criterion for coherence to De
maintained is that the phase velocity of the oscillations v =
w_,(L/2n) be greater than the gravitational velocity dispersion o? the
mg%opoles (% 107 3%); ¢ = wavelength of the relevant mode & coherence

length of the galactic field < 1 kpe. The monopole plasma frequency is
glven by . :

wyy = (4mhiny/my) /2, (3.19)

where n, is the monopole number density. The condition that v, be 2
107 %¢ implies a lower bound to flux of P

FH 2 ?/H my Vérav (he)™2,
> 10-‘"(mM/m“GeV)(1kpc/1)=em’2sr“s"'. (3.20)

Incidently, this also implies an upper bound to the oscillation period:

T o= 2n/w_, < v = 3 x 10® yr (L/1kpc)--a very short time compared
to cther ggiactic %Eﬁgacales.‘

While it is possible that such scenarios could allow one to beat
the 'Parker bound', a number of hurdles remain to be cleared before
these scenarios can be called realistic or even viable. To mention a
few, monopole oscillations can always be damped on sufficiently small
scales (recall v, & (w,,/2r)), and nonlinear effects in this very
complicated syg%emﬁhcgupled electric and magnetic plasmas In a
self-gravitating fluld, tend to feed power from large scales down to
small scales. Can the coherence of the oscillations which is so crucial
be maintained both spatially and temporally in the presence of
inhomogeneities (after all the galaxy is not a homogeneous fluid)?

Finally, as the observational limits continue to improve, the large
monopole flux predicted in these models will be the ultimate test.
Already, the oscillation scenario for mM = 10'®* GeV 1is probably
observationally excluded. '

Ly



Perhaps the most intriguing property of the monopole iIs its ability
to catalyze nucleon decay with a strong interaction cross section: (ov)
# 1072° cm?®, Since the symmetry of the GUT is restored at the monopole
core, one 'would expect, on geometric grounds, that monopoles would
catalyze nucleon decay with & cross section # M2 & 107%¢ cm? (M"! =
size of monopole core)=swhich of course {3 utterly negligible. Rubakov®"
and independently Callan®® showed that due to the singular nature of the
potential between the shAwave of a fermlion and a monopcle, the fermion
wave function is literally sucked into the core (technically, one might
call this ‘'sewave sucking'), with the cross section saturating the
unitarity bound: {(ov) # (fermion energy)™2, or for low energies (gv) ¥
(fermion mass)” 2,

Needless to say, monopole catalysis has great  astrophysical
potential! For comparison, the nuclear reaction Up + *He + 2et + 2y
which powers most stars proceeds at a weak Iinteraction rate (first step?
p + p + D) and releases only about 0.7% of the rest mass involved, while
monopole catalysis proceeds at a strong interaction rate and releases
100% of the rest mass of the nucleon (e.g., M+ n+ M+ 1 + e’). The
energy released by monopole catalysis ~ fs 3 x ~ 10? erg s !
(av)bz.(p/TgemP’) per monopole; only about 10%° monopoles in the sun (=
10%7 nucleons) are needed to produce the solar luminosity (# 4 x 10%?
erg s"'). Here and throughout I will parameterize {(ov) by: :

(av) = {ov)_,, c 102° cm?,

Because of their awesome power to release energy via catalysis,
there can't be too many monopoles in astrophysical cbjects like stars,
planets, etc., otherwise the sky would be aglow in all wavebands from
the energy released by monopoles. [This energy released in catalysis
would be thermalized and radiated from the surface of the object.] The
measured luminosities of neutron stars (some as low as 3 x 10°° erg
8"!'); white dwarfs (some as low as 102?® erg s"!); Jupiter (10%2% erg
8"'); and the Earth (3 x 102° erg 8™') imply upper limits to the number
of monopoles in these objects: some neutron stars (< 102 (gv);;°
monopoles); some white dwarfs (< 10'® (gv),,,monopoles); Jupiter (g 102°

- 28 £
(av)_,, monopoles); and the Earth' (< 3 x 10'® (ov),;, monopoles),  In

order to translate these 1limits into bounds on the monopole flux and
abundance we need to know how many monopoles would be expected in each
of these objects. As I discussed earlier, ab initio we would expect very
few; those present must have been captured since the formation of the

object. The number is « Fy and is given by Eqn. 3.10; hence the limits
above ¢an be used to constrain the monopole flux. -

The most stringent limit on F,, follows from considering neutron
stars. A variety of technigues Mave been used to obtain limits to the
luminosities of neutron stars [recall the limit to the number of
monopoles 1is: N, < luminosity/(10'%erg s™' (ov)_,, (p/3x10**g cm *)1. I
will just discuss one. The other- techniques lead to similar bounds on'FM
and are reviewed in ref,86. )

PSR 1929 + 10 {s an old (® 3x10° yr), radio pulsar whose distance
from the' earth Is about 60 pec., The Einsteiln xrray observatory was used
to measure the luminosity of this pulsar, and it was determined to be L
= 3 x 10°° erg s"' corresponding to a surface temperature of about 30
eV, making it the coolest neutron star yet observed. In its tenure as a

neutron star it should have captured 10?7 F_,, monopoles. The measured
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luminosity sets a limit to the number of monopoles in PSR 1929 + 10, NM
< 1012 (ov)"l,,, which in turn can be used to bound <Fy>: '

Fy> ¢ 10721 (ev) ), om *srt s (3.21)

-

~~which is less than one monopole Munich™ yr™!|

The progenitors of neutron stars are main sequence {MS} atars of
mass (1-30)M_, wnich were either too massive to become white dwarfs
(WDs), or evo?ved to the WD state and were pushed over the Chandrasekhar
limit by accretion from a companion star. Freese etal.”’® have calculated
that MS stars in the mass range (1-30)MG will during their MS 1lifetime
capture (10”—10=’)F_;‘ monopoles (for v, & 10 ‘c and m, < 10'® GeV, and
depending on the star's mass). The progenitor of PSR 1929 + 10 should
have captured at least 10° times more monopoles than the neutron star,
and Freese etal.”® argue that it is likely that a fair fraction of them
should be retained in the neutron star, If we include these monopoles,
the bound improves significantly, to

Fy> < 10727 {ev)T! om 2srisT! (3.22)

=28

~~less than one monopole earth™! yr™'!

How reliable are these astrophysical bounds? The most stringent,
Eqn. 3.22, relies upon an additional assumption, that the monopoles
captured by the progenitor MS star make their way into the neutron star.
Both bounds (and all catalysis bounds) are « (gv)"'. If the cross
section for catalysis is not large, e.g., because the physics at the
core of the monopole does not violate B conservation (such is the case
for the Z, monopoles in SU(10))®*7*®*®, or because the Callan-Rubakov
calculation is incorrect, then the catalysis limits are not stringent.

In additicon there are astrophysical uncertainties. Hot neutron
stars radiate both Ys and vVs, but only the photons can be detected, The
ratio of these luminosities has been calculated for various neutron star
equations of state and was taken into account in deriving the catalysis
bounds. [For L, < 10°2 erg "', L is typically ¢ Ly; while for Ly 2
10°2 erg s ' L - can be (10°~10%) L., see Fig. 3.2.] Monopoles less
massive than aboul 10'* GeV may be- defledted away from neutron stars
with B flelds > 10'% G; monopoles inside neutron stars which have pion
condensates in thelr cores may be ejected by the sorcalled
'pion-slingshot effect’.®?

The strength of the neutron star catalysis bounds lies 1in the
number of different techniques which have been used, Individual objects
have been studied®® (PSR 1929 + 10 and 10 or 30 other old radio
pulsars); searches for bright, nearby x~ray point sourcea have been made
with negative results®' [the number density of old (* 10!® yrs) neutron
stars in our neighborhood should be > 1074 pc”, implying that there
should be 0(100) or so within 100 pc of the solar system & 1if due to
'monopole heating' their luminosities were > 102! erg s ! they would
surely have been detected]; the integrated contribution of o¢ld neutron
stars to the diffuse soft x-ray background has been used to limit the
average luminosity of an old neutron star (< 10*2 erg a ') and in turn
the monopole flux.?%:%'+%2 The three techniques just mentioned involve
different astrophysical assumptions and uncertainties, but all result in
comparable bounds to <FM>’ <Fy> & 10~ 2! (uv)ﬁlz, em™2 sr! 87!, Although
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Fig 3.2 The ratio of the total luminosity (= of a hot

neutron star to its photon luminosity as ; functYon of L... The
different curves represent different neutron star equations of
state: q (quark matter); =2, P (pion condensate); the rest are
more conventional equations of state (from ref. 86).



I will not discurs it here, the same analysis has been applied to WDs,®®
and results in a less stringent bound, <F.> < 2 X
107'¢(gv)7! ,om 2sr”'s”!, but more importantly one which involves a
different astrophysical system,

If monopoles catalyze nucleon decay with a large cross section,
(ov)_ not too much less than order unity, then, based upon the
astrophysical arguments, it seems certain that the monopole flux must be
small (<< 107*%*cm 2?sr"'sec”!). On the other hand, if the monopoles of
interest do not catalyze nucleon decay at a significant rate (for
whatever reason), then the 'Parker bound' is the relevant (and I believe
reliable) constraint, with the outside possibility that it could be
exceeded due to monopole plasma oscillations (-ka scenario which is very
astrophysically interesting!).

Monopole Hunting

There are two basic techniques for detecting a monopole: (1)
inductive ~ a monepole which passes through a 1loop will Induce’a
persistent current « h/L (L =~ inductance of the loop =« radius, for a
circular 1leoop); (2) energy deposition & a monopole can deposit energy
due to ionization [dE/dx = (10 MeV/em)(v/107%c)(p/1gem” )], or
indirectly by any nucleon decays it catalyzes. Method (1) has the
advantage that the signal only depends upon the ‘monopole's  magnetic
charge (and can be calculated by any first year graduate student who
knows Maxwell's equations), and ~furthermore because of 1ts unique
signature (step function in the current) has the potential for clean
identification. However, because the induced current « L”! « Area 12
the simplest loop detectors are limited In size to < 1m* (1m? x 27 ~ sr
x 1yr # 10'2 cm?® sr sec). In method (2) the detection signal depends
upon other properties of the monopole {(e.g. velocity, ability to
catalyze nucleon decay), and the calculation of the energy loss 1is not
so straightforward, as it involves the physics of the detector material.
However, it is very straightforward to fabricate very large detectors of
this type.

On 14 February 1982 using a superconducting loop Blas Cabrera
detected a jump in current of the correct amplitude for a Dirac magnetic
charge.®* His exposure at that time was about 2 x 10°* cm* sr s—rwhich
naively corresponds to an enormous flux (= 6 x 107'° cm 2 sr! g71),
especially when compared to the astrophysical bounds discussed above.
Sadly, since then his exposure has increased more than 100-fold with no
additional candidates.®® Ionization type searches with "exposures upto
10'* em sr s, sensitivities to monopole velocities 3 x 10"% » 3 x 1073
¢, and no candidates have been reported, Searches which employ large
.proton decay detectors to search for multiple, colinear proton decays
caused by a passing monopole with similar exposures (although these
searches are only sensitive to specific windows in the (ov) ~ v, space)
have seen no candidate events. [There is a bit of a Catech 22 here; If gv
1s large enough so that a monopole would catalyze a string of proton
decays in a proton decay detector ((ov)_,, * 0(1)), then _the
astrophysical bounds strongly suggest that <F,> < 10" 2! cm 2 sr 1 g™ ]
The most intriguing search done to date lnvolves the etching of a 1/2
Byr old piece of mica of size a few cm? (exposure & 10'® cm?® sr s).7* A
monopole passing through mica leaves no etchable track; however, a
monopole with a nucleus with Z > 10 (e g. Al) attached to it leaves an
etchable track. Unfortunately, the negative results of searches of this
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type imply flux 1limits « (probabllity of a monopole picking a nucleus
and holding on to it)7', However exposures of up to 10%? cm® sr s can
possibly be achieved, and if a track is seen, it would be a strong
candidate for a monopole. [Very thorough and excellent reviews of
monopole searches and searching techniques can be found in refs.97, 98.1

