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ABSTRACT 

We study the e+e-+yy amplitude in massive quantum 

electrodynamics in the large s and fixed t limit. We 

compute the amplitude in the leading log and. the next to the 

leading log approximation, to all orders in perturbation 

theory, and also find the general form of the full amplitude 

up to any non-leading log approximation. We do not use any 

transverse momentum cut-off for our calculation. We find 

that, up to the next to the leading log approximation, the 

contribution to the positive signature amplitude is given by 

a single Regge pole. The contribution to the negative 

signature amplitude has a piece which corresponds to a 

reggeized fermion gluon exchange in the t channel, but there 

are also some other contributions which do not have such 

simple interpretation. 

The technique we have used to calculate the fermion 

exchange amplitude may also be used to calculate the vector 

particle exchange amplitude in massive quantum 

electrodynamics. We have calculated the gluon exchange 

amplitude in massive qed in the positive and the negative 

signature channels in the leading logarithmic approximation. 
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I. INTRODUCTION 

In this paper we shall study the amplitude for fermion- 

antifermion annihilation into two gluons in massive quantum 

electrodynamics in the limit of very large centre of mass 

energy Js and finite momentum transfer q (Fig.l(a)). We 

also study the nearly backward Compton scattering amplitude 

in the same limit(Fig.l(b)). We define the positive and 

the negative signature amplitudes as the sum and the 

difference of these two amplitudes (a more precise 

definition is given in Sec.11). This problem was first 

tackled 1 by Gell-Mann et. al. , who predicted, on the basis 

of a one loop calculation, that the positive signature 

amplitude behaves as, 

-zig 'y, +b (,/,zl”e )4-m’ 

Here JI, and $, are the external spinors, ea and eb are 

the polarizations of the external gluons, m, the fermion 

mass, 9, the coupling constant, and u(q) is a y matrix 

function of q. They also predicted (erroneously) a similar 

s dependence of the negatve signature amplitude, with the 

exponent a(q) replaced by -u(q). 

Polkinghorne' and Cheng and Wu3 verified Eq.(l.l) up 
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to two loop orders in the leading logarithmic approximation. 

They, however, could not get any result for the negative 

signature channel, since the negative signature amplitude 

does not receive any contribution in the leading logarithmic 

approximation. The major difficulty in extending even the 

leading log results to higher orders in perturbation theory 

is that in r loop order (O((q2)'+l)), individual diagrams in 

Feynman gauge have terms of order Qn2'-1s. On the other 

hand, if we expand (1.1) in a power series in q 2 , then, 

since a(q)"q2, the term of order (q2)r+1 in the expansion 

will have at most r powers of Qns. Thus, in order to verify 

(1.1) in higher orders in q2, one has to first show the 

cancellation of all the terms having more than r powers of 

Qns in r loop order. This was done by the authors of Ref.2 

and 3 at the two loop order, but this becomes an extremely 

difficult task as one goes to higher orders in perturbation 

theory. 

McCoy and VU4 avoided this problem by assuming a 

hypothesis of transverse cut-off. In each Feynman integral, 

if we cut off the transverse momenta integrals at some value 

A, then, in r loop order, we get terms of the form QnPsQnqA 

(p<r+l,q<r). Of course, when we set h>>/s, the logs of A are 

converted to logs of s. According to the hypothesis of 

transverse momentum cut-off, in evaluating the leading 

logarithmic contribution in the r loop order, we keep only 
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those terms, which are of the form Qn'sQnqA (q<r), but 

ignore all terms of the form QnPsQnqA for p<r, q<r. If we 

now sum the left over terms, all the logs of A cancel 

miraculously, and we get a finite answer. The sum of such 

terms then gives the leading Regqe behavior (1.1). There 

is, however, no justification for throwing away terms of the 

form QnpsQnqA (p,q<r), since they may contain as many as 

2(r-1) logs of s when A tends to infinity. If the 

transverse logs do not cancel, these apparently non-leading 

logs may completely upset the leading log result. McCoy and 

WU4 also calculated the imaginary part of the first 

non-leading logs, using the same hypothesis. 

This problem was tackled by Mason' in another clever 

way. He showed that, if, instead of working in the Feynman 

gauge, we work in the Coulomb gauge, then, in low orders in 

perturbation theory, the leading logarithmic contribution 

comes from the factorized diagrams of the form shown in 

Fig.2. In Coulomb qauge, the individual Feynman diagrams 

contain 2r powers of Qns in r loop order, hence, apparently, 

the behavior of the individual terms is worse than that in 

the Feynman gauge. However, if we assume that only the 

factorized diagrams contribute in the leading 109 

approximation, then, the constraint that the final result 

must be Lorentz covariant, immediately leads to the result 

(1.1). Mason, however, could not show the factorization of 
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the amplitude in the leading logarithmic approximation 

beyond two loop order. As a result, he could prove (1.1) in 

the leading log approximation, only up to three loop order. 

Attempts have also been made to show that the Re99e 

behavior holds for the qluon and the fermion exchange 
5-10 reactions in non-Abelian gauge theories . 

In this paper, we shall prove the cancellation of the 

double logs in perturbation theory, without assuming any 

transverse cut-off, and show how to systematically calculate 

the amplitudes for the processes shown in Fig.1 in the 

leading log, next to the leading log, second non-leading 

log... approximations. We shall illustrate the method by 

calculating the contribution to the positive and the 

negative signature amplitude in the leading log and the 

first non-leading 109 approximation (here by first 

non-leading log we mean that in r loop order we keep terms 

carrying r-l powers of Ins). We find that the sole effect of 

the first non-leading logs in the positive signature channel 

is to give an O(q4) contribution to the trajectory function 

cl(q) and some overall multiplicative constant, independent 

of s, without changing the form of (1.1). The contribution 

to the negative signature channel contains a Reqqe cut term, 

corresponding to a veqqeixed fermion qluon exchange. There 

are, however, some other contributions to the negative 
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signature channel, which, presumably, corresponds to 

additional Regv singularities. We have expanded our 

results in powers of q 2 and compared with the results of 

explicit calculations by McCoy and Wu 4 up to four loop 

order. Our results for the leading lo9 terms and the 

imaginary part of the first non-leading log terms agree with 

the results of McCoy and Wu. The real part of the first non 

leading logs, which gives rise to the O(q4) term in the 

trajectory function, was, however, not calculated by McCoy 

and Wu. This is a new result. We have also calculated the 

asymptotic behavior of the qluon exchange amplitude in the 

positive and negative signature channels in the leading 

logarithmic approximation using the same method. Also, as 

we have mentioned earlier, our approach provides a 

systematic way of calculating the amplitudes up to any non 

leading logs. The techniques developed in this paper is in 

no way limited to Abelian gauge theories, and may be 

generalized to non-Abelian gauge theories for qluon and 

fermion exchange amplitudes. 

The various stages, involved in our analysis, are as 

follows. In Sec.11 we specify the kinematics, the gauge, 

and the renormalization procedure that we shall be using 

throughout this paper. We work in the Coulomb gauge. Since 

the annihilation and the Compton scattering amplitudes may 

be analyzed in the same way, we concentrate on the 
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annihilation amplitude. We choose a frame in which the 

external fermion and one of the outgoing gluons move with 

very large momenta p a and ka respectively, in the +Z 

direction, and the external antifermion and the other 

outgoing qluon are moving with very large momenta pb and kb 

respectively, in the -2 direction. In Sec.111, we analyze 

the contribution to the Feynman diagrams, contributing to 

the amplitude,from different regions of integrations in the 

loop momentum space. For this we use a power counting 

method developed by Sterman." We find that if we neglect 

all terms that are suppressed by some power of m/Js, then, 

the momentum space region, which contributes to the 

amplitude, consists of a connected set of lines moving along 

the 2 axis with large momenta, a connected set of lines 

moving along the -2 axis with large momenta, and a set of 

soft lines with all components sq, exchanged between the two 

oppositely moving jets. The factorized diagrams of Fig.2 

are special cases of this, where only one soft fermion line 

is exchanged between the two jets. Using this picture, we 

express the full amplitude as a sum of convolution of two 

Green's function, GCn) and PC"'). GCn) is a Green's function 

with an on shell fermion line carrying momentum pa, an on 

shell qluon line carrying momentum ka, and a set of n soft 

qluons and a soft fermion line as its external lines. 

Similarly, Ftn') contains an on shell antifermion line 

carrying momentum pbt an on shell qluon line carrying 
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momentum kb, and a set of soft gluons and a soft fermion 

line as its external lines. 

In Sec.IV, we study the properties of the Green's 

functions G(n). ,(n') may be analyzed in an exactly similar 

way. We derive various relations between the G(")'s. In 

particular, we study the variation of ,(n) under an 

infinitesimal boost along the 2 axis, this gives us some 

non-trivial relations amongst the GCn)'s. We show in Sec.V, 

that using the relations derived in Sec.IV, the full 

amplitude may be expressed as a sum of the convolutions of 

the functions Ffn) and OCn') in the transverse momentum 

space, where r(n) and atn')' s are some special functions, 

defined in terms of Gtn)'s and ,(n') ,s respectively. In 

Sec.VI we show that in r loop order, r(n) can have at most r 

logs of pz/m and QCn') can have at most r logs of pi/m. This 

essentially shows the cancellation of double logs, so that 

only the factorized diagrams contribute to the amplitude in 

the leading log approximation, only the factorized diagrams 

and the diagrams which have a one qluon one fermion 

intermediate state in the t channel, contribute in the next 

to the leading log approximation, etc. In Sec.VII, we show, 

how with the help of the equations derived in Sec.IV , we 

can systematically compute the asymptotic behavior of the 

functions TCn) and Qtn'). In Sec.VIII we explicitly evaluate 

the contribution to the amplitude in the leading logarithmic 
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and the first non-leading logarithmic approximation, using 

the general method developed in Sec.VII. 

We summarize our results in Sec.IX. 

In appendices A and B, we prove some of the technical 

results, not proved in the text. In appendix C we show how 

our formalism may be applied to study the qluon exchange 

processes in the Reqqe limit. We find the expression for 

the fermion-fermion scattering amplitude in the odd C-parity 

and the even C-parity channels in the leading 109 

approximation. 

II. KINEMATICS AND GAUGE 

We shall consider the process of fermion-antifermion 

annihilation into two gluons (Fiq.l(a)) and the backward 

Compton scattering amplitude (Fiq.l(b)) in the limit of very 

large centre of mass energy and fixed momentum transfer. 

Let m and n denote the physical masses of the fermion and 

the gluon respectively. We choose a frame, in which 

different momenta, shown in Fig.1, are as follows: 
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/&- = J~*+-m2t~*Y, oco,, ocp, ) /J) 
pb = ~pr2t~~t~~z)-~~,,-~pz,-~‘) 
k,= h-9 k, = j-s+? 
p= (0, 91, ez, 0) 
k= c&+ J-n2 +e2, -*‘it, -“(& k, 
K&z. k+(r 

CL is determined from, 

rrlL + qz 9’: @+ ~-4’-$z 

We take the limit p,p'+m at fixed q. Thus the 

particles labelled 'a' move with large momenta along the 

positive 2 axis, while the particles labelled 'b' move with 

large momenta along the negative Z-axis. In this limit, we 

have, 

6 = (~~+PdL N 9 Pk’ ct.31 

t= gJg2 (2.4) 

In this paper we shall consider the case of 

transversely polarized qluons only. We shall compute the 

amplitudes for the processes shown in Fig.1 in an Abelian 

9au9e theory with massive vector bosons. Such a theory is 

renormalizable12 and also gauge invariant, in the sense that 
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we may add any term of the form (u"k"+u"k")/ (k2-u'+ie) to 

the qluon propagator, without changing any physical 

scattering amplitude, provided we include an extra 

wave-function renormalization factor in the external fermion 

lines (here u is any vector). 

The amplitudes for the processes shown in Fig.1 may be 

expressed as y-matrix functions of s, q and the polarization 

vector of the external qluons, sandwiched between the 

external Dirac spinors. If Al and A2 are these y-matrix 

functions for Fiqs.l(a) and l(b) respectively, we define the 

positive and the negative signature amplitudes as, 

The amplitudes are calculated by calculating the sum of 

all the Feynman diagrams, including self-energy insertions 

on external lines, and then dividing it by the wave-function 

renormalization constant for each of the external lines. 

The renormalization mass is choosen to be of order m,p,q. 

The convention about the y-matrices and the external 

spinors are the same as those used by Bjorken and Drell13. 

