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COSMOLOGY IN THEQORIES WITH EXTRA DIMENSIONS

Edward W. Kolb

Theoretical Astrophysics
Fermi National Accelerator Laboratory
Batavia, IL 50510 USA

Some possible cosmological effects of the existence of extra compact dimensicns are
discussed. Particular attention is given to the possibility that extra dimensions might
naturally lead tc an inflationary Universe scenario.

I, INTRODUCTION

Searches for a consistent quantum theory of
gravity and attempt= to unify gravity with the
strong and electroweak forces have led to the
speculation that there may be more than four
space~-time dimensions, and that the extra spatial
dimensions are unseen because they form a compact
space of very small physical dimensions, If the
phyaical size of extra compact dimensions is d, to
explore the extra dimensions it is necessary to
have a probe with wavelength comparable to d,
i.e. 1t 1s necessary to use a probe with energy
comparable to d~!, If the physical size of extra
spatial dimensions are smaller than about 10-16cm =
(100 GeV)~?, direct physical effects of the extra
dimensions would have escaped notice. The small
size of extrz dimensions la expected if gravity is
to set the scale, as the only length in gravity is
the Planck length, Rpl = 10~33cm. Therefore tha
extra dimensicns are expected to have a
characteristic scale of 10~33em, and an energy

comparable to the Planck energy Epl = 1019%Gev would
be necessary to excite the extra dimensions.

It {5 by now standard practice to use the
early Universe to explore physics at energy scales
orders of magnitude greater than those accesaible
in terrestrial accelerators. Here, I will discuss
some possible cosmological effects of the existence
of extra c¢imensions.

For the most part I will consider only simple
Kaluza-Klein theories of extra dimensiocns, where

the entire thecry is gravity in 4+D dimensions,

*

See the contributions of S. Weinberg and M.
Gell-Mann 1in these proceedings for more detalls and
a comparison of different approaches.':?

plus a possible cosmological constant and external
matter Ffields to enforce the compactiflcation. Of
course in recent years Supergravity and Superstring
theories have provided the motivation for
considering thecries Iin more than 4 space-time
dimensions.* Such theories are far more complicated
than the simple theories I will consider, However,
it is reasonable to hope that the toy models I
consider, while incomplete, can be used to study
the physical cosmological effects of the exlstence
of extra dimensions.

In any theory with extra dimensions there are
several general questions which may be asked. The
most obvious question has to do with the huge size
disparity of the dimensions. IIf we live in a
closed Universe, the three spatial dimensions we
observe have the symmetry of the three-sphere, 83,
A simple possibilivy for the lnternal apace is that
of a D-dimensional sphere 5P, The physical size of
33 must be greater than the Hubble distance Ry 2 Ry
= 1028¢m, while we expect the physical size of the
internal space to be slightly larger than the
Planck radius RD - ‘ORpl = 70'322m. There is an
obvicus size disparity of more than 60 ordera of
magnitude! The usuwal way this disparity is pointed
out is with the questlon "why 1s the Internal space
s0 small?" From a cosmclogical point of view this
is the wrong question to ask. The Planck length is
the only reascnable 5ize for dimensicns, since it
ias the "natural® length scale for gravitation.
Therefore the internal space i3 the "natural™ size,
I think that the correct question to ask 1s why is
the size of 53 so large? This, indeed, (s a
cosmologlcal gueation that should be addressed
whether there are extra dimensions or uaol. The

size of S3 can be understood Lln cosmological models



that have "inflation,"?® In the second sectian I
will discuss inflatlion with extra dimenzions, and
the poasibllity that the observed three spatial
dimensions are large because of the existence of
extra dimensions.

A second general guestion about the existence
of extra dimensions concerns the ground state. In
Kaluza-Klein models, the ground state does not have
all the symmetry of the action, i.e. there is a
spontanecus symmetry breaking. What drives this
spontaneous symmetry breaking? Is there a unique
ground state solution? Why are there three large
dimensions? What determines the total number of
dimenaions? It may be that the answer to all these
questions are determined by the microphysics. It
may be that a consistent low energy theory can onl:
be constiructed for a unique ground state. However
if extra-dimensional inflatlion can operate, it may
be that the structure of space-time itself
determines the answer to the above questiona. In
the next section I will discuas this possibllity,

