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ABSTRACT 

We examine the general properties of a monopole anti-monopole 

boundstate. Lifetimes grow as the cube of the initial diameter and 

range, for an SU(5) GUT monopole with mass:2xlO 16 GEV, from about 43 

days for d:l fm. to 10" years for d:.l angstrom. We find about lo7 

hadrons are produced by fraeplentation of gluons that are radiated by 

classical Larmor radiation. In the final burst when the extended cores 

overlap about 25 fundamental degrees of freedom of the full unified 

gauge group are produced. We find that such objects would have been 

produced in the early Universe at about the time of Helium synthesis and 

their decay products and Larmor radiation may be observable. 
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I. Introduction 

If the Universe is widely populated by magnetic monopoles it 

becomes conceiveable that a monopole-antimonopole boundstate, i.e. 

monopolonium, can be formed in the laboratory or may have been formed 

naturally in the Universe at large. Such objects, though unstable, have 

an interesting physical evolution in time, dependent upon their masses, 

their initial classical radii and their core structure. For GUT 

monopoles with masses of the order of 1016 GEV, the lifetimes of 

monopolonium systems range from days, for an initial diameter of about a 

fermi, up to many times the Universe' lifetime with diameter of about a 

tenth of an angstrom or more. While behaving as a classical system as 

long as r>rcore , they will radiate characteristic dipole radiation up 

16 to high energies, Mmonopole~10 . "ihus a monopolonium system provides a 

window on the physics of elementary processes up to the extremely high 

energy scale characterized by it's mass and could, in principle, yield 

information about all of the physics between current accelerator 

energies and the grand unification scale! A single event would produce, 

for example, about lo5 Z-bosons by classical dipole radiation alone. 

In the final annihilation stages the extended cores of the monopole 

and anti-monopole overlap and one expects to produce the elementary 

gauge and Higg's bosons of the full unifying gauge group. his "last 

gasp" of the monopolonium system is expected to be cataclysmic, 

releasing 2x10 
16 Gev (about a kilowatt-hour) in less than 10 -38 sec. we 

expect here a spectacular explosion of hadrons with a total hadron 

multiplicity from the entire process of order 107. In the present paper 

we will discuss the expected yields and spectra of hadrons, photons, 
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Z-,X-,Y-,and Higgs-bosons. mu.9, while not quite a "table-top" 

experiment, the study of monopolonium decay processes, should nature 

avail, would afford the best experimental view of grand unification that 

one can presently imagine. 

Moreover, in the early Universe we will argue that a sizeable and 

potentially detectable abundance of ultra long-lived monopolonium may 

have been formed. Remarkably, we find that this process would have 

occured during the relatively late period of Helium synthesis and 

depends only upon the assumption of the existence of an acceptable 

abundance of ordinary heavy monopoles at that time. We do not address 

the question of how the Universe may have arrived at that epoch with a 

monopole abundance well below the closure density. Rather, we adopt the 

view that we know the Universe did indeed pass through such a phase, and 

if the monopole abundance is near the closure density today (if it is 

not then the detection of monopoles in experiments will be virtually 

impossible), then the existence of a substantial relic abundance of 

monopolonium follows as a logical consequence. For GUT monopoles we 

find that in a typical cosmologically averaged cubic light year 

containing on average 10 32 monopoles, there will be today about 10'5 

monopolonia and roughly 400 decays per year. In galaxies and clusters 

these abundances and rate densities may be significantly larger. mere 

may also exist mechanisms to significantly enhance the formation and we 

view the above results as conservative lower limits. me objects of 

larger diameter are spinning down producing radio frequency radiation 

from which we may place lower bounds on the masses of GUT monopoles. 

me cataclysmic decay events may produce visible cosmic ray and high 

energy gamma ray events in large scale earth-bound or orbiting 
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detectors. Indeed, monopolonium may be easier to find than monopoles 

themselves. In this paper we will only discuss the formation of 

monopolonium in some detail and will defer a systematic survey of 

observational signatures and constraints to a forthcoming work (1) . 

Much of our discussion will be sufficiently general that it applies 

to any magnetic monopole, regardless of detailed structure, dependent 

only upon masses, magnetic charges and cosmological density of 

monopoles. Also, much of this discussion is presumed valid even for 

monopoles that are dressed by a few nucleons. The further corrections 

for monopoles dressed by heavy nuclei are no doubt estimable, but 

insofar as relic monopolonium is concerned, we do not expect any such 

phenomenon due to the rarity of heavy nuclei in the helium synthesis 

phase of the early Universe. The remaining discussion will specialize 

to the case of an N(5) GUT monopole, but may be readily taken over to 

any other grand unified theory gauge group (2) 
. We shall neglect such 

complications as the Rubakov-Callan effect (3) , which could conceivebly 

enhance the monopolonium formation rates but which we otherwise do not 

expect will significantly change things, eg. as in hadroproduction, 

given the extremely short time scales that will be involved. 
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II. Profile of Monopolonium 