We define, 
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Then, 

(y+)z:(Y-)z=o p+,y-j=LI 

fy+-,yq zo i=',Z 

For any four vector k we define, 

k L = co, k't kz, 0) 

k* = k" + k3 

We choose to work in the Coulomb gauge, 

(2.7) 

in which the 

unphysical longitudinal degrees of freedom are absent from 

the qluon propagator. The propagator of a qluon, carrying 

momentum k, is given in this 

gauge by, 

- i N%d /(k’- j.&-iC) r -i (gr”- kk~v+~kk% khkv) /(n’-r*‘+id 

k-E 

where, 

x = co,<) 

For future reference, 

components of N below: 

@. IO) 

we shall list the various 
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N++ = N-- = _ k+ k-/h2 

pl+-= N-+ = (-Z-&f,+ k+ki-) /c$‘) 

Nii = ai’+ki k’/$’ f, j=l,z 

& =Nft = c_ <e-k-) ki/&‘, i-l, 2 

III. ANALYSIS OF FEYNMAN GRAPHS: POWER COUNTING 

In this section we shall study the contribution to the 

Feynman integrals, contributing to the amplitudes under 

consideration, from different regions of integration in the L0.k' 

momentum space, and identify the important region of 

integration that contribute to the amplitude in the .$.+a, t 

fixed limit, in the leading power in s. We follow a method 

developed by Sterman". We scale all the masses and momenta, 

involved in this problem, by Js, so that in the S-K- limit, 

the problem reduces to the scattering of finite energy 

massless particles at zero momentum transfer but finite c.m. 

energy. The powers of Ins will now appear as powers of 

In (l/M) , M being some mass of the order of the masses of the 

particles involved, and q, scaled by Js. The analysis then 

reduces to the investigation of the singular structure of 

the integral in the m,k,6l-+e timit* 
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The singularities of a Feynman integral come from those 

regions of integration in the loop momentum space, where the 

integrand becomes singular due to the vanishing of some of 

the denominators. However, in order that the integral 

becomes singular, it is not enough to get a singular point 

of the integrand. The variables of integration must also be 

trapped at the singular point. Otherwise by deforming the 

contours of integration in the complex plane, we may move 

away from the singular point. Singular points, where the 

integration variables are trapped, will be called the pinch 

singular points of the integral. The pinch singular points 

of a Feynman integral may be found out by standard 

analysis 11,14 . Following Ref.11 we define the following 

regions of integration in the momentum space, 

1) A momentum k is called collinear to Pa, if k+J$ r 

VA mp+ a, k--W;, h being a number, small compared to unity. 

2) A momentum is called collinear to pb, if k-spb, ~ ksi1'2p- b' 
k+sXp;. 

3) A momentum k is called soft if k)-' sXJs for every 1-1~ 

4) A momentum is called hard if kU s/s for every u. 

With every singular point, we may associate a reduced 

diagram, which is obtained by contracting all the hard lines 

at the particular singular point. As was shown in Ref.14, 

and generalized for massless particles in Ref.11, the 

reduced diagram for a pinch singular point must describe a 
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real physical process, each vertex of the reduced diagram 

describing a real space time point. According to this 

result, the two types of reduced diagrams, that may 

contribute to the process we are considering are as shown in 

Fiq.3. The blobs marked + and - contain lines that are 

collinear to pa and pb respectively. The blob marked S, as 

well as the lines coming out of S, are soft lines. For a 

real physical process, two oppositely moving jets may 

interact only through the exchange of soft lines (Fig. 

3(a)) , or they may actually meet at a single point in 

space-time, besides exchanging soft quanta(Fiq.3(b)). 

The soft loop momenta are usually pinched by the double 

poles in the soft denominators (k2-p2+ie) -' [(k2-m2+ie)-l 

for a soft fermion line]. However, the soft loop momenta 

may also be pinched by the singularities of the jet lines 

(jet lines + collinear lines). For example, in Fiq.4, 

consider the region where kF1, kF2, kF3, and kF4 belong to 

the + jet, kF5 belongs to the - jet, and kS1 and kS2 are 

soft. QF is a jet loop momentum, Qs is a soft loop 

momentum. The denominators of the lines kF3 and kF4 give 

rise to singularities in the QS plane at, 

es- '= (.L t z5 -3; +mZ-iE_ k;2 &a -& :,QG _ 
@FL + a)+ )--*+kF' 
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respectively. In the region considered, (kFl)l, (kF2),, S' QI-I 

kF1' kF2' - m and q are small (when scaled by Js), and kFT and 

k F: are finite and positive. Thus Q; is pinched at the 

origin between these two poles. In an exactly similar way, 

the + component of the soft lines, attached to the - jet, 

may be pinched between the two jet lines. The importance of 

these extra pinches will become clear later. It will allow 

different components of soft momenta to scale differently, 

e.g. instead of having Ik$hJs, we may have (k+(,(k,lscJs, 

(k-b)\v's, where X<<o<<l. 

Now that we have found the pinch singular points of the 

Feynman graphs under consideration, we shall use a power 

counting method, developed in Ref.ll, to estimate the degree 

of divergence of the integral near a pinch singular point. 

We shall briefly point out the main ideas that go behind 

this development, for more details the reader is referred to 

the original paper. Let us consider a line carrying 

momentum k, which is a part of the + jet. In the massless 

limit, its Feynman denominator is given by kck--x:+is. Since 

the jet line is massless, and moving close to the +Z 

direction, we have k,=O, k-=0. Since the denominator depends 



linearly on k- and c2, we expect to obtain maximum 

divergence when k- and 2: scale to zero at the same rate. 

Let us call X to be the common scale of all the - components 

and the square of the transverse components of the + jet 

momenta. Then for each jet line we get a factor of X-l. The 

integration volume for each jet loop scales as XL (one 

factor of X due to the - momentum integration and one due to 

the transverse momenta integrations). The fermion 

numerators as well as the Nuv(k) factors from the qluon 

propagators, may give rise to some extra powers of h in the 

numerator. As was shown in Ref.11, for each three point jet 

qluon-jet fermion vertex, we get at least a factor of X l/2 . 

Let us ignore the presence of the soft lines for the 

time being, and estimate the degree of divergence from the 

jet lines and jet loops only. We can estimate the degree of 

divergence from the f jet and the - jet separately. We 

shall concentrate on the + jet only, power counting for the 

- jet may be carried out in an exactly similar way. We 

first identify three special points on the jet in Fiq.3, the 

point A, where the external fermion breaks up into two or 

more jet lines, the point C, where two or more jet lines 

meet to produce the external qluon, and the point B, where 

either the soft exchange fermion line leaves the jet (for 

RD'S of type Fiq.3(a)), or the + jet meets the - jet (for 

RD's of type fig.3(b)). Let, 



Yr6rE: number of 

vertices A, C, and 

i,j : number of 

respectively. 

x : number of CL 
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+ jet lines attached to the contracted 

respectively. 

jet lines and jet loops in the + jet 

nternal vertices of the + jet with u jet 

lines attached to it (vertices A, B, C, are excluded in 

counting xc). 

As we have seen before, j jet denominators contribute a 

factor of 0-V , while 1 jet loops contribute a factor of 

(A) 211. Let us define the number nA(nC) such that nA(nC) is 

l/2 if A(C) is a three point vertex and is zero otherwise. 

Total suppression from the numerator factors then goes at 

least as (X1/2)nA+nC+X3 The total power d of ;\ -1 . in the 

integral then satisfies the inequality, 

NOW, 

j= (3.3) 

The total number of vertices v in the + jet (including 

A, B and C) is, 



Euler’s identity tells us that, 

t= j-*+-l 
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(3.5) 

Using (3.3) to (3.5) we may write (3.2) as, 

NOW, if y=2, nA=1/2. If y>2, nA=O. Thus, 

Similarly, 

Also, 

z co(-4b&,,o x15 

c3.7) 

(3*9) 

Hence, 

CL< 0 (3. IO) 

which shows that the contribution from the + jet is at most 

logarithmically divergent. The equality sign in (3.10) is 

satisfied only if 1) xa=O for a>4, 2)y,& = 2 or 3 and ~=2. 
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also we must choose the numerator factors in such a way that 

it does not have more than nA+nC+x3 powers of X1'2. This 
+- means that we have to choose as many p Y terms from the 

fermion numerators and as many y, terms from the gluon 

fermion vertex as possible. This is because if we look at 

the expressions (2.11) for Nuv(k), we see that N+-, N++ and 

N--J-h, Nti,A1/2 and Nijsl (i,j = 1,2) if k is a collinear 

momentum. Hence for each y + or y- at the gluon fermion 

vertex, we get a suppression factor of X l/-J from the gluon 

propagator. Amongst many things, this implies that in the 

chain of y-matrices on the fermion line inside the jet, the 

left-most longitudinal y matrix ( longitudinal 5 + or -) 

must be a y-. There may of course be trsnsverse y-matrices 

to the left of this y- matrix, but there is no y' to the 

left of this y- matrix. 

Let us now consider the contribution from the RD's of 

the type shown in Figs.3(a) and (b), ignoring the presence 

of soft lines, except for the single fermion exchange line 

in Fig.3(a). In both the figures, the two jets give 

logarithmic divergence (d=O). However, in Fig.3(a), we have 

an extra soft fermion line which gives a contribution of 

i/(&m). Such terms are not present in RD's of type shown in 

Fig.3(b), i.e. the i/(&m) factor is replaced by a factor 

of order l//s. Thus, since we are interested only in terms 

contributing in the leading power of s, RD's of type shown 
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in Fig.S(a) are the only ones we shall be interested in. 

This conclusion does not change even after we attach soft 

gluon lines to the jets, since, as we shall see, the 

presence of soft gluons does not increase the degree of 

divergence of the integral. 

Let us now consider the effect of attaching soft lines 

to the reduced diagram. First, let us ignore the pinching 

of soft momenta by jet lines (as was illustrated in Fig.4). 

Then all components of soft momenta scale together for 

maximum divergence. Let us call this scale c. Let us now 

consider the effect of attaching one end of a soft gluon 

line to a jet and the other end to a soft fermion line 

(say). The gluon propagator gives a factor of ce2 , the 

extra soft fermion denominator gives a factor of u -1 . If 

O-CA, then the extra jet denominator gives a factor of x -1 . 

The soft loop integration volume gives a factor of 04. Thus 

the net extra factor goes as c-3~-1c4,c/~, which gives a 

suppression unless 0s~. If, on the other hand, u>X, then all 

the jet denominators, through which this soft momentum 

flows, scale as 0-l instead of X-l, and there is again an 

extra suppression. The only way we can avoid the extra 

suppression is to keep usA. Similar result also holds for 

soft gluon lines exchanged between the two jets. In order 

to avoid any extra suppression factor from the jet numerator 

due to the attachment of the soft lines, the soft gluon 
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lines must attach to the + jet through a three point y+ 

vertex and the - jet through a three point y- vertex. Also, 

not more than one soft gluon should be connected to the jet 

at a point (in a reduced diagram, we can, in principle, have 

many lines attached to the same vertex), otherwise we loose 

some jet denominators that we could have gotten by attaching 

them to different points of the jet. Finally, one can see 

by simple dimensional analysis that soft fermions attached 

to jet lines, produce extra suppression factors", hence we 

do not have any other soft fermion line attached to the + or 

the - jet, except the soft exchange fermion line. 

At this point, one may ask the question: how small 

should be the momenta of the soft lines? To answer this, 

let us note that when soft exchange lines are present, the 

factor l/(+m) from the exchange fermion line is replaced by 

some term of order l/u/s. Thus, in order to get a 

contribution in the leading power in s , we must keep the 

momenta (U/s) of the exchange lines, to be of order q. 

Other soft lines, which are attached solely to the + jet or 

solely to the - jet may have their momenta lying anywhere 

between m and de.. 

Let us now consider the effect of pinching the soft 

momenta from the jet lines. As we have seen before, if a 

soft line of momentum k is attached to the upper jet, then 
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k- may be pinched between the two jet denominators and scale 

as A, while the other components of k may be larger ($0, 

say). If we now again consider the effect of attaching one 

end of such a soft line to a jet line, and the other end to 

a soft fermion line, the extra contribution due to the extra 

soft denominators goes as Us3, while the extra jet 

denominator gives a factor of i -1 . The integration volume 

due to the extra soft loop integration goes as U3i. Thus 

there is no extra suppression factor. Similar result holds 

when the two ends of the soft line are attached to the two 

jets. This result holds so long as the transverse 

components of the soft momenta are less than the transverse 

components of the jet momenta, i.e. u<A1/2. As before, for s 

the exchange lines u must be of order q//s. This shows that 

the - momenta of the exchange lines, attached to the + jet, 

and the + momenta of the exchange lines attached to the - 

jet may 90 down to Js.q2/s S m'/Js, without changing the 

degree of divergence of the integral, while the transverse 

momenta must be of order q. 

The above analysis gives us the regions of integration 

which contribute to the amplitude in the leading power in s. 