In the Kaluza-Klein approach fundamental
constants depend upon radii of the extra
D-dimensional internal space, Newton's
gravitational conatant, Gy, 1s given by Gy = G RED.
where R is the geometric mean of radii of the
internal space." The gauge coupling constants are
given by g; = Rpi/Ry where Ry i3 a r.m.s. radius in
the internal space. Any change in volume of the
internal space will in general generate a change in
physical conatants, for instance, g and Gy. There
are a varlety of astrophysical arguments to suggest
that a and Gy have remained unchanged over
cosmological time. In fact as far back as the time
of primordial nuclecsynthesis, cone second after the

big bang, any change in o or Gy would have resulted
in a change in the yield of primordial helium.® If

we assume that a single radii, RD, for the extra

dimensions then it is reasonable to parameterize
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Fig. 1 The mass fraction of uHe produced in the big

bang as a funetion of R.,/p% assuming o, and G
scale as in Eq. (1.1).RD p GH ¥

where the "o" sub- and superscript refer to the
values today.® In Fig. 1, the primordial helium
produced is given as a function of Ry/Rf. The line
marked £Gy{sCp) results from only changing Gy(Gy).
A much larger change results if we note that the
neutron-proton mass difference is largely
electromagnetic in origin, and any change in a will
result i{n a change in Q = Hn - Hp' We cannot
calculate Q, but it is reascnable to assume Q/Qo =
o/a,. The line markeg¢ éQ in Fig. 1 is the
primordial helium production only changing Q. The
total effect is given by the curve marked "Totai.”
If we assume the primordial helium produced in the
big bang is 24:1% (the shaded area in Fig. 1),*
then Rp/RE = 1£0.005 at the time of nucleosynthesis
(1 second after the big bang)f' Obviously something
in the thecry must keep the extra dimensions
static. In wodels I will discusa in the next
section the additional features responsible for
keeping the extra dimensions balled up can give a
zero four-dimensional cosmological constant at only
one value of RD. Ir HD is ever away from this

equilibrium value there would result an effective

#*

The Ferm! constant, Ge a /E'sg/Ma. depends on M
in addition to €5 (the SUp coupling constant). 1In
Eq. (1.1) I have only included the dependence upon
E;,
tor course, we are not sensitive to rapld
oselllations of RD about Rg- In the next sectlon it
ls argued that Ry 'mignt csciliate about its
equilibrium value with a characteristic frequency
of mpi‘ = 10-43 seconds.



cosmological constant in the dimensionally-reduced
four dimensicnal Universe. This will be used in
the next secticn to derive an inflationary Universe
scenarioc.

Finally, we might ask if there are any

low-energy tests of the existence of extra

dimensions.*

In the final aection T will discuss
two possible remnants of the early Universe when
the extra dimensions were dynamically impertant.

Some, or all, of the above gquestions about
extra dimensions may have cosmological anawers, It
is also clear that for a study of the dynamics of
the Universe at very early times, when the scale of
the three observed dimensicns were comparable to
the scale of the internal dimensions, it {s
necessary to take into account the existence of th
extra dimensions. Indeed, the evolution of the
three large spatial dimensions, and the evolution
of the internal dimensions are Iln general coupled
through the Elnstein equations. Therefore, from
both the particle physics and the cosmology
viewpoint it is interesting to sctudy cosmology in
theorles Wwith extra dimensions,

II. INFLATION AND EXTRA DIMENSIONS

If it is possible to somehow generate a huge
amount of entropy, S 2 1028, in a smooth way in a
causally connected volume early in the expansion of
the Universe, it is possible to understand several
cutstanding quesations about the standard big-bang
model.® In the standard inflationary approach the
entropy is created during a cosmological phase
transition, with some dynamical Higgs fileld
responsible for spontaneous symmetry breaking used
as an order parameter,?

For Higgs field fnflation it 1s usually
assumed that the initial value of the Higgs field
is ¢,-0, due to the high-temperature form of Vig).
For the simple one scale potential model shown (n
Fig. 2, at some temperature T < O(y) the potential
evolves to its zero temperature form, and ¢=0 {3 no
longer the global minimum. Eventually the Higgs

fleld will evolve to the zero temperature minimum.

»

In the Kaluza-Klein viewpoint the fact that we
observe gauge interactions 1s evidence for the
existence of extra dimensions.
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Fig., 2 Higgs potential as a function of
temperature. In the new inflation picture ¢ has an
initlal value of ¢ ~ 0 at T < y and the Universe
inflates while ¢ evoives to the low temperature
ainimum at ¢ = u.

