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ABSTRACT

We study the ete ™+yy amplitude in massive gquantum
electrodynamics in the large s and fixed ¢t limit. We
compute the amplitude in the leading log and the next to the
leading log approximation, to all orders in perturbation
theory, and also find the general form of the full amplitude
up to any non-leading log approximation. We do not use any
transverse momentum cut-off for our calculation. We find
that, up to the next to the leading log approximation, the
contribution to the positive signature amplitude is given by
a single Regge pole. The contribution to the negative
signature amplitude has a piece which corresponds to a
reggeized fermion glunon exchange in the t channel, but there
are also some other contributions which do not have such

simple interpretation.

The technique we have used to calculate the fermion
exchange amplitude may also be used to calculate the vector
particle exchange amplitude in massive gquantum
electrodynamics. We have calculated the gluon exchange
amplitude in massive ged in the positive and the neéative

signature channels in the leading logarithmic approximation.



I. INTRODUCTION

In this paper we shall study the amplitude for fermion-
antifermion annihilation into two gluons in massive guantum
electrodynamics in the limit of very large centre of mass
energy Vs and finite momentum transfer q (Fig.l(a})). We
also study the nearly backward Compton scattering amplitude
in the same 1limit(Fig.l(b)). We define the positive and
the negative signature amplitudes as the sum and the
difference of these two amplitudes (a more precise
definition is given in Sec.II). This problem was first

tackled by Gell-Mann et. al.l

, who predicted, on the basis
of a one 1loop calculation, that the positive signature

amplitude behaves as,

x(2)
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Here wl and ¢2 are the external spinors, Ea and Eb are
the polarizations of the external gluons, m, the fermion
mass, g, the coupling constant, and a(gq) 1is a vy matrix
function of g. They also predicted (erroneously) a similar
s dependence of the negatve signature amplitude, with the

exponent a(gq) replaced by -a{g).

Polkinghorne2 and Cheng and Wu3 verified Eg.(1.1l) up



to two loop orders in the leading logarithmic approximation.
They, however, could not get any result for the negative
signature channel, since the negative signature amplitude
does not receive any contribution in the leading logarithmic
approximation. The major difficulty in extending even the
leading log results to higher orders in perturbation theory

2, r+l

is that in r loop order (0O{(g”) }), individual diagrams in

Feynman gauge have terms of order 2n?T"ls. oOn the other
hand, if we expand (l.1) in a power series in g2, then,
since a(q)“gz, the term of order (gz)r+l in the expansion

will have at most r powers of &ns. Thus, in order to verify
(1.1) in higher orders in gz, one has to first show the
cancellation of all the terms having more than r powers of
¢ns in r loop order. This was done by the authors of Ref.2
and 3 at the two loop order, but this bhecomes an extremely

difficult task as one goes to higher orders in perturbation

theory.

McCoy and Wu4 avoided this problem by assuming a
hypothesis of transverse cut-off. In each Feynman integral,
if we cut off the transverse momenta integrals at some value
A, then, in r loop order, we get terms of the form anPsanda
(p<r+l,g<r). Of course, when we set A>>/s, the logs of A are
converted to logs of s. According to the hypothesis of
transverse momentum cut-off, in evaluating the leading

logarithmic contribution in the r loop order, we keep only



those terms, which are of the form nTsendA (g<r), but
ignore all terms of the form LnPsendn for pey, g<r. If we
now sum the left over terms, all the logs of A cancel
miraculously, and we get a finite answer. The sum of such
terms then gives the leading Regge behavior (1.1). There
is, however, no justification for throwing away terms of the
form &nPsandA (p,g9<r), since they may contain as many as
2{(r-1) logs of s when A tends to infinity. If the
transverse logs do not cancel, these apparently non-leading
logs may completely upset the leading log result. McCoy and
Wu4 also <calculated the imaginary part of the first

non-leading logs, using the same hypothesis.

This problem was tackled by Mason5 in another clever
way. He showed that, if, instead of working in the Feynman
gauge, we work in the Coulomb gauge, then, in low orders in
perturbation theory, the leading logarithmic contribution
comes from the factorized diagrams of the form shown in
Fig.2. In Coulomb gauge, the individual Feynman diagrams
contain 2r powers of &ns in r loop order, hence, apparently,
the behavior of the individual terms is worse than that in
the Feynman gauge. However, if we assume that only the
factorized diagrams contribute in the leading 1log
approximation, then, the constraint that the final result
must be Lorentz covariant, immediately leads to the result

(1.1). Mason, however, could not show the factorization of



the amplitude in the 1leading logarithmic approximation
beyond two loop order. As a result, he could prove (l.1l) in

the leading log approximation, only up to three loop order.

Attempts have also been made to show that the Regge
behavior holds for the gluon and the fermion exchange

reactions in non-Abelian gauge theories5'10.

In this paper, we shall prove the cancellation of the
double 1logs in perturbation theory, without assuming any
transverse cut-off, and show how to systematically calculate
the amplitudes for the processes shown in Fig.l in the
leading log, next to the leading 1log, second non-leading
log... approximations. We shall illustrate the method by
calculating the contribution to the positive and the
negative signature amplitude in the leading log and the
first non-leading 1log approximation {(here by first
non-leading log we mean that in r loop order we keep terms
carrying r-1 powers of f&ns). We find that the sole effect of
the first non-leading logs in the positive signature channel
is to give an 0(94) contribution to the trajectory function
a(gq) and some overall multiplicative constant, independent
of s, without changing the form of (l1.1l). The contribution
to the negative signature channel contains a Regge cut term,
corresponding to a veggeized fermion gluon exchange. There

are, however, some other contributions to the negative



signature channel, which, presumably, corresponds to
additional Regge singularities. We have expanded our
results in powers of 92 and compared with the results of

explicit calculations by McCoy and Wu4

up to four loop
order. Our results for the 1leading log terms and the
imaginary part of the first non-leading log terms agree with
the results of McCoy and Wu. The real part of the first non
leading logs, which gives rise to the 0(94) term in the
trajectory function, was, however, not calculated by McCoy
and Wu. This is a new result. We have also calculated the
asymptotic behavior of the gluon exchange amplitude in the
positive and negative signature channels in the leading
logarithmic approximation using the same method. Also, as
we have mentioned earlier, our approach provides a
systematic way of calculating the amplitudes up to any non
leading logs. The techniques developed in this paper is in
no way limited to Abelian gauge theories, and may be

generalized to non-Abelian gauge theories for gluon and

fermion exchange amplitudes.

The various stages, involved in our analysis, are as
follows. In Sec.II we specify the kinematics, the gauge,
and the renormalization procedure that we shall be using
throughout this paper. We work in the Coulomb gauge. Since
the annihilation and the Compton scattering amplitudes may

be analyzed in the same way, we concentrate on the



annihilation amplitude. We choose a frame in which the
external fermion and one of the outgoing gluons move with
very large momenta Py and ka respectively, in the +7%
direction, and the external antifermion and the other
outgoing gluon are moving with very large momenta Pp and kb
respectively, in the -2 direction. 1In Sec.III, we analyze
the contribution to the Feynman diagrams, contributing to
the amplitude, from different regions of integrations in the
loop momentum space. For this we use a power counting

method developed by Sterman.ll

We find that if we neglect
all terms that are suppressed by some power of m/v/s, then,
the momentum space region, which contributes to the
amplitude, consists of a connected set of lines moving along
the 2 axis with large momenta, a connected set of lines
moving along the -2 axis with large momenta, and a set of
soft lines with all components <£q, exchanged between the two
oppositely moving jets. The factorized diagrams of Fig.2
are special cases of this, where only one soft fermion line
is exchanged between the two jets. Using this picture, we
express the full amplitude as a sum of convolution of two
Green’'s function, G(n) and F(n|). G(n) is a Green’s function
with an on shell fermion line carrying momentum P,r an on
shell gluon line carrying momentum ka' and a set of n soft
gluons and a soft fermion 1line as its external lines.
p(n')

Similarly, contains an on shell antifermion line

carrving momentum P, an on shell gluon 1line carrying



momen tum kb' and a set of soft gluons and a soft fermion

line as its external lines.

In Sec.IV, we study the properties of the Green's
functions G(n). pin') may be analyzed in an exactly similar
way. We derive various relations between the G(n)'s. In
particular, we study the variation of G(n) under an
infinitesimal boost along the Z axis, this gives us some
non-trivial relations amongst the G(n)’s. We show in Sec.V,
that wusing the relations derived in Sec.IV, the full
amplitude may be expressed as a sum of the convolutions of
the functions r(n) anq o(n') in the transverse momentum
space, where F(n) and ¢(n')‘s are some special functions,
defined in terms of G(n)'s and F(n')'s respectively. In
Sec.VI we show that in r loop order, r (n) can have at most r
logs of p;/m and ¢{®") can have at most r logs of p;/m. This
essentially shows the cancellation of double logs, so that
only the factorized diagrams contribute to the amplitude in
the 1leading log approximation, only the factorized diagrams
and the diagrams which have a one gluon one fermion
intermediate state in the t channel, contribute in the next
to the leading log approximation, etc. In Sec.VII, we show,
how with the help of the edguations derived in Sec.1V , we
can systematically compute the asymptotic behavior of the
functions F(n) and ¢(nl). In Sec.VIII we explicitly evaluate

the contribution to the amplitude in the leading logarithmic
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and the first non-leading logarithmic approximation, using

the general method developed in Sec.VII.

We summarize our results in Sec.IX.

In appendices A and B, we prove some of the technical
results, not proved in the text. 1In appendix C we show how
our formalism may be applied to study the gluon exchange
processes in the Regge limit. We find the expression for
the fermion-fermion scattering amplitude in the odd C-parity
and the even C-parity channels in the leading 1log

appreoximation.

IT. KINEMATICS AND GAUGE

We shall consider the process of Efermion-antifermion
annihilation into two gluons (Fig.l{a)) and the backward
Compton scattering amplitude (Fig.l(b)) in the limit of very
large centre of mass energy and fixed momentum transfer.
Let m and u denote the physical masses of the fermion and
the gluon respectively. We choose a frame, in which

different momenta, shown in Fig.l, are as follows:



11

,"x = (t’a"‘mtIa(z?z) X ) °<?z ) ”)

hr = JFETM?""O(Z—;%‘!,‘O{QU“O(?z)“P,)

Ra= -2 R =+ @
¢= (0,2,¢,0)
K= G e B2, g, -z, b
K= Pot?

® is determined from,

e+ o2 3 24 (- 3 @2)

We take the 1limit p,p'+® at fixed dg. Thus the
particles 1labelled 'a' move with large momenta along the
positive 2 axis, while the particles labelled 'b' move with

large momenta along the negative 2Z-axis. In this limit, we

have,
5= (Petbu)® ™ PP 3)
£ = gf. -2 (2-4)
In this paper we shall consider the case of

transversely polarized gluons only. We shall compute the
amplitudes for the processes shown in Fig.l in an Abelian

gauge theory with massive vector bosons. Such a theory is

12

renormalizable and also gauge invariant, in the sense that
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we may add any term of the form (uukv+uvku)/ (k2—u2

+i€) to
the gluon propagator, without changing any physical
scattering amplitude, provided we include an exXtra

wave—-function renormalization factor in the external fermion

lines (here u is any vector).

The amplitudes for the processes shown in Fig.l may be
expressed as Y-matrix functions of s, g and the polarization
vector of the external gluons, sandwiched between the
external Dirac spinors. If Al and A, are these y-matrix
functions for Figs.l(a) and l(b) respectively, we define the

positive and the negative signature amplitudes as,

A* = A, A, (2.5)

The amplitudes are calculated by calculating the sum of
all the Feynman diagrams, including self-energy insertions
on external lines, and then dividing it by the wave-function
renormalization constant for each of the external lines.

The renormalization mass is choosen to be of order m,u,q.

The convention about the y-matrices and the external
spinors are the same as those used by Bjorken and Drelll3.