Let us now define by ,(n) (ParqrEa,kl,. . .k,) and 

,(n') (Pb,q,eb,kjr*.* k;l) the Green's functions shown in Fig.5 

(a) and (b) respectively. Here, q, kl,...kn, ki,...kAl are 

all soft momenta.G (n) and F(n') are one particle irreducible 
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in the external soft gluon and the soft fermion lines. In 

,(n) , the external soft gluons carry polarization 

1/2(1,0,0,-l), in F(n'), the external soft gluons carry 

polarization l/2(1,0,0,1). Then the contribution from an RD 

of the type shown in Fig.3(a) may be written in the form, 

{d.‘Q,-----d.m”t, f=+‘(b ‘1 ~~,k’.....k;,) ) 1 I> 

s (0) et,. I .. L,) @“‘k,e,c, k,,.. 9.. k) 

c 1 3. II 

if the momenta inside the + and the - jets in Fig.3(a) are 

fully integrated over. In (3.11), al,... iln are the ns 
S 

independent soft loop momenta, ki,... kr!,, are the momenta of 

the n' soft lines attached to the - jet, kl,...kn are the 

momenta of the n soft lines attached to the + jet, (kits and 

k;'s are linear combinations of the Qi’s) and S is the total 

contribution from the soft numerator and the denominator 

factors. Now, by fully integrating over the internal loop 

momenta of F and G , we include some extra contribution in 

(3.11). For example, if we take the RD of Fig.6(a) and 

fully integrate over the internal loop momenta of the + and 

the - jets, we also include the contribution from the RD of 

Fig 6(b). However, these extra contributions may also be 

expressed as an integral of the form (3.11). As a result, 



the sum of all the Feynman diagrams in the leading power in 

s may be expressed as a sum of expressions like (3.11). A 

prescription for systematically expressing the full 

amplitude in terms of integrals of the form (3.11) is given 

in appendix A, using the tulip-garden formalism of Collins 

and Soper15. In each of these integrals, the integration 

over the Qi's lie only in the soft region. 

In general, we gain two powers of Qns for each loop 

integration in a Feynman diagram, one due to the collinear 

divergence, and the other due to the soft divergence. Thus, 

from an r loop graph, we can get a maximum of 2r powers of 

Qns. The non-factorized diagrams, however, loose some of the 

logs, since, according to Fig.3(a), there must be one soft 

loop momentun, which is constrained to be of order q, and 

hence, cannot produce a Ins term after integration. Only 

the factorized diagrams of the form shown in Fig.2 do not 

need to have any soft gluon exchange and can have 2r powers 

of Qns in r loop order. But as already mentioned in the 

introduction, explicit calculations2-5 in low orders in 

perturbation theory show that, when we sum the contribution 

from all the Feynman graphs, all the double logs cancel, and 

the largest term in the r loop order is proportional to 

Qnrs. Hence we should define the leading logarithmic 

approximation as the sum of terms with not less than r logs 

of Qns in r loop order. Then we must consider the 
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contribution from the factorized as well as the 

non-factorized diagrams. 

In (3.11), if we first integrate over the internal loop 

momenta of ,(n) and Ftn'), and look at the integrand as a 

function of Qi's and the external momenta, the potential 

sources of the Qn(s/m2) in the final integral are the 

followings. There will he explicit logs of (P,+/m) from 

,(n) and (pi/m) from FCn'). Besides these logs, since the 

integral receives contribution from small kT and small ki+ 

regions, there may he logs of m/k; and m/k;+ present in Gtn) 

and F("') respectively, which are converted to logs of Pi/m 

and pi/m respectively, after the ki and k'l integrals are 

done. Thus the analysis of the logs seems to be a 

complicated multivariable problem. However, we shall show 

in Sec.V, that expression (3.11) may be expressed as a sum 

of integrals of the form, 

E, f dfku 1- . - -.clfkk,, d?k;,.--- &$+ 

9," (/=I,, e, ebb k,‘r,-- - k;d ‘S’“‘“‘)(~,k,,~.-..k~l) k’,,;-- k;aL) 

P( p4, e, 6, k,l ,----.k-) 

(3.12) 

where, 
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I+“)( )%,p, E-, k,, , -----b ) 

=: f&; --- $k; G’“‘(k) t, C,, k;,--.k;,k,t,-..kh,, k:=o,--k:d 
-1 

and, 

@“” ( kb, p, EL, k:,;-+- k;A 

&k@,+ - ----,“a$: F(““(h,p,~~, k; ,--. k~,,~,,;-.k;tl,k’;=O. .k- 30) 
-N -H ; I+ 

where M is any arbitrary parameter of order m. The final 

result is independent of the choice of M, although, in 

(3.12), @(n'), s and r(n) may individually depend on M. In 

(3.13) and (3.14), instead of cutting off the k; and k*l 

integrals sharply at M, we could also have defined ,(n) rs 

and O("')' s as integrals of G(n)'s and F(n')'s with a smooth 

cut-off on the ki and k': integrals. S is a calculable 

function of its arguments. After we prove (3.121, the 
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analysis of the s dependence of the full amplitude will 

essentially reduce to the analysis of the pi and pi 

dependence of Icn) and Qcn') respectively: 

IV. STUDY OF G("): 

We have seen in the last section that the study of the 

fermion-antifermion annihilation amplitude in the Rewe 

limit reduces to the analysis of the Green's functions G(n) 

and F("'). For definiteness, we shall limit ourselves to the 

study of Gcn), since Ftn') may be studied exactly in the 

same way. In the subsection A, we shall study the behavior 

of Gcn) when the - momentum of one of ,the external soft 

gluons :E of order m. In subsection B , we shall find the 

change in ,(n) under an infinitesimal boost along the 

Z-axis. This will later be useful to us to derive a 

differential equation involving the Green's functions. In 

subsection C, we shall analyze the dependence of Gtn) on the 

+ components of the external soft momenta. 
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A. BEHAVIOR OF Gtn) WHEN THE - COMPONENT OF ONE OF ITS 

EXTERNAL SOFT MOMENTA IS OF ORDER m : 

Let us consider the Green's function 

Gtn) (par% Ear kl, . ..kJ. and let us assume, for definiteness, 

that k, is of order m. Following a technique due to Grammer 

and Yennie16, we decompose the Y + vertex, at which the n-th 

gluon is attached to the jet line, as, 

- 2.3 Y-t/Z c - is ( G+“(k) -I- tc+Vzn)) Y, /z 

where, 

K’*(k) = bit k=/ (b,.k-iC) 

GA” (k) = $‘” l+(k) 

The K gluon carries a polarization proportional to k . 

Hence, when we sum over all insertions of the K gluon to 

,(n) , the K gluon decouples from the rest of the diagram due 

to the Ward identity, and the contribution has the form, 

9 ‘I\-” 
-(k;) G. 

( t-a, P, ~.a, k,,- . . I k,., 1 

which is graphically represented as in Fig.7. The circled 

vertex in Fig.7 carries a factor of -g/(ki - ic). 

For the G part, we see that G+- is identically zero. 
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Hence we cannot get a y+ term at the vertex where the G 

gluon is attached inside G (n) . From the analysis of Sec.111, 

we know that the soft gluon must attach to the jet gluons 

through a y+ vertex. Thus the fermion line to which the G 

gluon is attached, cannot be a jet line, hence it must be 

soft. Thus, if k, is of order m, and we consider the 

contribution from the G part of the n-th gluon, the region 

of integration, which will contribute to the amplitude in 

the leading power in s, looks like Fig.8. The crossed 

vertex represents a G vertex. This picture, however, is not 

valid if lk-1 << m, n since then the large factor yk- in G+' 

may compensate for the suppression due to the attachment of 

the G part to a jet line through a r, vertex. 

B. VARIATION OF Gtn) UNDER AN INFINITESIMAL BOOST 

ALONG THE Z-AXIS: 

Let us consider an infinitesimal boost along the 

Z-axis, which changes a momentum k to k' as, 

lx'+ = Y k+ c\q3 ) 

k'- = vk- W(3) 

k:, r kl 

where, 



y- +p’)-” = I+ oq3z) 

Let us write the transformation (4.5) as, 

klk '= &. k" Qf.sa) 

Any tensor T 
vl...un 

then transforms to, 

f 
, h---L-$ 

Let S be the representation of 

transformation in Dirac space such that, 

s k. Y S-’ : k’. Y 

Then, 

s UCPJ = k.(K) 

this Lorentz 

The total contribution to G (n) in s loop order from all 

the Feynman diagrams may be expressed abstractly as, 

G”‘) c &?, 6, k,,---- k-1 

= 9 $(; f@& ] $,.- ~~,--.~~(k,,.-.k,,~,,--.Ps, h,e,C) 
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~~z(kJX(~cm~ u(p,) f fi ~p’vJ(~j)/(~~b2+iO’5 

where i denotes sum over all Feynman diagrams, including 

self-energy insertions on the external fermion pa. a,,... Qs 

are the independent loop momenta, [5(P,)l -1/2 is the 

fermion wave-function renormalization constant, 

NFlj 'j (qj)/(qj2-$+it) are the gluon propagators of the r 

internal gluons present in the diagram (9 's are linear 

combinations of the Qi’s) r and 3 
!ll...UrV1...Vr 

is the 

contribution to the Feynman integrand from all the fermion 

loops and lines. The wave-function renormalization constant 

Of the external gluon ka is included in %. $ has a 

Lorentz covariant expression in terms of its arguments, 

except for the presence of the n y+ matrices at the vertices 

where the n external soft gluons attach to the fermion line. 

Noting that, 

yr+s = (p(3) Y++ocpz) 

we may write, 

s &-. I++.-~,$ k,, 4; , ha, ‘2, &) S” (be Nbivi (7;)) 

= $p,--.JLhlJ ,--- v, (k:, ai, I$, 4, EJ fi-fJ,“$ PI’~‘~ (6,) 
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where N' is related to N by the tensor transformation law 

(4.7). Thus we may write, 

s G'"' #a, ?,f,,k,,-.- k,) (1-r;)'" 

=F-‘@ ,f$$ $+--+,r,-..vA (k:;--k~,~:,--.Q:,~~,P,E~) 

s p,(p,)j% s-'Q~:-~) u(b:) a$ f ~+jQV(~;~ti+d 

(4.13) 

using the facts d4Qi=d4k; and 9: = g'i. 

,(n) at p;r kit... k,', may be evaluated by replacing the 

the external variables by the corresponding primed variables 

on the right hand side of (4.10). For the internal 

variables, we can change the variable name from !Li and q. to 
7 

Illi and q'., q'. 's are then the same linear combinations of 
I I 

Illi's as q. 1 
's are of ai's. Thus we have, 

G’“’ ( /(.,, e, 6, k:,. - - k:.) 

= $ I($ $$ j J(,,..~~v,.--v,Ck:,--- k:$:,---a:, b:,P,L) 

[&<~S” u( pa’) fJ { r.lbJvj (?i I/ (?$/.b?+i+ 
c ) 4.t4 
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Now, [Z2(pa') I -l/2 
and SfZ2(~,)1 -1/2S-1 differ from 

each other by a term of order 6. Also, N'J."(q') and NIP"(q) 

differ from each other by a term of order B. Let us define, 

blrv @'i - N'lhv (7) 

Then, up to terms of order 6, the difference between 

(4.13) and (4.14) may be written as, 

= cl@ t$$i,) 3(,,.../,,+,&,% J k&P, c,) 

iI Zz( kp+-- S ttl(kjjKs-lj (J&m) u(bL) +{db3 (4 '3 j--l (f-j% p+iq 

4-f g$ $1 $4,-..t.AhY,--.V~ (L-Q-i, Cd p, 6) liF,(~:ljh w2-4 

y(p;) 
II 
2 p s~iv~cp,!) 
‘=I (Q r’, iq 

fii nJbjX (Q jJ -+o(p 
jZi (pj’- fl+ci) 

($ I 6) 
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The second term on the right hand side of the above 

equation may be interpreted in the following way. Let us 

define by S gluon a gluon with propagator Su"(q)/(q2-u'+is). 

Then this term is the sum of all Feynman diagrams where one 

of the gluons is an S gluon, the rest being ordinary Coulomb 

gauge gluons. It is straightforward to calculate Sn" using 

Eqs.(4.15). It has the form, 

s’-+ Ck) = S’* Ckl k” -t S’Ck 1 k* 

where, 

s+ (41 = (P-e + e3 e+ ‘2-I /WI’ 
s- (P 1 = (- ‘2+ T; -I- T3 Q+ P’) /w I’ 
sjce, = -f”y3 fj/(y2)’ j=l,Z 

(J-f. 17) 

Since the S gluon carries polarization proportional to 

its momentum, in order to sum over all possible S gluon 

insertions in a given Feynman diagram, we may use the Ward 

identity. If we take into account the fact that Gtn) 

includes only those diagrams, which are one particle 

irreducible in the soft fermion line, the sum over all 

insertions of the S gluon will be given by the diagrams of 

Fig.9 (ignoring terms which do not have poles at #,=m). Of 
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these, Fig.g(a) may be shown to give a contribution, exactly 

opposite to the first term on the right hand side of 

Eq.(4.16)17, and these two contributions cancel. Thus we 

are left with the contributions from Figs.g(b),(c) and (d). 

To anaiyze the contribution from these diagrams, we 

need to know some properties of the S gluon. Suppose the S 

gluon is a part of the jet, so that its - momentum scales as 

A, and transverse momenta scale as Xl/'. Then, we can see 

from Eq.(4.18) that S-, S+ sX, S, ~11". Thus the S gluon 

carries extra suppression factor compared to the ordinary 

Coulomb gauge gluons in the jet like region. This shows 

that the S gluon cannot be the part of a + jet. It cannot 

be hard either, since S"(k) has three powers of k in the 

denominator, as opposed to N'"(k), which has only two powers 

of k in the denominator. Thus it must be soft. 