Concluding Remarks

What have we learned about GUT monopoles? (1) They are exceedingly
intereating objects, which, If they exist, must be reliecs of the
earliest moments of the Universe. (2) They are one of the very few
predictions of GUTs that we can attempt to verify and study in our low
energy environment. (3) Because of the glut of monopoles that should
have been produced as topological defects in the very early Universe,
the simplest GUTs and the standard cosmology (extrapolated back to times
as early as & 107** s) are not compatible. This is a very important
plece of information about physics at very high energles and/or the
earliest moments of the Universe. (4) There is no believable prediction
for the flux of relic, superheavy magnetic monopoles. (5) Based upon
astrophysical considerations, we can be reasonably certain that the flux
of relic monopoles is small, Since it 1s not obligatory that monopoles
catalyze nucleon decay at'a prodigious rate, a firm upper limit to the
flux is provided by the Parker bound’®, <F 5 ¢ 10" em™2 sr"t 8™,
Note, this Is not a predicted flux, it is gnly a firm upper bound to the
flux. It 1s very likely that flux has to be even smaller, say < 10“"
em™2 sr°! 57! or even 1072 em™? sr®! 5!, (6) There 1s every reasen to
believe that typical monopoles are moving with velocities {relative to
us) of at least a few x 10 % ¢. [Although it is possible that the
largest contribution to the local moncpele flux is due to a cloud of
monopoles orbiting the sun with velocities = (1 - 2) % 10 "% @, I think
that 1t is very unlikely 29,1007
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LECTURE 4 ~ INFLATION

As I have discussed in Lecture 1 the hot big bang model seems to
provide a reliable accounting of the Universe at least as far back as
1072 sec after 'the bang' (T < 10 MeV). There are, however, a number of
very fundamental ‘'cosmological facts' which the hot big bang model by
itself does not elucidate (although it can easily accomodate them). The
inflationary Universe paradigm, as originally proposed by Guth,'®! and
modified by Linde,'°? and Albrecht and Steinhardt,'®?® provides for the
first time a framework for understanding the origin of these
cosmological facts in terms of dynamics rather than just as particular
initial data. As we shall see the underlying mechanism of their solution
is rather generic-~the temporary abolition of particle horizons and the
production of entropy, and while inflation is the first realization of
this mechanism which is based upon relatively well~known physics
(spontaneous symmetry breaking (SSB) phase transitions}), it may not
prove to be the only such framework. I will begin by reviewing the
cosmological puzzles, and then will go on to discuss the new
inflationary Universe scenario.

Large~Scale Homogenelty and Isotropy

The observable Universe (d # H'! ® 10%® cm & 3000 Mpc) is to a high
degree of precision isotropic and homogenous on the largest scales 02
100 Mpe). The best evidence for this is provided by the uniformity of
the cosmic background temperature: AT/T < 10 * (107" if the dipole
anisotropy is interpreted as being due to our peculiar motion through
the <cosmic rest frame; see Fig. 1), Large-scale density
inhomogeneities or an anisotropic expansion would result in fluctuations
in the microwave background temperature of a comparable size (see, e.g.,
refs. 104, 105). The smoothness of the observable Universe 1is puzzling
if one wishes to understand it as a result of microphysical processes
operating in the early Universe. As I mentioned in Lecture {1 the
standard cosmology has particle horizons, and when matter and radlation
last vigorously interacted (decoupling: t = 10'* 5, T R 1/3 eV) what was
to become the presently observable Universe was comprised of & 108
causally-distinct regions. Put slightly differently, the particle
horizon at decoupling only subtends an angle of about 1/2° on the sky
today; how is it that the microwave background temperature is so uniform
on angular scales >> 1/2°?

Small-Scale Inhomogeneity

As any astronomer will gladly tell you on small scales (5 100 Mpe)
the Universe is very 1lumpy (stars, galaxies, clusters of galaxies,
etc.). [Note, today &p/p # 10® on the scale of a galaxy.] The uniformity
of '‘the microwave background on very small angular scales {£1°)
indicates that the Universe was smooth, even on these scales at the time
of decoupling (see Fig. 4.1). [The relationship between angle subtended
on the sky and mass contained within the corresponding length scale at
decoupling is: 8 ® 1* h(M/10'2M_)?/*,] Whence came the structure that is
so conspicuocus today? Once'mattgr decouples from the radiation and is
free of the pressure support provided by the radiation, small
inhomogeneiyies will grow via the Jeans (gravitational) Iinstability:
sp/p « t2'* « R (in the linear regime). [If the mass density of the
Universe is dominated by a collisionless particle species, e.g., a light
relic neutrino species, or axions, density perturbations’ in these



particles can begin to grow when the Universe becomes matter—dominated,
R=®3x10° Rtoday for gh? = 1.] Density perturbations of amplitude

8p/p ® 107* or sc, on the scale of a galaxy (® 10'? M_) at the time

of decoupling seem to be required to account fog the small~scale
structure observed today. Their origin, their spectrum (certainly
perturbations should exist on scales other than 10'%M_j  their nature
{adiabatic or {sothermal), and the composition of thg dark matter {see
ref. 3) are all crucial questions for understanding the formation of
stracture, which to date remain unanswered.

Flatness

The quantity @ = p/p_ measures the ratio of the energy density of
the Universe to the crigical energy density (p = 3H?*/8nG). Although Q
is not known with great precision, from Lecture ? we know that 0.01 < g

 few. Using Eqn. 1.5 & can be written as
Q= 1/(1 = x(t)), (4.1a)
x{t) = (k/R®)/(8nGp/3). (4,1b)

Note that Q@ is not constant, but varies with time since x(t) « R(£)® (n
= 1 ~ matter—-dominated, or 2 ~ radiation~dominated). Since 2 # 0(1)
today, x ay must be at most 0(1), This implies that at the epoch of
nucleosyﬁgﬂegis: Xa $ 107! and Q By = 1% 0(<107'®), and that at the
Planck epoch: x , < ?B” °and 2 ., = ? t 0(<107%°): That is, very early
on the ratio *of the curvatupé term to the denaity term was extremely
small, or equivalently, the expansion of the Universe proceeded at the
critical rate (H? .. = 8wGp/3) to a very high degree of precision. Since
x(t) has apparengiy always been < 1, our Universe is today and has been
in the past closely-described by the k = 0 flat model. Were the ratio x
not exceedingly small early on, the Universe would have either
recollapsed 1long age (k > 0), or began its coasting phase {k < 0) where
R« t. [If k <0 and x =1, then T = 3K for t & 300 yrs!] The
smallness of the ra%?g X required as an 'initial condition' for our

Universe is puzzling. [The flatness puzzle has been emphasized in refs.
101,106.] ‘

Predominance of Matter Over Antimatter

The puzzle involving the baryon number of the Universe, and 1ts

attractive explanation by B, C, CP violating interactions predicted by
GUTs has been discussed at length in Lecture 2.

The Monopole Problem

The glut of monopoles predicted in the standard cosmology ('the
monopole problem') and the lack of a compelling solution {other than
inflation) has been discussed in Lecture 3.

The Smallness of the Cosmological Constant

With the pessible exception of supersymmetry and supergravity
theorles, the absolute scale of the effective potential V(¢) is not
determined in gauge thecries (¢ = one or more Higgs field). At low
temperatures V{(¢) 1is equivalent to a cosmological term (li.e.,
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Fig. 4.1 Summary of measurements of the anisotropy of the
background on angular scales > 1' (from refs. 112, 113).
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contributes Vg to the stress energy of the Universe). The observed
expansion rate"¥f the Universe today (H # 50 - 100 km 8"} Mpe™') limits
the total energy density of the Universe to be € g(107** g em *) # 1074
GeV*. Thus empirically the vacuum energy of our T # 0 SU(3) x “U(1)
vacuum (= V(¢) at the SSB minimum) must be < 10 *® GeV*. Compare this to
the difference in energy density between the false (¢ = 0) and true
vacua, which is 0(T%) (Tc = sxmmetry restoration temperature): for T =
10" GeV, VSS /V(¢ = 0) ¢ 107'"*! At present there is no satisfact8ry
explanation ?or the vanishingly small value of the T # 0 vacuum energy
density (equivalently, the cosmological term).

Today, the vacuum energy is apparently negligibly small and seems
to play no significant role in the dynamics of the expansion of the
Universe. If we accept this empirical determination of the absolute
scale of V(¢), then (t follows that the energy of the false (¢ = 0)
vacuum is enormous (® T*‘  and thus could have played a significant role
in determining the dyngmics of the expansion of the Universe. Accepting
this very non-trivial assumption about the zero of the vacuum energy is
the atarting point for inflation (see Fig. 4.2).

Generijic New Inflation

The basic idea of the inflationary Universe scenario is that there
was an epoch when the vacuum energy density dominated the energy density
of the Universe. During this epoch p ® V & constant, and thus R(t) grows
exponentially (« exp (Ht)), allowing a small, causally-coherent region
(initial size ¢ H~ ') to grow to a size which encompasses the region
which eventually becomes our presentlyr~observable Universe. In Guth's
original scenario®®!, this epoch occurred while the Universe was trapped
in the fralse (¢ = 0) vacuum during a strongly first-order phase
transition. Unfortunately, In models which inflated enocugh (i1.e.,
underwent sufficient exponential expansion) the Universe never made "a
rgraceful return' to the usual radiation~dominated FRW cosmology.®*7 197
Rather than discussing the original model and 1ts shortcomings in
detail, I will instead focus on the variant, dubbed ‘'new inflation’,
proposed independently by Linde'®? and Albrecht and Steinhardt'®?®. In
this scenario, the vacuum~dominated epoch occurs while the region of the
Universe in question is slowly, but inevitably, evolving toward the
true, SSB vacuum. Rather than considering specific models in this
section, I will discuss new inflation for a generic model.

Consider a SSB phase transition which occurs at an energy scale M.,
For T 2 T, % M, the symmetric (¢ = 0) vacuum is favored, l.e., ¢ = 0'?3
the global miniﬁum of the finite temperature effective potential VT(¢)
(= free energy density). As T approaches Tc a second minimum develops at
¢ #0, and at T = T_ the two minima are degenerate. [I am assuming that
this SSB transitioﬁ is a firsteorder phase transition.] At temperatures
below T the SSB (¢ = ¢) minimum is the global minimum of Vp(d) (see
Fig. 4.2). However, the Universe does not instantly make the transition
from ¢ = 0°to ¢ = v; the details and time required are a question of
dynamics. [The scalar field ¢ 1is the order parameter for the SSB
transition under discussion; in the spirit of generality ¢ might be a
gauge singlet fileld or might have nontrivial transformation properties

under the gauge group, possibly even responsible for the SSB of the
GUT.]

Assuming a barrier existis between the false and true vacua, thermal
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fluctuations and/or quantum tunneling must be responsible for taking ¢
across the barrier. The dynamics of this process determine when and hou
the process occurs (bubble formation, spinodal decomposition, etc.) and
the value of ¢ after the barrier is penetrated. For definiteness sunpose
that the barrier is overccme when the temperature is T and the value
of ¢ 1s ¢ . From this point the journey to the true vacuum is downhill
(literally)”and the evolution of ¢ should be adequately described by the
semi~classical equations of motion for $:

§ +3H + T+ V' =0, (4.2)

where ¢ has been normalized so that its kinetic term in the Lagrangian
is 1/2 3 43Y4, and prime indicates a derivative with respect to ¢. The
subsorip% T on V has been dropped; for T << T_ the temperature
dependence of V_ can be neglected and the zero temperature potential (=
¥) can be uséd. The 3H¢ term acts like a frictional force, and arises
because the expansion of the Universe 'redshifts away' the kinetic
energy of ¢{( « R™?). The I'é term accounts for particle creation due to
the time-variation of ¢[refs, 108-110]. The quantity I' is determined by
the particles which couple to'¢ and the strength with which they couple
(r"! & lifetime of a ¢ particle). As usual, the expansion rate H |is
determined by the energy density of the Universe: (H? = 8nGp/3), with

p B /242 + V(e) + o, (4.3)

where p  represents the energy density in radiation produced by the time

variatibn of ¢. For TM% << T, the original thermal component makes a
o

negligible contributi to p? The evolution of Pp is given by

51,. + ‘alr. = l"&z. (4.4)

where the T'¢2 term accounts for particle creation by ¢.