Assume for the sake of discussion that we have an SU(5) monopole 

separated a distance r from an anti-monopole. For SU(5) we assume: 

fix = 5x IO” GEV 

&GUT = l/40 et M, 

MPl e ,J’ Mx = 2 x 10“ Ge\l 

me effective Rydberg for the monopolonium system at large 

separation (r>>10-13 cm) is: 

R = ?$,/2%= = M,~GeV)xZ43 

Fl : M,/2. = ceA”ceA *es (2) 

where gm is the magnetic charge and N the "monopole number": 

5 = g ‘, PQ-: F$, j a.,,z 3.ZW~ges~ (3) 
r= 

For SU(5) monopolonium the above Rydberg is valid only at distances 

larger than a few fermi. As r becomes comparable to (hQCD) the SU(3) 

color chromomagnetic field turns on. The chromomagnetic field 

terminates at a distance scale of .2 fm<rClfm due to the confinement 

effects of QCD, believed generally to be a shielding by color-magnetic 

monopole like fluctuations in the ordinary QCD vacuum (4). 
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For r = l/s, the U(1) group of electromagnetism decomposes into 

the U(1) and diagonal generator of w(2) of the full Weinberg-Salam 

electroweak model. For all scales less than a fermi the various Operant 

coupling constants are evolving with energy by the usual logarithmic 

renormalization effects. 'lbese renormalization effects lead to a net 

evolution of the effective magnetic charge, gm (5) . 

Remarkably, however, the evolution of gm is very small over the 

full range of the desert, even thou@ these various heirarchical effects 

are setting in and the individual coupling constants are evolving 

considerably in this range. With ). a threshold parameter of O(l), the 

magnetic coupling constant is: 

E tl 1 GeJ $ = 1/4eL 

IGd c E 5 hW,o 5 = 1/4e+. + l/34: 

WI,- :.E’;AM, 1 

3 
_ = 1/44:+jP1~5; 

where E is the characteristic energy scale = l/r. 

These follow by considering the SU(5) monopole vector potential at 

the scale E =;\MX where the three coupling constants, z,, g2, and g3 of 

U(l)xSU(2)xSU(3) are all equal to gCUT (2, is the SU(5) normalized U(1) 

coupling constant). We write: 



T (3) 
-= 
5 &u-r 

where: 

Ai&3 ( 0, 0, 1 ) -1 ,4 

- 
A = J : J.i”%b\, -& -f, J-, i) 

(4 
‘x = AiG%(o, O, 0, I ,-I) 

p 
: 

J- 
i diaq50, I, -2, 0, 0) 
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mus, the resulting force between a monopole anti-monopole pair is: 

IFI = $3, $= Ipqgj\ Cl) 

Finally, we restore the Weinberg-Salam coupling constant normalization 

to obtain eq.(4): 

41 5 ~,I& = 3 jt I-- (f) 

We thus see that at very short distances, gm z l/gGUT , which is 

the correct t'Hooft-Polyakov result for an adjoint of Higgs bosons and 

which corresponds to N=2, or an effective Schwinger charge in terms of 
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the gauge group charge gGUT. But at very large distances we have the net 

evolution of the coupling constants and the confinement effects of QCD 

which shield the l/g3 terms and we have a pure electromagnetic monopole 

with gm=1/2e. Hence, the SU(5) monopole has the Dirac value for the 

magnetic charge. Numerically we see that gm2(r>>lfm) : 137/4 : 34.25, 

while gm"(r = Mx-') : 40. ‘Ibe various heirarchy effects lead to only a 

net 15% change in pm2 over the full range of the desert, and we shall 

ignore these in our analysis of monopolonium energetics. However, we 

will have to include these effects in our discussion below of gamma, 

Z-boson, and hadron production via gluon jets. 

Assume now that the monopole anti-monopole pair is in a circular 

orbit about the center of mass. We have: 

and the energy: 

E = i Fid:c’- y, 
9 

= - ; $t /c LIO) 

The system will lose energy by classical dipole radiation and the 

Larmor power formula is indeed valid for monopoles as well as electric 

charges (the polarization of the outgoing photons is of course flipped 

from electric to magnetic). Tnus: 



-9- FERMILAB-Pub-82/70-THY 

g = -2. (+) 5 (L..T;,‘/~ = - g ET(j-f-f-~i~~) 41) 

by use of es.(g). Neglecting the slight renormalization evolution 

effects of gm2, we thus have: 

-I dE/ ~~ = 5 ( I&’ - $1 

= t$ (tr - to)/' M;r') LIZ) 

or: 

T 2 r/\‘; rro3 g / ‘, a t13) 

where in the last expression we've made use of eq.(lO). 