We shall use these results in our later analysis. 

r -. ANALYSIS OF aG(")/3ki+ : 

In this subsection we shall analyze the quantity 

ki+aG(")/aki+ (the factor of k.+ 1 makes the quantity have the 

same dimension as G tn' ) . For a given graph in G (n)' we may 

label the internal loop momenta in such a way that ki flows 



along a particular path inside the graph (e.g. in Fig-lo, a 

possible choice of the flow of the momentum ki is indicated 

by the shaded lines). Then, if we take the 9/ski+ operator 

inside the integral, it will act on the shaded lines only. 

Let us denote the operation of ki+a/9kif on any part of the 

path of kl by a cross on that part. If P+ki be the momentum 

flowing through this part (P is a linear combination of the 

other external momenta and the loop momenta) then, 

=- k,t Cp-+k,‘) 

{@+ kJ2- rd $ iCj* 

+ g. 

p+ (p+LL5ymz + iG 
@9) 

Since the denominator is >(P++kf) (P-+kl) , we see 

that on the right hand side of (4.19), each term is 

suppressed relative to the original undifferentiated term by 

a factor of kf/P+. This is expected, since kf always appears 

in the combination k>P + in the propagator of the line P+k 
i' 

and the dependence of the propagator on kl will be 

negligible unless kr is of order + P . This analysis shows 

that in order to get a non-suppressed contribution to 
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k;aG'"),'akf, the crossed line must carry + momentum of order 

k:, i.e. it must be soft. 

A more careful analysis shows that it is not enough to 

have only the crossed line to be soft. For example, if both 

ends of the crossed line are attached to jet lines, then, we 

can first replace the a/akI operation on the line carrying 

momentum P+ki by a/aP+ operation, and then integrate the P' 

integral by parts, so that the a/aP+ operator now acts on 

the rest of the integrand. Such a contribution is 

suppressed, since the contribution from the jet lines will 

be insensitive to Pf. Similar suppression occurs from any 

region of integration, where the crossed line cannot be 

continuously connected to the point where the momentum ki 

enters the graph, or the point, where the soft fermion line, 

carrying momentum q-Ck., leaves the graph, by a set of soft 
1 

lines. Figs.ll(a) and (b) shows us typical regions of 

integration which give non-suppressed contribution to 

aG(n)/ak;. All the lines, shown explicitly in these graphs, 

are constrained to carry soft momenta. These look like soft 

loop integrals of some ,(n'), s which have less number of 

loops than the original GCn). In appendix B we have shown 

how to systematically express the contribution to 

kfaG(")/akf in the form, 
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5 l f’:” (k,;-- k,,k,‘,--- k:) G’““(k, ‘1,c,, k:,--. k;) 

where fcn'i is a function which goes down sufficiently 

rapidly as ki+m so as to restrict the ki integrals in (4.22) 

in the soft region. The Green's functions G (n') have less 

number of loops than the original function Gtn). The 

function f'"': may contain factors of W;-kj), which set 

some of the k' in G (n') 
a to be equal to some of the kj's. 

V. EXPRESSING THE FULL AMPLITUDE IN TERMS OF ,(n)'~ AND 

,(nlts : 

In appendix A we have shown that the full amplitude may 

be expressed as a sum of terms of the form given in 

Eq.(3.11). In this section, we shall show that a term of 

the form (3.11) may be expressed as a sum of the integrals 

given in Eq.(3.12). To do this, let us first look at the ky 

integrals involving the G (n)'s in (3.11). The integral may 

be written as, 

5 if) Ak-, -j c K,--- k^h,-d Gc’“‘(k,,y,e,, k,,.-~~~~ 

(54 
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where... in the argument of f denotes various other momenta 

and mass parameters, on which the function f may depend. f 

has a smooth limit as kf+O, i.e. f is independent of ky if 

(kij<<m. We shall show that (5.1) may be expressed completely 

in terms of the functions r (n). We first express f as, 

f (h;,--- k,) 

= f(l+o ,--- k, =o) ?I- 8 (PI- IkJ) 
itI 

+i t f(k;,---hi, k;+,=o,--. k,=o) 

- ftk;,--- k;-, ,kf=o,.-- K-0) sO+\k~)] $JK”-Lk~d 

The first term on the right hand side of (5.2), when 

substituted into (5.1), gives, 

f Oq-=o,--- b,=d$JC ----.fk G? (bti*,~,CK, k,,--- k,) 

which is almost in the form of the right hand side of 

(3.131, except for the fact that in (3.13), the Gtn)'s are 

evaluated at kf=O, whereas in (5.3) they are still evaluated 

at finite k:. We shall show later how (5.3) may be reduced 
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to the form (3.13). The i=l term on the right hand side of 

(5.2) vanishes in the limit (k;I<<M. Thus, if we substitute 

this term in (5.1), the k; integral will receive 

contribution only from the Ik;lJm region. In this region we 

may apply the Grammer-Yennie decomposition to the kl gluon. 

The K part factorizes and the integral looks as, 

c (dk; f f ( k;, k;= o,-- -kc= o)-8CM-I k;l) f(k;=o,-- k;=o)i 

(- I CM&k; - -- f-h; dh-“(pti,~,c,,k,,--- k,,) 
k;-ic -M -Y 

For the G part of the kl gluon , the contribution comes 

from the regions of integration shown in Fig.8. This can 

again be expressed in terms of integrals of the form (5.1), 

involving some G(n') with less number of loops. We can then 

repeat the whole procedure mentioned so far in this section 

with this new integral. The successive terms in the 

summation in (5.2) may be analyzed in the same way, and we 

may finally express (5.1) in terms of the integrals, 

&?,- - - - $k Gtn” (f>k, 7, E,, Iz,,--- &,I ) (5.5) 
-M 
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Next we must show how (5.5) may be expressed in terms 

Of integrals of G(n')rs at .Q,i=O. To do this, we express 

Gtn') in (5.5) as, 

Gc"" Cb.Jy, E~+Q;,---Q;n', e,.,---a,,,at=o,---~~, =o) 

+iz fdp:’ a all’+ G<“‘( k, 4, c:,, Qu,--4,)1, a,; -- a,,, II :, 
L 

--- QZI , a;+, a,:, -0, ..- Q’, zo) 

The first term in (5.6), when substituted into (5.5), 

has the desired form (3.13). As shown in appendix B, 

contribution to the other terms in (5.5) may be expressed as 

soft loop integrals of G (n) 's with less number of loops. If 

we substitute this in (5.5), we may express the contribution 

in terms of integrals of the form (5.1). We now repeat all 

the steps, mentioned so far in this section, with these new 

integrals. Proceeding in this manner, we may finally 

express (5.1) in terms of integrals of the form given in 

(3.13). 

We can similarly look at the k.b integrals in (3.11), 

and express it in terms of 0 (") defined in (3.14). The 
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full amplitude may then be expressed as sum of terms of the 

form given in (3.12). The function S is obtained by 

integrating over all the soft loop momenta in (3.11) and 

also those which appear during the reduction of (3.11) into 

the form (3.121, except the momenta klL,. . . knlr kllL,... 

VI. COUNTING THE NUMBER OF LOGS IN rtn) AND Qtn') : 

In this section we shall count the number of logs of 

Pi/m in rtn), in a given loop order. The number of logs of 

pi/m in ofn') may be counted in an exactly similar way, 

hence we shall not carry out the counting for *(n') 

explicitly. We shall show that in r loop order, r(n) has at 

most r logs of pz/m, similarly, in r' loop order, acn') has 

at most r' logs of pi/m. Then if we consider the expression 

(3.121, the maximum number of logs of s in this from an P, 

loop graph will be given by a-n,, ns being the minimum 

number of soft exchange loops that the graph must have. 

This shows that in the leading logarithmic approximation, 

only the factorized diagrams contribute to the amplitude, 

since they are the only diagrams for which ns=O. In the next 

to the leading logarithmic approximation, the contribution 

comes from the factorized diagrams, as well as the diagrams 

which have a one gluon one fermion intermediate state in the 
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t channel. And so on. 

The result mentioned in the previous paragraph is a 

non-trivial result, since, as we have mentioned before, each 

individual diagram, contributing to G (n) , will contribute 2r 

logs of Pi/m to rCn) in r loop order. To prove the above 

result, we shall use the method of induction. First, 

following Ref.5, let us break up I'(n) as, 

P (-1 z l-y’ u Cl%-) + (u’/z > r:*’ Ml=&,) (6.1) 

where l':"' and r'"; are products of transverse y matrices 

only. To see how such a decomposition is possible, let us 

note that, given a string of y* and Y, matrices from the 

internal fermion numerators and the gluon-fermion vertices 

in a given graph contributing to G(") , we can always bring 

it into a sum of terms with the y- matrices at the extreme 

right and the y' matrices at the extreme left, with the 

transverse y matrices in the middle, using Eqs.(2.7). y- 

acting on u(p,) may always be expressed in terms of p,,.y 

and p,y+ acting on u(p,), by using the Dirac equation. This 

new Y ' may again be commuted to the extreme left through the 

transverse Y matrices, using (2.7). We are then left with 

terms, which are either products of transverse y matrices 

only, or products of transverse y matrices, multiplied by a 

Y+ at the left. There cannot be more than + one y at the 

left, since (Y+)~=O. This way rCn) can be brought into the 
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form (6.1). 

We shall show that, in r loop order, 

1) rin) does not have more than r logs of pz/m for any n. 

2) rcn! does not have more than (r-l) logs of p,'/m for any 

n. 

We shall assume that the above result is valid up to 

(r-1) loop order, and then show that it is valid up to r 

loop order. We shall start with r'"!. To analyze this, we 

draw the reader's attention to the discussion after 

Eq.(3.10), where we showed that if all lines in G(n) carry 

jet like momenta, the left-most longitudinal y matrix in the 

corresponding Feynman integrand must be a y-. Hence only 

G(n) 
A receives contribution from such a configuration. SO, 

the left-most y+ matrix in (ye/2)G("! must come from the 

numerator of a soft fermion line, or a soft fermion soft 

gluon vertex. Thus Gcn; must receive contribution from a 

configuration of the form shown in Fig.12. These 

contributions, however, are soft loop integrals of ~ ,(n) rs 

with less than r loops, and hence, using the method of 

Sec.V, may be expressed as transverse momentum integrals of 

r(n)fs with less than r loops. This , by assumption, has 

less than r logs. Hence, in r loop order, r(n) + has less 

than r logs. 
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There is an important consequence of the results 

obtained in the previous paragraph. Since ,(n) + may be 

expressed as transverse momentum integrals of * rcm)'s (and 

similarly 0'"" as transverse momentum integrals of 

o(rn') 's) , L we may reexpress (3.12) as, 

5 h’ k IL ----- cfkbA d%,, --- -&.!I& 

~~‘Cbb,e,~~,k~~,---k:~) s^<e, k,,--- k,,,k:,,---kid 

I-,“‘( k,e,6a,k,,,----ka) 

where S is some new function of kiL and kil. 

Next, let us turn towards counting the number of logs 

in I rCn) in r loop order. We start with the definition 

(3.13) and make a change of variables from ki to k'i 

according to (4.5). Thus, we may write, 

rl”’ (/%,p,E,,ka,--- kJ 

= ( 
M 41-Q) 

(+i’ &.k) (I-pjk Gt’:L (b, e, &, ki, k+ k;=o) 
k;=-n(l.-p) ‘=’ 

W 

On the other hand, we have, 
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r? ( tc, ‘2, G&, k,+--- knL) 

=I ~“(+k-) G;‘(&e, &,&A, k’- k: =o) 
k,=+l il 

(PJf) 

which is obtained from (6.2) by changing P, to p; on bot,h 

sides, and changing the name of the integration variable 

from ki to k!- 1 * Taking the difference between (6.4) and 

(6.3), and keeping only up to first order terms in @, we 

get, 

(3 p a p/ a /=: 

= it? f* (f$ hk:) [ 
>=I k;s-.tl i)j 

e M &; (~~,e,E,,k;,,~~=o,tC;,--~~~, k;=M, 

k’.- ..)$I ,-- k’,-) - (-PM) Gc’:‘Cg,e,+,,+ ~~:o,ti;;.k~~,kh[;‘~-M,~~,,,.-k’~)l 

+$l (E h\i;:) k?‘M,p,c,,k.a, k’,&o) 

- $+l-’ see;’ (~c.,‘I,&b, k;, k,’ =o,I 

(6.5) 

Let us first consider the first term on the right hand 

side of the above equation. In the j-th term in the 

summation, GA (n) has to be evaluated at k'j=M and -M. Hence 

we may apply the Grammer-Yennie technique to analyze the 
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contribution. The contribution from the K terms cancel 

between the two terms. The contributions from the G terms 

come from the regions of integration shown in Fig.8. They 

are soft loop integrals of GCn)' s with less than r loops, 

and, following the procedure mentioned in Sec.V, may be 

expressed as transverse integrals of rcn) 's with less than r 

loops. Hence these terms have at most (r-l) logs of pz/m. 