In writing Eqns. 4.2~4.4 I have implicitly assumed that ¢ 1is
spatially homogeneous. In some small region (inside a bubble or a
fluctuation region) this will be a good approximation. The size of this
smooth region will be unimportant; take it to be of order the 'physiecs
horizon', H ', Now follow the evolution of ¢ within the small, smooth
patch of size H !,

If V is sufficiently flat somewhere between ¢ = ¢ and ¢ = o, then
¢ will evolve very slowly in that region, and the m8tion of ¢ will be
'friction-dominated' so that 3H$¢ * ~V' (in the slow growth phase
particle creation is not important!!?)., If V is sufficiently flat, then
the time required for ¢ to transverse the flat region can be long
compared to the expansion timescale H !, say for definiteness, 1, = 100
H ‘. During this slow growth phase p # V(¢) # V(¢ = 0); both p_ and 1/2
32 are << V(¢). The expansion rate H is then Jjust r :

H & (81rV(D)/3mp12)‘/’ (4.5)
7 ﬂé/mpl'

where V(0) 1s assumed to be of order Ms_ ywhile H & constant R grows
exponentially: R « exp(Ht); for t =100 H ' R expands by a factor of
e'®? during the slow rolling period,*and-the physical size of the smooth
reglon increases to e'®°H™', This exponential growth phase is called a
deSitter phase, :
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As the potential steepens, the evolution of ¢ quickens. Near $ = g,
¢ osclllates around the SSB minimum with frequency w: w? & V''(g) ® M_2
>> H? & Mg*/m, 2. As ¢ oscillates about ¢ = g its motion is damped ‘gy
particle cregiion and the expansion of the Universe., If I"? << H™?, the
coherent fleld energy density (V + 1/2 $2) is converted into radiation
in less than an expansion time (At H &1 '), and the patch is reheated
to a temperature T # O(M.) - the vacuum energy is efficiently converted
into radiation ('good “reheating'). On the other hand, if I'"! >> H ?,
then ¢ continues to oscillate and the coherent field energy redshifts
away with the expansion: (V + 1/2 $2) =« R™', [The coherent field energy
behaves like nonrelativistic matter; see ref, 111 for nmore details,]
Eventually, when t 2 I'"! the energy in radiation begins to dominate that
in coherent field oscillations, and the patch is reheated to a
temperature T & (r/H)'/‘MG A (rm_, )" ? <« MG ('poor reheating'). The
evolution of ¢ is summarized in Fig.pa.3. ' :

For the following discussion let us assume 'good reheating' (r >>
H)., After reheating the patch has a physical size e!°°H™? (& 10'7cm for
M. & 10'" GeV), is at a temperature of order M,, and in the
agproximation that ¢ was initially constant throughoug the patch, the
patch is exactly smooth, From this point forward the region evolves like
a radiation—dominated FRW model. How have the cosmological conundrums
been 'explalned'? First, the homogeneity and isotropy; our observable
Universe today (% 102®*cm) had a physical size of about 10 cm {= 102%cm x
3K/10'" GeV) when T was 10** GeV. Thus it lies well within one "of the
smooth regions produced by the inflationary epoch. At this peint
the inhomogeneity puzzle has not been solved, since the patch isa
precisely uniform. Due to deSitter space produced quantum fluctuations
in ¢, ¢ is not exaetly uniform even in a small pateh. Later, I will
discuss the density inhomogeneities that result from the quantum
fluctuations in ¢. The flatness puzzle involves the smallness of the
ratio of the curvature term to the energy density term., This ratio is
exponentially smaller after inflation: x(after) = g 200 x{before) since
the energy density before and after inflation is O(M*), while k/R? has
decreased exponentially (by e2°°), Since the ratio x “is reset to an
exponentially small value, the inflationary scenario predicts that today
@ should be 1 + 0(107BI ). If the Universe is reheated to a temperature
of order M., a baryon asymmetry can evolve in the usual way, although
the quantitgtive -HE%ETTE'IEE?""%E slightly different*®*?3°,  If the
Universe is not efficlently reheated (TRH << M,), it may be possible for
ng/s to be produced directly in the decay of the coherent field
o3cillations (which behave just 1ike NR ¢ particles). This is an example
of very outr~of#equilibrium decay (discussed in Lecture 2), in which case
the Np/s produced is « T H/(m 7 w)} and does not depend upon TR being
of ordér 10" GeV or so. In any¢case. it is absolutely necessary %o have
baryogenesis occur after reheating since any baryon number (or any other
quantum number) present before Inflation is diluted by a factor
(M-/Tya)® exp(3Ht,) ~ the factor by which the total entropy increases,
Note %ﬁat ir C, CP¢are violated spontaneously, then ¢ (and n,/s) could
have a different sign in different patchesreleading to a Unigerse which
on the very largest scales (>> e!®°H™!') is baryon symmetric.

Since the patch that our observable Universe lies within was once
(at the beginning of inflation) causally-coherent, the Higgs field could
have been aligned throughout the patch (indeed, this is the lowest
energy configuration), and thus there 1is 1likely to be < 1 monopole
within the entire patch which was produced as a topological defect,
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Fig. 4.3 The time evolution of ¢. During the slow growth phase the
time required for ¢ to change appreciably is >> H *. As the
potential steepens ¢ evolves more rapidly (timescale << H '),
eventually oscillating about the SSB minimum. Particle creation
damps the oscillations in a time # '™ (<<H™Y, if r>>H as shown
here) reheating the patch to T = minEMG, (pmpl)llzj.
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Fig. 4.4 Evolution of a galactic mass adiabatic density perturbation.



The glut of monopoles which occurs in the standard cosmology does not
ocour. LThe production of other. topological defects (such as domain
walls; etc.) is avoided for similar reasons.] As discussed in Lecture 3,
some monopoles will be produced after reheating in rare, very energetlic
particle collisions. The number produced is exponentially small and
exponentially uncertain. [In discussing the resolution of the monopole
problem I am tacitly assuming that the SSB of the GUT 1s occurring
during the SSB transition in question, or that it has already occurred
in an earlier SSB transition; if not then one has to worry about the
monopoles produced in the subsequent GUT transition.]

The key point is that although monopole production is intrinsically
small in inflationary models, the uncertainties in the number of
monopoles produced are exponential. Of course, it is also possible that
monopoles might be produced as topological defects in a subsequent phase
transition??*, although it may be difficult to arrange that they not be
overproduced.

Finally, the inflationary scenaric sheds no light wupon  the
cosmological constant puzzle. Although it can potentially successfully
resolve all of the other puzzles in my 1list, inflation is, 1in some
sense, a house of cards built upon the cosmologieal constant puzzle.

Density Inhomogeneities

Before I discuss the production of density inhomogeneities during
the inflationary transition I will briefly review some of the 'Standard
Lore'. [A more thorough and systematic treatment of the subject can be
found in ref. 105, and in Lecture 5.]

A density perturbation is described by 1its wavelength A or its
wavenumber k(= 2n/)), and its amplitude é&p/p (p = average energy
density). As the Universe expands the physical (or proper) wavelength of
a given perturbation also expands; It |is useful to scale out the
expansion so that a particular perturbation is always labeled by the
same comoving wavelength A_ = A/R(t) or comoving wavenumber k., = kR(t).
[R(t) TS often normalized 88 that R = 1.] Even more common is to
label a perturbation by the 00589§X5 baryon mass (or total mass in
nonrelativistic particles if @  # Qn,p) within a half wavelength M = m\?
anNIG (nB = net baryon number dens??y, my = nucleon mass). )

The relative sizes of A and H™? (= ‘'physics horizon' and particle
horizon also in the standard cosmology) are crucial for determining the
evolution of 8p/p. When i < H™! (the perturbation is said to be Inside
the horizon) microphysics can affect the perturbation. If A > AJ = VSH"
{physically Ay, the Jeans length, 1s the distance a pressure wave can

propagate in an expansion time; v vi sound speed) and the Universe is
matter~dominated, then §p/p grows « ¥2/1 ¢ R, Perturbations with 1 < Ag

oscillate as pressurer~suppoerted sound waves {and may even damp}.

When a perturbation is outside the horizon (i > H™*) the situation
is a" bit more complicated. The quantity §p/p is not gauge-invariant;
when A < H ! this fact creates no great difficulties. However when 1 >
H™' the gauge-noninvariance is a bit of a nightmare. Although Bardeen'?®
has developed an elegant gauge#invariant formalism to handle density
perturbations 1in a gauge-invariant way, his gauge invariant quantities
are not intuitively easy to understand. I will try to give a brief,
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intuitive description in terms of the gauge dependent, but more
intuitive quantity 4&p/p. Physically, conly real, honest-to-God wrinkles
in the geometry (called curvature fluctuations or adiabatic
fluctuations) can ‘'grow'. In the synchronous gauge (g,, = ~1, = 0)
Sp/p for these perturbations grows « t? (n =1 ~ radiation dominatéd =
2/3 - matter dominated), Geometrically, when A > H™' these perturbations
are Just wrinkles in the space time which are evolving kinematically

{since microphysical processes cannot affect their evolution). Adiabatic
perturbations are characterized by 8p/p ¢ 0 and &(n_/s) = 0; while
isothermal perturbations {which do not grow outsidg the horizon} are
characterized by §p/p = O and 5(nB/s) % 0., [With greater generality
8(n,/s) can be replaced by any spatial perturbation in the equation of
state 8p/p, where p = p{p, . . .).] In the standard cosmology H ! « t
grows monotonically; a perturbation only crosses the horizon once (see
Fig. 4.5). Thus it should be clear that microphysical processes cannot
create adlabatic perturbations (on scales > H “1) since microphysics only
operates on scales < K" In the standard cosmology adiabatic (or
curvature) perturbations were either there ab initio or they are not
present. Microphysical processes can c¢reate isothermal (or pressure
perturbations) on scales > H ! (of course, they cannot grow until A <
H™'), Fig. 4.4 shows the evolution of a galactic mass (& 10"M@)
adiabatic perturbation: for t < 10* s, A > H ' and ép/p « t; for’ 101
2t»10%*s,2<H "' and 8p/p oscillates as a sound wave since matter
and radiation are still coupled (vs # ¢) and hence AJ S H 1; for t >

10'* 8, A < H™! and §p/p « t2/* since matter and radiation are decoupled

(v, < e)andaj< A\Galaxy® [Note: in an 0 = ! Universe the mass inside

the horizon * (t/sec)’/’Mg,]

Finally, at this point it should be clear that a convenient epoch
to specify the amplitude of a density perturbation is when it crosses
the horizon. It is often supposed (in the absence of knowledge about the
origin of perturbations) that the spectrum of fluctuations is a power
law (i.e., no preferred scale):

(8p/p)y = eM @

If « > 0, then on some small scale perturbations will enter the horizon
with amplitude > 0(1)-~this leads to black hole formation; if this scale
is > 10'* g (mass of a black hole evaporating today) there will be too
many black holes in the Universe today. On the other hand, if a < 0 then
the Universe becomes more Iirregular on larger scales (contrary to
observation). In the absence of a high or low mass cutoff, the a = 0
(so~called Zel'dovich spectrum®'®) of density perturbations seems to be
the only 'safe' spectrum. It has the attractive feature that all scales
c¢ross the horizon with the same amplitude (i.e., it is scale-free). Such
a spectrum is not required by the observations; however, such a spectrum
with amplitude of 0(10™*) probably leads to an acceptable picture of
galaxy formation’ {i.e., consistent with all present
observations~~microwave background fluctuations, galaxy correlation
function, etec.; for a more detailed discussion see ref. 3.)

Origin of Density Inhomogeneities in the New Inflationary Universe

The basic result is that quantum fluctuations in the scalar field ¢
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(due to the deSitter space event horizon which exists during the
exponential expansion {iInflation) phase) give rise to an almost
scalerfree (Zel'dovich) spectrum of density perturbaticns of amplitude

(6p/p)y = (4 or 2/5)H A¢/$(t1), (4.6)

where U4 applies if the scale in question reenters the horizon when the
Universe is radiation-dominated and (8g/p), is then the amplitude of the
sound wave; 2/5 applies if the scale in question reenters the horizon
when the Universe is matter~dominated and (&p/p)., is then the amplitude
of the growing mode perturbation at horizon cross?ng; H i3 the value of
the Hubble parameter during inflation; $(t,) is the value of ¢ when the
perturbation left the horizon during the deSitter phase; and A¢ ~ H/2n
is the fluctuation in ¢. This result was derived independently by the
authors of refs. 117=120. "Rather than discussing the derivation in
detail here, 1 "will attempt to physically motivate the result, This
result turns out te be the most stringent constralint on models of new
inflation.