We define,

vi - vyex Y3 @6)
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Then;

G0 vt viey

. , (2.7)
Ivt,vi}l o =2
For any four vector k we define,
k1.=: Lo, Rh hz*c})
2.9
s @2)

We choose to work in the Coulomb gauge, in which the
unphysical longitudinal degrees of freedom are absent from
the gluon propagator. The propagator of a gluon, carrying

momentum k, is given in this

gauge by,

~UNMTCR) /(R BEAEE) = o (g RRTIRNR-RTRY) JEMEe)
kR

(2-9)

where,

R = (o, R) (@10)

For future reference, we shall 1list the various

compeonents of N below:
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hi**‘:: N = -t§+ ti—//-iiz
e R R R @)

N = g¥ PR/ R 1= 2
Nite it ok (E-R) ki/z_Ezt =, 2

III. ANALYSIS OF FEYNMAN GRAPHS: POWER COUNTING

In this section we shall study the contribution to the
Feynman integrals, contributing to the amplitudes under
consideration, from different regions of integration in the
momen tum space, and identify the important region of
integration that contribute to the amplitude in the s=+®, t
fixed 1limit, in the leading power in s. We follow a method
developed by Stermanll. We scale all the masses and momenta,
involved in this problem, by /s, so that in the s+« limit,
the problem reduces to the scattering of finite energy
massless particles at zero momentum transfer but finite c.m.
energy. The powers of lns will now appear as powers of
1In{l/M), M being some mass of the order of the masses of the
particles involved, and q, scaled by Vs. The analysis then
reduces to the investigation of the singular structure of

the integral in the ™, e, (R0 Limit,

Loop
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The singularities of a Feynman integral come from those
regions of integration in the loop momentum space, where the
integrand becomes singular due to the vanishing of some of
the denominators. However, 1in order that the integral
becomes singular, it is not enough to get a singular point
of the integrand. The variables of integration must also be
trapped at the singular point. Otherwise by deforming the
contours of integration in the complex plane, we may move
away from the singular point. Singular points, where the
integration variables are trapped, will be called the pinch
singular points of the integral. The pinch singular points
of a Feynman integral may be found out by standard

11,14

analysis . Following Ref.ll we define the following

regions of integration in the momentum space,

1) A momentum k is called collinear ¢to ©p

kgkl/zp;, k'mlp;, A being a number, small compared to unity.

2) A momentum is called collinear to Py, if k-mp;, ggxl/ng,

. + .+
ar 1f KPP,

k+wlpg.
3) A momentum k is called soft if kY »i/s for every u.

4) A momentum is called hard if kM «/s for every u.

With every singular point, we may associate a reduced
diagram, which is obtained by contracting all the hard lines
at the particular singular point. As was shown in Ref.1l4,
and generalized for massless particles in Ref.ll, the

reduced diagram for a pinch singular point must describe a



16

real physical process, each vertex of the reduced diagram
describing a real space time point. According to this
result, the two types of reduced diagrams, that may
contribute to the process we are considering are as shown in
Fig.3. The blobs marked + and - contain lines that are
collinear to P, and Py, respectively. The blob marked S, as
well as the lines coming out of S, are soft lines. For a
real physical process, two oppositely moving jets may
interact only through the exchange of soft lines (Fig.
3(a)) , or they may actually meet at a single point in

space~time, besides exchanging soft quanta{Fig.3(b)}.

The soft loop momenta are usually pinched by the double

2 1 (x2p2 1

poles in the soft denominators (kz—u +ig) +ig)
for a soft fermion line]. However, the soft loop momenta
may also be pinched by the singularities of the jet lines
(jet lines = collinear 1lines). For example, 1in Fig.4,
consider the region where kFl’ sz, kF3' and kF4 belong to
the + jet, sz belongs to the - jet, and kSl and kg, are
soft. ip 1is a jet loop momentum, Lo is a soft loop
momentum. The denominators of the lines kF3 and kg, give

rise to singularities in the Qg plane at,

— -, 2 . - 2 .
g = QBFz + -Es -2 );L +mi& Res _@p.-zs)ﬁmz-ii Ko,
(Rr-'z + 25)"' ) Q?Fu —-er

(1)
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respectively. In the region considered, (knq ), (kgo)ys gg,

k kFE' m and g are small (when scaled by vs), and kF{ and
F; are finite and positive. Thus l; is pinched at the
origin between these two poles. In an exactly similar way,

Fl’
k

the + component of the soft lines, attached to the - dJet,
may be pinched between the two jet lines. The importance of
these extra pinches will become clear later. It will allow
different components of soft momenta to scale differently,
e.g. instead of having lkWrr/s, we may have {kH Ik Y rovs.

fkTlravs, where A<<o<<l,

Now that we have found the pinch singular peoints of the
Feynman graphs under consideration, we shall use a power
counting method, developed in Ref.ll, to estimate the degree
of divergence of the integral near a pinch singular point.
We shall briefly point out the main ideas that go behind
this development, for more details the reader is referred to
the original paper. Let us consider a 1line carrying
momentum k, which is a part of the + jet. 1In the massless
limit, its Feynman denominator is given by k+k'—ﬁf+ie. Since
the 1jet line 1is massless, and moving c¢lose to the +2Z

direction, we have k,=0, kK~ =0. Since the denominator depends
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linearly on Kk~ and F:z, we expect to obtain maximum
divergence when k~ and Ef scale to zero at the same rate.
Let us call A to be the common scale of all the - components
and the square of the transverse components of the + Jjet
momenta. Then for each jet line we get a factor of A"l The
integration volume for each jet loop scales as lz {one
factor of X due to the - momentum integration and one due to
the transverse momenta integrations). The fermion
numerators as well as the NHV(k) factors from the gluon
propagators, may give rise to some extra powers of A in the

numerator. As was shown in Ref.ll, for each three point jet

gluon-jet fermion vertex, we get at least a factor of Al/z.

Let us ignore the presence of the soft 1lines for the
time Dbeing, and estimate the degree of divergence from the
jet lines and jet loops only. We can estimate the degree of
divergence from the + Jjet and the - jet separately. We
shall concentrate on the + jet only, power counting for the
- jet may be carried out in an exactly similar way. We
first identify three special points on the jet in Fig.3, the
point A, where the external fermion breaks up into two or
more jet lines, the point C, where two or more Jjet lines
meet to produce the external gluon, and the point B, where
either the soft exchange fermion line leaves the Jjet (for
RD’'s of type Fig.3(a)), or the + jet meets the - jet (for

RD's of type fig.3(b)}. Let,
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Y,8,€: number of + Jet lines attached to the contracted
vertices A, C, and B respectively.

2,3 : number of Jjet lines and Jjet 1loops in the + jet
respectively.

X, number of internal vertices of the + jet with 5 jet

lines attached to it (vertices A, B, C, are excluded in

counting xa).

As we have seen before, j jet denominators contribute a
factor of (K-l)j, while £ jet loops contribute a factor of
(k)zg. Let us define the number nA(nC) such that nA(nc) is
1/2 if A(C) is a three point vertex and is zero otherwise.

Total suppression from the numerator factors then goes at

n,+n..+x
least as (11/2) AC 3. The total power 4 of A_l in the
integral then satisfies the inequality,
d < 3-22—(ﬂg+ﬂc*"<3)/z (3-2)
Now,
j = :% 25: - ¢ 7(5( +'ﬂ% (E+ T+ E)) (3-3)

x$2 3
The total number of vertices v in the + jet (including

A, B and C) is,

Ve 2 Xy +3 (34)

x23
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Euler’s identity tells us that,

£=09-v+ (3-5)
Using {(3.3) to (3.5) we may write (3.2) as,
< - - -
d. < ['é%;s(d Y) X tE €+ v+ + L 04N 4]

G-6)

Now, if y=2, n,=1/2. If y>2, na=0. Thus,

3 .
( i:?"* Nal 2 5 Q? 7)
Similarly,
(£ 8+Me) 2 2 (3-2)
Also,
F (x-4) %X« 20 @9)
X775
Hence,
<O (3.10)

which shows that the contribution from the + jet is at most
logarithmically divergent. The equality sign in (3.18) is

satisfied only if 1) xa=0 for a>4, 2)y,8 = 2 or 3 and g=2.
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Also we must choose the numerator factors in such a way that
it does not have more than np+n,+x, powers of ll/z. This
means that we have to choose as many p+Y' terms from the
fermion numerators and as many Y, terms from the gluon
fermion vertex as possible. This is because if we look at
the expressions (2.11) for NHV(k), we see that N, N** and
N""ox, NEEaL/2 apna nids1 (i,5 = 1,2) if k is a collinear
momentum. Hence for each Y+ or y at the gluon fermion
vertex, we get a suppression factor of ll/z from the gluon
propagator. Amongst many things, this implies that in the
chain of yY-matrices on the fermion line inside the jet, the
left-most longitudinal y matrix { longitudinal = + or -)
must be a y . There may of course be trsnsverse y-matrices

to the 1left of this Y— matrix, but there is no y+ to the

left of this y matrix.

Let us now consider the contribution from the RD's of
the type shown in Figs.3(a) and (b), ignoring the presence
of soft lines, except for the single fermion exchange line
in Fig.3(a). In both the figures, the two Jets give
logarithmic divergence (d=0). However, in Fig.3(a), we have
an extra soft fermion 1line which gives a contribution of
i/(4-m). Such terms are not present in RD’s of type shown in
Fig.3{(b), 1i.e. the i/(#g-m)} factor is replaced by a factor
of order 1/Ys. Thus, since we are interested only in terms

contributing in the leading power of s, RD's of type shown



22

in Fig.3(a) are the only ones we shall be interested in.
This conclusion does not change even after we attach soft
gluon lines to the jets, since, as we shall see, the
presence of soft gluons does not increase the degree of

divergence of the integral.

Let us now consider the effect of attaching soft lines
to the reduced diagram. First, let us ignore the pinching
of soft momenta by jet lines (as was illustrated in Fig.4).
Then all components of soft momenta scale together for
maximum divergence. Let us call this scale g. Let us now
consider the effect of attaching one end of a soft gluon
line to a jet and the other end to a soft fermion 1line

(say) . The gluon propagator gives a factor of g2 , the

extra soft fermion denominator gives a factor of 0"1. If
0<A, then the extra jet denominator gives a factor of l"l.
The soft loop integration volume gives a factor of 04. Thus
the net extra factor goes as o—3l_lg4mg/x, which gives a
suppression unless gsoA. 1f, on the other hand, g>)\, then all
the jet denominators, through which this soft momentum
flows, scale as o~l instead of l_l, and there is again an
extra suppression. The only way we can avoid the extra
suppression is to keep ogvi. Similar result also holds for
soft gluon lines exchanged between the two jets. 1In order

to avoid any extra suppression factor from the jet numerator

due to the attachment of the soft lines, the soft gluon
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lines must attach to the + jet through a three point y+
vertex and the - jet through a three point y vertex. Also,
not more than one soft gluon should be connected to the Jjet
at a point {(in a reduced diagram, we can, in principle, have
many lines attached to the same vertex), otherwise we loose
some jet denominators that we could have gotten by attaching
them to different points of the jet. Finally, one can see
by simple dimensional analysis that soft fermions attached
to jet lines, produce extra suppression factorsll, hence we

do not have any other soft fermion line attached to the + or

the - jet, except the soft exchange fermion line.

At this point, one may ask the gquestion: how small
should be the momenta of the soft lines? To answer this,
let us note that when soft exchange lines are present, the
factor 1/(d-m) from the exchange fermion line is replaced by
some term of order 1l/o¥s. Thus, 1in order to dget a
contribution in the leading power in s , we must Keep the
momenta (09¥s) of the exchange lines, to be of order dg.
Other soft lines, which are attached solely to the + jet or
solely to the - jet may have their momenta 1lying anywhere

between m and Vs.

Let us now consider the effect of pinching the soft
momenta from the jet lines. As we have seen before, if a

soft line of momentum k is attached to the upper Jjet, then
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k- may be pinched between the two jet denominators and scale
as A, while the other components of k may be larger (vo,
say) . If we now again consider the effect of attaching one
end of such a soft line to a jet line, and the other end to
a soft fermion line, the extra contribution due to the extra
soft denominators goes as 0_3, while the extra jet
denominator gives a factor of A"l. The integration volume
due to the extra soft locop integration goes as G3A. Thus
there 1is no extra suppression factor. Similar result holds
when the two ends of the soft line are attached to the two
jets. This result holds so long as the transverse
components of the soft momenta are less than the transverse
components of the jet momenta, i.e. G§A1/2° As before, for
the exchange lines ¢ must be of order g//s. This shows that
the - momenta of the exchange lines, attached to the + jet,
and the + momenta of the exchange lines attached to the -
jet may go down to Js.qz/s S mz//s, without changing the

degree of divergence of the integral, while the transverse

momenta must be of order qg.

The above analysis gives us the regions of integration
which contribute to the amplitude in the leading power in s.
Let us now define by G(n)(pa,q,ea,kl,...kn) and

1
F(n ){Pb,q,€b,ki,...kﬁ) the Green's functions shown in Fig.5

{a) and (b) respectively. Here, q, kl,...kn, ki,...k'

n' are

L]
all soft momenta.G(n) and F(n ) are one particle irreducible
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in the external soft gluon and the soft fermion lines. In
G(n), the external soft gluons carry polarization
1/2¢(1,0,0,-1), in F(n'), the external soft gluons carry
polarization 1/2(1,0,0,1}). Then the contribution from an RD

of the type shown in Fig.3(a) may be written in the form,

5 d"ﬁl Trmoe ¢9-Qns F(h'} Ch,, % 65' k:," .-'k'h' )

S(?) ‘Q'J""‘Q“S) G‘(“)(P‘:tae% Riyoeee k“)

Gn)

if the momenta inside the + and the - jets in Fig.3(a) are

fully integrated over. In (3.11), %,... Rn are the ng
s

independent soft loop momenta, i,... kﬁ. are the momenta of
the n' soft lines attached to the - jet, kl,...kn are the
momenta of the n soft lines attached to the + jet, (ki's and
ki's are linear combinations cof the Qi's) and 8 is the total
contribution from the soft numerator and the denominator
factors. Now, by fully integrating over the internal 1loop
momenta of F and G , we include some exXtra contribution in
(3.11). For example, if we take the RD of Fig.6(a) and
fully 1integrate over the internal loop momenta of the + and
the - jets, we also include the contribution from the RD of

Fig 6(b). However, these extra contributions may also be

expressed as an integral of the form (3.11). As a result,
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the sum of all the Feynman diagrams in the leading power in
s may be expressed as a sum of expressions like (3.11). A
prescription for systematically expressing the full
amplitude in terms of integrals of the form (3.11) is given
in appendix A, using the tulip-garden formalism of Collins

15

and Soper In each of these integrals, the integration

over the Ei's lie only in the soft region.