The evolution of ¢ during the phase transition
may be described by the equation of motion

$+ 3(/a)s + (3V/39) + T4 =0, (2.1

where T, {s the ¢ decay width, and 4/a is the
expansion rate of the Universe, related to the
energy density, p, by

(8/a)2 = BwGyp/3 = (BnGy/3) (V(¢) + 1/2 §2)  (2.2)

(where we have lgnored for simplicity the
contribution of radiation to p). If V(¢) > 1/2 32,
the Universe (s approximately in a "deSitter phase®
and expands exponentially, a/a, «
exp[ (G V($))1/2t] » explu?t/My 1. If the Universe
remains dominated by V(4) for a time At during its
evolution to the minimum, then a physical volume of
the Universe originally smooth will increase by a
factor of (a/ao)3 = exp[3u25t/Mplj. I1f the Higegs
fleld dissipates the potential energy upon reaching
the minimum, the Universe can be "re~heated™ to a
temperature T = [¥{(0)]1/% « |, which was comparable
te the initial temperature at the atart of the
phase transition. Therefore the entropy will
increase by expEBuZAt/Mpl], a potentially huge
number.

There have been many attempts to construct a

successfyl inflationary Universe model. We have



learned that only a very special claas of models
for ¥(¢) will work. One criterium is that V{¢)
must have a "flat™ region where 3V/3¢ is small,
There are also many cther constraints on V(4) to
have successful new inflation.’ Among the imposed
conatraints on the model is the demand that gquantum
effects during inflation produce density
perturbations that will subsequently grow Lo become
the observed structure in the Universe.

I will now describe two approaches that use
extra dimensions to produce a large amount of
entropy. The first approach is closely related to
new inflation, This general method was first
proposed by Shafi and Wetterich® in a2 model with
higher derivative terms in the action. Before
discussing the Shafi-Wetterich model, I will
illustrate the method in two simple models, a six
dimensional Einstein-Maxwell model considered by
Okada® and Wetterich!® for inflation, and the
Casimjir mcdel considered by Frieman, Kolb and
Rubin'?® for inflation.

The first example is the 3ix-dimensional
Einstein-Maxwell theory.!? The action in this
theory is given by (M,N = 0,1,2,3,4,5)

I = -(1696)"1febx v-g[R + 174 Fyye™N + 23,  (2.3)

where g, R are the six-dimensional metric
determinant and scalar curvature, Fun = 2wy~ Sndy
is the curl of a six-dimensional abellan gauge
field Ay, A 13 a cosmological constant and G is a
constant with dimension (length)“. A ground state
solutlon M4xS2 exists if the gauge field takes the
monopole form on 52

A¢ = (n/2e){cos ¢ = 1)

(2.4)
Ae(M ¥ ¢) = 0

where ¢ is the polar coordinate on 52' and if we

fine tune the condition
8e? « n?p (16x8)17/2, (2.5)
We c¢an now solve the Einstein equations
By - 172 gunR = -8r8Ty + 172 ABwy (2.6)

with Tyy from the Maxwell field

Ty = FupFyf - 173 gyyF2. (2.7

We search for cosmelogical sclutions of the form

EA aZ(t) By, {(z.8)
v2{LIR,,,

where a and b are the cosmological scgale factors
for 83 and 52, and § is the maximally symmetric 3-
and D~ metric for $3 and 52, The equaticns of
motion are*

3(asa) + 2(b/p) = —(b72-2A)(b"2+2A) /84 (2.9a}
(d/dt)(asa) + [3(a/a)+2(B/b}]4/a =

~({b™2-20) (b™2+24) /84 {2.90)
(d/7at)(d/v) + [3(&/a)+2(B/b]b/b =

3(b72 - 2A/3)(D72-24)/84A (2.9¢)

The Minkowski solution corresponds to b = by
(24)-17/2, and there Is a deSitter solution
corresponding to b = ¥3(2A)"1/2, In inflation with
extra dimensions, in place of the Higgs scalar
field in usual inflation, a dynamical scalar fileld

4 = 1n(b/by) {2.10)

is used. If we define a variable x = t/bo, then

Eq. (2.9c) takes the form ('=d/dx)

" + 3(atsale’ + ¢'2 + (3V/3g) = O, {z.11)

where V i3 a dimensionless "potentlal® given by

Vig) = 378 [(1/8)e” ¢ -
(2/3)e"2¢ - 4/3 + 5/12]. (2.12)
Note tnat V(0) = (BV/3¢)¢_0 = 0. The potential is
shown in Fig. 3.