The cruclal difference between the standard cosmology and the
inflationary scenario for the evoluticn of density perturbations is that
H™! (the 'physies horizon'} is not strictly monotonic; during the
inflationary (deSitter) epoch it is constant. Thus, a perturbation can
cross the horizon (A = H ') twice (see Fig. 4.5)! The evolution of two
scales (A, = galaxy and A, = presently observable Universe) is shown in
Fig. 4.5. Bariier than t, {time when A_ # H ) Ag < E™' and microphysics
(quantum fluctuations, ete.) can operate on this scale. When t = t,
microphysics 'freezes out' on this scale; the density perturbation which
exists on this scale, say (8p/p),, then evolves 'kinematically' until it
reenters the  horizon at t == t {during the subsequent
radiation~dominated FRW phase) with ampukc'ude (8p/p)y.

DeSitter space 1is exactly timertranslationally~invariant; the
inflationary epoch is approximately a deSitter phase - ¢ is almost, but
not quite constant (see Fig. 4.3). [In deSitter space p + ¢ = 0; during
inflation p + p = $2,] This time-translation invariance is crucial; as
each scale leaves the horizon {(at t = t,} &p/p on that scale is fixed by
microphysics to be some  value, say, (8p/p),. Because of the
{approximate) timertranslation invariance of the inflationary phase this
value (5p/p), is (approxmately) the same for all scales. [Recall H, ¢, ¢
are all approximately constant during this epoch, and each scale has the
same physical size (= H ') when it crosses outside of the horizon.] The
precise value of (8§p/p), is fixed by the amplitude of the quantum
fluctuations in ¢ on the scale H }; for a free scalar field A¢ = H/2n
(the Hawking temperature)., [Recall, during inflation V'* (& the
effective masseaquared) i3 very small.]

While outside the horizon (t, <t ¢ t,) a perturbation evolves
'kinematically' (as a wrinkle in the geom@try); viewed in some gauges
the ampllitude changes (e.g., the synchronous gauge), while in others
(e.g., the uniform Hubble constant gauge) it remains constant. However,
in" all gauges the Kkinematic evolution 1is independent of scale
(intuitively this makes sense since this is the kinematic regime). Given
these ‘*two facts': (§p/p), & scale-independent and the kinematic

evolution & =scale~independent, it follows that all scales reenter the

horizon (at t = L ) with (approximately) the same amplitude, given by
Eqn. 4.6. Not %nly is this a reasonable spectrum (the Zel'dovich



spectrum), but this 1s one of the very few instances that the spectrum
of density perturbations has been calculable from first prineciples. [The
fluctuations produced by 8trings are another rich example, see, e.g.
ref, 121; however, in a string scenario without inflation the
homogenelty of the Universe must be assumed.]

Coleman~-Weinberg SU(5) Model

The first model of new inflation!®2s1°3  studied was the
Coleman~Weinberg SU(5) model, with T = 0 effective potential

V(¢) = 1/2 Bg* + Be*[2n(9%/0?) ~ 1/2], 4.7
& 1/2 Bo" ~ A(¢)e" (¢<<a)

where ¢ is the 24 dimensional fileld responsible for GUT SSB, ¢ 1s the
magnitude of ¢ in the SU(3) x SU(2) x U(1) SSB direction, B = 25g"/2567*
(g = gauge coupling constant), o # 1.2 x 10'® GeV, and for ¢ # 10° GeV,
A{¢) = 0.1. [V may not look familiar; this is because ¢ is normalized so
that its kinetic term is 1/2 ¢2 rather than the usual (15/4)432.]
Albrecht and Steinhardt!® showed that when T & 10° ~ 10® GeV the
metastability limit is reached, and thermal fluctuations drive ¢ over
the T-dependent barrier (height # T*) in the finite temperature
effective potential, Naively, one expects that ¢, # T, . since for ¢ << ¢
there {3 no other scale in the potential (this isM§ point to which I
will return). The potential is sufficiently flat that the approximation
3H} ® ~V' 1s-valid for ¢ << ¢, and it follows that

(¢/H)? = (3/2x)tﬂ(rqb - £, (4.8)

where Hrt, & (3/20)(H/¢,)* (recall 1, « time it takes ¢ to traverse the
flat port?on of the potential). Physigally, Ht, is the number of e-folds
of R which  occur during inflation, ¢ which to solve the
homogeneity-isotropy and flatness puzzles must be > 0(60). For this
model H & 7 x 10° GeV; setting ¢, = 10° ~ 10° GeV results in Hr #
0{500L50000) «~ seemingly more than sufficient inflation. ¢

There is however, a very basic problem here, Eqn, 4.8 1is derived
from the semi~classical equation of motion for ¢ [Eqn. 4.1], and thus
only makes sense when the evolution of ¢ is 'classical', that 1s when
$>24¢ (= quantum fluctuations in ¢). In deSitter space the scale of
quantS% fluctuations 1s set by H: A¢., & H/2n (on the length scale H *).
Roughly speaking then, Eqn. 4.8 “is only valid for ¢>>H. However,
sufficient inflation requires ¢, ¢ H. Thus the Coleman-Weinberg model
seems doomed for the simple reason that all the important physics must
occur when ¢ < A¢~y. This 1is basically the conclusion reached by
Linde'?? and~ Vilggkin and Ford'?* who have analyzed these effects
carefully. Note that by artificlally reducing x» by a factor of 10~100
sufficient inflation can be achieved ¢, >> H (i.e., the potential
becomes sufficiently flat that the classical part of the evolution, ¢ >>
H, takes a time > 60 H '). In the Coleman-Weinberg model I >> H and the
Universe reheats to T # MG'F 10" GeV,

Let's ignore for the moment the difficulties associated with the
need to have ¢, < H, and examine the question of density fluctuations.
Combining Eqns. 6 and 4.8 it follows that

@p/p)y & (4 or 2/5y100/201 + £n(M/10* M) /171 (4.9)
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+ an(ga/101% Gev)/57]%/ 2,

where M is the comoving mass within the perturbation. Note that the
spectrum 1s almost, but not quite scale-invariant (varying by less than
a factor of 2 from 1M, to 1022My = present horizon mass). Blindly
plugging in A = 0.1, results in (§p/p), # 0(102) which is clearly a
disaster. {On angular scales >> 1° the Zel'dovich spectrum results in
temperature fluctuations of?®"* AT/T & 1/2(8§p/p},, which must be < 10™* to
be consistent with the observed isotropy.] To obtain perturbations of an
acceptable amplitude one must artificially set A # 107'2 or so0. [In an
SU{5) GUT ) is determined by the value of ¢ g2/4n # 1/45, which
implies i1 & 0.1.] As mentioned earli%gT the density - fluctuation
constraint is a very severe one; recall that A % 1072 + 107? would solve
the difficulties associated with the quantum flvetuations in ¢. To say
the least, the Coleman~Weinberg SU(5) model seems untenable.

Lessons Learned-—A Presacription for Successful New Inflation

Other models for new inflation have been studied, including
supersymmetric models which employ the inverse hierarchy scheme,?"
supersymmetric/supergravity models'?“"*28 and just plain GUT models®?’
No model has led to a completely satisfactory new inflationary scenario,
some failing to reheat sufficiently to produce a baryon asymmetry,
others plagued by large density perturbations, etc. Unlike the situation
with 'old inflation' a few years ago, the situation does not appear
hopeless. The early failures have led to a very precise prescription for
a potential which will successfully implement new 1nf1ation.'2° Among
the necessary conditions are:

(1) A flat region where the motion of ¢ is !'frigtion~dominated',
i.e., "¢ term negligible so that 3H¢ = +V', This i.e., ¢ term negligible
S0 that 3H¢ = ~V'. This requires an interval where V" ¢ 9gH2.

(2) Denote the starting and ending values of ¢ in this interval by

and ¢ , respectively (note: ¢, must be . The 1length of the
1ﬁterval should be much greate? than H (which gets the scale of quantum
fluctuations in ¢): >> H. This insures that quantum fluctuations

will not drive ¢ acrogs ths flat region too quickly.

(3) The time required for ¢ to traverse the flat region should be >

60 H™* (to solve the homogenelty-isotropy and flatneas problems) This
implies that

%e

JHdy = hj¢ (3H2 d¢/V') » 60. (4.10)

3 : ..

(4) In order to achieve an acceptable amplitude for density

fluctuations, (8p/p), & H2/4(t,), ¢ must be # 10* H? when a galactlic

aize perturbation crosses outside the horizon. This occurs about 50
Hubble times before the end of inflation.

(5) Sufficiently high reheat temperature so that the Universe 1is
radiation~dominated at the time of primordial nucleosynthesis (t & 102
# 102 sec; T # 10 MeV ~ 0.1 MeV), and so that a baryon-asymmetry of -the
correct  magnitude can “evolve., As discussed earlier, the reheat
temperature is: ’

Tey - BiniMg, (rm;)*/2); (4211)



this must exceed min{10 MeV, where T, 1is the smallest reheat
temperature for which an acceptgble baryon agymmetry will evolve.

{6) The potential be part of a 'sensible particle physics' model.

These conditions and a few others which are necessary for a
succeasful implementation of new inflation are discussed i{n detail in
ref.128. Potentials which satisfy all of the constraints tend to be very
flat” (for a 1long run in ¢), and necessarily involve fields which are
very weakly coupled (self couplings < 10" '°; see Fig. 4.6). To insure
that radiative corrections do not -spoil the [flatness it i1s almost
essential that the field ¢ be a gauge singlet field.

Concluding Remarks

New inflation is an extremely attractive cosmological program. It
has the potential to 'free' the present state of the Universe (on scales
at least as large as 10%*® cm) from any dependence on the initial state
of the Universe, in that the current state of the observable Universe in
these models depends only upon microphysical processes which occurred
very early on (t < 90" ®%s), [I should mention that this conjecture of
'Cosmic Baldness'!?® is still just that; it has not been demonstrated
that starting with the most general cosmological solution to Einstein's
equations, there exist regions which undergoe sufficient inflation. The
conjecture however has been addressed perturbatively; prerminflationary
perturbations remain constant in amplitude, but are expanded beyond the
present horizon'®® and neither shear nor negative-~curvature can prevent
inflation from occurring!®?’. j

At present there exists no completely successful model of new
inflation. However, one should not despair, as I have just described,
there does exist a clear~cut and straightforward prescription for the
desired potential (see Fig. 4.6). Whether one can find a potential which
fits the prescription and also “predicts sensible particle physics
remains to be seen. If such a theory ls found, it would truly be a
monumerital achievement for the Inner Space/Outer Space connection.

Now for some sobering thoughts. The inflationary scenario does not
address the issue of the cosmological constant; in faet, the small value
of the cosmological constant today is its foundation. If some relaxation
mechanism is found to insure that the cosmological constant is always
small, the inflationary scenario (in its present form at least) would
vanish into the vacuum. It would be fair to point out that inflation is
not the only approach to resolving the cosmological puzzles discussed
above. The homogeneity, isotropy, and inhomogeneity puzzles all involve
the apparent smallness of the horizon. Recall that computing the horizon
distance

4 = R(t) JE atr/m(er) (4.12)

requires knowledge of R(t) all the way back to t = 0, If during an early
epoch (t < 10 “®s?) R increased as or more rapidly than t (e.g. t'°!),
then d, +' «, eliminating the 'horizon constraint'. The monopole and
flatness problems can be solved by producing large amounts of entropy
since Dboth problems Involve a ratio to the entropy. Dissipating
anisotropy and/or inhomogeneity is one possible mechanism for producing
entropy. One alternative to inflation is Plarick epoch physics. Quantum



"gravitational effects could both modify the behaviour of R{t) and
through quantum particle creation produce large amounts of entropy [see
e.B., the recent review in ref, 132].