Hence, the lifetime of the state is determined completely 

classically and grows as the cube of the system's initial diameter. In 

Table(I) we give numerical values of the lifetime vs. classical 

diameter, en=-gy, principal quantum number and v/c. Remarkably, a 

system of a GUT monopole with ~10~'~ cm lives about 43 days while with 

I-= l/IO Angstrom, about a tenth the size of a hydrogen atom, we obtain 

IO” years! This latter result raises the spectre of relic monopolonium 

produced in the very early Universe surviving up to the present and 

decaying today. We return to this question in Section IV. 
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The classical decay of the system may be viewed quantum 

mechanically as a cascade of jumps throu@ sequentially decreasing 

principal quantum numbers. lhe energy is given by the virial theorem 

and by the Bohr formula (6): 

E= -; Jra = /r = - R/n% 

WC? see in Table(I) that the principal quantum number of the 

instantaneous orbit is O(40) as v/c-->I. Simultaneously the orbital 

diameter approaches the core size of a the GUT monopole, r-->l/MX. 

me instantaneous transition energy is given by: 

E’ ‘, 

'me classical Larmor power formula for the rate of producing photons of 

energy, E', is expected to be quite accurate for n>l (we note in passing 

that even the 2P-->lS hydrogen transition rate can be computed to 30% 

accuracy classically (6) 1. me instantaneous value of n gives, of course, 

the total number of quanta radiated with energy E>E'. For all of our 

subsequent discussion, excluding the core burst, n is safely >40. 

From eq.(l5) we have the differential number of photons radiated in 

a window of energy E' to E'+dE': 
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An 
z? = 

q&t p? 

me system decays by emitting photons until E' becomes greater than the 

pion threshold, when r-->lO -18 cm and the lifetime remaining is 10 -9 

set, and n=4.2xlO 6 . Here the system is beginning to radiate both photons 

and gluons by classical dipole transitions with relative probabilities 

that may be read off from eq.(4): 

p$ : pg\“” - 1/4f2 : (1/3%;)F(E’) 117) 

Here, f(E') is an unknown hadronic threshold function which is zero for 

E'c m,, and should approach unity rapidly as El-->1 GEV. A few low 

energy hadrons are expected in this phase of the decay, but rapidly as 

E' exceeds 10 GEV, the gluon production leads to the formation of jets 

of hadrons. Since this behavior sets in when the remaining lifetime is 

only 10 -12 set while the principal quantum number is of order lo6 we do 

not expect that the jets would be resolvable as "spikes" of hadrons 

until very high energies (see Section III.), but rather as a continuous 

distribution in space which may follow the l-cos2( 0 ) spatial 

distribution of the Larmor radiated gluons reasonably well. Below we 

consider both the multiplicity and energy distribution of the hadrons in 

the resulting jets. 

Furthermore, as the system passes throu& the principal quantum 

number, n : 4~10~ , the Z" threshold opens up as the U(1) of 

electromagnetism decomposes into the U(1) and diagonal generator of the 
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SU(2) of the electroweak theory. Now the relative probabilities of 

photons, Z-bosons, and gluons become: 

px’ pLO:pjdon ‘v &+ 2g!g: 

( 
Si2& T!J c- . 

-g+ $ - 1 
+fj-i Cd 

where 3 g,, g2, g3 are9 of course,energy dependent. In Fig.(l) the 

normalized probabilities to produce the three different quanta are 

plotted vs. In(E) from 1 GEV up to the GUT scale. Here we've built in 

threshold factors of the form: 

and we've taken p=2 though the overall physics is insensitive to the 

choice of p>l. We further choose Ethr=l for gluons and MZ"=95 GEV for 

the Z-boson. Above all thresholds we note that the three normalized 

probabilities are simply expressed in terms of the running coupling 

constants: 

P ( I 
$5 I 

y = $:$ $+ 4; p 
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p,. =(2/y + $~~.~ 

p$“o, = (4/3 5) D’ 

D = ‘/c$ + ‘/$ + “/3$ 

From eq.(16) we therefore have the number of quanta of species i 

produced in an energy window E to E+dE: 

&; 2’3 d” 
-= 
AcE 

-j- y;(E) ii4” 

Quantitatively we note that the direct rate of production of gamma's 

exceeds that of Z-bosons which in turn greatly exceeds that of gluons 

until very high energies (provided we are above the Ztthreshold). We 

find by a numerical integration that from a scale of 1 GEV up to MX that 

the total number of direct photons is 4~10~ while there are 2.3~10~ 

Z-bosons and 1.3~10~ gluons produced. In Fig(2) we plot the three 

multiplicity distributions 

me framentation of gluons into high multiplicity jets of hadrons 

and secondary decay products, including photons from $ decays, 

substantialy modifies the spectrum. Most of the relatively soft photons 

will be secondaries in this range. We first estimate the total yield of 

hadrons. In QCD the multiplicity of charged hadrons prodwed in a gluon 

jet of energy E is expected to be given in leading log QCD (7): 
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N,(E) = aexl(bJm) + n,, 

where a and no are uncalculated and b is determined: 

b = 4 (Cn/boPj b,= II- ;fi+; c~=3 03) 

Fhenomenologically, the Petra data including quark jets is well fit by 

b-2.7+.28, fully consistent with the above result, with a=.027 and 

n0:2(8). However, the Petra data is equally well fit by a naive 

statistical model of jet fragmentation which predicts: 