There are two obvious coneclusions to be drawn
from the figure. The first ls that succeasful

inflation is not possible. The potential does not

Nete that we have assumed B__ rlat. This
assumption will be discuase&miater.
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Fig. 3 The Inflationary potential for the
six-dimenslional Einstein-Maxwell Thecry.

have a long, flat region. Although 3V/3¢ vanishes
at ¢1. it is an unstable point, and any thermal or
quantum correction would "start the ball rolling”
and terminate the transition before suffieient
inflaticn. The second conclusion is that the
minimum at ¢=0 is only a metastable minimum. If ¢
were ever greater than ¢; (and § positive) the
extra dimensions would expand forever. This point
will be discussed later.

A similar program can be applied to
Kaluza-Klein models with Casimir pressure balancing
a cosmological constant to keep the internal
dimensions static.!?:!" In such models, the
relevant action is the Einstein-Hilbert action with
a cosmological conatant, plus free massless matter
fields, and quantum fluctuationa in the matter
fields responsible for TMN' If we define

P = 8%Tog; py = @™ Tpy: pp = g"VT,, (2.13)
(m,n = 1,2,3; p,v = 4,5.,..D), then with the

assumption of Eg. (2.8) for &yy. the equation of
motion for b is

w . 2 . .
B, -1y B ib _ g )
p v (- 5 o+ 335 (0+2y (P-3py*2pp)

A

D) - (2.14)

+ (p-1)

1
b

In general p, Py, and pp will depend on a, b, &. L
We will assume that 3 is flat compared to 8P, so

there should be no a dependence. Furthermore, we

will ignore the 4 and D dependence, anu simply
assume

P» P3, pp = p~(4+D) (2.15}
In that case the right-hand side of (2.14} can be
expressed in terms of b, {the radius of sP ror
anSD) and a dimensionless conatant L = Abg 1"
The eguation of motion becomes [again, ¢ =

1n(b/b,)]

¢" + 3{a'sal¢’ + D$'2 + V3¢ = O, (2.16)
where, in this case
vee) = A=l L ~{(D+4) ¢

b T~ DFTY (54T °©

. D=1 -26_ Lo

I O
27 * D+2 T (D+2) (D45)

D-1) {D+2

* I o+s) . (2.17)

The potential in this case has the same general
form shown in Fig. 3, with the same general
conclusions,

It is interesting to consider the question of
stability of the solution. Obviously the
ground-state solution is stable against small
perturbations. The figure leads one to believe
that for a sufficiently large value of b, the extra
dimensions would grow, and hot relax to the ground
state value ¢=0. It should be menticned that the
stability analysis of Candelas and Weinberg!* is
not relevant in the case we consider here. If b is
ever different than b,, then it is impossible to
cancel & and there would result a four-dimensional
cosmological constant. Hence, thelr assumptlon of
a static metric no longer holds., It must also be
admitted that in this case terms proporticnal to &,
4, ete., may become important in [N p3, Pps and the
simple assumption in Eq. (2.15)} might well break
down and invalidate the form of the potential.

*

If 1t is possible to calculate p, then the
constant L can be calculated. However, for present
considerations, it 1s not necesasary to know L.



Work on thls guestion is being done by Rubin,
Frieman, and Kolb.'' In any case, it may be
possible that if b were ever much greater than bo
in the early Universe, then the extra dimensions
may expand, rather than relaxing to bo'

The final example I mention Is the original
effort by Shafl and Wetterich.® Their model is a
gravity theory in N « U+D dimensjons with higher
derivative terms in the action, which is given by

I e fax/gy (4R + & + aR? + BRyyRMN

2.18
RMNFQ} (N = D+4) (218

*+ YRynpg

where o,8,Y.6 are constants. If certain
inequaiities are satisfied by the constants, &
ground state solution M4xSD is possible. If, in
addition, the constants Y and B satisfy

Y = 142 (12/D-3)[1-12/D(D~1)17 13, {2.19)
then the infiationary potential will be of the form
shown in Fig. 4. This potential has a long flat
reglion for ¢ large. Such a long flat region allows
sufficient inflation to occur, With reascnable
values for the parameters the Hubble constant
during inflation is several orders of magnitude
below the Planck mass. The model also produces
reasonably small density perturbations. It seems
that this model has all the ingredients for a
succeasful inflationary cosmology.