In general, we gain two powers of &ns for each loop
integration in a Feynman diagram, one due to the collinear
divergence, and the other due to the soft divergence. Thus,
from an r loop graph, we can get a maximum of 2r powers of
¢ns. The non-factorized diagrams, however, loose some of the
logs, since, according to Fig.3(a), there must be one soft
loop momentun, which is constrained to be of order g, and
hence, cannot produce a lns term after integration. Only
the factorized diagrams of the form shown in Fig.2 do not
need to have any soft gluon exchange and can have 2r powers
of &ns in r loop order. But as already mentioned in the
introduction, explicit c:alculationsz-5 in low orders in
perturbation theory show that, when we sum the contribution
from all the Feynman graphs, all the double logs cancel, and
the largest term in the r loop order 1is proportional to
ints. Hence we should define the leading logarithmic
approximation as the sum of terms with not less than r logs

of f&ns in r loop order. Then we must consider the
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contribution from the factorized as well as the

non-factorized diagrams.

In (3.11), if we first integqrate over the internal loop
momenta of G(n) and F(n'), and look at the integrand as a
function of li's and the external momenta, the potential
sources of the Rn(s/mz) in the final integral are the
followings. There will be explicit 1logs of (pa+/m) from
G(n) and (pg/m) from F(n'). Besides these logs, since the
integral receives contribution from small k; and small ki+
regions, there may be logs of m/k; and m/k:!L+ present in g(n)
and p(n') respectively, which are converted to logs of p;/m
and p;/m respectively, after the k; and k'I integrals are
done. Thus the analysis of the logs seems to be a
complicated multivariable problem. However, we shall show

in Sec.V, that expression {(32.11l) may be expressed as a sum

of integrals of the form,

(312)

where,
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P(""} (P&|?> G.n ku, 70T k’l"\l )
™ Mo
= 5 d\h: = ";g ihh Q(“\ (h;, ?) én., k: "'"h:'ku,"'khh Et’o,---kt’o)
—n -—

(3.13)

and,

4

@(m ( ij 2, &, k-lf“‘ k.

[y | M
- 4 - /4 '} . , .-
= 5 AR S AL FO R g6 K R R B0, K 0)

n )

G.)

where M is any arbitrary parameter of order m. The final

result is independent of the choice of M, although, in

~

{3.12), Q(n'), 5 and P(n) may individually depend on M. In
(3.13) and (3.14), instead of cutting off the k; and k'I

integrals sharply at M, we could also have defined r(n)'s

(n),

]
and Q(nl)’s as integrals of G s and gD )'s with a smooth

~

cut-off on the k; and k'I integrals. S is a calculable

function of its arguments. After we prove (3.12), the
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analysis of the s dependence o0f the full amplitude will

essentially reduce to the analysis of the p+

a and Py

dependence of I'(™ ang ¢{M") regpectively.

Iv. srtuby orF g(n}.

We have seen in the last section that the study of the
fermion-antifermion annihilation amplitude 1in the Regge
limit reduces to the analysis of the Green’s functions G(n)
and PN} For definiteness, we shall limit ourselves to the
study of 6™, since F{®') may be studied exactly in the
same way. In the subsection A, we shall study the behavior

of G(n) when the - momentum of one of ‘the external soft

gluons :5 ©0f order m. In subsection B , we shall find the

change in G(n) under an infinitesimal boost along the
Z-axis. This will later be useful to us to derive a
differential equation involving the Green’s functions. In

subsection C, we shall analyze the dependence of G(n) on the

+ components of the external soft momenta.
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A. BEHAVIOR OF G(M) WHEN THE - COMPONENT OF ONE OF ITS

EXTERNAL SOFT MOMENTA IS OF ORDER m :

Let us cons ider the Green’s function
G(n)(pa,q,ea,kl,...kn), and let us assume, for definiteness,
that k; is of order m. Following a technique due to Grammer

16

and Yennie ~, we decompose the Y+ vertex, at which the n-th

gluon is attached to the jet line, as,

7372 =18 (&7(R) + k" (k) Yo /2 @)

where,

KM (k)= B2 &7/ (h-kR-2€) G-2)
& (k) = 2= KM (k) -3

The K gluon carries a polarization propeortional to k .
Hence, when we sum over all insertions of the K gluon to

G(n), the K gluon decouples from the rest of the diagram due

to the Ward identity, and the contribution has the form,

- a (I.U\-n *"a, ?J €°~) k‘J' T kh") )
) ( Gy

which is graphically represented as in Fig.7. The circled

vertex in Fig.7 carries a factor of —g/(k; - ie).

For the G part, we see that ¢t is identically zero.
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Hence we cannot get a Y+ term at the vertex where the G
gluon is attached inside G(n). From the analysis of Sec.III,
we Kknow that the soft gluon must attach to the jet gluons
through a Y+ vertex. Thus the fermion line to which the G
gluon 1is attached, cannot be a jet line, hence it must be
soft. Thus, if k; is of order m, and we consider the
contribution from the G part of the n-th gluon, the region
of integration, which will contribute to the amplitude in
the 1leading power in s, locks 1like Fig.8. The crossed
vertex represents a G vertex. This picture, however, is not
valid |if lk;I << m, since then the large factor k/k in ¢t
may compensate for the suppression due to the attachment of

the G part to a jet line through a y, vertex.

E. VARIATION OF G(n) UNDER AN INFINITESIMAL BCOST

ALONG THE Z-AXIS:

Let us consider an infinitesimal boost along the

Z-axis, which changes a momentum k to k' as,
R = v & Qap)
K- = vr (I-B) @5)

’
L= Ry

il

where,



32

ve P < e ocp) (wc]

Let us write the transformation (4.5) as,

N fx '
R. = /\ ! t( (5-50~)
ul...un
Any tensor T then transforms to,
F: [4
.- - fan R
Tfi*. ‘*v\____l\'H, A B Tf"! Fn

(@)

Let S8 be the representation of this Lorentz

transformation in Dirac space such that,
- s
S Ry S =RkR. Y (3.8)

Then,

S w(bo) = w(ba ) G 9)

The total contribution to G{n) in s loop order from all

the Feynman diagrams may be expressed abstractly as,

" (b, €Eay k-~ ke

% :
i r:Z S(‘Lﬁ" 8‘2‘%‘) 5‘“-"Pswp--Vh(ku“'kmz'l“"&) P*:Qse“)



[Zz(bm)]%(y,;m) w(b) € ﬁ N“Vj(?j)/(qf-pf-n'é)}

(4.10)

where ; denotes sum over all PFeynman diagrams, including

self-energy insertions on the external fermion p,. L 2

l,-oo s
are the independent loop momenta, [22(pa}]_1/2 is the
fermion wave-function renormalization constant,

My Vs
N J J(qj)/(qu-Pﬁ&Q are the g¢gluon propagators of the r
internal gluons present in the diagram (qj's are linear
. . . .
combinations of the Qi s), and Z$]¥L"‘“rv1"'vr is the
contribution to the Feynman integrand from all the fermion

loops and lines. The wave-function renormalization constant

of the external gluon k_ is included in %. ¥ has a

Lorentz covariant expression in terms of its arguments,
except for the presence of the n y+ matrices at the vertices
where the n external soft gluons attach to the fermion line.

Noting that,
SY'S™ = (-p) Y*+0(p%) (4-11)
we may write,
S FubrnnC R L By 2,60 87 (7 N (9)))
= Frbyuwn (L 5, B, 4, €4 GBI B ()

(4:12)
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where N' is related to N by the tensor transformation law

(4.7). Thus we may write,

S G (o, 2, €0, Ry, ka) (-B)

= A qug’ ' gt 'y
=Z5Q] %{4) oy (R =R Ly L B, 2, €

S [l 7 (fomn) w(pl) THE N /(257 20063

(413)

using the facts d4li=d4li and q? = Q'i-

G(n) at pé, Kl,a04 kﬁ may be evaluated by replacing the

the external variables by the corresponding primed variables
on the right hand side of (4.10). For the internal
variables, we can change the variable name from £, and a5 to
£'. and q'j, q'j's are then the same linear combinations of

1

R‘i’s as qj's are of Ei's. Thus we have,

G (R, g, En R )

A ‘ P ! '
= ; S-(Tr %;T‘TQ?) j}m”"‘th'-V)‘ (k:l'" hhiz‘nhhﬂha bo..)?-) G“)

1=l

(2T wCr) T NN (24) ] (qf-pteie)] (o
.14
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Now, [zz(pa')]‘l/2 and S[zz(pa)]*lfzs‘l differ from

each other by a term of order 8. Also, N*V(g') and N'™V(q)

differ from each other by a term of order B. Let us define,
A
BS™ (el NY () -NPT(R) (4. 15)

Then, up to terms of order B, the difference between

{4.13) and (4.14) may be written as,

Géh) (t%tl ?Jé*Jk"-‘” ’ k""\ } _(\_@)‘h SG&MCF&)?; G"‘Jku"“\?h)

= T '8
ZS (ZTT]I‘J 3 PhV V&(kAIQJJPmFQ) &)

{1 2,0) " S T2l S 3 (o) u(K) W{ CRaAY
J! (cg" pEHLE)

+§ -g I’TI %,-g-‘l) g TR =S RN (h;_,ﬂ_;’, h’:s QJ éﬂ-) [‘z'a(h:;'j‘/z' (!::m)

B shM () NP3 ] 4o
k. )[f (2.5 p2+ig) W{(‘Z'z-}&-l-lé)}} P

(. 16)
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The second term on the right hand side of the above
equation may be interpreted in the following way. Let us
define by S gluon a gluon with propagator Suv(q)/(qz—u2+ie).
Then this term is the sum of all Feynman diagrams where one
of the gluons is an S gluon, the rest being ordinary Coulomb

gauge gluons. It is straightforward to calculate gHV using

Egs. (4.15)., It has the form,

sPY k) = s R) RY 4 SV (R ED (417)

where,

St (7)1 =@ 2+ ot ) /@)
ST = ¢+ BT OV/F)F (418)
() = - /@) J-2

Since the 8 gluon carries polarization proportional to
its momentum, in order to sum over all possible S gluon
insertions in a given Feynman diagram, we may use the Ward
identity. If we take into account the fact that G(™
includes only those diagrams, which are one particle
irreducible in the soft fermion 1line, the sum over all
insertions of the S gluon will be given by the diagrams of

Fig.9 (ignoring terms which do not have poles at ¢a=m). Of
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these, Fig.9(a) may be shown to give a contribution, exactly
opposite to the first term on the right hand side of
Eq.(4.16)17, and these two contributions cancel. Thus we

are left with the contributions from Figs.9(b),{c) and ({(d}.

To analyze the contribution from these diagrams, we
need to Know some properties of the S gluon. Suppose the 5
gluon is a part of the jet, so that its - momentum scales as
X, and transverse momenta scale as Al/z. Then, we can see

1/2

+ She 8, S . Thus the 8 gluon

from Eg. (4.18) that S, S
carries extra suppressicon factor compared to the ordinary
Coulomb gauge gluons in the jet 1like region. This shows
that the S gluon cannot be the part of a + jet. It cannot
be hard either, since SH(k) has three powers of k in the
dencminator, as opposed to Nuv(k), which has only two powers

0of k in the denominator. Thus it must be soft.

We shall use these results in our later analysis.

c. anarysis or a¢‘™ sax *

In this subsection we shall analyze the guantity
ki+3G(n)/8ki+ (the factor of ki+ makes the quantity have the
same dimension as G(n)). For a given graph in G(n)' we may

label the internal loop momenta in such a way that ki flows
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along a particular path inside the graph (e.g. in Fig.10, a
possible choice of the flow of the momentum ki is indicated
by the shaded lines}. Then, if we take the 3/3ki+ operator
inside the integral, it will act on the shaded lines only.
Let us denote the operation of ki+3/3ki+ on any part of the
path of k; by a cross on that part. If P+ki be the momentum
flowing through this part (P is a linear combination of the

other external momenta and the loop momenta) then,

+ 2 @-I- k,_) Y+
N or? {(P+ RS mE+i€ }

=. RI CpP4ky )__2 {.094.tg£).‘f'4;TN\E§ ,
{P+R =2 1163 o |
4

+ ki Pt v~ @.;9)
* (PrR)=m2Z+ L€

Since the denominator is 5(P++kz)(P-+kI), we see
that on the right hand side of (4.19), each term is
suppressed relative to the original undifferentiated term by
a factor of kI/P+. This is expected, since kI always appears
in the combination kI+P+ in the propagator of the line P+ki,
and the dependence of the propagator on k; will be
negligible unless k; is of order P+. This analysis shows

that in order to get a non-suppressed contribution to
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kIBG(n)/akI, the crossed line must carry + momentum of order

+
i

k., i.e. it must be soft.