N,(E) = d E”’ 

and phenomenologically 2=2.2. lhou& we expect the leading log QCD 

result to be correct up to the enormous energies of the gluons we are 

considering, it is nonetheless useful to see how sensitive our results 

are to the choice of fragmentation multiplicity. lhe total hadron yield 

is thus determined by convoluting the gluon distribution with the 

fragmentation multiplicity: 
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N, = 
I”1 (5 

WE\ 3 p+o. (E) i-+3 AE 0s) 
E,- IO 

We find a total yield of -lo7 hadrons for the leading log QCD 

fragmentation and 7x10* for the E (l/2) fragmentation distribution (the 

naive parton model predicts a In(E) multiplicity in a jet which is 

already inconsistent with the low energy data and we thus exclude it.) 

We may further estimate the spectrum of hadrons and secondary 

photons, though here we are on somewhat thinner ice. me exact x- 

distribution for fragmentation of a gluon jet is not known, and only a 

few properties, such as the total multiplicity and more recent 

observations of a peak at very low x have been determined. (7) Indeed, it 

is not clear how much can be determined theoretically. For our purposes 

the important features are to realize the correct multiplicity, assure 

that the first moment of the distribution be normalized properly to 

unity, and try to guess the correct large-x behavior, which we take to 

be (1~)~. We will build the multiplicity into the low-x behavior of the 

distribution. For the leading log QCD multiplicity formula we find that 

the following distribution works reasonably well: 

AN\. - = 
AX 

N&l .x, [bs) -$$- (1-b) 

where N(b) is determined by the condition that the first moment of the 

distribution is normalized to unity (energy conservation). We obtain: 
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N(b) = ; [t-?4~(+Jie%~(b,c)+ $-%(b,fi)j’ 

I(b) = $ [4(p) + 1) 

Since N(b) is determined uniquely by b, the overall normalization of the 

multiplicity, i.e. the parameter a in eq.(22), is now fixed to be: 

a = (:j w/b 

where the factor 213 comes from counting in eq.(22) only the charged 

hadrons. We find: for bz2.6 (nf:6), az.041; bz2.8, a-.026; bz3.0, 

az.019. Since a expt~.027t.01 and b expt=2.7i.28 (note that our 

definition of b in eq.(22-26) differs by a factor of& relative to that 

in ref.(8)) we see that the simple one-parameter distribution of eq.(26) 

predicts correctly the overall normalization of the multiplicity. This . 

suggests that energy conservation is a sufficient constraint with the 

low-x behavior of the distribution to determine the overall 

multiplicity. For the E(1'2) multiplicity we may use: 

Ati, -= 
AX 

fb x -x (\-xl= 

me total hadron multiplicity is taken to be: 
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which may be seen to yield the correct multiplicity growth with energy 

when the infra-red cutoff, E , is taken to be: 

f = r / Ejet r - d.Gd 

me fragmentation distributions are converted into hadron energy 

distributions and are convoluted with the gluon distribution from 

eq.(21) to obtain the hadron energy spectrum, e.g. for the leading log 

QCD distribution we obtain: 

AN\, @? - = ,N(h) 
AW) 

(I- AF;’ (39 

E 

We choose as the upper limit of this convolution the energy scale 

corresponding to the point at which the cores of the monopoles are 

overlapping. To this we will add below the contributions from the final 

burst, but this will be found to be a small correction to the total 

hadron spectrum. me hadrons we count do not include the neutrals that 

end up as photons. Here we may again appeal to the Petra data in which 

the naive expectation that about 30% of the total distribution oonverts 

quickly to photons is born out. me results are plotted in Fig.{31 

along with the gluon distribution, for both multiplicity growth 
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assumptions. me photon distribution can be taken to be 30% of the 

hadron spectrum. We see that the hadron spectrum is somewhat softer 

than the gluon distribution, as expected, though it tails up to 

E~5xlO'~. me hadrons ultimately end up as gammas, electrons, nucleons 

and neutrinos, as well as & and muons, at a distance range applicable 

to astrophysical detection. We note that at accelerator energies the 

baryon yield in jets is anomalously higher than one would have expected 

from naive hadronization ideas and constitutes about 10% of the 

spectrum. This may continue up to the enrgies under consideration here 

and, if so, we may have a novel mechanism for producing cosmic rays by 

the decays of relic monopolonium (see Section IV.). 

__ me Burst III. -- 

Reference to Table(I) shows that at a principal quantum number of 

n=40 the classical diameter of the monopolonium system has shrunk to 

r=10m2' cm : 11 Mx and the cores of the monopoles themselves are now 

overlapping. Simultaneously v/c-->1 and our classical approximations 

are invalid. At this stage we still have about 75% of the system's 

total energy to liberate. Here we expect to produce a burst of 

particles of all types contained in the bare unified gauge theory. 

