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1.1 INTRODUCTION 

The technology of integrable quantum systems has developed 

rapidly over the past several years.' The confluence of old and 

new ideas has produced some beautiful mathematical physics and 

provided a great deal of insight into the nature of these 

sys terns. In spite of all these developments, one central 

problem remains unsolved: that of calculating correlation 

functions for general Bethe's ansatz models.2-8 In principle, 

the problem is straightforward -- all information relating to 

correlations is contained in the Bethe wave functions. We only 

need to calculate the expectation value of a product of field 

(or spin) operators for an N-body wave function in a box of 

length L and let N + m with N/L fixed. The problem is that 

such a calculation involves a number of terms of order (Nl)', 

and the simplifications which presumably occur depend on 

intricate cancellations among these terms which are not well 

understood. In the 51 years since Bethe wrote down his ansatz, 

no one has succeeded in getting a complete answer in this way. 

In these lectures I will discuss the problem of 

calculating correlation functions for integrable models, and 

some of the possibilities that have been raised by recent 

developments. Since I don't know how to solve the general, 

problem, I will focus on ideas and directions, and on special 

limits in which the problem becomes more tractable. In 

particular, I want to explore the connection between two very 
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important recent developments. One is the advent of the 

quantum inverse scattering method,' to which you have already 

been introduced by the lectures of Faddeev at this school. The 

other closely related but largely independent development is 

the treatment of correlation functions for certain special 

integrable models by Sato, Miwa, and Jimbo (SMJ).7 The ideas 

which underlie these two approaches appear to be deeply 

related, but in a way that is not completely understood. The 

quantum inverse method, like its precursor, Bethe's ansatz, is 

quite generally applicable to integrable quantum systems. The 

SMJ approach, on the other hand, has only been formulated for 

certain special "free fermion" models like the 2-D Ising model, 

X-Y spin chain, and the impenetrable Bose gas. But within this 

limited domain it provides a powerful and complete method for 

calculating correlation functions. The formal and conceptual 

similarities between the two methods raises the hope that an 

understanding of the relationship between them will lead to a 

complete solution of the problem of calculating correlation 

functions for integrable systems. 

One of the main purposes of these lectures will be to 

present a pedagogical discussion of the SMJ method in a context 

where its connection with Bethe's ansatz and the quantum 

inverse formalism will be more apparent. Before getting into 

the details, let me emphasize some of the essential points. 

The SMJ approach relies heavily on the idea of duality. This 

idea goes back to the Xramers-Wannier9 observation that the 
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high and low temperature phases of the 2-D Ising model are 

mathematically equivalent in the sense that the partition 

function in the two phases is related by a simple 

transformation tanh 80 e -'8, (where 8 = l/kT). Xadanoff and 

CeVa” later completed the statement of equivalence by 

introducing "disorder" variables which were dual to the spin 

variables. The familiar fermion operators of the Ising 

mode111-13 could be regarded as the product of an order 

variable and a disorder variable. Thus, the disorder variable 

at site n is essentially the Jordan-Wigner tail jg,(is!) which 

is attached to a Pauli matrix to turn it into a fermion 

operator. In terms of these operators, the essence of duality 

can be expressed by the commutation relations between order and 

disorder, or equivalently, spin and fermion operators. 

Specifically, a spin at site i and a fermion at site j commute 

if i<j and anticommute if i>j. This algebraic relation forms 

the basis of SMJ's treatment of correlations. The duality 

algebra and associated Jordan-Wigner transformation is in some 

sense a special case of Bethe's ansatz for those models in 

which the two-body S-matrix (Bethe's ansatz phase shift) is -1. 

The model I will discuss in detail is the nonlinear Schrijdinger 

(NLS) model. The infinite coupling (c=m) case of this modelx-6 

has a structure very similiar to the Ising model and the 

correlation functions for this case can be calculated by the 

SMJ appraoch. In addition there are some encouraging signs 

that the ideas behind the SMJ treatment have a natural 
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generalization to the finite c case via the quantum inverse 

method. The fermion variable at c=m generalizes to the 

reflection coefficient operator R(x), the Jordan-Wigner 

transformation generalizes to the Gel'fand-Levitan 

transformation,14-16 and the duality algebra generalizes to the 

commutator [R(x),@(y)] where e(y) is the NLS field operator 

(which is analogous to a spin operator in the Ising model). 

In order to present these ideas in a unified setting, it 

is convenient to use a graphical representation of Bethe's 

ansatz which was originally derived from a study of Feynman 

graphs-l7 More recently it has developed that this approach is 

also closely related to both the Gel'fand-Levitan method and to 

the SMJ formalism. I will therefore begin with an introduction 

to this graphical formalism. 