We now turn to the second term in (6.5). If from 

(4.16), we project out the term proportional to the product 

of the transverse y matrices on both sides, the left hand 

side reduces to, 

cd; &,‘,e, Es, k:,--A:,) 

- 6.- @ )- n G’“: ( h., p, 6, k,, - -. k,) 3 u&L) 

since S commutes with the transverse y matrices. This, 

according to (4.16), is given by the sum of the diagrams 

shown in Figs.g(b) (c) and (d). When substituted into the 

second term on the right hand side of (6.5), each of these 

terms becomes a soft loop integral of some GCn') with less 

than r loops, and hence may be expressed as transverse 

momentum integral of fCn')' s with less than r loops. Hence 

these terms have less than r logs of pi/m. 
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Thus pf;X;") /apcf has less than r logs of pz/m in r loop 

order. This shows that rJn) has at most r logs of pi/m in 

the r loop order. This completes our proof by induction. 

Since at the tree level, rl (n) does not have any log of pz/m 

(this is easy to verify, by considering the sum of tree 

graph contributions to G(") , I which is proportional to 

iiatkl-iE)-l, and integrating over its external - momenta), we 

can conclude that ry) does not have more than r logs in r 

loop order, for any r. 

VII. EVOLUTION OF THE rtn)'S : 

In the last section we saw that in the r loop order, 

r(n) ts do not have more than r logs. In this section, we 

shall show that the equations derived in the last section 

are also sufficient to find out the asymptotic behavior of 

the rCnJr s as functions of p,+, including the leading, as 

well as the non-leading logs. We shall first define some 

new quantities. Let rinfr) be the total contribution to 

rCr') in r loop order. We shall not I analyze i-(n) 
+ 

separately, since, according to (6.2) I the total 

contribution to the amplitude may be expressed in terms of 

@in')). The result of the last section shows that 

may be expressed as, 
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p(r,hl (b,/rn, f, E,, k,iA) =d$o a’~“)(p, G, b 1 Q-i .& 

(?*I) 
In order to find the amplitude in the k-th non-leading 

l-3 approximation, we need to know rln) in the(k-4th 

non-leading 109 approximation, i.e. we need to know 

n,r) a( j 's for, 

&+m-k < 3 5 A CT 4 

First we shall prove the following result. Suppose we 

are trying to evaluate the contribution to the amplitude in 

the k-th non-leading log approximation, and we know the 

relevant a("""i's for r'<r. Then, we shall show that the 

equations derived in the last section are sufficient to 

determine the required a (n,r) 
j 's for all n and j, satisfying 

(7.21, except for j=O. 

(7.1) gives, 

a rfhJk’/ 8 k k; = go 3 &“‘( 2, E,, kLL) I- f,&(g \ 
-m 

This is given by the right hand side of (6.5). As was 
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shown in Sec.VI, the first term on the right hand side of 

(6.5) may be analyzed by using Grammer-Yennie decomposition. 

The K gluon contribution vanishes, while the G gluon 

contribution is given by contributions of the form shown in 

Fig.8 . These contributions are soft loop integrals of 

G(n',r') 's with n'+r'<n+r, r'<r , and by using the procedure 

given in Sec.V, may be expressed as a sum of transverse 

momentum integrals of ry’lr’) 's with n'+r'<n+r and r'cr. 

Thus we know the coefficient of Enj'(p:/m) in the 

contribution from these terms for, 

j’za’+fi’-k (7.4) 

Then, comparing (7.3) with this expression, we can find 

the contribution to a (n,r), 
j s from these terms for, 

j-l > -n’+ fi’- k 

Since n'+r'<n+r, we know the contribution 

for, 

ci z n+pt-k 

except for j=O. 

(7.5) 

to a!nrr) rs 
7 

(7.4 

Let us now try to analyze the contribution from the 

second term in the right hand side of (6.5). As shown in 

Sec.VI, these contributions are given by the sum of the 
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diagrams shown in Fig.g(b), Cc) and (d). Of these, the 

contribution from the diagrams in Fig.g(c) and Cd) may be 

expressed as soft loop integrals of G(n'tr') rs with 

n'+r'<n+r and r'<r, and hence their contribution to a(n,r) 
j 

is known for j>n+r-k. Analysis of the contribution from 

Fig.g(b), however, is slightly more tricky. Apparently, 

this involves a soft loop integral of G (n',r') with n'=n+l I 

r'=r-1. Hence n'+r'=n+r, and our previous argument to show 

that the contribution to a (n,r) 
j is known for jln+r-k breaks 

down. 

A more careful analysis of the contribution from 

Fig.g(b) shows that there is actually no problem. First, 

note that, if we choose the S,.y or the S+y- term from the S 

gluon propagator, it contrains the fermion line, to which it 

is attached, to be soft. The contribution then comes from 

the regions of integration shown in Fig.13, which are all 

soft loop integrals of G(n'rr') ts with n'+r'tn+r. Hence 

their contribution to a(n,r)r 
j s are known for jzn+r-k. The 

contribution to (6.5) from the S-y+ term in Fig.g(b) may be 

written as, 

J-L’dk; - _ -f&f k-2, ki) .Y s-Ck) (-2) _ = 
-N i k’- j&i E (7.7) 

k,).v+mj 

(f-h-g k,)%r,2tiG 

G~wt-l)(p p E k ___ k 
&J I "J 'J hJ 

@\ 

I+0 
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First, let us consider the contribution to the above 

integral from the region where either k- or at least one of 

the ky's is of order m. Then we can decompose the gluon, 

carrying the order m - momentum, into G and K parts. The K 

part contribution will involve integrals of GCnPr-l), and 

hence the contribution from this term to atnrr) can be found 
j 

for j>n+r-k. The contribution from the G part will involve 

soft loop integrals of G (n',r') with n'+r'<n+r, r'<r, and 

hence this contribution is also known for j>n+r-k. Thus the 

only troublesome contribution comes from the region where 

all the lkil's and lk-1 are small compared to m. In this 

region, the fermion denominator carrying momentum q-k-Cki 

and the gluon denominator (k2-u2+is) are independent of k+. 

If we choose the I component of G("+lrr-'), then we are 

forced to choose the (q-k-Cki)L.y+m term from the fermion 

numerator. Hence this is also independent of k+. S-(k), on 

the other hand, is an odd function of k+, in the limit 

jk-t<<tk+l . Thus, if we ignore the dependence of G (n+l,r-1) 

on k + , the integrand of (7.7) is an odd function of k+, and 

hence the k+ integral vanishes by symmetry. 
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Thus, in order to get a non-suppressed contribution to 

(7.7) from the region Ikfl<<m, lk-kcm, we must choose the 
G(n+l,r-l) 

+ term from G(n+l'r-l) , or we must consider the k+ 

dependent part of G("+ltr-'). Contribution to both the parts 

come from the region where some of the internal loop momenta 

Of G("+l,r-l) are soft (Figs.11 and 12). These are soft 

loop integrals of Gfnltr') with n'+r'<n+r. Configurations 

shown in Fig.14 are the only ones for which n'+r'=n+r. If, 

however, the - component of all these internal soft loop 

momenta 9.i are small compared to m, then we do not get any 

contribution to G (n+l,r-1) +, since, in order to get a y+ 

somewhere on the fermion numerator or the gluon fermion 

vertex inside G("+ltr-'), we must have at least one power of 

- component of some soft loop momentum in the numerator 

(note that N--(!L)aL-). We do not get any k+ dependent part 

of G(n+lrr-l) either , since all the new soft fermion 

denominators in Fig.14 are independent of kf. Thus the k+ 

integral still vanishes by symmetry. If, on the other hand, 

one of the internal soft loop momenta carry - component of 

order m, it can be decomposed into G and K gluons, and the 

contribution from both the parts may be expressed as soft 

loop integrals of G(n'rr') with n'+r'<n+r, r'<r. Thus the 

contribution from this term to a(nrr) 
j 

may be found for 

j>n+r-k. 

Hence we see that if we know the .!n',r') rs 
I' 

for 
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j'>n'+r'-k for r'lr-1, we may find out the ainrr)'s for 

j>n+r-k, except for j=O. We shall now interprete this 

result from a somewhat different angle. Eq.(6.5) gives an 

expression for ar(“)/aanpi. The right hand side is a sum of 

soft loop integrals of G (n') ,s , and hence, using the method 

of Sec.V, may be expressed as a sum of terms of the form, 

ng f A'"'"" (f, k,,,- - - k,,, k:i,- - - kl,r, 1 I-“’ ( I*, p, E,, k:, ,- - - k:t,.) 

cP& - - -- 62k:~~ 

The result of this section tells us that if we want to 

evaluate IyJ n-3 the (k-n)-th non-leading log 

approximation, then (7.8) may be evaluated by knowing I'?) 

up to the (k-n')th non leading log approximation, for n&O, 

1 ,... k. Thus it is enough to terminate the sum on the 

right hand side of (7.8) at n'=k. The set of equations 

(7.8) will then read as, 

a I-$“‘( p:, e, 6, ku,---kd 
a&l P2 

z& j- dnln')@k,Lj---k,,L, k:r,---I&) r,‘““(~~:,e,EP,k:~,---~h~l) 

&z#(r _ _ _ - - & k;,, 
0.3) 

If we regard A as a generalized matrix in the product 
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space of the transverse momentum space and the n space, and 

r(n) 
I as a generalized vector in the same space, we may write 

(7.9) as, 

ar, /aa,p,+ = FI r, 

with the solution, 

f’-,= exk(f? Q-d??) BL 

where, in evaluating the exponential, we must use the notion 

of generalized product for evaluating the powers of A. For 

example, 

h+““(?,k,,, --I- k,,, k:,.,---- k:d 

$- J dc2k; .--.dz<hu A”‘~“(p,k,*,---k,,k::,---key) 

,+‘; ,‘)(T, k’;, , - - - k”,ll, , k’,,, _ - - I&, ) 
(742) 

In (7.11), B, + is an unknown pa independent vector in 

the product space of the transverse momentum space and the n 

space. These are the constants of integration and 

corresponds to the undetermined coefficients a(n,r), 
0 st 

mentioned before in this section. These coefficients may be 

calculated by doing some low order calculations. For 

example, in the leading 109 approximation, the only 

undetermined coefficient is (O,O) 
ao ' which is trivially 



determined from the tree diagram. In the next to the 

leading log approximation, the undetermined coefficients are 

ape), (O,l) 
a0 , and ail,'). Of these, ah',') and ail,') are 

determined from the tree diagrams, .~O,U may be calculated 

by a complete one loop calculation of f(O). 

Eqs.(7.9) become extremely simple in the leading 

logarithmic approximation. Here k=O, hence I'(') is the only 

relevant term. The equation is, 

(7.13) 

with the solution, 

f1w = 
.I. exp C occqj in, $1 B:“’ Cr,Q (744) 

which shows the Regge behavior (1.1). Qln) has a similar 

expression as r(n). L In the next section we shall apply the 

techniques, we have developed so far, to calculate a(q). We 

shall also evaluate the complete contribution in the next to 

the leading log approximation, using these techniques. 
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VIII. CONTRIBUTION TO THE AMPLITUDE IN THE LEADING LOG AND 

THE NEXT TO THE LEADING LOG APPROXIMATION: 

In this section we shall find out the contribution to 

the amplitude in the leading logarithmic and the next to the 

leading logarithmic approximation. From the discussion of 

the previous sections, it is clear that in the leading 

logarithmic approximation, the contribution comes from the 

factorized diagrams of the form shown in Fig.lS(a), while 

the first non-leading logs come from the factorized 

diagrams, as well as the diagrams, which have a one gluon 

one fermion intermediate state in the t channel (Fig.lS(b)). 

Before evaluating the contribution from these diagrams, we 

shall isolate the contribution to the positive and the 

negative signature channels. To do this, let us define 

fit") (6,s q, ca, kl, . ..k.) to be the analog of G(n) for the 

backward Compton scattering amplitude (Fig.16). There is a 

one to one correspondance between the diagrams contributing 

to ,(n) and 6(n), which may be related by a simple 

transformation of the loop momenta (a'+-!L', !I,+%,). The 

relationship is, 

G:’ (/=a,,?,&, k,,-..k,l = 61)~ 3; C”&,?, &.,$,,--.“L.) (8.1) 

~“:(p,,p,r,,k,,-..kn)=(-l)n+‘~~~c~~,e,E,,~,,...~,) (84) 

where, 

At k; = -k; , c,, = k,, (8.3) 
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(0) Up to the next to the leading log level, only GL and 

F(O) contribute to Fig.l5(a). I This is because, if we choose 

the y+G(') + term from the upper blob in Fig.lS(a), we must 

choose the FA')y- term from the lower blob, in order to get 

a non-zero answer. Such a term contains at most (r-2) logs 

in r loop order, and hence may be ignored in the next to 

the leading log level. Eq.(8.1) then shows that the 

contribution from the factorized diagrams to the negative 

signature channel vanishes in the next to the leading log 

approximation. 