A simple approximation to the physics of the burst is to assume 

that the system's total energy is uniformly distributed throughout a 

local region of diameter 2/MX. Particle multiplicities are then 

determined by a universal amplitude and by phase space alone. Similar 

statistical models are successful in hadroproduction at high energy (9). 

Such a model neglects coherent or thermalization phenomena. Should the 

system go into a "fireball" phase at this point we expect a much higher 
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yield of lower energy particles and a lower yield of the unified group 

gauge bosons, X- and Y-, etc. 

me universal amplitude, A, will be seen to have dimensions of area 

and is expected to be related to the volume of the system: 

A* &I?~ .w 2.6 RT - 5 
Y 

In what follows we closely parallel the analysis of ref.(lO). 

me partial width to produce n identical bosons is: 

r” = t; . i ! i [$& (27J4 Sk - ff;) i I 

(53) 

(34) 

We neglect here an overall common normalization which we will not need 

to know. It is expedient to consider the quantity: 

caEojlM = $ i t2$,, caEi 
\ I 

dt, ;ila-gfll.’ i F 3 

= ; p 2Q.x [\i& e+* -a’3 (3d 

where Q = (Eo,O,O,O) and use has been made of energy conservation, 

Eo=& and the energy-momentum delta function has been replaced by it's 

integral representation. In the end the parameter, a, will cancel. We 

may perform the integral in the bracket for massless particles, po=Eo: 
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-oEo 
e. f5- 

2 \A+ eiEot )A% 1 qd((c:it,,+ .%J 

-;E.t 
?,q(aM-4\? e 

= (++j*(& it)+’ P’(H-I)! b-l)! 

A~ , E;*-4 /Eu 

= 
n?- 8 (16,)m-a (H-h! (u-a! 

or: 

p” = (2 [ !$I* Id (H-,)1. (vl-l)!J-’ 
0 

C36) 

We can apply the above result to each of the degrees of freedom of 

the grand unified gauge group, including the superheavy bosons, provided 

the mean energy of each particle is large compared to it's mass. If the 

mean energy is comparable to the heavy masses, we expect the heavies to 

be suppressed by an additional factor of exp(-Mb/E) in the above 

expression. For the massless spin-one gauge bosons there is of course 

an extra statistical factor of 2 relative to spin-zero Higgs bosons. In 

general we have K "flavor-color 1' degrees of freedom each of which may 

produce n particles. "ihus, the overall multiplicity is readily computed 

as follows: 
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and 'i is rou&ly the value of n maximizing 7". From: 

we obtain: 

Eq.(39) is, we emphasize, the total number of fundamental degrees of 

freedom of equal statistical weight that are produced. lhe reader may 

note that we should in principle have calculated the width into n 

particles of flavor-color 1, m particles of flavor-color 2, etc. From 

this we would then calculate the total multiplicity over all 

flavor-colors. However, for flavor-colors having the same statistical 

weight the result would be identical to that of eq.(l(O). We assume that 

each helicity state of a vector has the same weight as a single Higgs 

scalar.We note that this result reasonably close to the multiplicity we 

would have obtained by naively extrapolating the classical Larmor result 

down from n:40. Here, however, the energy is uniformly shared by the 

outgoing particles. The average energy per particle is E : 1.2~10'~ GEV 

which makes our neglect of superheavy masses reasonable. 
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In N(5) we have 24 gauge and 24 Higgs bosons. In counting the 

number of X- and Y- bosons we must take a total of 12x2 degrees of 

freedom from the gauge bosons and 12x1 (longitudinal) degrees of freedom 

from the Higgs. We further have a total of 24x3 degrees of freedom 

altogether. Thus the fraction of X- and Y- bosons produced is 

12x(2+1)/(24x3)=1/2. mus 25/2 = 12 X- and Y-bosons are expected. 

Table(I1) presents the approximate yields and fractions in the burst 

phase of the various N(5) gauge and Higgs bosons. 

The decays of the superheavy gauge and Higgs bosons as well as the 

fragmentation of the gluons will produce very high energy hadron jets as 

well has leptons. With an average energy of 0(10'5) GEV the expected 

multiplicity par jet is = 10' from the leading log QCD and, though it 

somewhat increases the multiplicity at very high energies, it is a 

negligible correction to the hadron spectrum of Fig.(3). 

The particles produced in the burst will decay into leptons, 

quarks, and the lighter gauge and Higgs bosons. Of the 25 degrees of 

freedom initially excited, rou&ly 25x2x8/(2x24+24), or ~5 are gluons. 

ma remaining 20 objects will typically decay into two body final 

states. Ignoring gauge bosons, we expect typically 25% of these will be 

leptons and 75% quarks. lhus we get roughly 10 leptons and 30 quark 

jets in addition to the 5 original gluon jets. These jets should be 

distributed more or less isotropically in space and might be cleanest 

along the z-axis of the system where the l-cos2@) Larmor distribution 

is zero (of course pT effects and multiple scattering will give a 

nonzero background here). me typical jet opening angle at these 

energies is("): 
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k 4 x ,c? Ae$PQS (41) 

thus we have very highly collimated jets. We note that even for the 

Larmor spin-down the azimuthal distribution of hadrons will not be 

entirely uniform. lhe last revolution corresponds to all jets of energy 

E > E' where: 