1.2 BETHE'S ANSATZ GRAPHS 

We'll consider the nonlinear Schrbdinger model defined by 

the Hamiltonian 

H = .f{ax+*8,+ + C$*$*+$] dx B Ho + V 

where +(x) is a canonical nonrelativistic boson field 

(1) 

t+(x),@*(Y)1 = 6(=-Y) (2) 

To treat the finite density system we will eventually want to 

add a chemical potential term, i.e. H + H - UN where N = s$*$dx 
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is the particle number operator, but for now we will consider 

the zero density case n = 0. The particle number N is 

conserved, and we can therefore diagonalize H separately in 

each N-body sector. The N-body wave functions of Bethe's 

ansatz are constructed by dividing the N dimensional space of 

particle coordinates xl,...,xn, into N! sectors corresponding 

to specific orderings of the particles, e.g. 
xPN'xPN-l<*.'<xPl 

where (Pl.. pN) is a permutation of (l,..,N). In each sector 

the wave-function is proportional to an N-body plane wave, but 

the coefficients which appear in the different orderings 

involve products of two-body phase shifts. For example, the 

exact two-body wave function may be written 

Ikl,k2> = ldx dx 12 ei(klxl+k2x2) {8(x2<x1)+S(k21)8(x1>~2)} 

x @*(xl) e*(x,) lo> (3) 

where k 21 5 k2 - klr and S is the two-body S-matrix 

S(k) = ; ; ;; (4) 

More generally, if we adopt the convention that the ordering 

XN<...<X 1 (i.e. P=I=identity) has a coefficient of unity, then 

the coefficient of any other P is obtained by starting with I' 

and constructing P by interchanging adjacent elements. There 

is a factor S(kij) for each interchange of adjacent elements i 

and j. For example, in the 3-body case, the ordering x2<x1<x3 

would have a factor of S(k32)S(k31). 



-7- FEBMILAB-Pub-82/67-THY 

The graphical representation of Bethe's ansatz is best 

described by separating connected and disconnected parts of the 

wave functions. mhus, for the two-body case we would rewrite 

the integrand in (3) as 

0 (X2<x1) + szl etx1<x2j = 1 + 'czl 8 (x1<x2) 

where S.. s S(kij) and 
17 

‘ij = S ij -1. 

(5) 

(‘3) 

The first and second terms on the right hand side of (5) can be 

represented by a disconnected and a connected graph 

respectively, as shown in Fig. 1. These graphs consist of 

straight "particle lines" which represent a Bethe's ansatz 

particle with a given pseudomomentum, and wiggly "phonon" lines 

which represent an interaction between two modes. From the 

two-body case, we see that the phonon line represents both a 

factor rzl and a coordinate space step function 0 (x1<x2). In 

momentum space (i.e. Fourier transforming the wave function 

over the x j's1 I the step function becomes a phonon propagator, 

-i 
zj=z (7) 

where q is the momentum carried by the phonon. The 
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generalization of these graphical rules to the N-body wave 

function is straightforward. Choose a particular ordering of 

the ki 's along the bottom of the graph and draw all graphs with 

this ordering and with all phonon lines pointing from left to 

right as in Fig. 2. (The wave functions obtained by choosing 

different orderings of pseudomomenta differ only by overall 

factors of two-body phase shifts.) Any pair of particle lines 

can be connected by either zero or one phonon line, 

corresponding to the absence or presence of an interaction 

between the two modes. Thus, each phonon represents a 

propagator (-i)/(q-is) and a dynamical factor -c. ij- The full 

N-body wave function (connected plus disconnected pieces) 

consists of 2N(N-1)'2 graphs. The graphs for the three-body 

wave function are shown in Fig. 2. It is not difficult to show 

that this graphical ansatz reproduces the N-body Bethe wave 

functions.17 An important advantage of the graphical 

formulation is that the wave function is naturally written in a 

cluster-decomposed form in which the connectedness of a 

particular term is manifest. This is often of great help in 

practical calculations (e.g. of matrix elements in Bethe's 

ansatz states). 

