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ABSTRACT 
Lie algebraic techniques are applied to the precession of 

polarization in a magnetic field. The rotation matrix is 
represented as the exponential of an antisymmetric matrix. The 
equation of motion is derived as a series of commutators. The 
lowest order approximation gives the rotation in terms of the 
integral of the magnetic field along the particle trajectory. 
Higher-order terms yield rotations about the longitudinal axis. 
Explicit expressions are riven for auadruooles and sextuooles. 
INTRODUCTION 

Hiaher order terms in the eauation of motion for the 
precession of the polarization of a moving particle in a magnetic 
field may be significant in beam lines and accelerators. The 
lowest order terms indicate that the polarization vector will be 
restored to its original direction upon passage through a magnetic 
system if the momentum vector is unaltered. However, a snake 
rotates the polarization vector by a large angle while leaving the 
momentum vector unchanged. In an accelerator, even if the 
higher-order terms are small, the repeated passage of particles 
through the system may cause large effects. 
EQUATION OF M6TION - 

The equation of motion of the polarization vector P. of a 
particle of charge e, mass m, and ratio g of magnetic moment to 
classical moment is 

Here the magnetic field is separated into longitudinal and 
transverse components, indicated by appropriate subscripts. This 
arises because the magnetic field is expressed in the laboratory 
system, while the polarization vector is expressed in the particle 
rest frame. 

At high energies, the angle a trajectory makes with the 
reference trajectory will be small, so that the fields from bending 
magnets, quadrupoles, and sextupoles will be essentially 
transverse. The transverse field will also be favored by a factor 
of y associated with the anomalous part of the magnetic moment; 
The magnetic field can be incorporated into an antisymmetric matrix 
F, whose form is given below. 

For a particular trajectory, we may define a polarization 
transfer matrix M, so that the polarization is given in terms of 
its initial value by 

P = ME, (2) 

An orthogonal transformation can be written as the exponential of 
an antisymmetric matrix, so that M takes the form 



M = eH 
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(3) 

and F and H become 

F = [Ey ,. -!:j H = [By ;x "I (4) 

Dividing equation (1) by SC to express the motion as a function of 
distance along the reference orbit, we derive 

de H 
dz 

= ; (1+ 7 y)FeH 

The matrix H is the dual of a rotat ,ion vector 
matrix dual of the magnetic field B. The matr 
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ix M has the form 
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e = Je2+e2 
P x Y 

s = sine 
P c = cosep 

SOLUTION OF THE EQUATION OF MOTION 
Since H is a matrix, we must expand the left side of equation 

(5) as a series of commutators. Truncating the series after the 
first four terms yields 

d dH H 
a? 

eH = dH eH + 1 
az ZtH,zle + ;IH, IH,~lleH + i&W. [H, IH,gl lie" (7) 

All terms save the first may be transferred to the right and the 
equation solved by successive approximation. Including only the 
first two terms, we derive 

H = ;(l+qy) ;Fdz - ; $(I+7 ?f;~IF(cI ,F(z)ld<dz (8) 

The second term involves the integral of a commutator over a 
triangular domain. The matrix obtained from the commutator is the 
dual of a vector formed from the cross product of the magnetic 
field vectors B at two different longitudinal locations. Such a 
term represents a rotation about the longitudinal axis, which, 
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however, can be large, since it is produced by the transverse field 
and its coefficient contains the factor y. It is because of this 
and other similar higher-order terms that snakes can rotate or 
reverse the polarization. 

If the first-order approximation to the polarization transfer 
matrix is evaluated for each magnetic element and the results 
multiplied together, then the result will contain that portion of 
the commutator where the two longitudinal locations are in 
different elements. It will still not contain the contribution 
from a single element, for example, 
"self-snaking" 

what might be called the 
term for a quadrupole. It may be useful to examine 

the double and multiple integrals of commutators for a lattice as 
well as the lowest order field integral for a periodic structure to 
maximize the degree of polarization preservation. 

For a quadrupole, we use a power series expansion of the orbit 
transfer matrix to obtain an approximate solution to equation (7). 
The result is 

H = ;(l+?$y) Q3 (X;Y~-X~Y;) EZ (9) 
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sin(kQ) + x' ' (1-cos(kQ)) 
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For a sextupole, 
derive 

we integrate along the first-order trajectory and 
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