*x fir 

‘t&-’ = 27r (44 

and 

thus: 

zs ~ 1.2 wJt3 
E’- I. 4 x lc? CCL/ 

E ’ 

(44) 

and the fraction of the full 21razimuthal angle occupied by the hadrons 

in jets is: 
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$ : :-, @7i’*)&E a .obg rt-1 
\ 

(4-s) 

E' 

The enormous yield of hadrons would require that to detect the 

leading decay fragments of the X-,Y- and superheavy Higgs bosons in a 

monopolonium decay event one must be able to cut on all hadrons of 

energy less than about 5~10'~ to 1014 GEV and focus upon the very low 

multiplicity particles in the 10 
14 to 10'6 decades. These objects will 

carry the information about the grand unified gauge group. For example, 

it may be possible to detect the CP-violation in the decays of 

superheavy Higgs (or gauge) bosons by counting a net baryon excess in 

the leading particles (expected optimistically at a 10s3 level). mu3 

one could test in principle the mechanisms by which the Universe 

acquired a net baryon number with q 1000 monopolonium decay events. 

Ihis would be extremely difficult at best. 

IV. Relic Monopolonium -- 

The crucial observation of the present section is that, as stated 

above, objects of an initial size of order a tenth of an angstrom or 

more, have lifetimes equal to or exceeding that of the Universe. mis 

suggests the possibility that such monopolonia were formed in the early 

Universe and may have survived up to the present. Some fraction of 

these will be decaying presently and the high multiplicity of final 

fragments may be observable. Alternatively, the larger objects are 

presently spinning down and should be producing a diffuse radio 

background. From this we can place joint limits on the masses and 
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closure fractions of arbitrary monopoles as this part of the 

annihilation is completely insensitive to the GUT assumption. We will 

concentrate presently on the formation of relic monopolonium and leave 

many questions of related interest to future discussions (I) . 

Our approach will be to give first a very general estimate of the 

expected abundance of relic monopolonia from statistical mechanics by 

computing the equilibrium fraction of monopolonia at a fixed temperature 

in the solution of monopoles and antimonopoles via a 

classical-differential version of the Saha equation. mis will 

immediately translate into the decay rate in a typical comoving volume. 

We will not see in this estimate the specific physical formation 

mechanisms, and we shall follow with an estimate based upon a definite 

process. Here we will consider the same mechanism by which various 

authors have attempted to rid cosmology of an over-abundance of 

primordial GUT monopoles. We will look at collisions between "cool" 

monopoles and antimonopoles that are hard enou& to capture into loosely 

bound states by the emission of classical Larmor radiation. though the 

impact of such events upon the background density of free monopoles is 

insignificant, nonetheless a substantial abundance of monopolonium is 

generated. This specific process will yield a comparable supply to that 

suggested by our more general statistical argument. 

We see that the binding energy of monopolonia with sizes between 

l/IO to 10 Angstrom ranges from q 340 KEV to 3.4 KEV. 'ihus, this is the 

relevant temperature scale for the formation and corresponds to the 

Universe age of from 10 to 10 4 seconds. We believe we have a reliable 

understanding of Cosmology in this epoch since the primordial Helium 

abundance can be reliably calculated and agrees with observation. It is 
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known that for our GUT monopoles, the ratio of the monopole density to 

photon density must be less than lo-" during this phase(12), and is 

probably at least as small as 10 
-24 , since that is the present allowed 

fraction given the closure density today and there is no known mechanism 

for reliably reducing monopole abundances since that time. Our point of 

view is to assume that they must have been in an acceptable abundance 

during this epoch and to proceed to obtain essentially a lower limit on 

the resulting monopolonium abundance. 

First we shall assume a uniform distribution of monopoles and 

antimonopoles with a common density r M. At a temperature T<M we will 

have a Maxwell-Boltsmann distribution: 

L (&I” exp (-g) .A A? 

assuming thermal equilibrium. This does not require necessarily a 

thermal equilibrium with radiation, since it can arise by the general 

red-shifting down from the primodial monopole production epoch. Indeed, 

a collision between a monopole and a photon of energy T exchanges only 

the infinitesimal energy T2/M and it requires many collisions, = M/T, 

for a thermalization to take place for small T. However, collisions 

between monopoles themselves lead to efficient energy exchanges and the 

thermal distribution should be maintained by these, treating the 

interaction as an instantaneous Coulomb potential. 