In order to know the contribution from the Fig.l5(b) up 

to the next to the leading logarithmic approximation, we 

need to know the contribution from G(l) and F(l) in the 

leading logarithmic approximation. Hence we may ignore the 

dependence of G(l) and F(l) on k+ and k- respectively. 

Also, we must choose the I G(1) and Fj') terms. Thus the 

contribution to A* may be written as, 

i Gt! h., ‘2,~., k+=o, E, kJ C_ 2; (‘$.&, c&+=o, K, kr)f 

bjNbuCkl / ( $-pCz+i~) 
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In the region where either k+, or k-, or both are small 

compared to m, so that Ik+k-\ <<s:, the contribution to A+ 

from the above the integrand vanishes, since the integrand 

changes sign under k-+-k-, according to (8.1). Thus, the 

contribution comes only from the k+, k- P m region. In this 

region, we may use the Grammer-Yennie decomposition 

technique, and write the contribution from (8.4) to A+ as, 

’ F:’ ( ha, !?, Eb) [ $,(& p c&j &$ ) cm 
- - 

f$& N+- (k)] Gy ( k, ‘2,C) 

Thus, up to the next to the leading log level, the 

amplitude A+ may be factored into a product of three parts, 

a part which depends on pb but not on pa, a part which is 

independent of pa and pb, and a part which depends on pa but 

not on o -b' Then, according to an argument due to Mason 5 , the 

amplitude must have an exponential form in this 

approximation. We shall, however, give a more direct proof 

of the exponentiation, and also find out the trajectory 
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function c(q) up to order g4. 

aG~")/ailnp~ is given by the sum of the diagrams in 

Fig.g(b), (c) and (d), with n=O. Of these, in Fig.9(c), the 

part involving the S gluon is related to the change in SF(q) 

under an infinitesimal boost along the Z-axis, SF being the 

full fermion propagator. But 'F(q) does not 

change under such a boost, which shows that the contribution 

from Fig.g(c) vanishes. The diagrams which contribute to 

aGi')/aLnpa+ up to the next to the leading log level, are 

shown in Fig.17. Of these, the effect of Fig.l7(b) is to 

change the -i(&m) factor in Fig.l7(a) e-0 -is,'(q). Hence we 

may concentrate on Fig.l7(a). 

First, we shall limit ourselves to the leading 

logarithmic approximation. In this approximation we must 

choose the (l/Z)S-y+ term from the vertex where the S gluon 

attached to the fermion line inside the blob, because, if we 

choose the (1/2)S+y- or the S,.y term, it will constrain the 

fermion line to which it is attached, to be soft, and hence 

loose some logs. The contribution to Fig.l7(a) in the 

leading logarithmic approximation may then be written as, 

a- *7 s&e s-(k)k*e w 
Go’ C /$ , f, &a, k ) G-6, 
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In the leading logarithmic approximation we must choose 

the .I. component of G (1) , thus we must choose the (q-k ),.y+m 

term from the fermion numerator, in order to make (8.6) a 

product of transverse y matrices only. Also we may take 

G(l) to be independent of k+ in this approximation. Then in 

the region [k-l <cm, the integrand of (8.6) becomes an 

antisymmetric function of ki and the integral vanishes. 

This shows that in the leading log approximation, the 

integral (8.6) receives contribution only from the Ik-lsm 

region. In this region, we may make a Grammer-Yennie 

decomposition of the S gluon. The G term does not 

contribute in the leading log approximation. The 

contribution from the K term may be written as, 

-i$($-m, ~c&kq s-(k) @& 
k-b -c-Lt: 

g& 3 G:“’ c tc, 9, G) 

= o(@’ (7 1 c22 ( g, f, 4 

Thus, 

(8 7J 

aGy da, i?: = QP’(~1 G!W,f, g:,J 
the solution to which is, 

G'; C /Y,, 4, Ga) = hcf C o(cz'(ql !&,$I BI"'cq,C) 
b?.YJ 

where I B(O) is some constant, independent of p;. In the 

lowest order in g, Bi") is equal to (-ig$,). 
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In the next to the leading log level, there are various 

extra contributions to aG(0)/a!2npL. First, let us find out 

the extra terms from (8.6). In the region lk-1 <cm, there 

are two effects, which may destroy the antisymmetry of the 

integrand under k++-k+. We may choose the y+G(l) + term from 

G(1) and k+y- term from the soft fermion numerator. Also, 

now G(l) can no longer be considered to be independent of 

k+. G(1) 
+ receives contribution from the regions of 

integration in the loop momentum space shown in Fig.12. 

Also, as shown in appendix B , in order to get a 

non-suppressed contribution to G (')(pa, q, sa, k+r k-, k,) - 

G(')(P,, g, sa, k+=O, k-, k,), one of the internal loop 

momentum of G(l) must be soft. Thus, if in (8.6), we 

express G(l)(p,, q, ca, k) as, 

GT(k>Q, Es, k+=q k-,kJ 

+CCr’::(b*,9,Ea,k+,k-,k~l-tc(ll<b,,?,~qkt=o,k-,k)5 

+ ’ Y+ G’1’ ( be.>?, E,, k+, k-, k,) z (8. IO) 

then the second and the third term will receive contribution 

from the regions of integration shown in Fig.18. When we 

substitute the first term in place of G(l) in (8.6), the 

integral receives contribution from the k-pm region only, 

since the k + integral vanishes by symmetry in the Ik-i<<m 

region. 
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In Fig.18, we must have an even number of y + and y- 

matrices on the soft fermion line. As seen in the last 

section, in the region IQ-1 <Cm, ik-f<<m , the integrand is 

antisymmetric under the transformation k++-k+, and hence the 

integral vanishes. Thus, if Ik-1 <cm, Q- must be of order m. 

But then it may be factorized, using the Grammer-Yennie 

technique. The G term does not contribute in the next to 

the leading 109 approximation, the K term gives a 

contribution of the form shown in Fig.19. The integrand is 

antisymmetric under the transformation a'+-Q', k++-k+, in 

the lk-1 <cm, Q- em region, and hence the integral vanishes. 

Thus the integral (8.6) receives contribution only from the 

k- zrn region in the next to the leading log approximation. 

In this region, we can decompose the S gluon into G and K 

parts. The K gluon contribution is identical to (8.7). The 

G part constrains one of the internal loop momenta Q of G(l) 

to be Soft, and again, using the antisymmetry of the 

integrand under k"+-k', Q++-Q+ for IQ-l<<m, we may bring the 

contribution in the form of Fig.ZO(a). 

There are some extra contributions from Fig.l7(a) in 

the next to the leading log approximation, which is not 

included in (8.6). This is the contribution where we choose 

the ((1/2)S+y-+S,.y) term instead of the (l/Z)S-v+ term from 

the vertex, where the S gluon is attached to the fermion 

line inside the blob. This vertex constrains the fermion 
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line, to which the S gluon is attached, to be soft. Using 

the symmmetry property of the integrand, and the 

Grammer-Yennie decomposition, we may bring the contribution 

from this term into the form of Fig.20(b). Also, we must 

include the one loop self-energy diagrams for the soft gluon 

and the soft fermion (Fig.20(c), (a)). Fig.20 then gives 

the net extra contribution to aG!')/,tnpi in the first 

non-leading log approximation from Fig.l7(a). As we have 

mentioned before, the effect of Fig.l7(b) is to change the 

-i(+m) factor in&(q) to -is,'(q). Thus, in the next to the 

leading logarithmic approximation, 

a&‘/a e, g = (0(“‘(p) + otnr W) G?’ 

where, 

C+ 0’+kL.-d -iCS;csl).u+~s+(k)u-)5 $k$$=;]A - 
+ oca”) 

(8.12) 

.-I . . 
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where irI(k2) (k2gw !J v -k k ) is the contribution from the one 

loop vacuum polarization bubble, and iS FL(q-k) is that part 

of the full one loop fermion self-energy, which is 

proportional to the identity matrix or product of transverse 

Y matrices only. [ IL means that in any of the terms 

enclosed in the square bracket, we must choose equal number 

Of Y 
+ and y- terms from the fermion numerator and the gluon 

fermion vertices, commute all the y-'s through the other y 

matrices to the extreme via-k using Eqs.(2.7), and, at the 

end of this process, keep only those terms which contain 

products of transverse y matrices only. For example, a term 

of the form y-.P&.yy + 1s reduced to, 

-4&.-Y c P&.-f r+ Y- (8.13) 

and we pick up only the (-49.,.y) term. 

The solution to Eq.(8.11) is, 

Similar solutions may also be obtained for F!'). The 

total contribution to the positive signature amplitude is 

obtained from the sum of the contributions from Fig.l5(a), 

the corresponding diagram for the backward Compton 
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scattering amplitude, and expression (8.5). It is given by, 

~+=2Q'Ct,6) exbfWQ)tcFCt)) &(.+.,lj 
(q-k,).V+m 

(P-#-++iE 

t&t.AiG 
N+- <k)l 62 (7, G) 

Next we shall turn to the negative signature amplitude, 

which comes entirely from the graph in Fig.l5(b), and the 

corresponding graph for the backward Compton scattering 

amplitude. We shall first express the contribution in terms 

of l?il), rJ"), 0:", and @Lo', according to the prescription 

of Sec.V. We first define r(l) as, 

pcq = ,‘“ak; GC” ( b,, ‘i, E,, k;, ku, C=o) 
(84 

-cm 

i.e. we take M in (3.13) to be equal to sm. Here E is an 

arbitrarily small, but fixed number. The final result must 

be independent of M, thus it is independent of E. Hence, if 

we consistently ignore all terms which vanish as s+O, we 

shall get the correct final result. As we shall see, this 

causes a certain simplification in the intermediate stages. 

ilar way. We define 0(l) in a sim 

Now, it can be eas ily seen , using Eqs.(8.1), that the 



contribution to A-, g iven in (8.4), from the region of 

integration where either k+ or k- or both are of order m 

vanishes by symmetry. Thus we may limit the kf integrals in 

the region Ik'l<sm. Neglecting O(E) terms, the integral 

(8.4) may be written as, 
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ry <b&, p, 6, k,) (I+ PI-' (8.17) 

Thus our remaining task is to find out @!') and r!') in 

the leading log approximation. In order to find r:l) we go 

back to Eq.(6.5). As was shown in Sec.VI, the first term on 

the right hand side of (6.5) may be analyzed by 

Grammer-Yennie decomposition. Contributions from the K 

parts cancel. The contributions from the G parts are given 

by Fig.21. The 'soft' line Q shown in this figure now carry 

+ momentum m/s, but we can still regard this as soft, since 

it does not carry momentum dS. Contribution from these 

figures may be written in the form, 

-. .grn) -f, (12, k,, k+-0, K-=-d? J& -f$, <IL, b, k+=o, k 

d”’ C k$, 4, G, g) (8. 18) 

where f,is the contribution from the soft gluon and the 

fermion lines in Fig.21. In the leading log approximation, 
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we may ignore the dependence of G (1) on k + and choose the 
G(1) 

.I. term from G(l). In the region !Z-pm, we can factorize 

the R gluon from G(l) by G-K decomposition. The 

contribution from the G term is non-leading, while the 

contribution from the K term vanishes, since the integrand 

is antisymmetric under the transformation !L'+-11'. Hence the 

integral receives contribution only from the I!L-l<<m region. 

We can limit the R- integration range to IL-1 <sm. The 

contribution may be expressed as, 

Jf (4, k,, 12,) l-p’ c/-&t, 4, (s, gJ.1 d2-b 

where, 

=& 5 9” c ft (a+, a-z o, k, k,, k-= cm) 

-f,<~2+, Q-=0, L, k,., k-=-ed3 (47 20) 

fl may be read out from Fig.21. Substituting this in 

(8.20) and carrying out the R+ integral we get, 

The contribution from the second tern on the right hand 
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side of (6.5) is given by integrals of the graphs shown in 

Fig.g(b), (c) and (d), over k-. Of these, Fig.9(d) does not 

contribute if we are interested in the leading logarithmic 

contribution to T(l) . Contribution to Fig.g(c) vanishes in 

the region k+=O, lk-1 <cm, due to the same reason as the 

vanishing of the corresponding contribution to accO)/aenpi. 
Thus we are left with the contribution from Fig.g(b). This 

may be analyzed in the same way as the corresponding 

contribution to accO)/aanpz in the leading log 

approximation. The result is, 

o(-’ CT- k,l P:” C/L, 9, %‘d Q?. 22) 

Hence ri') satisfies the equation, 

a?!‘f/=-nb,+ = a”&- k,) I-“” +$Q<e, k,, ‘-&I I-“‘( k,t, C&J d% 

5 j-y(e, k,, Q,.) Pi’ (k,(r,G, t,) a’& (8-23) 

where, 

K’i, k,,&.) = D(“‘(~-k,) @&JL) +a(?, k,,L) 

(8.24) 
The solution to (8.23) is, 

f’:‘(b:,e,L,k) =SI~(k,-~,)+~(~,k,,el~(~~/mI 

+ nz2 +! bJ-% - - - Jk-t~v (4, k,,h) J,((r, k,+ kr,)..- 
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- -- $b(?,k,.,A,& 1 a,“cb:h)l EgP,E,,Qd cl?& 
(a. 25) 

where BL1) is an unknown constant to be determined from the 

boundary conditions. The term inside the square bracket is 

the generalized exponential defined in Sec.VII. Now, at the 

tree level, 

cc; z. k-e c-q Bo-1 (g.26) 
Hence, 

cm 
C’l P, = -em Gy d.k- = (-i-n) C- ia +!&I +OQ3) 1 (8.271 

Comparing (8.27) with (8.25), we get, 

13y’cy, C,.,QA) = tin\ GiJ 46) +OQ-‘) (8d 

We may similarly find the expression for O(l). It is I 

given by, 

$ I” ( ii-, P, cb, kr) 

=@&,I (in) ( &JL [: dC&- k&l+ ~(@,,k,) R, K 
7% 

+i?- J. stik,, .-- 
~2 nt ~k(~-~~~ %, 4, kwl ?(p, k,,, kzL) -- _ 

- -- T<f, k,-,r, k,) Qn”&%n) ] c ) 8.29 
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‘5; being the analog of $ for Q(l). In fact it can be shown 

that $ is obtained from J, by using the relation, 

p CT, G, h.) = Y” ‘+‘+ C 5, k,, CL) Y” (8.34 

Eqs.(8.17), together with Eqs.(f3.25) and (8.29) gives 

us the total contribution to the negative signature channel. 