Starting from the graphical representation of Bethe's 

ansatz, all of the known results for this model (e.g. 

thermodymanics, spectral integral equation, norms of Bethe wave 

functions) can be derived and given a simple graphical 

interpretation. These results have been discussed elsewhere17 
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and I will not review them here. Instead I will just give the 

graphical rules for computing inner products of Bethe's ansatz 

states <p 1. .pNlkl.. kN> and matrix elements of the field 

operator <pl...pNI@(x)(ko...kN>. For the inner product 

<P1...pNlkl...kN> one draws the same set of graphs as for the 

N-body wave function, but now: (1) There are pseudomomentum 

variables kl... kN at the bottom of the graph and pl...pN at the 

top of the graph, and (2) A phonon connecting line i with line 

j represents a phonon propagator (-i)/(q-is) along with a 

dynamical factor 

'(Pij) ' '(kji) + '(pij)~(kij) = S(pij)S(kji) -1 (8) 

representing the fact that the two particles could have 

interacted in either the initial state, in the final state, or 

in both. The full inner product is obtained by summing over 

all permutations of the external pseudomomenta, with 

appropriate factors of S(Pij) and S(kij) accompanying the 

different permutations. From these graphical rules, it is easy 

to show that when the ki 's are not equal to the pi's, the inner 

product vanishes (i.e., the states are orthogonal). In 

addition, by letting is be small but nonzero, one can compute 

the norm of the Bethe wave functions <kl..kNlkl..kN> obtaining 

a graphical result which is equivalent to the determinental 

expression discussed by Gaudin and Eorepin.l8-19 
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The graphical rules for a matrix element of the field 

operator <Pl..pNI$(x)lko. .kN> are also quite simple. For each 

graph, we draw N+l lines numbered 0 through N, with 

pseudomomentum labels k O,...,kN on the bottom and pl,...,pN on 

the top. Line zero represents the particle which is 

annihilated by the field operator and hence has no 

pseudomomentum label in the final state. As before, we draw 

all possible graphs with phonons connecting pairs of particle 

lines. A phonon connecting line i with line j incurs a factor 

of 

S(Pij)S(kji)-1 

if i<j and i#O, while a phonon connecting 

gives a factor of 

S(kjo)-l = T(kj0) 

line zero with line j 

(9) 

(10) 

(In each case, there is also the usual phonon propagator 

t-i) /(q-iE:) 1 . These rules are just a hybrid version of the 

previous rules for inner product graphs and wave function 

graphs. As usual the full matrix element is obtained by 

summing over permutations of pseudomomenta with S-matrix 

factors. The graphs for matrix elements of the field operator 

are closely related to the quantum Gel'fand-Levitan transform, 

as we shall see shortly. 
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1.3 QUANTUM INVERSE SCATTERING AND THE 

GEL'FAND-LEVITAN FORMALISM 

There have been several extensive reviews Of the quantum 

inverse scattering method,' and I will not attempt to give a 

thorough introduction here. I will simply review the basic 

ideas and quote the results which are relevant to the study of 

correlation functions. To solve the nonlinear Schrodinger 

model by the inverse scattering method, we study the linear 

eigenvalue problem associated with the spatial component of a 

"Lax pair" 

awY = iQuY u=O,l (11) 

Here Q,,(x,k) are 2x2 matrices which depend on the fields $(x) 

and $*(x) and on an eigenvalue parameter k. In particular, the 

spatial component Ql is given by 

k/2 fi$ 
Q1 = 

-m* -k/2 > 
(12) 

We regard the u=l component of Eq. (11) as a problem of time 

independent scattering theory and construct the scattering data 

in terms of the field Q(X), the latter playing the role of the 

scattering potential. In the quantum theory, the scattering 

data become normal ordered functionals of the operators 4 and 

@*. The formulation of the quantum inverse method that we will 
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use is carried out in the zero density vacuum where 4(x)+0 

(weakly) as x-+-. (Of course we are really interested in the 

correlations at finite density, and so we must eventually find 

a way to formulate our operator expressions in the finite 

density Hilbert space. More about this later.) 

With the zero-density restriction, one can construct Jost 

solutions for the linear problem 

sly = i:QlY: (13) 

For example, we may define a Jost solution 6 by its asymptotic 

behavior at x+-- 

‘b(x,k) - (3 eikx/2 

x+--m 

(14) 

The scattering coefficients a(k) and b(k) are defined by the 

behavior of $ as x++m: 

$(x,k) - a(k) eikx'2 

x-f+- b(k) e -ikx/2 (15) 

Solving Eq. (13) by a Born series, we obtain series expansions‘ 

for the Jost solution and for the scattering coefficients in 

terms of C+ and $*. In particular, a(k) and b(k) can be written 
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a(k) = l+c I dxldy16(x1<yl)e ik(xl-yl)~*(xl)~(Yl) 

xc 2 I dxldYldx2dy26(~1<~l<~2<YZ)e ik(xl-yl+x2-y2) 

x@*(x,)@*(x,)@(Yl)@(Y2) (16) 

i b(k) = Idxle 
ikxl ik(xl-yl+x2) 