A more careful analysis shows that it is not enough to
have only the crossed line to be soft. For example, if both
ends of the crossed line are attached to jet lines, then, we
can first replace the B/akI operation on the line carrying
momentum P+ki by 3/3P+ operation, and then integrate the pt
integral by parts, so that the B/BP+ operator now acts on
the rest of the integrand. Such a contribution is
suppressed, since the contribution from the jet lines will
be insensitive to P+. Similar suppression occurs from any
region of integration, where the crossed line cannot be
continuously connected to the point where the momentum ki
enters the graph, or the point, where the soft fermion line,
carrying momentum q*Ekj, leaves the graph, by a set of soft
lines. Figs.ll{(a) and (b) shows us typical regions of
integration which give non-suppressed contribution to
BG(n)/Bk;. All the lines, shown explicitly in these graphs,
are constrained to carry soft momenta. These look like soft
loop 1integrals of some G(n')’s which have less number of
loops than the original G(n). In appendix B we have shown

how to systematically express the contribution to

k;ae(“)/akI in the form,
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§ -g f(::“ C h')'" h“ah:l”'h":) Gf“q(hh ?.GM h:'"' k"‘)
d'k, --- . Ak, (4-20)

I
(n') is a function which goes down sufficiently

where £ +

rapidly as ki+w 30 as to restrict the ki integrals in (4.22)
in the soft region. The Green’s functions G(n') have less
number of loops than the original function G(n). The
function f(nll may contain factors of G(ki_kj)' which set
gi{n")

some of the ki in te be equal to some of the k.'s.

V. EXPRESSING THE FULL AMPLITUDE IN TERMS OF F(n)’s AND

@(n) rg

In appendix A we have shown that the full amplitude may
be expressed as a sum of terms of the form given in
Eq. (3.11). 1In this section, we shall show that a term of
the form (3.11l) may be expressed as a sum of the integrals
given in Eq.(3.12). To do this, let us first look at the k;
integrals involving the G(n)’s in (3.11), The integral may

be written as,

STT dkL §CR ki) G (R g 60 koo k)

(5-)
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where... in the argument of £ denotes various other momenta
and mass parameters, on which the function f may depend. £
has a smooth limit as k;+0, i.e. f is independent of k; if
|kI|<<m. We shall show that (5.1) may be expressed completely

in terms of the functions F(n). We first express £ as,

£ Cky,--- ky)
= $(k=0,---k =0) T & CM- IK{1)
=l

+2 U0k, -k, Riu=0,- ki=0)

t4t

- _ _ n
- £ (&7, R, k{20, Ba=0) oCm-1kz1)] TT, 6¢H- 1K)

(s5-2)
The first term on the right hand side of (5.2), when

substituted into (5.1), gives,

M
f (‘2‘"':0,--- k:\-‘-O) j :‘—hj&h; Cl(“] ("n'?' écx, k:,"' hn)
&3)

which is almost in the form of the right hand side of
(3.13), except for the fact that in (3.13), the ¢{™M s are
evaluated at k;=0, whereas in (5.3) they are still evaluated

at finite k;. We shall show later how (5.3) may be reduced
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to the form (3.13). The i=1 term on the right hand side of
{(5.2) vanishes in the limit |kil<<M. Thus, if we substitute
this term in (5.1), the kI integral will receive
contribution only from the lkIlJm region. In this region we

may apply the Grammer-Yennie decomposition to the kl gluon.

The K part factorizes and the integral looks as,

[ (R § $( R k=0, k=0)-6(M-1Kl) $(E-0, k5 =0}

M ™ .
(——&—— ) ] g d\h; oo 5 d‘k; G‘(“ ‘CPM?:G"“)h?-)'“ h“)
RI-1€ -m -M

(s 4)

For the G part of the k1 gluon , the contribution comes
from the regions of integration shown in Fig.8. This can
again be expressed in terms of integrals of the form (5.1),
involving some G(n') with less number of loops. We can then
repeat the whole procedure mentioned so far in this section
with this new integral. The successive terms 1in the

summation in (5.2) may be analyzed in the same way, and we

may finally express (5.1) in terms of the integrals,

(]

M
§ag - 5420 @™ kg e, 2, L) (55)

-~
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Next we must show how (5.5) may be expressed in terms
'
of 1integrals of gt g at RI=0. To do this, we express

an') 44 (5.5) as,

(w7} - -
Q (ID“)?) E‘M'Q' -'-“‘Q?\' ) Q'-Ln-“‘Qh'-L ;‘QT:O)""-Q:\- “'O)
I

' /4
X P n _ -
+ i§ o'( iQ& 5}1-:_4- Q< ‘C h‘:?’ €a, zu»“ghﬁ.. £, :“'Q*n'a Q.+1

+ 14~ +
QL O, Qh=0, - @t <o)

(5-€)

The first term in (5.6), when substituted into (5.5),
has the desired form (3.13). As shown in appendix B,
contribution to the other terms in (5.5) may be expressed as
soft loop integrals of G(n)'s with less number of loops. 1If
we substitute this in (5.5), we may express the contribution
in terms of integrals of the form (5.1). We now repeat all
the steps, mentioned so far in this section, with these new
integrals. Proceeding in this manner, we may finally
express (5.1) in terms of integrals of the form given in

(3.13).

We can similarly look at the k'I integrals in (3.11),

and express it in terms of ¢‘®') defined in (3.14). The
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full amplitude may then be expressed as sum of terms of the
form given in (3.12). The function § is obtained by
integrating over all the soft loop momenta in (3.11]) and
also those which appear during the reduction of (3.11) into

the form (3.12), except the momenta k k

1tr-** k

1
nat  <1urcce

[ ]
k n'dl"

[}
VI. COUNTING THE NUMBER OF Logs IN I'{™ awp o(P')

In this section we shall count the number of logs of
p;/m in F(n), in a given loop order. The number of logs of
pg/m in Q(H') may be counted in an exactly similar way,
hence we shall not carry out the counting for ¢(n')
explicitly. We shall show that in r loop order, F(n) has at
most r logs of p;/m, similarly, in r' loop order, ¢(n") has
at most r' logs of pg/m. Then if we consider the expression
{(3.12), the maximum number of logs of s in this from an §

loop graph will be given by #-n n being the minimum

s’ 8

number of soft exchange loops that the graph must have.
This shows that in the leading 1logarithmic approximation,
only the factorized diagrams contribute to the amplitude,
since they are the only diagrams for which ns=0. In the next
to the leading logarithmic approximation, the contribution

comes from the factorized diagrams, as well as the diagrams

which have a one gluon one fermion intermediate state in the
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t channel. And so on.

The result mentioned in the previous paragraph is a
non-trivial result, since, as we have mentioned bhefore, each
individual diagram, contributing to G(n),r will contribute 2r
logs of p;/m to r(n) in r loop order. To prove the above

result, we shall use the method of induction. First,

following Ref.5, let us break up F(n) as,

PO Y W)+ QY2) Y wha) &-1)

where r(n) and r(n)

1 4 are products of transverse y matrices

only. To see how such a decomposition is possible, let us
note that, given a string of Yi and Y, matrices from the
internal fermion numerators and the gluon-fermion vertices
in a given graph contributing to G(n), we can always bring
it into a sum of terms with the y matrices at the extreme
right and the y+ matrices at the extreme left, with the
transverse y matrices in the middle, using Egs. (2.7). «y~
acting on u(pa) may always be expressed in terms of Pay-Y
and p;Y+ acting on u(pa), by using the Dirac equation. This
new Y+ may again be commuted toc the extreme left through the
transverse Y matrices, using (2.7). We are then left with
terms, which are either products of transverse <y matrices
only, or products of transverse y matrices, multiplied by a
+

Y at the left. There cannot be more than one Y+ at the

left, since (Y+)2=0- This way F(n) can be brought into the
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form (6.1).

We shall show that, in r loop order,
1) Fin) does not have more than r logs of p;/m for any n.

2) F{nl does not have more than (r-1) logs of p;/m for any

n.

We shall assume that the above result is wvalid up to
(r-1} loop order, and then show that it is valid up to r
loop order. We shall start with T(nl. To analyze this, we
draw the reader’'s attention to the discussion after
Bg. (3.10}), where we showed that if all lines in G(n) carry
jet like momenta, the left-most longitudinal y matrix in the
corresponding Feynman integrand must be a vy . Hence only
G&?) receives contribution from such a configuration. 5So,
the left-most Y+ matrix in (Y+/2)G(nl must come from the
numerator of a soft fermion line, or a soft fermion soft
gluon vertex. Thus G(nl must receive contribution from a
configuration of the form shown in Fig.l2. These
contributions, however, are scoft locop integrals of Gin)'s
with less than r loops, and hence, using the method of
Sec.V, may be expressed as transverse momentum integrals of
P(n)'s with 1less than r loops. This, by assumption, has

less than r logs. Hence, in r loop order, F(nl has 1less

than r logs.
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There 1is an important consequence of the results

obtained in the previous paragraph. Since F(nl may be

expressed as transverse momentum integrals of Fi?)'s {and

]
similarly ¢(n ) as transverse momentum integrals of

¢£T')'s), we may reexpress {3.12) as,

Sd-,' hu. - Jf'km_ d*zk,u. === 'Csz:\’J.

' ] ’ i i
éf:, Ch) 2.}65) k""f-- h‘f't'-l-) §(?-, k“,"" kh,‘_,hu.)--- b"'-L)

Pi"ﬂ( h»; 216¢.,hu.""hh&) (62:)

~

where S is some new function of ki_L and ki;‘

Next, let us turn towards counting the number of 1logs

in Fin) in r loop order. We start with the definition
{3.13) and make a <change of wvariables from kz to k';

according to {(4.5). Thus, we may write,

r..(:) (PM ‘2. ém, kl.l., = kvn.l.)

m(1-8)
(Trl d'k’:.) (I'P) ) Gc(.:i CI’N 2 G*; hz.) kf‘--h E;:o)

| =

R =-M(-p)

On the other hand, we have,
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Pi"‘) ( P’:—}?J ég) ku_""‘ h“,;,)

|
kA - .
.-_h;_(ﬂ (T k1) &P (B g, €0, Riv, KT, K o)

(5-4)

which is obtained from (6.2) by changing pa to pa" on both
sides, and changing the name of the integration wvariable
from k; to k:“L—' Taking the difference between (6.4) and
(6.3}, and keeping only up to first order terms in 8, we

get,

=~.§(' (Tr dﬁh } PMG‘(M (bm)(ljéaj Al)h '- -~k é:""ma

k\,,,., K7) = CBr1) 65 (1L g €a hes, K20, KRS Ko, Ko - K3
*;.g{_n (% 80) (65 (kg € ki, Ko B2 o)

- (l-[3 )—“ G‘(.;:‘ q’m?; Gk)hﬂ; Ry ) 'R: = 0)]
&s)

Let us first consider the first term on the right hand
side of the above equation. In the Jj-th term in the
summation, Gin) has to be evaluated at k"j'=M and -M. Hence

we may apply the Grammer-Yennie technique to analyze the
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contribution. The contribution from the K terms cancel
between the two terms. The contributions from the G terms
come from the regions of integration shown in Fig.8. They
are soft loop integrals of G(n)'s with less than r loops,
and, following the procedure mentioned in Sec.V, may be
exXxpressed as transverse integrals of F(n)'s with less than r

loops. Hence these terms have at most (r-1) logs of p;/m.