Two of the key 'predictions' of the inflationary scenario, § = 1 +
0(10"BIG) and scale-invariant density perturbations, are such natural
and compelling features of a reasonable cosmological model, that their
ultimate verification (my personal bias here!) as cosmological facts
will shed little light on whether or not we 1live in an inflationary
Universe. Although the inflationary Universe scenario is not the only
game in town, right now it does seem to be the best game in town,
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LECTURE 5: FORMATION OF STRUCTURE IN THE UNIVERSE
Overview

On small scales the Universe todgguis very lumpy. For example, the
average density in a galaxy (%10 “'g cm *) i{s about 10° the average
density of the Universe. The average density in a cluster of galaxies
is about 100 times the average density in the Universe. Of course, on
very large scales, say »>> 100 Mpe, the Universe is smooth, as evidenced
by the 1isotropy of the microwave background, number counts of radio
sources, and the isotropy of the x-ray background.

The surface of last scattering for the 3K microwave background is
the Universe at 200,000 years after 'the bang', when T = 1/3 eV and R =
10°? Riogay = 10 * (it is convenient to set R .  =1). Thus the .u-wave
backgrounay is a fossil record of the Universe a%ythat very early epoch.
The isotropy of the p~wave background, §T/T < 0¢10”*) on angular scales
ranging from 1' to 180° (see Fig. 5.1), implies that the Universe was
smooth at that early epoch:. §p/p << 1. There is a calculable
relationship between &T/T and &p/p (which depends upon the nature of
density perturbations present -- type and spectrum), but typically

(8p/0)ppe = HST/T) & 0(10°2-107), (5.1)
where # i3 0(10-100); for the detailed calculations I refer the
interested reader to refs. 133-136.

So, the Universe was very smooth, and today it is very lumpy -- how
did it get to here from there?? For the past decade, or =20 cosmologists
have had a general picture of how this took place: small density
inhomogeneities present initially grew via the Jeans, or gravitational
instability, into the large inhomogeneities we observe today, 1i.e.,
galaxies, clusters of galaxies, gte. After decoupling, when the
Universe is matter-dominated and baryons are free of the pressure
support provided by photons, density inhomogeneities in the baryons and
other components grow as

R . sp/p <1
Sp/p = (5.2)
> R? Splp 21

The isotropy of the pu-wave background allows for perturbations as large
as 10°2% - 10”? at decoupling, and the cosmic scale factor R(t) has grown
by slightly more than a factor of 10* since decoupling, thus it is
possible for the large perturbations we see today to have grown from
small perturbations present at decoupling. This is the basi¢ picture
which is generally accepted as part of the 'standard cosmology'. [For a
detailed discussion of structure formation in the Universe, see
ref. 137.]

One would like to Fill in the details, so that we can understand
the formation of structure in the same detail that we do, say,
primordial nucleosynthesis. The formation of structure (or galaxy
formation as it 1is sometimes referred) began in earnest when the
Universe became matter-dominated [t = 3x10'%sec (nh’/a’)-’: T =
6.8eVv Rh2/8%*]; that is the time wheﬁqdensity perturbations in the milter
component can begin to grow. In order to fill 1in the details of



structure formation one needs the 'initial data' for that epoch; in this
case, they include: the total amount of non-relativistic stuff in the
Universe, guantified by ¢; the composition, {.e., fraction @ of the
various compenents [(i = baryons, relic WIMPs (weakly*iﬁteracting
massive particles), cosmological constant, relic WIRPs
{weaklyrinteracting relativistic particlea}]; spectrum and type (i.e.,
tadiabatic' or 'iscothermal’) of density perturbations initially present.
Given these 'initial data' one can construct a detailed scenario (e.g.,
by numerical simulation), which can then be compared to the Universe we
observe today.

I want to emphasize the importance of the 'initial data' for this
problem; without such, It 1s clear that a detalled picture of structure
formation cannot be put together. As I will discuss, it 1is 1in this
regard that the Inner Space/Quter Space connection has been 50 very
important in recent years. Events which we belleve took place during
the earliest moments of the history of the Universe and which we are
Just now beginning to understand, have glven us important hints as to
the 'initial data' for this problem. These hints include: @ # 1,0,
adiabatic density perturbations with the Zel'dovich spectrum (from
inflation); # 0.014 ~- 0.15 (primordial nucleosynthesis); the
possibility thag the Universe is dominated by a massive, relic particle
species (or WIMP) -~ see Table 5.1 for a list of candidates; and other
even more exotic possibilities ~~ topological stringa, isothermal axion
perturbations, a relic cosmological constant, and relativistic relic
particles, to mention a few. Because of these 'hints from the very
early Unlverse', the problem has become much more focused, and at
present two detalled scenarios exist ~- the 'cold dark matter' pleture
and the ‘hot dark matter' picture. Unfortunately, as I will discuas,
neither appears to be completely satlsfactory at present.

In the following subsections I will discuss: 'The Observed
Universe' -- the final test of any scenario is how well it reproduces
the observed Universe; the standard notation and definitions, assocciated
with discussing the evolution of density inhomogeneities in an expanding
Universe; the standard lore about the evolution of density
perturbations; the hot and cold dark matter scenarios; and finally, I'1ll
mention some of the pressing issues and current ideas.

The Observed Universe

The *'basic building blocks' of the Universe we see are galaxies; a
typical galaxy has a mass of 0(10!!' M g). For reference, a solar mass
(M) 1s 2x10?%g or about 1037 baryons We observe galaxies with
redshifts of greater than 1; the redshift-z that a photon emitted at
time t suffers by the present epoch is just:

(1 +2) = Ry qay/R(E) = R(E)™

The fact that we see galaxies with z > 0(1) implies that galaxies were
present and 'lit up' by the time the Universe was about 1/2 its present
size. QS0s are the moat distant objects we can see, and many QSOs with
redshifts 1in excess of 3 have been observed. [A typical QSO Is 1~100
times as luminous as a galaxy, with a size of less than a 1light~-month,
or < 10 ° that of a galaxy.) This fact implies that QSOs were present
and "1it up' when the Universe was 1/4 its present size.
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To a first approximation galaxies are unifermly d stributed in
space; however, they do have a tendency to cluster and their clustering
has been quantified by the galaxy-galaxy orrelation function £(r). The
probability of finding a galaxy at a distance r from ancother galaxy is
{1+£(r)) greater than if galaxies were just distributed randomly. The
galaxy~galaxy correlation function is well-studied!®7*'3® angd

£(r) = (r/5h™*Mpe) . ®

Something like 104 of all galaxies are found in clusters of
galaxies, a cluster being a bound and sometimes virialized system of
0(100) galaxies. Particularly populous clusters are called rich
clusters and many of these rich clusters are affectionately known by
their Abell numbers, as the astronomer George Abell studied and
classified many of these objects. There is some evidence that clusters
cluster, and this has been quantified by the cluster-cluster correlation
function!®?®

= 1 ~1.8
Ecc(r) = (r/25h 'Mpe) .

Interestingly enough, the cluster-cluster correlation function has the
same slope, and a larger amplitude. The larger amplitude 1s a fact
which 1s not presently understood; a number of explanations have been
suggested'*®+***!  including the possibility that the amplitude of the
cluster-cluster correlation function has not yet been correctly
determined. One very promising idea'*® is that this just reflects the
fact that rich clusters are 'rare events' and that Cfor Gaussian
statistics rare events are more highly correlated than typical events
(i.e. galaxies not Iin clusters}.

There 1is some evidence for still larger-scale structure —--
superclusters!*?, objects which may contain many rich clusters and are
not yet virialized; voids'*?, large regions of space (perhaps as large
as 100 Mpec) which contain far fewer than the expected number of
galaxies; and filamentary structures!*"“, long chains of galaxies. As of
yet, there are no unambiguous statistics to quantify these features of
the Universe.

How much stuff is there in the Universe? This {s usually
quantified as the fraction of critical density @ (= p/Popit)s where

= 29 ~3

n

1.05h% x 10%eV em ?

1]

0.810h% x 10745 Gev®™. -

From primordial nuclecsynthesis we know that the fraction
contributed by baryons must be:

0.01% < g < 0.15.

What can we say based on more direct observations of the amount of stuff
in the Universe? The standard approach is not too different from that
of the poor drunk faced with the task of locating his/her lost keys in a
large, poorly-lit parking lot on a moonless night. He/she focuses



his/her search in the vicinity of the only lamp post in the parking lot
~~ not because he/she thinks he/she lost his/her keys there, but rather
because he/she realizes that this is the only place he/she could find
them should they be there.

By determining the average mass per galaxy, one can convert the
observed number density of galaxies into a mass density:

<p> & <My ><ngay > (5.4)
[To be more accurate, what astronomers actually do is to measure the
mass to luminosity (or mass-to-light ratio, M/L, for short) for a
typical galaxy and then multiply this by the observed luminosity density
of the Universe to obtain the maas density; see ref 1&5 for the dirty
details of thia procedure.]

The mass associated with a galaxy can be determined by a number of
dynamical techniques, all of which basically involve Kepler's 3rd law in
some way, or another. For a system with spherical symmetry:

GM = v3r , (5.5)

where M 1s the mass interior to the orbit of an object with orbital
velocity v and orbital radius r,

By studying the orbital motion of stars at the radius where the
light has crapped out (the characteristic radius assoclated with the
fall off in luminosity is called the Holmberg radius), one can measure
the mass associated with the luminous material: Mlum' Converting this
mass into an estimate for { one obtains:

QLUM = 0.01 ,
which is disappointingly distant from @ = 1, but consistent with baryons
being the luminous material (thank God!).

Studies of the orbits of stars (in spiral galaxies) beyond the
radius where the light has 'crapped out' have revealed an important and
startling result!“® -- their orbital velocities do not decrease (as they
would if the luminous mass were the whole story, v = r '/2), but rather
stay constant (this is the phenomenon referred to as 'flat rotation
curves'). This, of course, indicates that mass continues to increase
linearly with radius (or p « r~?), whereas the 1light does not,
indicating that the additional mass 1s dark. Flat rotation curves are
the best evidence for the existence of dark matter. As of yet, there is
no convincing evidence for a rotation curve that 'turns over' {which
would indicate that the total mass in that galaxy has started to
converge), Thus the <MG§L> obtained this way provides a lower limit to

3

L’} this lower limit at least 3-10 times the lumincus mass,
impfying

HALO > 0.03 - 0.10 .

The dark matter inferred from the rotation curves of spiral galaxies is
often referred to as the 'halo material', as it is less condensed, seems
to have a spherical distribution, and has a 'density run', p «r Tz,
characteristic of a self~gravitating isothermal sphere of particles.

G



Dynamical studies of the stars in our galaxy indicate that at our
position (* 8 kpe from the center) the disk component (i.e., the
component distributed like the stars in the disk) dominates the haloc
component by about a factor of 30'*7. Incidently, these same studies'*’
indicate that not all of the disk compenent is accounted for by stars,
dust, gas, ete. Locally, about half the density, or = 6x1072%g cm™®, is
unaccounted for. The 'dark matter in the disk' must be material which
is capable of undergoing dissipation, since the formation of the disk
clearly involved dissipation of gravitational energy.

[As of yet there 1s no undisputable evidence for dark matter in
elliptical galaxies. They are more difficult to study since they lack
*test particles' far from the center of the galaxy. Attempts have been
made to use x-ray measurements of the gravitational potential, and these
seem to indicate the presence of dark matter.'*®]

By studying the dynamics of galaxies in bound, virialized systems
(binary galaxy systems, small groups of galaxies, and galaxy clusters)

one can try to infer <M., >, Again one is basically using Kepler's third
law (in the guise of th&€ Virial theorem). The results indlcate

QBS = 0.1 -0.5,

have a higher degree of uncertainty, and are somewhat more ambiguous to
interpret. For example, the highest values for { come from clusters,
but only one galaxy in ten is found in a cluster. Most galaxies are
found in binary systems or small groups. There is also the difficulty
of +identifying which galaxies are members of a given system, and
determining whether or not a system has ‘'settled down' (i.e., is
well-virialized) sufficiently so that the virial theorem is applicable.

There are many other techniques -- 'infall arguments': our motion
toward the Virgo supercluster allows us to weigh the Virgo cluster, and
our motion toward the Andromeda galaxy allows us to weigh our galaxy and
Andromeda: the cosmic virial theorem'“?, which relates the peculiar
velocity field of the Universe!®® to @; all seem to point to a value of
i in the range of # 0.1 - 0.3. Based upon the very non-trivial

assumption that light is a good tracer of mass the observations seem to
indicate that

Qppg = 0.2 '+ 0.1' ,

where '+0.1' is not meant as a formal error, but rather is meant to
indicate the spread of the observations.