7% 
$*(x1) + cJdxldyldx26(xl<Yl<x2)e 

x$* (Xl) +* (3) 4 (Yl) 

+. . . (17) 

In the classical inverse method, the importance of the 

scattering data lies in the fact that, if the field $(x) 

evolves in time according to the nonlinear Schrodinger 

equation, the time evolution of the functionals a(k) and b(k) 

is very simple. The important observation which gave birth to 

the quantum inverse method was that the scattering data, 

regarded as quantum operators, have simple algebraic properties 

and are closely related to Bethe's ansatz. Specifically, 

(H,a(k)l = 0 

[H,b(k)l = k2b(k) 

(lea) 

(lab) 

[a(k),a(k')l = [a(k),b(k')l = (b(k),b(k')l = 0 (iad 

b(k')a(k) (lad) 

(I should emphasize here that we are working in an infinite 
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volume. The commutation relations in a finite box can also be 

constructed, but they contain extra terms associated with 

periodic boundary conditions.) From these relations, we see 

that the states obtained by applying b(k)'s to the vacuum, 

Ikl...k N' = b(kl)...b(kR) 

are eigenstates of the 

one-parameter set of operators 

0’ (19) 

Hamiltonian, and also of the 

a(k). It can be shown that 

these states are precisely those constructed by Bethe's ansatz. 

The operator a(k) may be regarded as the generating function 

for an infinite number of conserved quantities. To discuss the 

inverse problem and Gel'fand-Levitan formalism, it is 

convenient to define the quantized reflection coefficient 

R*(k) = & b(k) a-'(k). 

which also has simple algebraic properties, 

[H,R*(k)] = k2R*(k) 

R(k)R(k') = S(k'-k)R(k')R(k) 

R(k)R*(k') = S(k-k')R*(k')R(k) + 2nb(k-k') 

where S is the usual two-body phase shift 

operators create normalized Bethe eigenstates. 

(20) 

(21a) 

(21b) 

(21c) 

(4). The RR 
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Like Fourier transformation, the inverse scattering 

transformation consists of both a direct and an inverse 

transform. The direct transform, Eqs. (16)-(17), give the 

scattering coefficients a(k) and b(k) in terms of the field 

operators $(x) and $*(x). In order to study correlation 

functions, we must construct the inverse transform which gives 

the field operators in terms of the scattering data. This is 

accomplished by the method of Gel'fand and Levitan. 20-21 The 

basic idea of this method is to use the analytic properties of 

the Jost solutions to construct a function which is analytic in 

the k-plane with a discontinuity across the real axis which is 

proportional to the reflection coefficient R(k). A dispersion 

relation for this function then provides an integral equation 

for the Jost solution X(x,k) defined by the asymptotic behavior 

X(xtk) z (F) esikx12 
(22) 

Specifically Xl and X5 satisfy the coupled integral equations 

R*(k’)xl(xrk’)e -ik'x/2 
X*,(x,k)e -ikW = 1 + gldk' 

k'-k-is (23a) 

x (x kjeikxi2 = 5 dk’ 
X$(x,k')R(k')eik'X'2 

1' 2n k'-k+ie (23b) 

In both the classical and quantum theory, the Gel'fand-Levitan 
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equation follows from analyticity arguments. There is one 

interesting feature of the quantum,derivation which is worth 

mentioning here. In that case, the construction of an analytic 

operator function in the complex k-plane depends not only on 

the analyticity of the Jost solutions but also on the fact that 

the commutator [R*(k),+*(x)) is analytic in the lower half 

k-plane. As we will see in the next lecture, this commutator 

reduces, in the limit c+m, to the duality commutator between 

fermion and boson fields, while the Gel'fand-Levitan transform 

itself becomes a Jordan-Wigner transformation. 

Solving Eqs. (23) by iteration, we obtain a series 

expansion for the Jost solution in terms of the eigenmode 

operators R*(k) and R(k). The local field operator is 

recovered from the asymptotic form of the Jost solution; 

xl(x,k)e ikx/2 - 
k+m 

- 2 @(x) + O(l/k2) 

The series expansion for $(x) may be written explicitly as 

6(x) = 5 c)(m) (x) (2W 
n=o 

where 
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@(n) (xl = C-c) Y(i 2g 2) ;,,:;:y+:;;: -k 
j,=l l ii 

-is), 

xR*(pl) . ..R*(p.)R(k,)...R(k,) (25b) 

Note that this series is normal ordered with respect to the 

zero density vacuum (i.e. R*'s to the left and R's to the 

right). 

The integrand in (25b) is in the form which comes directly 

from iteration of the Gel'fand-Levitan integral equation. 