We now turn to the second term in (6.5}. If from
(4.16), we project out the term proportional to the product
of the transverse y matrices on both sides, the 1left hand

side reduces to,
[Q’(“-:- (Pﬂijz) éa-lh:;""k':\)

-8V &Y (R g, €a, k- RYT W(RD
€ ¢

since 5 commutes with the transverse +y matrices. This,
according to (4.16), 1is given by the sum of the diagrams
shown in Figs.9(b) (c) and (d). When substituted into the
second term on the right hand side of (6.5), each of these
terms becomes a soft loop integral of some G{n') with less
than r 1loops, and hence may be expressed as transverse
momentum integral of F(n')'s with less than r loops. Hence

these terms have less than r logs of p;/m.
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Thus p;arf“)/ap; has less than r leogs of p;/m in r loop
order. This shows that Fin) has at most r logs of p;/m in
the r loop order. This completes our proof by induction.
Since at the tree level, Fin) does not have any log of p;/m
(this is easy to verify, by considering the sum of tree
graph contributions to Giﬁ), which is ©proportional to
j}k;—ie)_l, and integrating over its external - momenta), we
can conclude that Fin) does not have more than r logs in r

locop order, for any r.
VIT. EVOLUTION OF THE T (M) rg

In the last section we saw that in the r loop order,
F(n)’s do not have more than r logs. In this section, we
shall show that the eguations derived in the 1last section
are also sufficient to find cut the asymptotic behavior of
the F(n)'s as functions of p;, including the leading, as
well as the non-leading logs. We shall first define some
new guantities. Let Tin'r) be the total contribution to
Pin) in r loop order. (We shall not analyze P(nl
separately, since, according to (6.2}, the total
contribution to the amplitude mav be expressed in terms of
Fin) and ¢inl)). The result of the last section shows that

F&?'r) may be expressed as,
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+
&

@)

In order to find the amplitude in the k-th non-leading

o ¥y R
PON R/, 0, €0kl = 2 a5, 60, ken) 24

J=Q J

log approximation, we need to know Pin) in the(k-dth

non-leading log approximation, 1i1.e. we need to know
a(n’r1's for,
]
Atn-kR €5 < & (@ 2)

First we shall prove the following result. Suppose we
are trying to evaluate the contribution to the amplitude in

the k-th non-leading log approximation, and we know the

(n’,zr'),
J
equations derived in the last section are sufficient to

relevant a s for r'<r. Then, we shall show that the

determine the reguired a(n'r%'s for all n and j, satisfying

(7.2), except for j=0.
(7.1) gives,

o} - ) ; ‘
IV 2l bt = 26 053, € ki) (k)
Jzo m

(7.3)

This is given by the right hand side of (6.5). As was
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shown in Sec.VI, the first term on the right hand side of
(6.5) may be analyzed by using Grammer-Yennie decomposition.
The K gluon contribution vanishes, while the G gluon
contribution is given by contributions of the form shown in
Fig. & . These contributions are soft loop integrals of
G(n"r')'s with n'+r'<n+r, r'<r , and by using the procedure
given 1in Sec.V, may be expressed as a sum of transverse

1 ]
'z )'s with n'+r'<n+r and r'<r.

1
momentum integrals of F&?
Thus we know the coefficient of an'(p;/m) in the

contribution from these terms for,

Jozn+a -k (7.4)

Then, comparing (7.3) with this expression, we can find

the contribution to a(n,r%,s from these terms for,

J-rzn'+ &-R (7.5)
Since n'+4+r'<n+r, we know the contribution to aén'r)'s

for,
JZ n+Aa-k (7-¢€)

except for j=0.

Let us now try to analyze the contribution from the
second term in the right hand side of (6.5). As shown in

Sec.VI, these contributions are given by the sum o¢f the
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diagrams shown in Fig.%(b), (¢) and (d). Of these, the
contribution from the diagrams in Fig.%{c}) and (d) may be

1 !
expressed as soft loop integrals of &{M T')rg 4ien
(n,r)
a A
J
is known for Jj>n+r-k. Analysis of the contribution from

n'+r'<n+r and r'<r, and hence their contribution to

Fig.9(b), however, is slightly more tricky. Apparently,
this 1involves a soft loop integral of G(n',r') with n'=n+1,
r'=r-1. Hence n'+r'=n+r, and our previous arqument to show
that the contribution to a(n,r% is known for j>n+r-k breaks

down.

A more careful analysis of the contribution from
Fig.9(b) shows that there is actually no problem. First,
note that, if we choose the S,.y or the S+Y— term from the S
gluon propagator, it contrains the fermion line, to which it
is attached, to be soft. The contribution then comes from
the regions of integration shown in Fig.13, which are all
soft loop integrals of G(n',r'),s with n'+r'<n+r. Hence

their contribution to (n r)r

s are known for j>n+r-k. The
contribution to (6.5) from the S—Y term in Fig.9(b) may be

written as,

™ M ry
C . N -2 R).Y o 1)
g_}g dh. *"f- &hh (? i =z|' kl-) s (.k ) mé

L {(e-k 1zl:: ). Y+m} e ""l)(t’m, 2, o, Ry - hmh)\k .o
(2-k- Z k. ) mi+i&

(7.7)

‘s
SEE
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First, let us consider the contribution to the above
integral from the region where either k= or at least one of
the kI's is of order m. Then we can decompose the gluon,
carrying the order m -~ momentum, into G and K parts. The K
part contribution will involve integrals of G(n,r—l)' and

(“'r2 can be found

hence the contribution from this term to a
for j>n+r-k. The contribution from the G part will involve
soft loop integrals of G(n',r') with n'+r'<n+r, r'<r, and
hence this contribution is also known for j>n+r-k. Thus the
only troublesome contribution comes from the region where
all the lk;l's and k™! are small compared to m. In this
region, the fermion denominator carrying momentum q—k-Eki
and the gluon denominator (kz—u2+ie) are independent of k+.
If we choose the L1 component of G(n+l,r—l), then we are
forced to choose the (q—k—Zki)L.Y+m term from the fermion
numerator. Hence this is also independent of k+. S” (k), on
the other hand, is an odd function of k+, in the 1limit
Ikl <<lk*| . Thus, if we ignore the dependence of g(ntl,r-1)

on k+, the integrand of (7.7) is an odd function of k+, and

hence the k+ integral vanishes by symmetry.
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Thus, in order to get a non-suppressed contribution to

(7.7) from the region |k;l<<m, Ik"k<m, we must choose the

G(n+l,r-l) G(n+l,r—1) +
+

term from r Or we must consider the k
dependent part of G(n+l,r—l). Contribution tc both the parts
come from the region where some of the internal loop momenta
of gintlrr-1) ..o soft (Figs.1ll and 12). These are soft
loop integrals of G(n',r') with n'+r'<n+r. Configurations
shown in Fig.l14 are the only ones for which n'+r'=n+r. If,
however, the - component of all these internal soft loop

momenta li are small compared to m, then we d0 not get any

+1,r-1
G(n 29 -)I-'

+

contribution to since, in order to get a vy

somewhere on the fermion numerator or the gluon fermion

vertex inside G(n+l,r—l)'

we must have at least one power of
- component of some soft 1loop momentum in the numerator
(note that N (2)=27). We do not get any k+ dependent part

G(n+l,r-—l)

of either, since all the new soft fermion

denominators in Fig.1l4 are independent of k*. Thus the k
integral still vanishes by symmetry. If, on the other hand,
one of the internal soft loop momenta carry - component of
order m, it can be decomposed into G and K gluons, and the
contribution from both the parts may be expressed as soft
loop integrals of G(n"r') with n'+r'<n+r, r'<r. Thus the

a(ner)

contribution from this term to may be found for

i>n+r-k.

Hence we see that if we know the a
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j'>n'+r'-k for «r'<r-1, we may find out the aén'r)'s for
j>n+r-k, except for j=0. We shall now interprete this
result from a somewhat different angle. Eq. (6.5) gives an
expression for 3P(n)/3£np;. The right hand side is a sum of
soft loop integrals of G(n')'s r and hence, using the method

of Sec.V, may be expressed as a sum of terms of the form,

= ! / ! ] ¢ ’
h?;O ‘( A(“‘“ ) (?) k“‘-‘- o kh"" ku.," N —h“’-‘-) pf“, (l’M 2, é“-.l hl.l. 3 "k‘n‘.l.)

d-z k:.t. T d-z h:'l'.l. @ 8)

The result of this section tells us that if we want to
evaluate ne " the (R-m-th non-leading log
approximation, then (7.8) may be evaluated by knowing Fiﬁ)
up to the (k-n)th non leading log approximation, for n=0,
l,... k. Thus it is enough to terminate the sum on the
right hand side of (7.8) at n'=k. The set of equations

(7.8) will then read as,

_@_EE:( P:, 2, Eu., hl.&,“--kn.l.)
2 m B

k. , , ‘ ,
=2 A @R,y - R, Riz, ki) TR, g, €a, Rit, - - - Rie)
N

(7.9)

If we regard A as a generalized matrix in the product



57

space of the transverse momentum space and the n space, and
F&?) as a generalized vector in the same space, we may write

(7.9) as,
N, /o nkr - A, (7-10)

with the solution,

M o= exp (A Q«.\L’Q‘)BJ_ (7 1)

where, in evaluating the exponential, we must use the notion
of generalized product for evaluating the powers of A. For

example,
(Fla}(ﬂ;n'}(?, Ria, =~~~ hn-l., h’u.. e k:ﬂ.)
= 5 f CLZ h:’ e CLZ h’:‘,, H(n,w'](?, Ris, - - hm., k:‘r.h_ B k:"_,_)

n" N’} H " ) ’
A (?;kl.l.f'"kh".l.,kl.l.,""'kh'.l.)

(.12)

In (7.11), B, is an unknown p; independent vector in
the product space of the transverse momentum space and the n
space. These are the constants of integration and
corresponds to the undetermined coefficients a(n'r%'s,
mentioned before in this section. These coefficients may be
calculated by doing some low order calculations. For
example, in the leading log approximation, the only

2 {00

undetermined coefficient is + which is trivially
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determined from the tree diagram. In the next to the
leading log approximation, the undetermined coefficients are
a(0,0)' a(o'l), and a(l’o). Of these, a(0,0) and atlfo) are
0 0 0 0 0
determined from the tree diagrams, aéo'l) may be calculated

by a complete one loop calculation of F(O).

Egs. (7.9) become extremely simple in the leading
logarithmic approximation. Here k=0, hence F(O) is the only

relevant term. The equation is,

o0/ 3 Um bl = x(g) M (7.13)

with the solution,

+
ne o exploacg) dn b 1 B ¢5,€,) (@7.14)
1 M <+
which shows the Regge behavior (1.1). ¢£n) has a similar

exXxpression as Tiﬁ). In the next section we shall apply the
techniques, we have developed so far, to calculate a(g). We
shall also evaluate the complete contribution in the next to

the leading log approximation, using these techniques.
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VIII. CONTRIBUTION TO THE AMPLITUDE IN THE LEADING LOG AND

THE NEXT TO THE LEADING LOG APPROXIMATION:

In this section we shall find out the contribution to
the amplitude in the leading logarithmic and the next to the
leading logarithmic approximation. From the discussion of
the previous sections, it 1is c¢lear that in the leading
logarithmic approximation, the contribution comes from the
factorized diagrams of the form shown in Fig.1l5(a), while
the first non-leading 1logs come from the factorized
diagrams, as well as the diagrams, which have a one gluon
one fermion intermediate state in the t channel (Fig.15(b)).
Before evaluating the contribution from these diagrams, we
shall isolate the contribution to the positive and the
negative signature channels. To do this, let us define

é(n)

N
(Pa. g, € kl,...kn) to be the analog of G(n) for the

al
backward Compton scattering amplitude (Fig.16). There is a
one to one correspondance between the diagrams contributing
to G(n) and ﬁ(n), which may be related by a simple

transformation of the loop momenta (Et+—ﬂi, £,*%,). The

relationship is,

f )

D Ckay 2, €a Ryy oo Ra) = C17 G (g, €0 Ry - k) (801)

b

G;t:_‘ (km?,éo,,k.,-nkn)ﬂ"i) &‘:) ('F.‘,g,em,'&.,“' k.) (8-2.)

where,

kY =g R, - k. (2.3)
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Up to the next to the leading log level, only Gip) and
Fip) contribute to Fig.l5(a). This is because, if we choose

the Y+G£O) term from the upper blob in Fig.1l5(a), we must
choose the FEO)Y— term from the lower bleb, in order to get
a non-zero answer. Such a term contains at most (r-2) logs
in r loop order, and hence may be ignored in the next to
the leading log level. Eq. (8.1) then shows that the
contribution from the factorized diagrams to the negative
signature channel vanishes in the next to the leading log

approximation.

In order to know the contribution from the Fig.15(b) up
to the next to the leading logarithmic approximation, we
need to know the contribution from G(l) and F(l) in the

leading logarithmic approximation. Hence we may ignore the

(1) and F(l) +

on k' and k  respectively.
(1)
Fy

dependence ©of G

Also, we must choose the G(l) and terms. Thus the

4L

. + .
contribution to A” may be written as,

2C ddk gY¢ € K R=0,k ] ti@-ky).vim}
g' f (zn_)c' 4 h)? b, + (?_h)z——rr\a-‘. -Lé

) - o~ r -
{ 4 (h’ﬂ (4 €., k+=0, R, h-"} * G‘T (R, GMH'-'-'O: k:hl)}

CINYCR) [/ (R-pE4LE) @ 4)
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In the region where either k+, or kK, or both are small

com k) <<k2 ] i +
pared to m, so that |k7k7| <<k, the contribution to A
from the above the integrand vanishes, since the integrand
changes sign under &k +-k , according to (8.1). Thus, the
contribution comes only from the k+, k™ v m region. 1In this
region, we may use the Grammer-Yennie decomposition

technique, and write the contribution from (8.4) to A+ as,

g 4 NN
FCh,g,6) [ g8 Ié"}, PLL) ﬁ?e(”({z By} Y+m

2-R)=mM+i€
L) +- (ol ¢
kz_ f~L2+ié N (k)] Q.L < l’ﬁ: ?’ °~)

(8:5)

Thus, up to the next to the 1leading log level, the
amplitude at may be factored into a product of three parts,
a part which depends on Py but not on P,r a2 part which 1is
independent of P, and P, and a part which depends on Py but
not on Dy Then, according to an argument due to MasonS, the
amplitude must have an exponential form in this
approximation. We shall, however, give a more direct proof

of the exponentiation, and also find out the trajectory
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function a{g) up to order 94.