To summarize what we know about the amount of stuff in the
Universe: (1) dark matter dominates -- by at least a factor of 3-10, and
is less-condensed than the luminous component (which shows clear signs
of having undergone dissipation); (2) the dark component could be
baryonic -~=- until 8papg 18 shown to be 2 0.15;: (3) baryons cannot
provide closure dens%ty as primordial nucleosynthesis restricts Q, =
0.014 - 0.15; (U4) no observation made yet indicates that Qg 1s close
to 1.,0! Our knowledge of & is summarized in Fig. 5.2.

Finally, there is the 3K y-wave background radiation, the [fossil
record of the Universe at 200,000 yrs after the bang when T # 1/3 eV and
R = 10" %*. The angular scale viewed on the sky and the corresponding
length scale are related by
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Fig. 5.1 Summary of the measurements of the iscotropy of the microwave

background {from ref. 113).

Table 5.1 - WIMP Candidates for

the Dark Matter

¥pbundance
(GeV)

required for closure density:

Particle Mass Place of origin Abundance*
Invisible Axion 10" %eV 10 %°sec, 10%2GeV  10%cm °
Neutrino 30eV 1 sec, 1 Mev 100cm” 3
Photino/Gravitino/ keV 10 “sec, 100MeV 10cm 3
Mirror Neutrino
Photino/Sneutrino/Axino GeV 107® sec, 10 MeV 107 %em” 2
Gravitino/Shadow Matter/
Heavy Neutrino
Superheavy Magnetic Monopoles 10'%GeV 10" *“sec, 10**GCeV 107 %'cm™?
Pyrgons/Maximons/Newtorites 210%%Gev 10 “%sec, 10'°GeV <10 2*em ?
. Quark Nuggets =i0"g 10" %sec, 300MeV 10 ““cm 3
Primordial Black Holes 2 10*5g  >10 '?sec,<10%GeV <10 “*om °

“s “3
Myimp = 1-050%x10 ° om */m .\,



A/Mpe = 1.8(¢/1')n" Y, (5.6a)
M/10%2Mg = 0.85(¢/17)° anh ' . (5.6b)

Two additional scales of importance are: the thickness of the surface of
last scattering (= 6') and the size of the horizon at decoupling (= 1°).
On small angular scales (< 1¢) the temperature fluctuations in the
u~wave background are dominated by those intrinsic to the photons. For
adlabatic perturbations:

(6T/T) (1/3)(6nY/nY) = (1/3)(nb/nb); (5.7)

in WIMP-dominated model Universes perturbations in the WIMPs {which
began to grow as scon as the Universe becomes matter~dominated} have
grown by a factor of ® (10-30) by decoupling, so that

(§T/T) = (apx/px)dec/3c . (5.8)

On very small angular-scales (< 6') the fluctuations in the p-wave
background are 'washed—-out' due to the thickness of the last scattering
surface,

On large-angular scales (> 1¢), the temperature fluctuations are
primarily due to the Sachs-Wolfe effect (i.e., induced by the
fluctuations in the gravitational potential): 8T/T = 84¢/¢ = 1/2 (Gp/p)H,
and

(§T/T) = 0.5(6p/p)H0R , (5.9)

where (8p/p)yyn is the amplitude of the density perturbation on the
scale corresponging to 6 when that density perturbation crossed inside
the horizon. Note that since angular scales » 1o correspond to linear
scales which were outside the horizon at decoupling, fluctuations on
these scales provide us with information about the ‘unprocessed,
primordial spectrum of density perturbations.' [In the case that the
Universe is reionized again after decoupling, the scale of 'virgin
perturbations' may be somewhat larger, see ref., 151.] The main point
here is that the 3K background is a fossil record of the early Universe,
and density perturbations in particular. For this reason it provides a
very stringent test of scenarios of galaxy formation. The
interpretation of microwave background fluctuations is discussed in
greater detail in refs. 133-136,

Notatlion and Definitions

It is convenient to discuss density perturbations in terms of the
density contrast,

§ = sp(x)/p o (5.10)

and to expand the density contrast § in a Fourier expansion:

Ed



§(x) = T e“ikxak , (5.11)

vizn? [ 5 e ek,

5 v s (x)elkXqsy |

K

Here E is the average density of the Universe, pericdic boundary
conditions have been imposed, and V is the volume of the fundamental
cube. Strictly speaking, this expansion is only valid in spatially-flat
models (k=0); however, at early times the effect of spatial curvature is
small and can usually be neglected. [An analogous expansion exists for
spatially-curved models; see ref. 152.,] One other very important
warning: 6&(x) 1s not a gauge invariant quantity; in fact it is always
possible to make §(x) = O by a suitable gauge transform: x¥* +» x¥ + ¢V, g
+ g + 0(e), e # 0(kt). J. Bardeen'®? has developed an elegant but
non-trivial gauge invariant treatment of this problem. Rather than
develop his formalism here, I will instead discuss the standard lore in
the synchronous gauge (g__ = -1, g . = 0). [For more details concerning
the standard lore in “the syncRgonous gauge, see, e.g., ref. 153,11
should emphasize that the gauge non-invariance of §(x) only rears Iits
ugly head for perturbations larger than the horizon.

A particular Fourier component is characterized by an amplitude and
a wavenumber k. Let x and k be co~ordinate (or comoving) quantities, so
that the physical distance

d = R{t) dx

xphys

and the physical wavenumber

kphys = k/R{t) . (5.12)

The wavelength of a perturbation is
A = 2n/k , (5.13)

Aphys = R(L) 2 . (5.14)
In the linear regime (§ < 1), the physical size of a given density
perturbation grows with the expansion. The comoving label (k or A) for
that perturbation is quite useful because it does not change with time
-r i.e., the same physical perturbation is characterized by the same
comoving label, while the physical 1labels (k(phys) and x(phys)) do
change with the expansion. It is also useful (and conventicnal) to

characterize a density perturbation by the (invariant) rest mass M in a
sphere of radius A/2:

M= 1.5:10“M9(9h2)kﬁpc , . (5.15)

where as before 2 1s the fraction of critical demsity in NR particles
(today) and R(t) has been normalized so that Rt day = '+ 4 given
Fourier component then is labeled by A (= 1its phys?cg¥ size today,
assuming that . &§(x) were still < 1), k, its comoving wavenumber, and M,
the mass contained within a aphere of radius A/2. For reference, a

typical galaxy mass (10”M0 ineluding the dark matter) corresponds to

AGAL = 1.9 Mpe (nhz)"” . (5.16)
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Of course the physical size of a galaxy is much less, more like 100 kpc,
because galactic-sized perturbations have 'gone non-linear’ {§ > 1) and
have ceased to continue to grow with the expansion; 1.9 Mpe, then, is
the size a perturbation containing 10*2M_. would have today had {t not

'gone nonlinear' and pulled away frgm the general expansion of the
Universe.

With these definitions we can proceed to discuss quantities like:
8p/p, 8M/M, and E(r), in terms of [6 |2, First consider §p/p:

Sp/p = <6(x)8(x)>'/2, (5.17)

where < > indicates the average over all space, i.e., dp/p is the RMS
value of 6(x). A bit of Fourier algebra yields:

(6p/p)2 = W/(21)*] |g, |2 a*k . (5.18)
0

Evidently, the contribution to (8p/p)? from a given scale (specified by
k) is:

(Gp/p)zlk = V/(2n)® k’,6k|z ) (5.19)

Now consider (sM/M), the RMS mass fluctuation on a gliven mass
scale, This is what most people mean when they discuss the density
contrast on a given mass scale. Mechanically, one would measure (SM)R
by taking a volume V_, which on average contains mass M, and placing ?%
at all points throughout the space and computing the RMS mass
fluctuation. Although it {is simplest to choose a spherical volume V
with a sharp surface, to avoid surfaces effects we must take care to
smooth the surface. This is done by using a 'window function' W(r) (see
below), which smoothly defines a volume Vw and mass M = p Vw* where

V, = 41 [ r2W(r)dr . (5.20)

A particularly simple window funetion is a Gaussian:

W(r) = exp(-r?/2r2y (5.21a)
v, = (i, (5.21b)
W(k) = (21)%/2r2 exp(-k?ri/2)/V . (5.21¢)

The RMS mass fluctuation on the mass scale M = BVH is then:

(6M/M)2 = <(8M/M)2> = <(15(§+F)W(F)d3r)2/v;>; (5.22)
after some simple Fourier algebra it follows that -

(6M/M)Z = V3(2m)7Y "2 [ |8, |2 |W(k)|2a%k . (5.23)
For the Gaussian window function:

(M/M)2 = v(2«)"’!|5k|=e'kzrg d*k. (5.24)
That is, (§M/M)? is equal to the integral of [§ sz=k over all scales

larger than r_ (all w%venumbers smaller than r_"). If |6k|2 is given by
a power law, |8k|2 « k with n > =3, then the dgminant contribution to

+5



(6M/M) comes from the Fourier component on scale k = r;' (as one would
have hoped!), and

(6M/M)® & V(2m)"*k*[6 |2/(n*3)], 21 (5.25)
o .
When one refers to '§p/p on a given mass scale' what one means more

precisely is 8M/M, and as we have shown here that is just the power on
that scale:

(6p/p)y « k’/zlék] R (5.26)

« ka/z+n/z’

- M‘I/Z‘n/s'

where we have used the fact that the comoving label M « A? « k™*, and
assumed {as is usually done) that Iﬁklz « kP

Finally, consider the galaxy~galaxy correlation furnction £(r). Let
n(x) be the number density of galaxies at position x, and n be the
average number density of galaxies: n = <n(x)>. The Jjoint probability
6Py, of finding galaxies in volumes 8V, and §V, (centered at positions 1
and 2) is:

8Py, = N28V,8V, (1+6n(x,)/n)(1+6n(x,)/n), (5.27)
where 6n/n = (n(x) ~ ©)/n. If positions 1 and 2 are separated by a
distance r, say, then the average probability of finding a galaxy a
distance r from another galaxy is:

<8P, ,> = n?8V,§V,(1+<an{x+r)8n(x)>/n2),

= n?V, 8V, (1 + £(r)) , (5.28)
where £{r) is the excess probability (over a random distribution), and
is known as the galaxz—galaxy correlation function. Note that E(r) is
Just <&n(xtr)én(x)>/n?. In terms of its Fourier transform f(k) =yt
(sn(x)/n)elkXqy,

E(r) = v(am)™ [ |r(k)|2e7krqag | (5.29)

If, as 1s often done, we make the assumption that 'light faithfully
traces mass', then n(x) = ap{x) and &§(x) = 6n{x)/h, so that

E(r) = <(8p{x+r)/p)(5p(x)/p)>, (5.30)

gr) = v/(2m)® [ |5 |2e7 KM @k . (5.31)

Note, the power spectrum |[§ |2 {3 the Fourier transform of the
ga;axyrgalaxy correlation functfbn. Also note that

E(r=0) = <(8p/p)2> . (5.32)
Perturbations are usually characterized as being adiabatic (more

properly, 'curvature perturbations')} or isothermal (more properly,
'isocurvature perturbations'). An adiabatic perturbation i{s an

oy



honest-to~God, gauge—invariant, wrinkle in the space~time manifold.
That 1s '6p = 0'. By the equivalence principle, all components
participate in an adiabatic perturbation:

§n /ny = §ny/ny = én./n, (5.33)

where 'x' represents any other species, e.g., a relic WIMP. Note for an
adiabatic perturbation G(nx/nY) = 6(ng/ny) = 0.

On the other hand, an 1isothermal perturbation is not an
honest-to-God wrinkle in the space-time manifold. That is '§p = O'.
Rather it is a spatial variation in the equation of state, a pressure
perturbation, if you will. The wusual example of an {sothermal
perturbation is a spatial fluctuation in the baryon~to~photon ratio,
i.e., &(n_/n,) = f£(x). Such perturbations are referred to as
isothermal, "beCause at very early times when p §p = 0 |is

= p
equivalent to 6T = 0. Generalizing, isothermSQTperturEétions at early
times are characterized by:

GHY/“Y « 3(8T/T) =0
(6ni/ni) » 0 (for some species 1).