There are many other equivalent ways of writing these 

integrals. Let us write a generic operator of this form as 

/(~ ~~ ~) f(Pi'ki) R*(pl)...R*(p,)R(k,)...R(k,), 

(26) 

where f(pi;ki) is some c-number function. Then, by permuting 

integration variables and using the commutation relations 

(21b), we can make the replacement 

f(p:k) -) Sp(Pi) SQ(kki)f(Pp ;k 
i Oi 

) (27) 

where P is any permutation of the pi's and Q is any permutation 

of the ki's, and SP and SQ are the products of two-body 

S-matrices associated with those permutations. By utilizing 

this freedom to interchange integration variables, we may 
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construct a variety of equivalent expressions for an operator 

of the form (26). The only part of the function f(pi,ki) that 

is relevant is the "R-symmetrized" function f (S)(p;k) which is 

obtained by summing over all permutations P and Q with 

appropriate S-matrix factors. Now let us consider the matrix 

element of the field operator <Pl...pnl~(x)lko...kn> which we 

have already discussed in terms of Bethe's ansatz graphs. If 

all the p's are different from all the k's, then it is easily 

seen that only the nth term in the GL series (25a) contributes 

to this matrix element. Thus, the R-symmetrized integrand 

appearing in $(")(x) is just the matrix element 

CPl... pn\$(x)lko...kn>, provided that the p's and k's are all 

different. For general p and k, these two functions can differ 

from each other only in the signs of is's. The Gel'fand-Levitan 

integrands can thus be obtained from the Bethe's ansatz matrix 

elements of $(x) by first calculating these matrix elements 

ignoring ie's and then inserting the correct is prescription by 

letting all p's have a negative imaginary part, pi+pi-is. In 

this way the graphical formalism for the matrix elements of 

e(x) can also be used to represent the Gel'fand-Levitan series. 

Such a direct graphical construction of the Gel'fand-Levitan 

integrands leads to expressions which differ from those in 

(25b) but are equivalent after R-symmetrization. The graphical 

expression is in some ways more convenient, particularly for 

treating the c+m limit. Since the graphs consist entirely of 

phonon propagators (-i)/(q-is) and factors of -r(k) = S(k)-1 
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(where k = kij or pij), the limit c+"' is thus easily taken by 

setting r(k)+-2. For the case c=m, the graphical formalism 

provides a nice intuitive picture of the SMJ method for 

calculating correlation functions. For most of the remaining 

lectures I will be discussing the case c=- and the application 

of the SMJ procedure. However, it should be emphasized that 

the graphical formalism applies as well to the finite c case 

and is directly related to Bethe's ansatz and to the 

Gel'fand-Levitan transformation. I remain hopeful that as our 

understanding of integrable sys terns progresses, some 

generalization of the SMJ arguments to Bethe's ansatz systems 

will be found. 
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2.1 GEL'FAND-LEVITAN EQUATION AS A 

GENERALIZED JORDAN-WIGNER TRANSFORMATION 

In the previous lecture we saw that the nonlinear 

Schrodinger model could be solved at the quantum level either 

by an explicit Bethe ansatz or by the quantum inverse method, 

which provides an algebraic form of Bethe's ansatz. By 

studying the direct scattering transform associated with the 

linear Zakharov-Shabat eigenvalue problem, we constructed the 

scattering data operators a(k) and b(k). These operators are 

functionals of the NLS field operators 4(x) and $*(x). The 

operator b(k) produces eigenstates of H by repeated application 

on the vacuum, while the operator a(k) is diagonal on these 

states. Thus, the reflection coefficient operator 

R(k)=b(k)a-l(k) also creates eigenstates of H. The commutation 

relations (21~) show that in fact R(k) creates the properly 

normalized eigenstates. The inverse problem is the problem of 

reconstructing the field operators $(x) and 4*(x) in terms of 

the operators R(k) and R*(k). This construction is 

accomplished by the quantum Gel'fand-Levitan procedure and 

leads to the series expression (25). The basic goal of the 

Gel'fand-Levitan procedure is to calculate correlation 

functions for the field operators by expressing them in terms 

of the R operators. Until now this goal has not been realized 

for the general finite c case due to the combinatorial problems 

which arise in taking expectation values of the 
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Gel'fand-Levitan series (25). However, if we take the limit 