8G£P)/82np; is given by the sum of the diagrams in
Fig.2(b}), (c) and (d), with n=0., Of these, in Fig.9(c), the
part involving the S gluon is related to the change in SF(q)
under an infinitesimal boost along the Z-axis, Sp being the
full fermion propagator. But SF(q) does not
change under such a boost, which shows that the contribution
from Fig.9%9(¢) vanishes. The diagrams which contribute to
BGEP)/BRnp; up to the next to the leading log level, are
shown in Fig.l7. Of these, the effect of Fig.l7(b) is to
change the -i(g4-m) factor in Fig.l7(a) +*e -iSEl(q). Hence we

may concentrate on Fig.l7({a).

First, we shall 1limit ourselves to the leading
logarithmic approximation. In this approximation we must
choose the (1/2)S-Y+ term from the vertex where the S gluon
attached to the fermion line inside the blob, because, if we
choose the (1/2)S+Y_ or the S,.vy term, it will constrain the
fermion 1line to which it is attached, to be soft, and hence
loose some logs. The contribution to Pig.17(a) in the

leading logarithmic approximation may then be written as,
g £ ¢ AR S57(Ck) L2 2ile-k)Yi+mg
1 2m)* R 24i€  (P-R)*- M+ L€

G" (R 9 €, k) (g 6)
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In the leading logarithmic approximation we must choose

the 1 component of G(l)

s thus we must choose the (g-k h:y+m
term from the fermion numerator, in order to make (8.6) a
product of transverse Yy matrices only. Also we may take
G(l) to be independent of k* in this approximation. Then in
the region I|k™i<<m, the integrand of (8.6) becomes an

antisymmetric function of k;

and the integral vanishes.
This shows that in the 1leading 1log approximation, the

integral (8.6) receives contribution only from the I|k7|vm

region. In this region, we may make a Grammer-Yennie
decomposition of the S gluon. The G term does not
contribute in the leading log approximation. The

contribution from the K term may be written as,

292 (#- dix g~ -1) 2 $(2-k.). Y+m?
292 (#-m) .(@-ﬁ-]q S7(k) R .(iﬁzz___i__?_m ) Y4,
€1 &P (R, &)

R-1€

= () &% (¢ €l @)

Thus,

2GS/ 3n b = X (5 G (R g, &) X))

the sclution to which is,

&Y Cha, 2, €a) = exp L™ (g1 Sk ] BI)C?,@J(
2.9)

where B{P) is some constant, independent of p;. In the

lowest order in g, B&P) is equal to (~ig¢a).
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In the next to the leading log level, there are various
extra contributions to BG(O)/BRnp;. First, let us find out
the extra terms from (8.6). In the region Ik7|l <<m, there
are two effects, which may destroy the antisymmetry of the

integrand under kta-kxt, we may choose the Y+G(l) term from

¥
G(l) and k+Y_ term from the scft fermion numerator. Also,
now G(l) can no longer be considered to be independent of
k+. G&;) receives contribution from the regions of
integration in the loop momentum space shown in Fig.1l2,
Also, as shown in appendix B , in order to get a

+ —_

non-suppressed contribution to G(l)(pa, g, € k' » k, k) -

al
+ —_

G(l)(pa, 9, €., k=0, k, Xk,}), one of the internal loop

a
momentum of G(l) must be soft. Thus, if in (8.6), we

exXpress G(l)(pa, q, € k)Y as,

af
Qi} ch\)?l €a, k+:0, k—lk"’)
+{ &L Ch, ¢ 6a, B, K, ki) - G (b, 4, €a, K20, K RA)

+ ZLY+ QT (hh?) é‘7‘*-1 h+a h-a h.l.) (8 IO)

then the second and the third term will receive contribution
from the regions of integration shown in Fig.18. When we
substitute the first term in place of G(l) in (8.6), the
integral receives contribution from the k vm region only,
since the k' integral vanishes by symmetry in the Ik |<<m

region.
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In Fig.18, we must have an even number of Y+ and vy
matrices on the soft fermion 1line. As seen in the last
section, in the region 187! <<m, Ik l<<m , the integrand is
antisymmetric under the transformation k++—k+, and hence the
integral vanishes. Thus, if lk7|l<<m, 27 must be of order m.
But then it may be factorized, using the Grammer-Yennie
technique. The G term does not contribute in the next to
the leading log approxXimation, the K term gives a
contribution of the form shown in Fig.19. The inteqrand is
antisymmetric under the transformation £i+—£i, k++—k+, in
the 1k | <<m, %7 sm region, and hence the integral vanishes.
Thus the integral (8.6) receives contrihution only from the

k™ vm region in the next to the leading log approximation.
In this region, we can decompose the $ gluon into G and K
parts. The K gluon contribution is identical to (8.7). The
G part constrains one of the internal loop momenta % of G(l)
to be soft, and again, using the antisymmetry of the

+

integrand under ki»-k*, 2¥+-2* for 1271 <<m, we may bring the

contribution in the form of Fig.20(a).

There are some extra contributions from Fig.1l7(a) in
the next to the 1leading 1log approximation, which is not
included in (8.6). This is the contribution where we choose
the ((1/2)S+Y_+SL-Y) term instead of the (1/2)5_7+ term from
the vertex, where the S gluon is attached to the fermion

line inside the blob. This vertex constrains the fermion
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line, to which the S gluon is attached, to be soft. Using
the symmme try property of the integrand, and the
Grammer-Yennie decomposition, we may bring the contribution
from this term into the form of Fig.20(b). Also, we must
include the one loop self-energy diagrams for the soft gluon
and the soft fermion (Fig.20{(c), (d)). Fig.20 then gives
the net extra contribution to BGLO)/alnp; in the first
non-leading log approximation from Fig.l7(a). As we have
mentioconed before, the effect of Fig.l1l7(b) is to change the

-1

-i{4-m) factor in el{(qg) to -iSg (q). Thus, in the next to the

leading logarithmic approximation,

26/2 I Bt = (N(2)+ ') G @ 1)

where,

o Hgyrx((q)

b ( A )
= (1 SFCQ) [8{%%;, { > +1€ S (k)'}" hz(;:). - S'p,(k)

(Rgh-RE) i) £ 3 (LS, (2-h) o

g L il S C k(e
+ g g@rne @y REptite L-pEHie £-

$ }_i_(i—k‘ﬂ) Y+mi 5k
( (;{Sz“‘g!‘l’{'; €) (2-k-L)=¥4€ L5 e

(4 B v +ReY) =TSR Y L5 ST ) YIS

+0(g%)

. 1
—

B-1€

'LES?-»@ v+m¥
(2-0) - widie™

(s 12)
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where iH(kz) (nguv_kpkv) is the contribution from the one

loop wvacuum polarization bubble, and iS k} is that part

ryld-
of the full one 1loop fermion self-energy, which is
proportional to the identity matrix or product of transverse
Y matrices only. [ ]L means that in any of the terms
enclosed in the square bracket, we must choose equal number
of y+ and y terms from the fermion numerator and the gluon
fermion vertices, commute all the y ’'s through the other vy
matrices to the extreme v_"i.g,id: using Egs. (2.7}, and, at the
end of this process, keep only those terms which contain

products of transverse Yy matrices only. For example, a term

of the form Y—RL-YY+ is reduced to,

-4 8, v + 2..Y vyt v~ (8.!3)

and we pick up only the (-4%,.y) term.

The solution to Eg. {(8.1l1l) is,

GO (b5, €a) = oxf (@) 4K (2)) £ B ] BY' (2, €66)
(8-19)

Similar solutions may also be obtained for Flo). The
total contribution to the positive signature amplitude is
obtained from the sum of the contributions from Fig.l5(a),

the corresponding diagram for the backward Compton
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scattering amplitude, and expression (8.5). It is given by,

AY =2 B (e €) expfi®@)+x“(2)) (4 ,)5

. S +92(dr Py @-ki). Y+
[ 4 SeC2) 85(“_]9 ) g R

- o)
: Nt k)T BY (9, &) (8:15)

N 4. S
RE pEe

Next we shall turn to the negative signature amplitude,
which comes entirely from the graph in Fig.15(b), and the
corresponding graph for the backward Compton scattering
amplitude. We shall first express the contribution in terms
of Pil), Dﬁo), Qil), and ¢i0), according,to the prescription

of Sec.V. We first define F(l) as,

Em
PO = Ak G Ch, g €a, kR, k=0 (8-1¢)

-Erm

i.e. we take M in (3.13) to be equal to em. Here € is an
arbitrarily small, but fixed number. The final result must
be independent of M, thus it is independent of ¢. Hence, if
we consistently ignore all terms which vanish as g+0, we
shall get the correct final result. As we shall see, this
causes a certain simplification in the intermediate stages.

We define ¢(l) in a similar way.

Now, it can be easily seen , using Egs. (8.1), that the
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contribution to A™, given in (8.4), from the region of

integration where either k* or k_ or both are of order m

vanishes by symmetry. Thus we may limit the kE integrals in

the region lk¥|<em. Neglecting Of{e)} terms, the integral

(8.

4) may be written as,

zngcLzh,L FY (R, 2, €, RL) _(%%ﬁﬁjﬁfﬁ

PO Chy, 9, €, ky) (RZ+ p2)

the

=1

(817)

Thus our remaining task is to find out @il) and Fil) in

leading log approximation. In order to find Fil) we go

back to Egq. (6.5). As was shown in Sec.VI, the first term on

the

right hand side of (6.5) may be analyzed by

Grammer-Yennie decomposition. Contributions from the K

parts cancel. The contributions from the G parts are given

by

Fig.21. The 'soft' line % shown in this figure now carry

+ momentum vm/c, but we can still regard this as soft, since

it

does not carry momentum vvs. Contribution from these

figures may be written in the form,

S

A {j! <2 R, R = =0, K =€m) 'f (2 h.n IE""O, -_""G'“)}
(‘

where f,is the contribution from the soft gluon and the

fermion lines in Fig.2l1. In the leading log approximation,
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+ and choose the

we may ignore the dependence of G(l) on &
GS}) term from G, 1In the region & vm, we can factorize
the & gluon from G(l) by G-K decomposition. The
contribution from the G term is non-leading, while the
contribution from the K term vanishes, since the integrand
is antisymmetric under the transformation 25+-%*. Hence the
integral receives contribution only from the 1471 <<m region.

We can limit the &  integration range to |47|<em. The

contribution may be expressed as,

SRy Ry, 2u) N (FE, 7, 6a, L) &L
(8 19)

where,
P<:?)hhl QJJ

- ! g _(i__g+[£ C,Q'l') .Q-::'O,-Qijh_‘_' hﬂfém)
2my 2

"f|(£+, 2°=0, —Q-.x., Ry, k“'=-‘€'l'h)] (8-20)

fl may be read out from Fig.21, Substituting this in

(8.20) and carrying out the gt integral we get,

(3 (?, k_L}‘QJ.)