However, we may fUKtheK simplify the result by claiming that 

the final KeSUlt should be Lorentz invariant. Then the 

result may be expressed as a power series in 9.ns. Since, 

(8.31) 

the coefficient of Iln"s must be equal to the coefficient of 

'nn(pZ'm) in (8.17). Thus we get, 

=-zl-r2$& (azn, (3 ‘) (zrrp &z (&$x2 

I I+2 n-, + %n-$z 1 mu -- - d%~ Y C P, kA,Q ,a ) y (?,Qu, 4~) 

_-e-w y C?, G-w &.)I #& (8 -32) 

IX. CONCLUSION 

In this paper we have calculated, without using any 
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transverse momentum cut-off, the contribution to the fermion 

exchange reactions in the Regge limit in the leading and the 

next to the leading log approximation. We have also 

developed a systematic way to calculate the higher order 

COKKeCtions. We have separated the contribution to the 

positive and the negative signature channels. up to the 

next to the leading log approximation, the contribution to 

the positive signature channel is given by a single Regge 

pole term. The contribution is given in Eq.(8.15), with 
.(2) (q) +a(4) (q) defined in (8.12). By)' and By) are two 

constants, independent of s. The quantities Su(k), which 

appear in the definition of CL, are given in Eq.(4.18). 

The total contribution to the negative signature 

channel is given in Eq.(8.32), with Jl(q,k,,(l,) defined in 

Eqs.(8.24) and (8.21). 

If we take only the .(2) (q-k,) 6 (k,-R,) term from $, 

(8.32) reduces to, 

which COKKespOnds to a contribution from the Keggeized 
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fermion gluon exchange diagram. The extra terms, which 

appear due to the presence of the extra term in the 

expression for $, presumably corresponds to extra 

singularities in the complex angular momentum plane. 

our result for aC2) (q) agrees with the standard 

expression that exists in the literature l-5 , after the + and 

the - momenta integrals are done in (8.12). The imaginary 

part of the contribution to the positive signature amplitude 

agrees with the results by McCoy and Wu4. We have also 

expanded our result for A- up to four loop order and found 

that they agree with the results of explicit calculation of 

McCoy and Wu. We, however, also find the real part of the 

first non-leading log contribution, which gives the O(g4) 

correction to the exponent cr(q) and show that the positive 

signature amplitude reggeizes in the next to the leading log 

approximation. This is a completely new result. 

We have also investigated the contribution to the 

amplitude beyond the next to the leading logarithmic 

approximation. It turns out that in the vth non-leading log 

approximation (v=O+leading log), the amplitude may be 

expressed as, 

go go fd%.--- d.‘k,, h’k;, *--d--%~ $:“‘)<~;,&~~,k:, ,... co,) 

S hCh~h”(P,kll,.-.k,l, k:,,--kh) P~‘(~~,p,~,,k \&,.m. k,,) 
(94 
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Z( n,n’) is a calculable function of its arguments and has a 

well-defined perturbation expansion. The functions r!"' are 

given by, 

Per\’ Q=:, ‘I, G, k,,, --- k,,) 1. 

=b$o {+“‘(&e, k,,,.-.k,,,k:,,--.k~l~) ~~‘~4,~~,k:,;..k:.,) 

6? k:, - - - - dh;,, 
b.3) 

where, 

E(n’n’)<b?‘lP, k,,;.-k,z,k:,,--- k:,) 

= &v,~i?J. d (ki,- k;,) i- F) +“(& k,,,-- k,, k:,,-..k;d a,$ 

+Ac +!+j&! h< t$ - -;,, ( f$a’ kt; A2 k:; . . . d2 kt;,j 
I * 

fJ(“n” ( 0, k,, , - -. knL, ky; ,... k”:, ) Ftcn”nz&$;: ;.. kc&, k:,A:;A) 

. -- - RCnh.,,a*l 
( t, kt;; . . . kc;:‘, , k’,,, .-- &,J 

(9.4 
The functions I ,(n') are undetermined constants of 

integration, independent of pi. We have well-defined 

prescriptions for calculating the functions Atnrn') in 
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perturbation theory. The pi independent functions BL (n') ,s 

may be found, up to the required accuracy, by doing a 

complete explicit calculation of rp" s up to the (v-n) loop 

order and then comparing the result with the expression 

(9.3). 

Similarly, @y) is given by, 

$:“’ ( kc, 4, gb, ku;-- k*,) 

=-g 5 Ifir’ ( 7, -fb, k;, ,. . - &,,*A) E cn’th’ ( b:, e, k:,; . k:, ,ku; . k,, ) 

d.? ‘tz;, . - - . 8 k;eL 

where, 
(9 -5) 

E CI\,dJ (x, p, k:,,. - . I&,., k,,, - .- kA) 

= ye I+“)+(x, 2, k,r;- k,,, k,‘,,.-- k;tL ) y” 
(9-6) 

We have also applied the method, used in the text, to 

calculate the fermion -fermion scattering. The results are 

given in appendix C. In the leading log approximation, the 

contribution to the odd C-parity amplitude, in which we have 

an odd number of gluon exchange in the t channel, is given 

by Eq. (C.g), while the contribution to the even C-parity 

amplitude , in which we have an even number of gluon 
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exchange in the t channel, is given in Eq.(C.lO). The 

functions u and 5, which appear in these equations, are 

defined with the help of Eqs.(C.6), (C.7), (C.8) and Fig.29. 
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APPENDIX A 

In this appendix we shall show how the total amplitude 

may be described as a sum of terms of the form (3.11). We 

shall follow an analysis by Collins and Soper 15 . For a given 

Feynman graph G, we define a tulip to be a subdiagram T, 

such that the full diagram may be topologically decomposed 

into the form shown in Fig.3(a), with the subdiagram T as 

its central soft exchange part. T1, T2, T3 are the possible 

tulips in Fig.22. We also define a garden to be a nested 

set of tulips {Tl,...Tn} such that TjCT. ,+1 for j=l,...n-1. 
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Thus, in Fig.22, the sets IT11 I iT21, iT3jr iTlr T3jr IT2, 

T3} are possible examples of gardens. For any tulip T, we 

define an operation S(T), which we call soft approximation, 

which multiplies each of the propagators of the gluons, 

coming out of T, by M;/(M:+E2) , where k is the momentum 

carried by the gluon and MC is some large but fixed mass 

parameter (Mc>>m). The operation S(T) also picks up only the 

- polarizations for the gluons attached to the upper jet, 

and + polarizations for the gluons attached to the lower 

jet. The operation of S(T) on a Feynman graph constrains 

the lines coming out of T (and hence also the lines within 

T) to be soft (t$l$Mc). These soft lines attach to the upper 

and the lower blob through y' and y- vertices respectively. 

Hence the contribution to S(T)G may be expressed in the form 

(3.11). 

Following Ref.15, we shall express the total 

contribution to a given Feynman graph G as, 

G: ) (++ SCT,) - - _ St-I-i,) G+ C& 
iheadiVaCent (p.1, 

where the symbol S(T1)...S(Tn)G has the following meaning. 

First make soft approximation for the lines coming out of 

the largest tulip Tn, belonging to the garden. Then, for 

T n-l' if some of the lines coming out of Tnsl are identical 

to those coming out of Tn, we leave them untouched, but for 
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the rest of the lines, we again make the soft approximation. 

And so on. Two gardens are said to be equivalent if the 

soft approximation is identical for both of them, this 

happens if they have identical sets of boundaries. GR is 

defined by Eq. (A.l). Due to the presence of the soft 

subtraction terms, the contribution to GR from an RD of the 

form Fig.3(a) come from the regions of integration where 

lzr>Mc for all the gluons coming out of the blob S. As a 

result, the contribution to GR is suppressed by a power of 

m/MC. Since MC is an arbitrary parameter, and the final 

result must be independent of MC, we can consistently ignore 

all terms, carrying a power of m/MC, in our calculation. 

Hence the contribution from GR may be ignored. 

The first term on the right hand side of (A.l) may be 

expressed as, 

r f I5 t-1 ‘n+’ SC-r, j - - - - . SCT,.,) ] s CT) I& ---I- \‘I i ~h-nee.~‘ry~\leht 

yddeens Ljiti\ 
Th = -f- (AJ 1 

S(T)G may be expressed in the form (3.11). The factor 

IC(-l)"+ls(~~)...s(~~) 1 makes internal subtractions inside 

the tulip T, i.e. they modify the function S in (3.11), but 

they do not affect the form of (3.11). Hence we can see 

that the total contribution to the amplitude may be 

expressed as a sum of terms of the form (3.11). 
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APPENDIX B: 

CINflLYSIS OF k: Xt’/ak,t 

In this appendix we shall show that the contribution to 

aG(n),/akt 1 may be expressed in the form given in (4.20). To 

do this we use somewhat similar techniques as used in 

appendix A. For a given graph G contributing to G("), let 

Tl be the vertex at which the soft fermion line carrying 

momentum q-Cki leaves G (n) . If the gluon line k i is attached 

to a fermion loop, then let T2 be the fermion loop to which 

the gluon is attached (See Fig.23). We define the soft 

approximation z(Tl)G by multiplying the Feynman integrand by 

M;/ (M;+lf) , where R1 is the momentum of the gluon line 

attached to Tl, and MC is a fixed mass, large compared to m. 

Similarly 9(T2)G is defined by multiplying the Feynman 

integrand byj~,{M~/CM~+?$'~)}, 'lip . ..RI. being the momenta of 

the gluon lines coming out of T2. S(T1)S(T2)G is defined by 

multiplying the integrand by a factor of 

~{M~/(M~+~'~)}.M~/(M~+~~). We express the contribution from 
<,=a 

the graph G as, 

SC-r,) G + GK (B*l) 

or, 

SCT,) G + SC-&)G- SCT,~ SOi)G+Gh WI 

depending on whether ki is attached to the open fermion line 
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or a fermion loop. Gaand G;i in Eqs.(B.l) and (B.2) have 

their integrands multiplied by, 

I- M,L/CM:+b,‘) Q3.3 1 

and, 

I- M,2 
b 

*+-b,z - 
$+M”2TTfMZ 5 

M:+-b, 2 d-1 M,zS -2 f 

respectively. (B.3) receives contribution from the region 

at2$M$ whereas (B.4) receives contribution from the region 

?if$Mg and at least one of the %.'2>Mc2. 
3 

But we have seen from the analysis of Sec.IV that 

kfaG/akf receives contribution from the region where either 

a, or all the momenta II! are soft. 
I Hence the contributions 

to kfaG,/akf and kfaG;/,/aki+ are suppressed by a power of 
tG cc‘") 

(m/MC) and may be ignored. The contribution^from the other 

terms, containing soft approximation, may be written as 

sum G$ terms of tit%? form, 

83 Ck,,---k,, k:,--- kit ) G”“’ Ch,f, E,, k:,--- k:lj 

&+k; __ e_. a’k:, 

where the function f denotes the contribution from the soft 

lines. f ma* contain factors of 6(X jsAkj-' jeBkjl)I A and B 
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being two subsets of momenta kl,...kn and kir...kA, 

respectively. For example, the contribution from the term 

S(Tl)G in Fig.23 has the form, 

5 f, (k,,e,) &M-k,) G”)( bd,c&,k:) 

A9 Q, h9 k: 
@6) 

whereas the contribution from the term S(T2)G in Fig.23 has 

a form, 

$ -E, Ck,, t:, .f; ,a; ) 6Ck,-l&&-t;) 

GC3) (/&?,&, fz:, 12;, f&Y 64c CM; &IzJ 
b.7) 

fl and f2 in (8.6) and (B-7) are the contributions from these 

lines in S (Tl) G and S(T2)G respectively, which are 

constrained to carry momenta $Mc, due to the presence of the 

soft approximation factors. If we now take the general 

expression (B.5) and differentiate with respect to kl, we 

get, 
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s af (ha,--. k,,k:;- 
5%: 

6) @‘(~ti,p,fr,k,‘,.-. k’k) 

&k: -- - - &‘ti, 0343) 

If f does not contain a 6 function involving ki, the 

above expression has the form given in (4.20). If, however, 

f has a 6( k.- 3 EA I 
.jsBkj) factor, where the set A contains the 

momentum k. i, then besides getting terms of the form (4.20), 

we also get a G'(Ik.-Ck!) factor in the 
jcfl 7 &8 I 

integral. One of 

the k! 1 integrals may then be integrated by parts, and the 

integral may be expressed integrals of 

act"') (P,,q,g,,ki,...k~)/ak~'. The ,:k 's which appear in 

(B.81, however, have less number of loops than the original 

Gcn). We may analyze the contribution to aG ("')/ak!+ in the 1 

same way as before. We may iterate the process, at each 

stage we encounter integrals of the form (4.20) and 

integrals of aG("')/ak;+, with less number of loops than the 

previous stage. Proceeding this way, we shall finally reach 

the tree level contribution to G("), for which aG(")/aki+ 

vanishes. Hence the total contribution to aG(")/akf may be 

expressed completely in terms of integrals of the form 

(4.20). 