C+=, the problem simplifies considerably. This is somewhat 

surprising since the series (25) appears to be an expansion in 

powers of c. However, there is an implicit c dependence in the 

R operators due to their commutation relations, and after 

symmetrizing the integrands it is found that the c+m limit can 

be taken term by term in the series. As I mentioned before, 

the c=m limit follows most directly from the graphical 

representation of the Gel'fand-Levitan integrands, but it is 

interesting to see how the result follows from the expressions 

in (25b). I will illustrate the point by considering the first 

two terms in the series. The first term requires no 

symmetrization and is just the Fourier transform of the 

reflection coefficient 

@(')(a) =I2 eikOa R(ko) I r(a) (28) 

For the second term we symmetrize over the variables k. and kl 

and use the commutation relation (21b) to make the replacement 

(-cl 
’ (pl-ko) (pl-kl) 

x ; t1+.Q1 
(29) 

The right hand expression now has a finite limit as c+m, and in 

this limit we can write 
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dko dkl dpl 
I$(~) (a) = -2JK - - e 

i(ko+kl-pl)a ikl0 
2* 2n (pl-ko) (pl-kl) 

xR+(pl)R(kl)R(kO) (30) 

Next we observe that for c==, the R's become canonical fermion 

operators with local anticommutation relations in both momentum 

and position space, 

')I = 2*6(k-k') {R(k), R+(k 
{R(k), R(k’ 

(31a) 

)I =o (3lb) 

and 

Ir(x), r+(x’ 

{r(x), r(x’) 

,} = 6(x-x’) 

} =o 

So, finally, we can write 

(32a) 

(32b) 

dko dkl dpl (-i)e 
i(ko+kl-pl)a 

4(l) (a) = (-2)lzi;- 2r 2a pl-kl-is R+(P1)R(kl)R(kO) 

= -2 Irn dz r+(s) r(s) 
X 1 r(a) (33) 

By carrying out a similar procedure of symmetrization on each 

term in the Gel'fand-Levitan series, it has been found that the 

c+m limit can be taken term by term, with the remarkably simple 

result 
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$ W) (a) = (-iiN : I:sr+(z)r(z)] N r(x) : (34) 

where : : means normal ordering, i.e., all r+'s to the left and 

all r's to the right. Thus, the Gel'fand-Levitan 

transformation exponentiates into a Jordan-Wigner 

transformation for the case c=m, 

$(a) = : exp 
[ 
-2.far+(z)r(z) 

I 
r(a): 

a 
(35) 

This expression has a form which is familiar from other free 

fermion models (e.g., the two dimensional Ising model) which 

involve a boson-to-fermion transformation. It is this result 

and the associated duality algebra between the boson @(a) and 

the fermion r(x) which allows us to establish a link between 

the quantum inverse method and the SMJ treatment of correlation 

functions. The duality relations are somewhat more transparent 

if we imagine putting the r operators on a spatial lattice and 

replacing the integral from a to CO by a discrete sum. Then the 

operators r+(z)r(z) commute on different lattice sites and we 

may normal order the exponential on each site separately, using 

: e-2r+(z)r(z) : = 1-2r+(z)r(z) (36) 

Then noting that 
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r+(z) [l-2r+(z)r(z)] = - [1-2r+(z)r(.z)] r+(z) (37) 

we obtain the duality relations 

@(a)r+(x) = s(x-a) r+(x)@(a) 

$(a) r (x) = e(x-a) r(x)$(a) 

(3aa) 

(38b) 

2.2 TRANSITION TO THE FINITE DENSITY VACUUM 

So far we have dealt only with the zero density system 

where $(x)+0 as x+?m. The expressions we have obtained by the 

quantum inverse method are thus normal ordered with respect to 

the bare (zero density) vacuum state IO>. In order to address 

the problem of correlations in the finite density system we 

must find a way to relax the asymptotic condition on $(x). 

There are several possibilities. We might quantize the system 

in a box of length L and only take the limit L+m at the end of 

the calculation. This is the traditional approach to deriving 

spectral results from Bethe's ansatz, but in the context of the 

quantum inverse method, the R operators lose their simple 

properties in a finite box. Alternatively, one might quantize 

the classical inverse problem with boundary condition 

$(x)-+const.#O. The classical problem has been treated by 

Zakharov and Shabat.22 However, for c=m Jimbo, Miwa, Mori, and 

Sato6 have introduced a more direct procedure which is based on 
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the duality relations (38). Let me first outline their method 

and then go on to describe it in more detail. The essential 

point is that the boson field @(a) is completely determined (up 

to an overall normalization factor) by the duality relations. 

Thus if we introduce a new set of fermion creation and 

annihilation operators which are defined with respect to the 

physical vacuum, we need only to "solve" the duality relations 

to obtain an expression for $(a) in terms of these physical 

fermion operators. In the remainder of this lecture I will 

show how this procedure is carried out. Then in the last 

lecture I will show how the resulting expression for the boson 

field is used to compute correlation functions. 