The success of the Shafi-Wetterich model
proves that it is indeed possible to have inflation
through extra dimensicns. From the previoua two
examples it is clear that not every extra-dimension
model will work, and perhaps cosmology can help us

sort through possible models.

Vi)

Fig. 4 The inflationary potential for the
Shafi-Wetterich higher-dimensional gravity model.

Thus far I have only discussed th? exponential
expansicn phase of inflatioen, The second crucial
phaze involves the converaicn of the vacuum energy
into radiation. The detafled calculations have not
been done, however Koikawa and Yoshimura'S have
discussed the general physics of the conversion.

If we imagine a free, massless scalar field, s,
coupled to gravity, then the action for the field s
would be

1 = faNx sdy(s/-g gNaN s} (N =D+¥). (2.20)
The time rate of change of gyy will appear in the
equatlons of motion for s. Therefore as b
oscillates about its equilibrium value b,, terms
proportional to § will appear in the equations of
motion for s. The oscillation of ¢ will be damped
as entropy ls created,

A completely different approach for inflation
does not depend upcn vacuum energy cr a deSlitter
phase. In this second approach, entropy is created
when the Universe goes through an epoch with three
expanding dimensions and D contracting dimensions.
An increase in temperature results i{f the mean
volume decreases while the three (D) dimensions
expand {contract).*”!* plthough the entropy per
D+3-dimensional comoving spatial volume remains
constant, the entropy per 3-dimensional comoving
volume can lncrease., This approach has been
studied by several groups, with the result that no
consistent physical model with extra dimenslons has
been shown to work, although there 1s nc doubt that
the method can effectively increase the entropy in
the horizon three-volume.”*

Let us assume for a moment that some method
for inflation with extra dimensions is operatlive.
Then {nflatlon can explain scme of the questions
discussed above. If we assume that the Universe is
closed, then the three spatial dimensions we
observe have the geometry of S3, with physical
radius today, R; > Ry, where Ry is the Hubble
radius By = Hz! = 1028cm. This radius is to be

contrasted with the radius of the internal spuce,

*

Note that the second method does not depend upon a
cosmological constant. The first method can only
work if the internal space has curvature and a
cosmological conatant. The second method can work
with a flat internal space,



EQUALITY OF SCALES
OUR UNIVERSE
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Flg. 5 Inflation can take a volume of space with R

3
* Ry and evolve it to a space with Ry >>> Rq,

Ry, with a radius today Bp = 10Rp; = t0”32cm. If
there is some mechanism for inflating the physical
size of 53 while keeping the size of S constant,
then the disparity of 1050 in scale can be
underatood. This idea is illustrated (for D=7) in
Fig. 5.
0(1), dimensional reduction is possible, and

It in any physical volume with R3/RD >

inflation ean operate (perhaps in one of the ways
cutlined above}, Lo increase the Rafﬂn ratio to the
exponentially large ratic we see today, although
theé two scales were once similar.

In the inflation picture, the Universe outside
of our horizon might well be a quite different
Unfverse from the one we obsarve, If at the Planck
time, the ten-dimensional space* approximates 83x37
only locally there may be cther ground atate
geometrics elsewhere. All inflation requires is a
regicn of Planck volume of this ten~dimensional
space that is flatter in three directions than in
the other seven directions, for the dynamical
evolution of this space to become the Universe we
observe. Outside of this volume the geometry may
be different. This posaibility Is shown in Fig. 6.
It 18 also possible to imagine that the total
dimenslonality of space-time varies as shown in
Fig. 7.

*
Of course, the general scenaric will follow with
any number of spatial dimensions.

EQUALITY OF GROUND STATES
OUR UNIVERSE ~—~._
)

Fig. € Different regions of the Universe may have a
different aplit of the original ten apatial
dimensions.

EQUALITY OF DIMENSIONALITY
OUR UNIVERSE
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B

ALL SCALES= R, =10 tm SMALL SCALES =Ry,

LARGE SCALES «R,, = 10"%m

Fig. 7 Different regions of the Universe may have
different dimensionality of space-time.

III. OTHER COSMOLOGICAL EFFECTS

If the Universe was ever at a temperature
comparable to RG', or if the scale factors for the
large and small spaces were ever of comparable
size, then for consideration of microphysical
proceases, the Universe had zore than four
apace-time dimensions i.e. dimensional reduction is
not possible. In such a state it i3 possible to
excite modes that today have masses of the order of
the Planck mass.