This corresponds to some species (or quantum number) being 'laid down'
non-uniformly. Note, that since an isothermal perturbation is really a
‘pressure perturbation', pressure gradients can and do, by moving matter
about, change a pressure perturbation into a density perturbation on
scales < wv_t, (v, = sound speed). Thus on physical scales < v_t, a
pressure pergurbatign results in a density perturbation of the “same

amplitude. [For further discussion of adiabatic and 1isothermal
perturbations, see, e.g., refs. 152-153,]

The Standard Lore

In this subsection I will attempt to briefly summarize the standard
results (in the synchronous gauge). For a more detailed discussion of
the evolution of density perturbations I refer the reader to refs. 137,
153; for a gauge-invariant discussion I refer the reader to Bardeen!®2,

A very important scale when discussing the evolution of density
perturbations 1is H ', the Hubble radius, or as I like to refer to it,
'the physics horizon'. H™* is the expansion timescale; thus, in a time
# H™* all physical distances roughly double. Therefore it is the
timescale for 'coherent microphysies' =~ physical processes operating on
longer timescales will have their effects distorted by the expansion.
Therefore, H * is the distance over causal, c¢oherent microphysiecs
operates -- hence, the phrase 'physies horizon'. If R« t© (n < 1},
then H ' is also the particle horizon. The evolution of a given Fourier
component of §p/p 1s naturally divided into two regimes: (1) Aohys 2 H !

=~ when the perturbations said to be 'outside the horizon'; (2) A £

phys
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H ' ~- when the perturbation is said to be 'inside the horizon'. Since

Ahys = B(t), so long as R(t) increases more slowly than t, a
pgrgurbation begins outside the horizon and then at some point enters
the horizon (see Fig. 5.3). For reference, during the
radiation-dominated epoch, a perturbation on the mass scale M enters the
horizon at time t & (M/Me)z/’ sec.

(1) A h > H ': While outside the physics horizon, a perturbation
cannof ¥8 afrected by microphysics; its evolution i{s purely kinematical

-~ it evolves 1like a ripple in space~time. In the synchronous gauge,
adiabatic perturbations grow:

1 radiation~dominated
sp/p = th n=| -
2/3 matter-dominated

0 curvature-dcminated

By curvature-dominated, I mean k/R? >> 8uGp/3 so that H?* = k/R?,
Isothermal perturbations do not grow -~- after all, they are not
honest~to-God wrinkles in space-time. [I should be careful here, as
this is a gauge-dependent statement. What is true and gauge—invariant,
is that an isothermal perturbation eventually becomes a density
perturbation of the same amplitude; see ref, 153.]

(2) A nys < H *: Once a perturbation enters the horizon microphysics can
be imBo¥%ant. First consider pressure forces. Pressure forces can
support a density perturbation against collapse on scales £ v_t, where
Vi = dp/dp is the sound speed and t is the age of the Universe. [More,
precisely t is the dynamical tYlmescale, 1i.e., timescale for
gravitational collapse: tdy = (Gp)Pl/Z- If p = Prory then t,., is also
the age of the Universe$’If p < Prgrs then ty, .2 t.] Pertul.bations on
scales < ., # vst oscillate as acoungc waves; X is known as the Jeans
length aﬂﬂ M- = “AipNR/G is the Jeans mass (pNR = mass density in NR
ons

particles). Perturbat on scales > A; are unstable against collapse,
and grow:

n n = 2/3 matter~dominated
Sp/p = ¢
n=20 radiation~dominated, or curvature~dominated

Note that if the Universe is radlation~dominated, perturbations in a NR
component even on scales XA > A. cannot grow. Simply put, the energy
density of the radiation driveg the expansion so rapidly that the growth
of the perturbation cannot keep up, and it just ‘hovers'.

~  The equation governing the growth of perturbatlonz in species 1 (i
= baryons, exotic particle relic, photons, ete.) is:

8, + 2H5; + K2vgi8;/R? = UnGpL(p,8,/p), . (5.34)

where &, jis the kth-Fourier component in species i, v_? 1s the sound
speed sqﬁared in component i, p 1s the total energy dsﬁsity of the

Universe, and p, is the energy density in species i. For a one specles
fluid, it 1is stréightforward to verify the results quoted above.

+¥
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A few words about Eqn. (5.34). In a non-expanding Universe (i.e.,
H=0), the Jeans instability 1is exPonential on scales A > ., with
characteristic time v # ¢t ® (Gp,) '’?. The expansion of the Universe
slows the growth and Fggults in a power law instability. When the
Universe is radfation-dominated (i.e., R ~ t'/2, H ~ 1/2t, and ¢,/p <<
1), the solution to Eqn. (5.34)718 8, x a+blnt, so a perturbatidn with
an initial velocity (&, + 0) can actuaily grow, albeit logarithmically.

Finally, one last bit of important microphysics. Perturbations in
a collisionless component (e.g., neutrinos, axions, etec.) are subject
te Landau damping, or ‘!freestreaming'. Until they become Jeans
unstable, they can 'stream out' of overdense regions and into underdense
regions, in the process smoothing out density perturbations. [Note,
this effect has not been taken into account in Eqn. (5.34); in order to
correctly take this effect into account one must integrate the
collisionless Boltzmann Equation for the collisionless component.] The
comoving freestreaming scale is easily calculated:
t
Apg(t) = [ v(t')dt'/R(t') , (5.35)
Lo}

where v(t) is the velocity of the species in question. Most of the
contribution to the integral comes at or just after the time the species
goes NR; after this epoch v « R*! (for a collisionless species) and

3 t.<t
e NR
‘pg * (tygp/Ryg) en(t d (5.36)
eq’tNR) teq 2 Nm

where tyo and Ryp are the time and the scale factor when the apecies

became = NR, and t 1s the time when the Universe became
matter~dominated. [Nogg, in the case that the Universe is still

radiation-dominated when the species goes NR, A g continues to grow
after t # t,. -- albeit logarithmically.] For reference:

teq © 3x10%° sec(@h?/6°)7* , (5.37a)
Teq = 6.8eV (Rn?/0°) , (5.37b)
Tyr 7 (my/3)(Ty/Ty) (5.37¢)
Ry = 7x10778(T, /Ty ) (kev/m,) (5.37d)
typ & 2.2x107sec(my/keV) * (T, /T))? (5.37¢)

where T is the photon temperature, Tx/T is the ratic the tempﬁrature
of spelies X to the photons, e.g., for Ieutrinos T /T, = (4/11)'?, and

as usual 8 1s the present photon temperature in uni%s gf 2.TK.

Assuming that t

NR $ teq' which 1is almost always the case, it
follows that:

Apg ® 1 Mpe(m,/keV)™* (T, /T )[RN(ty /typ) + 11, (5.38)

For a neutrino specles, tyo # t, . and (T /T,) # 0.71, so that the
freestreaming scale is 9 v ‘

A, ® 30 Mpe (mv/30eV)“. (5.39)

a



Although photons and baryons are certainly not collisionless (at
least until after decoupling), there is a similar effect due to the fact
that the mean free path of a photon is finite (and so the two are not a
perfect fluid}. In this case the operative word is not 'free
streaming', but rather 'diffusion', and the effect i3 known as 'Silk
damping'.!*"* The scale associated with photon diffusion is

Ag ® 60Mpc/(1 + 259b5/“9‘/“hz). (5.40)
Because of photon diffusion, or freestreaming of a collisionless species
all initial perturbations on scales less than AFS (and for baryons 13)

are strongly damped.

The Spectrum of Density Perturbations

We know how to apecify the spectrum of density perturbations, but
when “"does one specify 1t? From our discussion of the evolution of
density perturbations, it seems very sensible to specify the amplitude
of a density perturbation when 1t crosses the horizon, before any
microphysical processing can occur, The amplitude at horizon crossing
also has a Newtonian interpretation -~ it is the perturbation in the
gravitational potential. Note that by doing such, the amplitude on
different scales is specified at different times. It i1s traditional to
suppose that the spectrum is a featureless power law. Until recently
this was merely an assumption since one had no fundamental understanding
of the origin of density inhomogeneities. As discussed in Lecture 4,
the inflationary paradigm has changed that situation. Write the
amplitude at horizon crossing (Bp/p)HoR as a power law, :

-a

(Gp/p)HOR o M N

and remember that (8p/p) means k’/’|6k|, Ir |s Lz « k%, thena = -1/2 -~
n/6. The inflationary Universe scenario predig S a=0 or n=-3,

What can we say more generally about a. The formation of galaxies
requires that (6p/p)H R = 10" * on the scale of a galaxy, i.e., 10'*M_,
The measured 1isotropy o? the u-wave background implies that (&p/p) g on
the scale of the present horizon (= 1022M_) is less than 10 *% ?90 be
very conservative), This means that a must e 2 ~0.1 (or else the
spectrum must have a cutoff), :

Consider perturbations on scales << 10'3M_. If a perturbation
crosses the horizon with amplitude greater than order unity, black hole
formation is inevitable -- regions of space-time will pinch off before
pressure forces can respond to prevent black hole formation.!*®*® Black
holes less massive than order 10'®g will have evaporated before the
present epoch (via the Hawking process!®®), however holes more massive
than 10'%g will still be with us today. If (§p/p) OR ¥ere 2 0{1) on a
scale > 10!'%g, there would be far too many blach Roles with us today.

This implies that a must be < 0.2 (or that the spectrum must be cut off
on the low mass end). The a=0, constant-curvature spectrum is clearly

singled out., It is the so~called Harrison-Zel'dovich'®’ spectrum.

It is sometimes convenient to specify the spectrum at a fixed time,
e.g., at t 2 teq When structure formation is proceeding:

(G'p/p)t « MY (5.41)
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for scales which are still outside the horizon at time t, ¥ = a + 2/3.
[This fact s straightforward to show.] Note that when specified at a
fixed time, the Zel'dovich spectrum {on scales larger than the horizon)
corresponds to Y = 2/3 and n = 1,

The Processed Spectrum

Given the initial spectrum, 1i.e., ({&p/p) , We can use our
knowledge of the microphysics to calculate 'the processed spectrum.' A
convenient time to specify the processed spectrum is at t = ¢ when
structure formation really begins, Let's assume that theegnitial
spectrum is the Zel'dovich spectrum. If not, the slopes of the various
regions of the processed spectrum are obtained by changing those shown
by a. Scales which eross the horizon before teq' i.e., those with

A< Aeq * 2cteq/Req = 13Mpc(92/nh’), (5.42)
grow only logarithmically from horizon-crossing until t = t when the
Universe Dbecomes matter-dominated (and perturbations staff to grow as
R(t)), by a factor of 0(20) for scales << A__, On scales > A__, (6p/p) =
M 2/%, as discussed above. Now add fgge-streaming and®de nave the
fully-processed spectrum, from which structure formation will proceed
{see Fig. 5.4)}.

From the epoch of matter domination until decoupling (R # 107 %, T &
1/3 eV, t, = 7x10'2sec(nh?) */2) perturbations in the WIMPs can grow
{§p/p « R « EQ/’); however, perturbations in the baryons cannot yet grow
since they are still tightly coupled to the photons. After decoupling,
the baryons are free of the pressure support provided by the photons,
and quickly fall into the potential wells formed by the WIMPs. 1In a few
expansion times the baryon perturbations catch up with the WIMP

perturbations (so long as nw p >> @), and then perturbations in both
components grow together (see E? « 5.57.

Starting at ¢ = t___ all scales grow together, 8p/p « t2/*, so that
the shape of the spec%gum remains the same (while the overall amplitude
increases). When (8p/p) becomes unity on a scale, structures of that
mass begin to form bound systems whose self-gravitaticnal attraction
dominates that of the rest of the Universe. These structures cease to
participate In the general expansion of the Universe ~- 'they pull away
from the expansion'. For the Zel'dovich spectrum (or any spectrum which
decreases with increasing mass scale), the first scale on which
structures form is set by AD (see Fig. 5.4).