To discuss the SMJ calculation, it is convenient to 

consider only the real part of the NLS field 

u(x) = $ [@J(x)+@*(x)] 

It is easy to see that the correlation <o*(x)o(y)> is the same 

as the correlation <$* (xl@ (Y)' (for X#Y) since 

<$(x)$(y)> = <@*(x)@*(y)> = 0 by particle number conservation. 

However, we now wish to introduce a small violation of particle 

number conservation so that we may consider the case 

<o(x)>+const.#O as X-tW, analogous to the classical vacuum at 

finite density. This may be done by introducing a small term 

in the Hamiltonian of the form A($*$*+$$) which introduces a 
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small mass gap .at the Fermi surface and allows US to consider 

<u (x) >#O. (Jimbo, Miwa, Mori, and Sato (JMMS) accomplish the 

same thing by considering the c=- NLS model as the scaling 

limit of the X-Y Heisenberg spin chain where U(X) is the 

scaling limit of a Pauli spin operator Ux.) In the limit I+0 we 

recover the symmetric vacuum <U(X)> = 0 and the. correct 

correlation functions. It will also be convenient to introduce 

the real and imaginary parts of the r operator, 

p(x) = r+(x) + r(x) 

q(x) = r+(x) - r(x) 

(40a) 

(40b) 

The duality algebra now reads 

u(a)p(x) = E(x-a)p(x)o(a) 

u(a)q(xl = E(x-a)q(x)u(a) 

(41a) 

(4lb) 

Since we are taking <u(a)>#O we could imagine inverting u(a) 

and writing these relations as 

u(a)p(x)U(a)-' = s(x-a)p(x) 

u(a)q(x)o(a)-’ = E(x-a)q(x) 

(424 

(42b) 

Thus the duality relations can be regarded as the statement 

that u(a) induces a linear (orthogonal) transformation on the 

fermion basis formed by p(x) and q(x). A fundamental theorem 

of Clifford groups says that such an operator can be expressed 

(up to a normalization factor) as an exponential 
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u(d) = <o(a)> : eP(a)/2: (43) 

where p(a) is a quadratic form in the fermion operators. We 

will see how this theorem iS satisfied by explicitly 

constructing the operator P (a) . First we introduce physical 

fermion creation and annihilation operators by defining 

9(P) = ; Jao P(P) - 1 
Jai5 

Q(P) (44) 

where P(p) and Q(P) are the Fourier transforms of p(x) and 

4 (xl I and a(p) is a step function at the Fermi surface 

a(p) = E(kF-IpI) (45) 

To see that a(p) and $+(p) are the physical operators, note 

that for Ipl>kF, 

d(p) = i [P(p)+Q(p)l = iE(p) 

while for Ipl<kF, 

q(p) = ; [P(p)-Q(p)1 = E+(-P) 

(46) 

(47) 

Thus, e(p) annihilates particles above the Fermi surface and 

annihilates holes below the Fermi surface. Similarly e+(p) 
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creates particles and holes above and below, respectively. 

The Clifford group argument tells us that, once we select 

a fermion basis, the expression for ~(a) in that basis is 

uniquely determined (up to a normalization) by the duality 

relation. More specifically, it must be an exponential of a 

quadratic form, Eq. (43). Thus, if we can find an expression 

for p(a) which is quadratic in the operators $(p) and Q+(p) and 

satisfies the duality relations (41), we will have an 

expression for u(a) which is normal ordered with respect to the 

physical vacuum. This operator expression can then be used to 

calculate correlation functions. In the graphical language 

introduced in the first lecture, u(a) has a graphical expansion 

of the form shown in Fig. 3, where each phonon vertex contains 

not only a 'scattering" piece (corresponding to $'JI terms in 

the operator P(a)) but also a pair creation ($+JI+) and a pair 

annihilation ($$) piece. Rather than deriving the result, let 

me first motivate the general form of the phonon vertex, state 

the result, and then show that duality is in fact satisfied by 

this result. The Clifford group argument then assures us that 

it is unique. 

The key trick used by JMMS to construct p(a) is a 

Weiner-Hopf factorization of the step function s(kF-lpi): 
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(p+kF-in) (p-kF-in) 1 
w 

E(kF-IpI) = = 
(p+kF+in) (P-kF+in) 

b(p) 
b C-P) (48) 

where 

b(p) = [(p+kF+in) (p-kF+in) l-1’2 (49) 

and we will eventually take the limit in +O. Note that b(p) and 

b(-P) are analytic in the upper and lower half-plane 

respectively. Thus, we regard the E step function as the 

limiting case of an analytic function with cuts slightly above 

and below the real axis running from -kF to kF, as in Fig. 4. 