= F i Y- 1 _ $@-kN Y-} | J
M e AR

L

(3.21)

The contribution from the second tern on the right hand
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side of (6.5) is given by integrals of the graphs shown in
Fig.9(b), (¢) and (d), over k . Of these, Fig.9(d) does not
contribute if we are interested in the leading logarithmic
contribution to F(l). Contribution to Fig.9(¢) wvanishes in
the region k¥'=0, Jk7l<<m, due to the same reason as the
vanishing of the corresponding contribution to BG(O)/alnp;.
Thus we are left with the contribution from Fig.9(b). This
may be analyzed in the same way as the corresponding
contribution to aG(O)/aﬁnp; in the leading log

approximation. The result is,

Ce) Q)
d (2“ h,j,\ P.L ("0-.)?) ém,k.l.) @22)
Hence Pi}) satisfies the equation,

POV mK! = o (2- k) O +§BCR R L) TCh 2, €0,0) 422,

= 5--'1"'(‘8) h_u., 2.) r'.at_“ Cl?o..‘t, €, ‘e.l.) d‘z'q-‘- (8' 23)

where,

V(2 ke, 4u) = ot (9-Ry) 8Cki-2) +8 (g ke, L2)

8-24)

The solution to (8.23) is,

N Ch¥ g €o R = ST ECR-2)+ W, ke, 2,) 4 (B m)

+ “Z;z "i-\!‘! chZ h'i T &zk““* \P (?I h-hk‘-'-) YJ(?J bu., kz.L}'"
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s (2 ks, L) A CR)] B, €l 2) d24L
@ 25)

where Bil) is an unknown constant to be determined from the
boundary conditions. The term inside the sgquare bracket is
the generalized exponential defined in Sec.VII. Now, at the

tree level,

(4}

C"LJ_ = ("'] (— ’ o

L g é. | (.26)
Hence,

€m
no _é(m G AR = vl (-ig ¢a) +0) (g.27)

Comparing (8.27) with (8.25), we get,

BY (Y, €a, L) 7 (AT (-1 g da)+0(8’)  (g28)

We may similarly find the expression for ¢i}). It 1is

given by,
§ CL” ( h:) ?) Gb, h:.)
=Cig ) (xm § &0 T8C-R)+ Y (9,2, ky ) 2 B
+1\Z=; -":l\" g&k“- T d‘z h(ﬂ-lll ﬁ(?) QJ_, hl-&) -’v\;(?) bl-ll Ros )"

S R, Ra) () ) (8.29)
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ﬂ being the analog of y for ¢(1). In fact it can be shown

that $ is obtained from ¢ by using the relation,
~ +
V(7 Lo, k) =Y W (R, L)Y (839)

Egs. (8.17), together with Eqgs. (8.25) and (8.29) gives
us the total contribution to the negative signature channel.
However, we may further simplify the result by claiming that
the final result should be Lorentz invariant. Then the

result may be expressed as a power series in 2ns. Since,

s}

@n 51" = Z(3) (B ) ™ (B (2.31)

the coefficient of 2n"'s must be equal to the coefficient of

n + .
tn"(p,/m) in (g 17). Thus we get,

a-
= - 211292 d2k i (2-ki)-¥Y4+M
FhS MY TR (TR

U2 Lo s, [ 00 - &2 V(T R, 20) V(22,4

=1 T

oW (2, Lnany £2)] 4 @-32)

IX. CONCLUSION

In this paper we have calculated, without using any
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transverse momentum cut-off, the contribution to the fermion
exchange reactions in the Regge limit in the leading and the
next to the 1leading log approximation. We have also
developed a systematic way to calculate the higher order
corrections. We have separated the contribution to the
positive and the negative signature channels. Up to the
next to the leading log approximation, the contribution to
the positive signature channel is given by a single Regge
pole term. The contribution is given in Eq. (8.15), with
atz)(q)+a(4)(q) defined in (8.12). B&?)' and Bi?) are two
constants, independent of s. The quantities st (k), which

appear in the definition of a, are given in Eq. (4.18).

The total contribution to the negative signature
channel 1is given in Eq.(8.32), with Vv(g,k, ,%, ) defined in

Egs. {8.24) and (8.21).

If we take only the 3(2)(q—kl)6(ki—2L) term from ¢,

{8.32) reduces to,

-2mg? &, E_(gnl;d- exp {(2-ky) 4n 4, } (?:;t}’\fm

ot

L
wwe Fo (5-1)

which corresponds to a contribution £from the reggeized
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fermion gluon exchange diagram. The extra terms, which
appear due to the presence of the extra term in the
expression for v, presumably corresponds to extra

singularities in the complex angular momentum plane.

Our result for a(z)(q) agrees with the standard
expression that exists in the literaturel_s, after the + and
the - momenta integrals are done in (8.12). The imaginary
part of the contribution to the positive signature amplitude
agrees with the results by McCoy and Wu4. We have also
expanded our result for A" up to four loop order and found
that they agree with the results of explicit calculation of
MeCoy and Wu. We, however, also find the real part of the
first non-leading log contribution, which gives the O(g4)
correction to the exponent a(g) and show that the positive

signature amplitude reggeizes in the next to the leading log

approximation. This is a completely new result.

We have also investigated the contributicen to the
amplitude beyond the next to the leading logarithmic
approximation. It turns out that in the vth non-leading log
approximation (v=0+1leading log), the amplitude may be

eXpressed as,

Vo V- ’ ' ' - ’
Z ZI‘ j‘d-zhu,--- d.-zh-“;_ d_Zh”-___&zhh.L %}_ I(Pb ,?,éb,hu.i-..

nz=o M=o

P “ f 7 1 "
Sc 'hlc?, h'-l-l-h khJ-\ hl.l-|."h"\"") pi ‘c P:le)ét;hllsn'kh.l-)
(©-2)
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~ 1
S(n,n ) is a calculable function of its arguments and has a
well-defined perturbation expansion. The functions PLn) are

given by,

r‘i“’ (":i ?; éa», ku, = hhd.)

gE(hh) <t=o-! 21 hll, kh-L hl-Ll ) '-L) BT”(?) é"*! k‘,'l"-“k:""l’)

l-a

2Ry, ---- Ak,

n

(-3)

where,

E(hm‘, (P:)?l kzI.J., T ‘h"-"n h"*:' o h‘:'-L)

= éh’n' ﬁ é(hil-- k;l) + n(‘hln’l(?, hl-l." h I..l.; n.L) ﬁm.k:

9 * it i &
S R Il §rr(cfk‘ R AR )

R=2 Al ML gzt Tyl vE

R(h'm] ( 0 k|-L y hhl-) (.Ii‘ T ] R(M“Z’CZ R ki::.l-l ht:‘: B kt:‘l}

I.L\

(r, {A) R’
---- R (2 R Risy Ry R )

(o 4)

1
The functions BS? ) are undetermined constants of
integration, independent of p;. We have well-defined

"y
prescriptions for calculating the functions a(n,n') in
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perturbation theory. The p; independent functions Bi?')'s
may be found, up to the required accuracy, by doing a
complete explicit calculation of Piﬁ)'s up to the (v-n) loop
order and then comparing the result with the expression

(9.3).

Similarly, Qg?) is given by,

é_(:’ ( h:;?, Gb, hu.,"‘ hn.i.)

='n§; gﬁéiﬁ, (?) 651 hI‘J-l' ot k'h'.l-) E(h"h‘ (l’:: L & k:.L."Eh'.L ;hu;" b""‘“)
CLzh:‘L et dgk;'L
(3-5)

where,
t '
E(“'h‘ ()(, ?, hu_," : h’n'.l., hu.,‘ . hh.l.)

nt ’ o
=Y"® E(“'“) (Y, 2, hu.,“‘kn.l., hu.,“‘ ti'r’\".L ) Y
(2-¢)

We have also applied the method, used in the text, to
calculate the fermion ~fermion scattering. The results are
given in appendix C. 1In the leading log approximation, the
contribution to the odd C-parity amplitude, in which we have
an odd number of gluon exchange in the t channel, 1is given
by Egq.(C.9}, while the contribution to the even C-parity

amplitude , in which we have an even number of gluon
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exchange in the t channel, 1is given in Eq. (C.10). The
functions ¢ and £, which appear in these equations, are

defined with the help of Egs. (C.6}), (C.7), (C.8) and Fig.29.
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APPENDIX A

In this appendix we shall show how the total amplitude
may be described as a sum of terms of the form (3.11). We

shall follow an analysis by Collins and Soper15

. For a given
Feynman graph G, we define a tulip to be a subdiagram T,
such that the full diagram may be topologically decomposed
into the form shown in Fig.3(a), with the subdiagram T as
its central soft exchange part. Tl' Ty, Ty are the possible

tulips in Fig.22. We also define a garden tc be a nested

set of tulips {Tl,...Tn} such that TyC Ty4q for 3=1,...n-1.
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Thus, in Fig.22, the sets {Tl}, {TZ}, {T3}, {Tl, Tab, {T5,
T3} are possible examples of gardens. For any tulip T, we
define an operation S{T), which we call soft approximation,
which multiplies each of the propagators of the gluons,
coming out of T, by Mg/(M§+E2), where k is the momentum
carried by the gluon and M. is some large but fixed mass
parameter (Mc>>m). The operation S{T) also picks up only the
~ polarizations for the gluons attached to the upper Jjet,
and + polarizations for the gluons attached to the lower
jet. The operation of S(T) on a Feynman dgraph constrains
the 1lines coming out of T (and hence also the lines within
T) to be soft (lﬂlec). These soft lines attach to the upper
and the lower blob through Y+ and Y vertices respectively.
Hence the contribution to S{T)G may be expressed in the form

{(3.11).

Following Ref.1l5, we shall express the total

contribution to a given Peynman graph G as,

Ge= 2 GO sem) oo SCT) Gk G (1)

thegJuiValenk
S:_L?L(.LQT\S

where the symbol S(Tl)...S(Tn)G has the following meaning.
First make soft approximation for the lines coming out of
the largest tulip Tn' belonging to the garden. Then, for
T

n—1' 1Lf some of the lines coming out of T,_p are identical

to those coming out of Tn’ we leave them untouched, but for
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the rest of the lines, we again make the soft approximation.
And so on. Two gardens are said to be eguivalent if the
soft approximation is identical for both of them, this
happens if they have identical sets of boundaries. Gp 1is
defined by Eqg.{aA.l). Due to the presence of the soft
subtraction terms, the contribution to GR from an RD of the
form Fig.3(a) come from the regions of integration where
|EI3MC for all the gluons coming out of the blob S. As a
result, the contribution to GR is suppressed by a power of
m/Mc. Since M. 1s an arbitrary parameter, and the final
result must be independent of Mc’ we can consistently ignore

all terms, carryving a power of m/MC, in our calculation.

Hence the contribution from GR may be ignored.

The first term on the right hand side of (A.l) may be

expressed as,

%[2 (-t)““scr.)---—-scr;..)] SCT) Ge

tneduivalent

e b bl
8&; »a:; W (F\-Z)

5(T)G may be expressed in the form (3.11). The factor

[E(-1)n*%

S(Tl)...S(Tn)} makes internal subtractions inside
the tulip T, i.e. they modify the function 8 in (3.11), but
they do not affect the form of (3.l1ll). Hence we can see
that the total contribution to the amplitude may be

expressed as a sum of terms of the form (3.11).
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APPENDIX B':
AnaLysis of R 3&/3k?

In this appendix we shall show that the contribution to
aG(n)/akI may be expressed in the form given in (4.20). To
do this we use somewhat similar techniques as used in
appendix A. For a given graph G contributing to G(n), let
Tl be the vertex at which the soft fermion line carrying

(n). If the gluon line ki is attached

momen tum q—Zki leaves G
to a fermion loop, then let T2 be the fermion loop to which
the gluon 1is attached (See Fig.23). We define the soft
approximation §(T1)G by multiplying the Feynman integrand by
Mé/(Mg+If), where Ql is the momentum of the gluon line
attached to Ty, and Mc is a fixed mass, large compared to m.
Similarly §(T2)G is defined by multiplying the Feynman
b
integrand byrH{Mz/(M2+l'?)}, 2y,...%2! being the momenta of
a= ¢ e T 3 1 P
the gluon lines coming out of T2. S(Tl)S(TZ)G is defined by
multiplying the integrand by a factor of
I’221,2222 L
H{Mc/(Mc+ j)}.Mc/(Mc+9,l). We express the contribution from

iJ:‘

the graph G as,

SCT) Ge + Ge (®.1)

or,

’
SCT) G + SCR)IG - SCT) S(Te) G+ &x &2)

depending on whether ki is attached to the open fermion line
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or a fermion loop. GRand Gﬁ in Egs. (B.1l) and (B.2) have

their integrands multiplied by,
1= M2/ M+ 27 (B-3)

and,

b 2 2 b 2
- Mg _ TT{_Me + Mo TT{ M %
Das EART e TR R E

respectively. (B.3) receives contribution from the region

ET2>M2, whereas (B.4) receives contribution from the region
S

2...2 2 2
IlﬁMc and at least one of the Ij' 5Mc .