Consider a monopole and antimonopole pair, each described by the 

distribution of eq.(45). lhe equilibrium distribution of pairs that are 

bound with binding energy in the range Eb to Eb+dEb is given by: 
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-; Mv: - &MY,’ + +h - r,l 

T 

* b(E b - ;iii(“,-f*y:, - y&d) k c,ri 147) 

It is convenient to go over to center of mass positions and velocities, 

v=(vl+v2)/2, u=(v,-v2), R=(r,+r2)/2, r=(r,-r2): 

$VcfRd~d’: exf (-‘&&&$+ &) 

. $,(-\E&f%+ $1 hEb cmrc 

: 2M ‘5 
( )I 2rrT d3v a7 es{ (-I mv: 4) && 

where the result has been factorized into a Maxwell-Boltzmann 

distribution in the boundstate with mass 2M times the density fraction 

of the boundstates in the background monopole anti-monopole gas: 

& d’r g- \fJ - y+ +, Q 
-($Y 2)) 

r, c,- hEb (47) 

Performing the d3u integration gives: 

ck,g = + - ~k.lj:itJhcarg b:AE, [so) 
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'fnus, performing the y integral gives: 

dq& = 2 ( g, [+J-& hfb”ym (4 

lhis is simply a classical version of the Saha equation, which may be 

viewed as formation by multibody monopole collisions in thermal 

equilibrium. In a comoving volume we have NM monopoles. We may write: 

r, = CL? (rk/rJ cl= q30 

Thus the number of boundstates in the comoving volume with binding 

energy Eb to Eb+dEb becomes: 

ANI, = $y ($) ( &bre’Eb’iT$ NM (E) (s4) 

me ratio rM/rx is cosmologically invariant for the low formation rates 

discussed here. 
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We see that the binding energy enters an exponential and thus the 

most probable states by eq.(54) have infinite binding energy. lhis is 

the well known disease of the Coulomb gas and it is readily interpreted. 

In general, as the members of a pair get very close together the 

Boltzmann factor in eq.(47) is diverging. But such a pair is also no 

longer in thermal equilibrium and is dominated by the local mutual 

Coulomb force. Only when the energy is within an order of magnitude of 

the temperature is the process expected to be reliably described as an 

equilibrium one. lhus we may only apply eq.(54) for E : 7T, where 
'2 

is a parameter of O(1). Thus we have for the differential number of 

objects instantaneously bound with energy E to E+dE: 

hNU, = 2 [&$eq $. N- (z) CSS) 

where N m is the number of monopoles in a comoving volume. 

Strictly speaking, these objects are not bona-fide boundstates, but 

only thermal fluctuations of an arbitrary pair into a state of locally 

negative total energy. lhey are the equilibrium fraction of the 

monopolonia dissolved in the monopole anti-monopole gas. However, as 

the system cools we expect that for an appropriate choice of -O(l) this 
r 

abundance of objects will be left behind as boundstates since their 

binding energy will exceed the thermal energy available to dissociate 

them. Lexus eq.(55) is indeed expected to describe the relic abundance 

of monopolonia formed as the Universe cooled through a temperature of 

order the binding energy. 
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The formula of eq.(55) possesses a pleasant scaling behavior. 

Reference to the lifetime formula of eq.(12) shows that we may write: 

mus, the decay rate of monopolonia in a comoving volume follows 

immediately: 

Ma; 
TG= -: [&k.fQy~) (57) 

We see that the decay rate increases as the age of the comoving volume 

decreases. Today, a typical cubic light-year would contain roughly 

3x10e3' GUT monopoles if we saturate the closure density. From eq.(57) 

we obtain-350 decays of monopolonia per year per cubic light-year, 

assuming the conservative r /r q 
-24 

M$ 10 , and 3.5~10" saturating the 

Helium abundance limit of rM/rV = 10-l'. We may further estimate the 

total fraction of monopolonia by converting from lifetime to diameter 

through the convenient scaling law: 

CSd 

Thus, we may integrate from a radius of r : l/10 Angstrom up to an upper 

limit, R, for which we expect the formation to terminate: 
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We thus see that the specific choice of R is irrelevant as we are only 

logarithmically sensitive to it. In practice we would expect R to 

correspond to a value for which a monopolonium is readily ionized by a 

magnetic field or other traumatizing event (we note that at l/10 A it 

requires a B-field of order 10" Gauss to ionize). Putting in numbers 

yields about 10" (or 10" assuming the larger monopole to photon ratio) 

GUT monopolonia per cubic li@at year, or a fraction of 10 
-18 monopolonia 

to monopoles. 

In fact, we expect that eq.(59) with 
7' 

1 probably underestimates 

the abundance of monopolonium since it makes no reference to specific 

reactions such as capture by the emission of radiation, scalars or other 

particles, and considers only monopole collisions in thermal equilibrium 

implicitly via their instantaneous Coulomb potential. We may directly 

estimate the formation of monopolonium by radiative capture essentially 

making use of the cross-section: 

Cdr> = T(+$j$($\ 

where the quantity in braces is familiar (12) , but we've obtained the 

extra overall numerical factor z9.6. E. is the kinetic energy of an 

incident monopole at infinity which is of order the temperature (it 

would be a straightforward analysis to fold in the complete thermal 

distribution here). This follows by demanding a classical collision 
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between monopole and anti-monopole during which there is sufficient 

acceleration to radiate away the energy by the Larmor power formula.. In 

fact, we may use more general differential cross-section: 

d C& > 
A% 

= 9.6$ L ) 
(61) 

which is the cross-section of capture into boundstates of binding energy 

Eb' me rate of 

temperature T in a. 