85 

APPENDIX C: GLUON EXCHANGE PROCESSES 

In this appendix, we shall show how we can use the 

formalism, developed in this paper, to study the gluon 

exchange processes in the Regge limit; for example, the near 

forward scattering of two fermions. If we work in the 

Coulomb gauge, we may conclude from power counting that the 

contribution to the amplitude comes from the regions of 

integration shown in Fig.24. We define the functions 

G(") (Parqrkl, . ..k.,) and Ftn) (Pb,'&kl, . ..kn) as the Green's 

functions shown in Fig.25. We define, 

if-( b‘,,v, k,,, -.- kru) 

= 
fAk; -..f&,; ~(h’(k,4,k;,...k:,,kf=~,-- k;=o,k+,--kn~) 

-PI -N (c. 1) 
and the corresponding function m(") as integrals of pin). 

Following the procedure of Sec.VI, we may decompose the 

amplitude Ffn) as, 

pi:“’ + s- +I + pi 
.L 

where T("i, Fen) and T(") are products of transverse y 

matrices only. Only the (y+/2)r("! term contribute in the 

leading power in s. Following the procedure of Sec.V, we 

may now express the full amplitude as, 
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( 5 I”” < kt., P, k:,,-- k:+, ) Schah” ( f, k,, . . , k,, , k’u ,-.. &,* ) 

F <nl 
+ ( fa&k,+,--- k,,) bzk’w.-#kk)n~~ &k,r.-dzkknr 

aT~)/a!Z.np~ is given by an equation of the form (6.5). 

The second term in (6.5), which is given by Fig.g(b), (c) 

and Cd), has no counterpart in the expression for 

a~(")/a!Lnp~. This is because the only external off-shell 

lines in Etn) are the external soft gluons. In Abelian 

gauge theory, the sum of all insertions of the S gluon with 

propagator (Suk"+SVkU)/(k2-u2+is), to such a graph, are the 

graphs analogous to Fig.g(a), which are cancelled by the 

change in the wave-function renormalization constants for 

the external fermions. Thus we are left with the first term 

on the right hand side of (6.5). This may be analyzed by 

Grammer-Yennie decomposition. The K term vanishes when we 

sum over all insertions. The G part of the ith gluon, when 

attached to the fermion line, makes that part soft. Power 

counting indicates that in the case of fermion-fermion 

scattering, the open fermion lines must always carry 

collinear momenta, thus soft fermion lines can come only 

from the fermion loops. The contribution to ar("~/aLnp~ 

then comes from diagrams of the form shown in Fig.26. This 

shows that arcO)/aLnp~=O, i.e. 1(O) d oes not have any log of 
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Pi. (We remind the reader that r(O) is the two fermion one 

gluon vertex). 

Before proceeding further, we shall make the following 

classification of diagrams. The sum of all the diagrams, in 

which the two fermion lines exchange an odd number of gluons 

(carrying charge parity -1) in the t channel, will be 

denoted by A-, whereas the sum of diagrams where the two 

fermions exchange a charge parity of +l (even number of 

gluons) will be denoted by A+. 

In the case of the fermion exchange amplitude, the one 

particle exchange amplitude gave the leading logarithmic 

contribution. Here, however, the one gluon exchange 

amplitude does not give any log, since ar -(")/aQnp~=O. We 

thus have to turn to r (2) and gC2) in order to get the 

leading logarithmic contribution to A-. In the leading 

logarithmic approximation, we must try to get as few soft 

loops in ar'2)/aQnpz as possible. As a result, typical 

contributions to arC2)/aQnpz come from graphs of the form 

shown in Fig.27. Similarly the leading logarithmic 

contribution to A+ comes from 7 (1' and m(l). af(')/aQnpi may 

be analyzed in an exactly similar way and is given by the 

contribution from the graphs of the form shown in Fig.28 in 

the leading logarithmic approximation. 
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The analysis of the contributions from Figs.27 and 28 

may be carried out exactly in the same way as for the 

fermion exchange amplitude. The results are, 

3 -:’ 02, 0, ku, kd /a JL b: 

= SG d+ a’%, CY- ( 0, k,,, b, k:~, b:,) Ff’&:, e, k:,, I&) 

(CA) 

i)““‘k”p’k’A) = id? k:, y (‘1, k,,,k:,)~‘(~&~, k;,) -+,+ 

where, (cd 

mI?,ka, k,,, k:,) k:,.) 

=&jll I(- u@l: + /.Lv (-G;:+pz)j] 

!‘I ~~+f’W-I,k!+, k,A, kzi, 6~ , k:L)+r(M,tif k,l, ~-k,A-kw,k;r, k;) 

+ ftr CM, I;+, k,, P-kck,,, k:l, kL)j (c-d 

3 CT, ktu h:) 
=I (-1) 
@v & ::+=I I(f-iw6=f 

M i +i+ ( dz k’,, T OI#+, k,r,?-k,r, k,‘,,b&] 

c c.7 

where M IS ah aybitrary mcslr~rn anh, 



89 

= fA( k;C= k;=0, k;= -h;..rt,h,,,k,,~-.~-=o,~~=-~~=x,k,;,k:,) 

+A(k$ k’:=o,k,-= -k;=-M,k,l,kZI,k~-=~=o,k:C=-k~=X,klr) ’ kl,l’5 

S? ( k:, + k:, - h,, - k, ) 

X being the truncated four photon Green's function shown in 

Fig.29. 5 and u may easily be seen to be independent of M, 

by resealing the + and the - momenta by M and M-l 

respectively. 

Eqs.tC.4) and (C-5) may be solved exactly in the way we 

solved Eq.(7.9). Similar solutions may be obtained for 8"' 

and m'"l. Putting together all the results, we find the 

following expressions for the contribution to the odd and 

the even charge parity amplitudes respectively, 

=* & @lT)y a” c Cl=%) y+ u (k, %I (bb) v- Lq,) 

5 )-’ (-GA t~.,-‘f~~-~,*-~2~l’+EhZS-’ 
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-0 -I- g 4, Lh&z f 2 (a’tz tit:: ) CC?, ku, k, ,&‘:,.‘I;) 

a- (‘1, .e’:: , QE ( a:, QEl - - --a(& q) 4;y, 42, 12’;: 13‘1 

( ) c. 9 

0 even 

= - lT2$ z(k) Y+ u @"I =(kb) y- u (kb ) 

$ fj$ [(St + p )-‘{($Xr)2+ rn’j-’ 
2m9 

ft+& 
&ysz, J az-4.';' ----cm:" 

s (7, k,, 4:) 3 (4, &f, a;') ----T ('i, ~y,'~';rj] 

(c. to) 

Corrections to Eqs.fC.9) and (C.10) due to the 

non-leading logs may be evaluated exactly in the same way as 

for the fermion exchange amplitude. Hence we shall not 

discuss them here. Also, if we want to be consistent, we 

should add with the expression (C.9) for A- the one gluon 

exchange amplitude, which does not have any log of s, but 

which still contributes in the leading power in s. It has 

the form, 
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f(y) =-I y+ U+,J C’(k,) ‘v- u(bC) (-0 

f(q) is a function of q, but is independent of s. 
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FIGURE CAPTIONS 

Eq. 1: Process considered 

F&9.2: The factorized diagrams 

9.3: Two types of reduced diagrams which may contribute to 

the amplitude. Here the blob marked + contains lines moving 

parallel to pa, the blob marked - contains lines moving 

parallel to pb, and the lines inside blob S, as well the 

gluons coming out of it carry soft momenta. Also in 

Fig. (a) , the exchange fermion line BB' carries soft momenta. 

FPq.4: Illustration of the pinching of soft loop momenta by 

the jet lines. kFis are finite momentum lines, kS;s are 

soft lines. aF is a finite loop momentum, Rs is a soft loop 

momentum. 

F&.5: The Green's functions G (n) and Fen'). 

Fiq.6: Two typical RD's contributing to the amplitude. The 

broken lines are soft lines. 

Fiq.7: Sum over all insertions of the K part of the n-th 

gluon. 

Fiq.8: Regions of integration contributing to the G part of 

the n-th gluon. All the lines inside the blob S , as well 

as the gluon lines coming out of it are soft. 

lJJg.9: Sum over all insertions of the S gluon. 
ljx lt.. .j,l 

implies sum over all choices of the set {j 1' . ..j.} out of 

1 ,...n. The propagators marked S are proportional to 

Su(k)/(k2-u2+is) I u being the Lorentz index carried by the 

uncircled end, The circled vertex just gives a factor of g. 
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F&q. 10: Flow of an external soft momentum inside a diagram. 

Fiq.11: -- Typical contributions to kIaG(") /akf. All the lines 

outside the blob, shown explicitly in these figures, are 

constrained to be soft. 

Fig.12: Contribution to G("!. The lines inside the blob S, 

as well as all the gluon lines coming out of the blob S, 

carry soft momenta. 

Fiq.13: Regions of integration contributing to Fig.l2(b) 

when we choose the SLy+(l/2)S+y- term from the S gluon. 

All the internal lines of the blob marked S, as well the 

lines coming out of it, carry soft momenta. 

Fiq.14: A potentially dangerous region of integration 

contributing to (7-7). . !L,, ---Rs are soft momenta. 

Fi9.15: Diagrams contributimg to the amplitude in the 

leading and the next to the leading log approximation. 

Fig.16: Analog of G(n) for the backward Compton scattering 

amplitude. 

riq.17: Total contribution to 3GL") /aLnpz in the next to the 

leading log approximation. 

Fiq.18: Contribution to (8.6) from the G(l! part and the k+ 

dependent part of Gy) in the next to the leading log 

approximation. Here k and 9+ are soft momenta. 

Fi9.19: Sum of all insertions of the K part of the P. gluon 

in Fig.18. 

Ei9.20: Total extra contribution to aGiO)/aanp,+ from 

Fig.g(b) in the next to the leading log approximation. 
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riq.21: Contribution from the first term on the right hand 

side of (6.5) to ar!l)/aQnpz. 

Fiq.22: Examples of tulips and gardens. 

Flq.23: Subdiagrams Tl and T2 in a typical graph 

contributing to G("). 

Fiq.24: Regions of integration contributing to the 

fermion-fermion scattering amplitude. 

FiG.25: Green's functions G(") and F(n). --- 

Fiq.26: Contribution to ar(“!/aQnpi. 

Fiq.27: A typical contribution to ar 

Fiq.28: -- A typical contribution to ar 

riq.29: The Green's function X. 
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Page 62, line 6 

"But S,(q) does not change under such a boost, which shows that the 

contribution fran Fig.g(c) vanishes." 

should read as, 

"Using this fact we can show that the contribution to Fig.g(c) 

vanishes at the one loop Revel.” 

Page 66 

Eq.(8.12) should read as, 

Pee, +d4’(y) 

= G sF cq)-’ r:azs <$$ 1 c-i, - S- tk) + kZ!;;+r:t &ck) 
k<g-422 

( kz$-- kbk-] f n(p) (-ij k2-~2-L2~it- j i &z.C?--k I-Ii 1 I_.... 
6-i’ 

+ 39 (-~j<~-mj j- 

- i CSick). Y -1.2 SC(kj ‘U-3 

dz C{-&kj )$ 
W)4 ~&-p~-$-i L ) 4. G ‘U” )(L, 

(-il s’(k) ‘r’+ 3 ’ i 3, c$, _I (-iI NY%?--) 
@I?) -Y-m k _ b2+ it- KL-bz+iG 

c ) 
8-12 



Fig.17 should be replaced by, 