There are two limiting cases: (1) A, = Agg © 13h° 2 Mpe (for relic
WIMPs which go NR at t =t -- of tge candidates in Table 5.1, this
only applies to light neutrinos?. In this case the damping ~scale is
much greater than a galactic mass (closer to the mass of a
supercluster). This case is known as 'hot dark matter'. (2) A, ¢ 1 Mpe
(i.e., AD << A,.), which occurs for relic WIMPs which go NR long before
the epoch of ma%ger~domination. In this case the first bound structures
to form are galactic mass (or smaller). There 1s, of course, an
intermediate possibility, A, = 1 Mpc - 10 Mpe, referred to as 'warm dark
matter', although I will not discuss that case here. In this case the
first objects to form are necessarily of galactic mass. I'll briefly
review structure formation in the hot and cold dark matter scenarios,
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Two Stories: Hot and Cold Dark Matter

The Hints ~ Before geoing on to discuss the hot and cold dark matter
scenarios, let me once again emphasize the hints which the early
Universe has provided us with, and which has led to these two detailed
scenarios. The structure-formation problem is basically an infitial data
problem, and the study of the very early Universe has helped to focus
our thinking in this regard. First, the density perturbations. It has
long been realized that primordial perturbations were necessary, however
until very recently their type, spectrum and origin were largely a
mystery. Inflation has provided for the very first time a scenario for
the origin of perturbations and makes a very definite prediction -~
adiabatic perturbations with the Harrison-Zel'dovich spectrum,
[(Inflation in an axion-dominated Universe also results in isothermal,
axien perturbations, see Seckel and Turner, ref. 3.] Next, the

composition of the Universe, 2., We know that the dominant component is
dark, and since f, must be < 0.15, the dominant component must be
non-baryonic 1f "2 is to be > 0,15, Inflation predicts f = 1.0 (more
precisely, k = 0). Structure formation also favors a large value of a,
as in a @ < 1 \Universe perturbations have less time to grow ~-
perturbations cease to grow when the Universe becomes
curvature~dominated, at a scale factor R F Q. [Because of this fact
larger initial perturbations are needed (implying larger &T/T); the
small isotropy of the microwave background implies that h*’® > 0.2, see
ref. 135.] There is no lack of candidate particles whiech could have
sufficlent relic abundance to provide § = 1 (see Table 5.1). The hint,
then, 1is that the Universe is dominated by relic WIMPs, with Q. # 0.1 or
so and @ M # 0.9. This too aids the growth of "density perturbations;
while pergurgations‘in the baryons cannot begin to grow until after
decoupling (R = 10"3). perturbations in the dominant WIMP component can
begin to grow as soon as the Universe becomes matter-dominated (R e
3x1075h"2) ~- providing for an additional factor of 30h? growth 1ne9p/p
over an § = 1 baryon-dominated Universe. [In that regard a q = nb VR |
Universe is in sad shape; perturbations can grow only from R = 10™% to R
#Q &10 !, for a total growth factor of only 100! In fact, the
sma?lrscale microwave anisotropy measurement of Uson and Wilkinson rules
out a baryon-dominated Universe with adiabatic perturbations; see,

refs. 134-135.] These hints have led to two detailed scenarios ~- hot
and cold dark matter.

Hot dark matter - The first structures to form are of supercluster
size (10'°M_ or so), and they do so rather recently (z < 3). Zel'dovich
has argued rather convincingly that the collapse of the objects should
be very non-spherical, and very nearly 1-dimensional (like a pancake or
'blini'). [For a review of the pancake scenario, see, ref, 158.] Once
the pancake forms and goes non~linear in one dimension, the baryons
within it can collide with each other and dissipate their gravitational
energy. Thereby, the baryons in the pancake can fragment and condense
into smaller (say galaxyrsized) objects. The neutrinos, being so weakly
interacting, do not collide with each other or the baryons, cannot
dissipate their gravitational energy and therefore cannot collapse into
more tightly-bound objects. Thus they should remain as a halo. Some
slowrmoving neutrinos may  subsequently be captured by the
baryon-dominated galaxies. Structure formation in the hot dark matter
case 13 schematically illustrated in Fig. 5.6. In a phrase, the
structure in a hot dark matter Universe forms from 'the top down'.
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Fig. 5.

8 Projected distribution of mass points (in comoving coordinates)
for the numerical simulations of ref. 159; time evolves downward.
For 'hot dark matter' (left), the panels represent the present
Universe (z=0), 1in models where the onset of galaxy formation
occurred at z.. = 4, 1.1, 2.5 . For 'cold dark matter' (right),
the last paﬁgl corresponds to the present Universe in a model
with @h = 0.2 =~ the model which gives the best Ffit to the
observed Universe,
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Several groups!®®r18° haye performed numerical simulations of the
neutrino~dominated Universe. The simulations reproduce nicely the voids
and filamentary structures which seem to exist in the Universe (see
Fig. 5.8). However, 1in order to reproduce the observed galaxy-galaxy
correlation function, the epoch of pancaking must be made to occur
yesterday -- that is at a very low redshift (z €1). This fact is
difficult to reconcile with the many galaxies with redshifts greater
than 1 and QSO's with redshifts greater than 3 (the current record
holder has z = 3.8). It should be mentioned that these simulations only
simulate the behaviour of the neutrinos, whereas, the galaxy~galaxy
correlation function clearly 1s determined by where the baryons are.
The small-scale microwave anisotropy predicted in the neutrino scenario
is marginally consistent with the upper 1imit!*2 of Uson and Wilkinson
on 4.5': &T/T < 3x10°°, so long as @ is close to 1. To summarize, hot
dark matter is down, but not quite out (yet). [For more details about
how the baryons cool and fragment, and the hot dark matter scenario in
general, see refs. 158~162.]

Cold dark matter -- Since the damping scale is less than a galactic
mass 1in this case, the first structures to form should be galaxies.
This should occur at a redshift of 10-20. Once galacticrsized objects
have formed and have virialized, some of the baryons will collide and
dissipate their gravitational energy, thereby settling into more compact
objects at the center of the WIMP halo. These objects include stars,
star clusters, and galactic disks.-

Once galaxies form, they will tend to cluster together, forming
larger aggregates such as small groups of galaxies, clusters of
galaxies, and eventually superclusters. This process of ‘'hierarchical
clustering' 1s helped along by the initial density perturbations which
exist on these larger scales. The cold dark matter or ‘'bottom up!
scenario i{s shown schematically in Fig. 5.7.

Numerical simulations of cold dark matter have been performed (see
Fig. 5.8). Here there is no problem with getting galaxies to form early
enough. The simulators!®?*'¢“ can get their model Universes to match
the observed Universe in very many respects -~ the galaxyrgalaxy
correlation function, masses and densitles of galaxies, and mwmany other
details, but at a price: they find that they must require gh # 0.2 to do
so. The small-scale microwave anisotropy predicted in the cold dark
matter scenario iz a factor of 4 or so less than the observed upper
limit at present. [For more details of the cold dark matter scenario
see refs. 163-165.]

The R-Problem

This brings us to a pressing and very significant problem: the fact
that @, = 0.2 % '0.1', while theoretical prejudice would have us
believe %ﬁat Q@ =1.0. As-mentioned earlier, g is determined assuming
that 'light' is a good tracer of the mass. Aogémponent of matter which
is smoothly distributed on the scales which are being probed would not
be detected. gg ©Only measures the material which is clumped on the
scale being probeg. In the cold dark matter scenario the fi-problem is
particularly acute as on the scales of galactic haloes and larger,
baryons (light) should be a good tracer of the mass, as there 1s no
mechanism to aseparate baryons and WIMPs. In the hot dark matter
scenarlo the situation i1s less clear. Because of their large damping
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length, neutrinos are initially smooth on scales up to 30 Mpe or s8¢0, and
1 has yet to be reliably probed on scales this large.

The fR-problem has received a great deal of attention recently and a
number of solutions have been proposed. They all basically involve the
same idea: the existence of a smooth component R - =
0,8x'0.1" which would provide the additional mass ggn@?ty require to
bring § to 1. This component, of course, would go undetected because it
is more smoothly distributed than the observed component. [It could, of
course, be detected by measuring the deceleration parameter q_.]
Suggestions for the smooth component inelude: (1) A relic oosmolog18al
term'®%+1¢7 (i.e., , which by definition is of course
absoclutely smooth. The %ossxgle origin of auch a term, at present, has
not even the slightest hint of an explanation. (2) Relativistic (or
very fast-moving) particles,!®%+1¢® produced by the recent (redshift
3~10) decay of an unstable WIMP (e.g., a 100 eV neutrino which decays to
a light neutrince and a massless scalar), Very fast-moving particles
cannot, by virtue of their high gspeeds, cluster. This scenario has
received a great deal of attention lately. (3) A network of strings, or
very fast-moving strings which too cannot cluster.!®? (4) A more
smoothly~distributed component of galaxies which are either too faint to
be seen or never 1it up.!7?

The idea of 'falled galaxles' 1is an intriguing one. In this
scenario, the very overdense reglons ('3g peaks') which collapse first
would correspond to the galaxies we see. The more typical regions ('1 ¢
peaks' 1In the density distribution) would be the 'failed galaxies'. "It
is a well-known property of gaussian statistiecs that the rare events
(*3 ¢ peaks' here) are more highly correlated. Put another way, the
common events ('1 ¢ peaks') are less correlated, 1i.e., more smoothly
distributed. If this idea is correct, then today we are only seeing the
tips of the lcebergs so to speak. What is presently lacking in this
scenario 1is a plausible mechanism for 'biasing' galaxy formation (i. e.,
inhibiting the 1 ¢ peaks from lighting up).

Epilogue

The hints provided by the very early Universe have helped to focus
the efforts of those studying galaxy formation. We have at present two

rather detailed stories -~ hot and c¢old dark matter. Neither story
however provides a totally satisfactory plcture. We have at least one
major problem -~ the Q problem. I have discussed some possible

modifications of the ¢two stories which might help to resolve the @
problem.

) Lest we become over confident, we should realize that the eventual
sorting out of the details of structure formation may involve a bold
departure from the two stories I discussed. For example, I did not
discuss the role that cosmic strings may play. It may be that structure
formation was initiated not by adiabatic density perturbations, bdut
rather by strings and loops and the isothermal perturbations induced by
them., I refer the interested reader to ref 171, for further discussion
of strings and galaxy formation. T

The diacussion of atructure formation usually focuses on the role
of gravitational forces, astrophysical fireworks (energy produced by the
galaxies themselves by nuclear and other processes) are usually ignored.
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During the very early stages of structure formation (before any
structures form) this is probably a very good approximation, but once a
few galaxies light up, the energy released by astrophysical processes
within them may play an important role. This point has been
particularly emphasized by Ostriker and his collaborators.?”2 All of the
processes suggested for biasing galaxy formation involve astrophysical
processes,

While I have focused on the role of ‘primordial perturbations'
(i.e.; those produced in the very early Universe), it could be that the
relevant perturbations arise due to physical processes which ocecur
rather late, e.g., processes which result in plack hole formation (say
masses 107 °~10°M_ ), with these 'small' black holes then playing the role
of seeds for structure formation., Carr!’* has particularly emphasized
this possibility. :

Although much progress has been made toward understanding structure
formation, there may yet be some very interesting surprises in store for
us! More than 1likely observational/experimental data will play an
important role, For example, the 1list of candidate WIMPs may be
whittled down by searches for SUSY partners at the CERN SppS° and TeV 1
(or one of the candidate WIMPs may be detected!), the situation with
regard to the mass of the elettron neutrino may become clearer, the 'not
so invisible' halio of axions may be detected by the technique advocated
by Sikivie!”?, further refinement of the measurement of the small-scale
anisotropy of the microwave background may provide a signal(!) or even
tighter constraints, deeper galaxy surveys may lead to the discovery (or
lack of discovery) of galaxies (or QS0s) at very high redshifts (z > 4),
which would have important implications for whether things were ttop
down' or 'bottom up' (or neither), and other results not even dreamed of
by simple-minded theorista!

Due to the brevity of this course in particle physics/cosmology
there are many important and interesting topics which I have not covered
(some of which are discussed in refs. 1-3). 1 apclogize for any
omissions and/or errors I may be guilty of. I thank my collaborators who
have allowed me to freely incorporate material from co-authored works;
they 1include E. W. Kolb, P. J. Steinhardt, G. Steigman, D. N. Schramm,
K. Olive and J. Yang. This work was supported in part by the  DOE (at

Chicago and Fermilab), NASA (at Fermilab}, and an Alfred P. Sloan
Fellowship. :
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