411 theories with extra dimensions, {including
auperstring theories) have an infinite number of
degrees of freedom corresponding, upon
compactification, to an infinite tower of massive
particles that are guantized excitations of the
extra dimensions. This was first pointed out in
1326 by Klein,*° who studied the five-dimensional



theory of Kaluza. These massive excitatlons of the
extra dimenaions have been called pyrgons.2:®
Although the particles are massive In the
dimensicnally reduced theory, they appear in higher
dimensiona as massless particles.

in the five-dimensicnal thecory of Kaluza, the
equation of motion for excitations of the vacuum

metric satisfy the five-dimensional wave equation
O y(x,¥) = 0 (3.1)
where Oz is given by
O = oy » 32/9y° (3.2)

with oy a -32/3t2 + 32/3x§ + 02/0x8 + 92/0x3. We
may take advantage of the symmetry of the extra
spatial dimension {y) t{o expand the fileld y{x,y) in
the harmonic series

P(x,y) = nr_ v (x)einy/Ry (3.3)

where R; is the radius of S'. Therefore the
equation of motion, Eq. (3.1), becomes

[oy - (a/Ry)2](x.¥) = 0, (3.9)

and upen dimensicnal reduction the nth mode has
mass m = n/Ry, although Eq. (3.1) is the equation
of motion {in five dimensions) for a massless
particle. Particles massless in five dimensions,
become upon dimensional reduction either massless
or massive with m ® m,). Therefore if the Universe
was ever at a temperature greater than R{1.
excitations of the five-dimensaional vacuum will be
distributed over all values of n, and after
dimensional reduction they will be distributed over

all masses m, . nRy! = nmyy .

In the simple five-dimensional model the n=1
massive pyrgons are stable, and ineffective at
annihilation, Therefore it might be reasonable to
expect as many pyrgons as photons in the Universe.
This presents a problem, as muJ = mp) and they would
contribute about 4x102% times the eritical
density.?? Obvicusly, scmething must either rid the

»
From the Greek word wvpyof, for tower.

Universe of massive stable pyrgons, or dilute their
abundange through entropy creation.

The most likely mechanism to rid the Universe
of pyrgons is decay. In the simple
five-dimensional theory they were stable because
they carried & ¢harge not present in the zero-mode
aector of the theory. More intereating models,
such as 1t=-dimensional supergravity with 8T for the
internal space,2? have stable pyrgonsi! even though
most of the 256 zero modea carry the 508 quantum
numbers of the symmetry of S7. In models with the
gorrect low energy theory it is possible to imagine
Lwo reasons for stable pyrgons. COne example is if
all zero modes satisafy the usual electric
charge/color relation, but some pyrgon does not.

It may alsc be possible that there is an additional
charge under which the zero modes are neutral but
some pyrgon is net, If either mechanlsm leads to
stable pyrgons, the Universe is in trouble.

It 18 also possible that some excitation with
Planck mass is stable for topological reascons.
Sorkin, ?* and Gross and Perry®* have shown that
topoleogical defects in the geometry of
compactification would appear in four space-time
dimensions as massive magnetic monopoles.

The cosmological producstion of GUT monopoles
have been atudied by many people.?® Harvey, Perry
and I have considered the cosmological productlon
of Kaluza-Klein monopoles.®® We have found a basic
problem in predicting the number of monopoles
produced in the big bang. GUT monopoles arise from
a topological defect in the orientation of a Higgs
tield vacuum expectation value responsible for GUT
symmetry breaking. At temperatures greater than
the scale of symmetry breaking, thermal effects
should have restored the symmetry, melting
monopeles. The number of GUT monopoles produced in
the big bang is independent of Initial econditions
for <¢>, the Higgs field VEV, since at high
temperature <¢> = 0. However It i3 not so clear
that the topological defects that lead to
Kaluza-Klein monopoles disappear above some
eritical temperature. It may bDe that the splitting
of the spatial dimensions is present as initial
conditfons, and we cannot predict the production of
the Kaluza-Klein monopoles. However If the
aplitting arises as a result of some dynamical



mecharniism, the meoneopoles would be indepencent of
initial conditions. Detection of Kaluza-Klein
monopoles are a petential souree of Information on

the dynamies of dimensional reduction.
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