But we have seen from the analysis of Sec.IV that
k;BG/akI receives contribution from the region where either
ll or all the momenta lj are soft. Hence the contributions

to kTBG /ka and kTBG'/Bk.+ are suppressed by a power of
1 R 1 1 R 1 o GAM
(m/Mc) and may be ignored. The contributionhfrom the other

terms, containing soft approximation, may be written as

sum c¢f terms of the form,

§£CR, -k, R, Ry ) G (BT, €a kY- R
YR, - VK, ®-5)

where the function £ denotes the contribution from the soft

z k

lines. £ may contain factors of 6(§ Y, A and B

_ '
eaA®y %4 eBK;
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being two subsets of momenta kl,...kn and ki,...kﬁ.
respectively. For example, the contribution from the term

S(Tl)G in Fig.23 has the form,

§£.(R,2) 8Cki-R) & (ha,g, €, 2,k )

}

ar e, d' R,
s <)

whereas the contribution from the term S(T2)G in Fig.23 has

a form,

S fz (kn, 21'12;123‘ ) 8(‘2\'2."-@:“23’)

& (P2, €o, ), 2., 45) A0Q) db g &g
®.7)

fl and f2 in (B.6) and (B.7) are the contributions from these

lines in S(Tl)G and S(Tz)G respectively, which are
constrained to carry momenta §Mc, due to the presence of the
soft approximation factors. If we now take the general
expression (B.5) and differentiate with respect to kI, we

get,
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a___f_(kl v hn,h: N k‘!:') &(‘“ ( P&.?'éﬁ‘h:‘ e k‘h' )
TH

Ak - AR, (8.8)

If £ does not contain a § function involving ki, the
above expression has the form given in (4.20). 1If, however,
f has a 6(§€Akj—§€3k5) factor, where the set A contains the
momentum ki, then besides getting terms of the form (4.20),
we also get a G|(§§j?§§5’ factor in the integral. One of
the k5 integrals may then be integrated by parts, and the
integral may be expressed as integrals of
36" ) (p_,q,e_,k],.. k1) /3k!*. The GP')rs which appear in
(B.8), however, have less number of loops than the original
G(n). We may analyze the contribution to BG(n')/Bki+ in the
same way as before. We may iterate the process, at each
stage we encounter integrals of the form (4.20) and
integrals of BG(n')/3k£+, with less number of loops than the
previous stage. Proceeding this way, we shall finally reach
the tree level contribution to G(n), for which BG{n)/aki+
vanishes. Hence the total contribution to BG{n)/akI may be

expressed completely in terms of integrals of the form

(4.20).
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APPENDIX C: GLUON EXCHANGE PROCESSES

In this appendix, we shall show how we c¢an use the
formalism, developed in this paper, to study the gluon
exchange processes in the Regge limit; for example, the near
forward scattering of two fermions. If we work in the
Coulomb gauge, we may conclude from power counting that the
contribution to the amplitude comes from the regions of
integration shown in Fig.24. We define the functions
G(n)(pa,q,kl,...kn) and ?(n)(pb,q,kl,...kn) as the Green's

functions shown in Fig.25. We define,

f““](phl?)iau|""h“*)

!
M
- - m— . - + )
= S‘ Cth -t g &k‘r\ Gﬂc“‘(h;,cl\ k‘ |'~'h“‘ h.‘:’-'-'ol-- k‘,\:O’hh\.,") hh-\)
-1 -M .1
and the corresponding function 3™ as integrals of F(™,

Following the procedure of Sec.VI, we may decompose the

F(n)

amplitude T as,
+ = " A —in
'd (w) I (n) -+ } C. z
oM+ 5 e L (c 2)
where f(nl, f(nl and fin) are products of transverse Y
matrices only. Only the (Y+/2)T(n) term contribute in the

+
leading power in s. PFollowing the procedure of Sec.V, we

may now express the full amplitude as,



86

{ ;’in‘) ( l’b) e, h:.g,-- k:“_ ) §(“’hl’ (?, ku," hh.&, lz'u,,"' ki\'.l.)

r'i“l ( t’mfn tat.l.,"‘ k'm.) &h’l& = dgh’n‘.l. dghu. "'dkzkn.l.

(c-3)

BTin)/Blnp; is given by an equation of the form (6.5).

The second term in (6.5), which is given by Fig.9(b), (c)

and (d), has no counterpart in the expression for

af(n)/aﬁnp;. This 1is because the only external off-shell
lines in &‘™ are the external soft gluons. In Abelian
gauge theory, the sum of all insertions of the S gluon with
propagator (Sukv+svku)/(k2—u2+ie), to such a graph, are the
graphs analogous to Fig.9(a), which are cancelled by the
change in the wave-function renormalization constants for
the external fermions. Thus we are left with the first term
on the right hand side of (6.5). This may be analyzed by
Grammer-Yennie decomposition. The K term vanishes when we
sum over all insertions. The G part of the ith gluon, when
attached to the fermion line, makes that part soft. Power
counting indicates that in the <case of fermion-fermion
scattering, the open fermion lines must always carry
collinear momenta, thus soft fermion 1lines can come only
from the fermion loops. The contribution to ar(“l/amnp;

then comes from diagrams of the form shown in Fig.26. This

shows that aT(O)/BEnp;=0, i.e. 10 does not have any log of
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+

a” (We remind the reader that T(O) is the two fermion one

P

gluon vertex).

Before proceeding further, we shall make the following
classification of diagrams. The sum of all the diagrams, in
which the two fermion lines exchange an odd number of gluons
(carrying charge parity =-=1) in the t channel, will be
denoted by A”, whereas the sum of diagrams where the two
fermions exchange a charge parity of +1 (even number of

gluons) will be denoted by A+.

In the case of the fermion exchange amplitude, the one
particle exchange amplitude gave the leading logarithmic
contribution. Here, however, the one gluon exchange
amplitude does not give any log, since af(o’/aznp;=o. We
thus have to turn to T(%?) ana 32} in order to get the
leading logarithmic contribution to A . In the leading
logarithmic approximation, we must try to get as few soft
loops 1in af(z)/alnp; as possible, As a result, typical
contributions to af(z)/alnpg come from graphs of the form
shown in Fig.27, Similarly the leading logarithmic
contribution to A comes from T(1) ang 3(1}, aT(l)/alnp; may
be analyzed in an exactly similar way and is given by the

contribution from the graphs of the form shown in Fig.28 in

the leading logarithmic approximation.
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The analysis of the contributions from Figs.27 and 28
may be carried out exactly in the same way as for the

fermion exchange amplitude. The results are,

Bﬁ_:” (b, 2, R, Ry ) /3 2n bt
= §¢2 k'u CLzh,z.L o ( f, k’u., ku., k:«‘-: k4':-L) ‘ﬁfll(":} z) k:hk;-l-)

(c-4)
ANV R ¢, Ra) . Py = ;
b = SR T (2 R, kL) TOCHE 2, K

e5)

where,

4

O_C?)kl.t) h.2..\., hlll.) hz.;.)
72%‘)’9 CEOACK D +12) (R 2+02)3]
M AR o, R R, e, Rl R TG, R B 2k s, )
+ T M, K Ry, 2-Riu- ke, ki, RS (c¢)

g C?, k;*; kI.'I.)

=L &
@M* GLd) -k 403

™ f ’E&E‘}” .( & h‘“- T (”,Ht hlh?'h'*l k:_;,h‘l)

X,

where ™M s an  garbitrary mass am and.,
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TCM: X, ky, Rau, h:a., kzi,_)
= TACR'= R} =0, Rj=-K; =M, k,y, ko R =K, =0, eyt xRy, k)
A (R = k=0, Kix- ki =M, ko, by, K= kL0, K2R, R ki) 3

% (Rl +Rar-kyy - Ry | (c-8)

A being the truncated four photon Green’'s function shown in
Fig.29. & and 0 may easily be seen to be independent of M,
by rescaling the + and the - momenta by M and m~1

respectively.

Eds. (C.4) and (C.5) may be solved exactly in the way we
solved Eq. (7.9). Similar solutions may be obtained for 5(1)

5(2)

and ’. Putting together all the results, we f£find the

following expressions for the contribution to the odd and

the even charge parity amplitudes respectively,

qu&d.

=% L @m)' & Wk Yr w(h) Wk ¥v- Wb )
2} 2 “ ezl z ,
S i‘zh}.‘; %T-%\{’ [(_Eu."r VO ¢ 21 ) {('fm'su_—"ﬁu] -HJ\ZE
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O 2 L Brd ( TELD ELL) o2 ka, ka2, 28)

o, 20, 2, &%, ) - o, T ) 2%, 23]

2L IL1
@)

Qevem
= = mg" Wk) v* w (k) W) ¥ w(he)
dtk, |(RD+ RV {@- RO+ 2T

5@@[(&:“») (@R 4t}
©0 . 2 ptn _.-.C&?
T +§ i i’“”(/sz) SCL'Q

(M

T2, Ry, £7) T (e, 29, 2%9) - (g, 247 ¢13]

(c-to)

Corrections to Egs. (C.9) and (C.10) Adue to the
non-leading logs may be evaluated exactly in the same way as
for the fermion exchange amplitude. Hence we shall not
discuss them here. Also, if we want to be consistent, we
should add with the expression (C.9) for A~ the one gluon
exchange amplitude, which does not have any log of s, but
which still contributes in the leading power in s. It has

the form,
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$(2) Wlka) YY w(p,) Wk, ) V- U (b (c-11)

£(g) is a function of gq, but is independent of s.
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FIGURE CAPTIONS
Fig.1l: Process considered
Fig.2: The factorized diagrams
Fig.3: Two types of reduced diagrams which may contribute to
the amplitude. Here the blob marked + contains lines moving

parallel to p the blob marked - contains lines moving

a’
parallel to Py and the lines inside blob 8§, as well the
gluons coming out of it carry soft momenta. Also in
Fig. {a), the exchange fermion line BB' carries soft momenta.
Fig.4: 1Illustration of the pinching of soft loop momenta by
the jet lines. kFis are finite momentum 1lines, ksis are
soft lines. £F is a finite loop momentum, RS is a soft loop
momen tum.

Fig.5: The Green’s functions (" ana rin'),

Fig.6: Two typical RD’s contributing to the amplitude. The
broken lines are soft lines.

Fig.7: Sum over all insertions of the K part of the n-th

gluon.

Fig.8: Regions of integration contributing to the G part of
the n-th gluon. All the lines inside the blob 8§ , as well
as the gluon lines coming out of it are soft.

Fig.9: Sum over all insertions of the S gluon. L2 }
== {jl, cedg

implies sum over all choices of the set {jl'°'°jg} out of
1,...n. The propagators marked S are proportional to

2

Su(k)/(kz—u +i€), u being the Lorentz index carried by the

uncircled end, The circled vertex just gives a factor of g.
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Fig.1l0: Flow of an external soft momentum inside a diagram.

Fig.1ll: Typical contributions to kIBG(n)/ak;. All the lines

outside the blob, shown explicitly in these figures, are

constrained to be soft.

Fig.12: Contribution to G'™). The lines inside the blob 5,

as well as all the gluon lines coming out of the blob S,
carry soft momenta.

Fig.13: Regions of integration contributing to Fig.12(b)

when we choose the SL-Y+(1/2)S+Y- term from the § gluon.

All the internal 1lines of the blob marked S, as well the

lines coming out of it, carry soft momenta.

Fig.14: A potentially dangerous region of integration

contributing to (7.7). . zl,---as are soft momenta.

Fig.15: Diagrams contributimg to the amplitude in the

leading and the next to the leading log approximatiocn.

Fig.16: Analog of c™ for the backward Compton scattering

amplitude.

Fig.17: Total contribution to BGLO)/Blnp; in the next to the

leading log approximation.

Fig,18: Contribution to (8.6) from the G(ll part and the xt

dependent part of GS}) in the next to the leading 1log

approximation. Here k and 4 are soft momenta.

Fig.19: Sum of all insertions of the K part of the & gluon

in Fig.18.

Fig.20: Total extra contribution to BGEP)/BEnp; from

Fig.9(b) in the next to the leading log approximation.
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Fig.21: Contribution from the first term on the right hand
side of (6.5) to aT(}) /asnp?.

Fig.22: Examples of tulips and gardens.

Fig.23: Subdiagrams Ty and T2 in a typical graph
contributing to (N,

Fig.24: Regions  of integration contributing to the
fermion-fermion scattering amplitude.

FiG,25: Green’s functions G(™ ang p(7),

Fig.26: Contribution to ar(“l/aanpz.

Fig.27: A typical contribution to Bf(zl/alnp;.

Fig.28: A typical contribution to Bf(ll/alnp;.

Fig.29: The Green’'s function A.
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ERRATA

Page 62, line 6

"But S_(q) does not change under such a boost, which shows that the
contribution fram Fig.9(c) vanishes."

should read as,

"Using this fact we can show that the contribution to Fig.9%{c)

vanishes at the one loop Revel."

Page 66

BEgy.(8.12) should read as,

o) +XY(g)

-1 dir ) ci) Sw (iR
-G SFC?)) L& S@Tr { RZ P2 > k) R*- 2+ 2€ )

g pP ) v TR 62D S, (o-k) Y]
(R g"-r"K) 7 11C Jm}zkl‘z )ig'-zjé
TCOCh-m) ( &k 4t € (?. G Nk

' @MY fm)" -piie T pEle o€
C ¢ Giw) . §SUk)_2 (+ Ry 4Ry v)
(7-R)- Y -mitie (§-k-0)-Y-rni € k-1e
- 70Cs (k). y 4.2 Sty Y™ 2 2 ]
A A G-g) v-meie
-~ 4k d [ -7 SMR) ¥ iy )il
§'s @m)" @) t & k5 ‘Y-‘m( ( (g-2)-7r-m
-1) 5% (k) Y L Civ, 1, 0 L0 N
v h§(?—la-2) Y- )(? k) Y- T R-[HiE Toplie

(9-12)



Fig.17 should be replaced by,

(¥ r-m)

(o) (b) )

(d)