formation of monopolonia into these states at 

given comoving volume is: 

= (33) @) (t)” ( T;,Ebr( $y ““” 
(62) 

We may convert the differential formation rate in time into a rate 

in temperature in a comoving volume (thus the Hubble expansion terms do 

not appear). 'Ihis may be integrated over all temperatures and we note 

that the integral receives most of it's contribution for T : Eb as 

expected. lhe result is: 
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(63) 

9 
c = i (4 bosor Irdicikt~ + i t, &w;‘., \\c\;r;\isr) 

where the integral is: 

00 

13 
I 

A* 
x”l (\ + x )7’S % 2.2 

0 

lhe final monopolonium abundance is numerically: 

N- 
$1 rv 2o.g c$” wypp 

( ~y/,o [EbP (5%) m ,o@ 
rv 

(65) 

and we have the decay rate: 

mis is remarkably close to our preceding result even though it involves 

somewhat different physics. me exponent 9/10 is sufficiently close to 

unity that our scaling is approximately valid as well. me rough 

agreement between these results encourages us that they are probably 

correct thou@ a more detailed analysis of specific mechanisms is 

desired. Moreover, perhaps our choice of 7’ 1 in eq.(57) is overly 
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restrictive. If 

256'= 

10 the rates and fractions are increased by a large 

factor of , 
and as 1 - 

>60 all monopoles become bound into 

monopolonia. We can envision a number of additional mechanisms that 

might significantly enhance the formation rates and we regard the quoted 

results as probable lower limits on the formation. 

We will not give here a detailed description of the observability 

of relic monopolonium. However we will remark that we can place 

nontrivial limits on the monopole masses and closure fractions from the 

above considerations and that we believe that the decay products of 

these systems mi@t be detectable in a variety of experimental 

configurations. A systematic discussion of the observational 

implications, constraints, signatures and other general considerations 

is in preparation('). 
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FIGURE CAPTIONS 

Fig. 1 Normalized probabilities, p y' PzO' pgluon' 

Fig. 2 Y,ZO , gluon d(ln(n)ld(ln E)vs. (ln E.) 

Fig. 3 Charged Hadron spectrum (a) leading lo!3 QCD, 

(b) E1'2 multiplicity, and (c) gluon spectrum. 

y-distribution S l/3 hadron distribution. 



Table 1. Monopolonium Properties 

Classical Lifetime Binding Transition Principal 
Diameter hemy Energy Quantum 

(cm) (see) (GeV) (eV) Number v/c 

lo-* 

10-g 

IO-IO 

lo-" 

lo-l2 

lo-l3 

lo-l4 

10 -15 

10-16 

lo-'* 

lo-2o 

lo-22 

lo-24 

10-26 

lo-28 

3.71x1022 

3.71x10'* 

3.71x1015 

3.7lxlo12 

3.71x109 

3.71x106 

3.71x103 

3.71 

3.71x10-3 

3.71x10-9 

3.71x10-'5 

3.7lxlo-21 

3.71xlo-27 

3.71x10-33 

3.71x10-39 

3.35x10-5 

3.35x1o-4 

3.35x10-3 

3.35xlo-2 

3.35x10-l 

3.35 

3.35x10' 

3.35x102 

3.35x103 

3.35x105 

3.35x107 

3.35x109 

3.35x10" 

3.35x10'3 

3.35x1015 

1.61x10-~ 

5.o9xlo-6 

1.61~10 
-4 

5.o9x1o-3 

1.61x10-' 

5.09 

1.61~10~ 

5.09 x103 

1.61~10~ 

1.61x10* 

1.61x10" 

1.61~10'~ 

1.61~10 
17 

1.61~10~~ 

1.61~10~~ 

4.17x10" 

1.32~10" 

4.17xlo'" 

l.32xlo'" 

4.17x109 

1.32~10~ 

4.17x10* 

,.32x10* 

4.17x107 

4.17x106 

4.17x105 

4.17x104 

4.17x103 

4.17X102 

4.17x10' 

4.10x10-" 

l.30xlo-'" 

4.10xlo-'" 

1.30x10-9 

4.10x10-* 

1.30x10 
-a 

4.1ox1o-8 

1.30x10 -7 

4.10x10-7 

4.10x10-6 

4.10x10-'5 

4.10x10 
-4 

4.10x10-3 

4.1oxlo-2 

4.10x10-' 



Table 2. Fractions and Approximate Yields in Burst 

Species Fraction Approx. Yield 

X,E l/4 6 

Y,P l/4 6 

w+,w- 
ZO l/12 2 

gluons 219 6 

Y l/36 0 

color 8 

> 

l/9 3 
Higgs 

weak 

> 

T/24 1 
Higgs 
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