We also will need to introduce the function 

W(P) = 1 
b(p)b(-p) 

(50) 

This is a real function which, in the limit n+O becomes the 

excitation energy w(p)+p2-k2 F' Thus the introduction of the 

parameter n is equivalent to introducing a small mass gap at 

the Fermi surface. 

In order to solve the duality relation in terms of the 

physical fermion basis we must express P's and Q's in terms of 

$'s and $"s, i.e. 
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F(P) = l I/ [JI+(-P)+J,(p)l 
a 

(5la) 

Q(P) = m [$+(-P)-*(P)] (5lb) 

The structure of the phonon vertex (i.e., of the operator p(a)) 

is motivated by the observation that 

m- 1 -- 
Jao b(p) 

is analytic in the upper half-plane, while 

l x l 
Jao m-3 

= b(-p) 

(52) 

(53) 

is analytic in the lower half-plane. With these observations, 

we state the result of JMMS 

P(a) = 
dp dp’ (-i)ei(p+p’)a 
- - 2n 2n p+p-is 

A- Jw’ --~ 
i( 1 VW Ai 

IJlf(-p)~)+(-P')-6(P)6(P') 1 

hi- -- - 

i ) 

+Jij’ 
A7 a 

16+(-P)~(P')+~+(-P')J,(P)l 
(54)' 

In terms of graphs, the scattering vertex, Fig. 5a, is given by 
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-mci+Jw(p’) 
( I/w(p’) ) Jwo 

while the creation and annihilation vertices, 

given by 

m 
GiTi 

(55) 

Fig. 5b, are 

(56) 

It is amusing to see how duality is satisfied by this result by 

first considering some few body matrix elements of the operator 

duality relation. In fact, the essential point can be seen by 

taking the vacuum to one-particle matrix element. We want to 

compare the matrix elements 

(57a) 

and 

(57%) 

where g is the physical vacuum, and Ip'> is a physical one 

particle state (i.e., a mode or a hole depending on whether 

(p' 1 +F) . The graphical expressions fOK these matrix elements 

are shown in Figs. 6a and b. Recall that c(a) is of the form 
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a(a) = <u> : l+Gp(a) f. . . : (58) 

Thus, for the matrix element of u(a)P(p), the operator P(p) 

acting on the vacuum creates a particle, and the operator 0 (a) 

either does nothing (the 1 in (58) and the first graph in 

Fig. 6a) or it scatters the particle (the $+$ term in p(a) and 

the second graph in Fig. 6a). For the matrix element of 

P(P)u(a), the operator u(a) either does nothing, or it creates 

a pair. In the latter case, one of these particles is eaten by 

the annihilation part of P(P) while the Other becomes the 

particle in the final state. To go back to x-space and verify 

the duality relation 

o(a)p(x) = E(x-a)p(x)u(a) (59) 

we multiply by elpx and integrate over p. First consider the 

case x>a. The first graph in Figs. 6a and b is obviously the 

same, so we must only verify that the second graph gives the 

same contribution. In each of these graphs there are two 

terms. One is proportional to m/m and has the same 

sign in the two graphs (see (55) and (56)). The other is 

proportional to m(p)/- and has opposite signs for the two 

graphs. But by virtue of Eq. (52), this term is analytic in 

the upper half p-plane and thus gives no contribution for x>a. 

This verifies duality for x>a. For x<a we must close contours 
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in the lower half p-plane. By virtue of Eq. (53), the term in 

each of the one-phonon graphs proportional to Jw(P'+WFl is 

analytic in the lower half p-plane except for the pole 

represented by the phonon propagator (-i)/(p'-p-is). The 

contribution from this pole exactly cancels off the 

noninteracting graph in each matrix element. The remaining 

term proportional to Jw(p,/m has a relative minus sign for 

the two orderings, giving (59) for xca. This completes the 

demonstration of duality for the vacuum to one-particle matrix 

elements. The corresponding demonstration fOK general 

n-particle matrix elements is no more complicated, with the 

duality relation again following from the properties of the 

phonon vertex which we have just discussed. In general, for 

x<a there is a cancellation between the (n-l)-phonon graph and 

the pole residues of the n-phonon graph. Because there are n 

such residues, the cancellation dictates a factor of l/n! for 

the n-phonon graph, and hence an exponentiation of p(a). 

Thus, for c=m, we have an expression for a(x) which is 

normal ordered with respect to the physical, finite density 

ground state. In the next lecture we will use this expression 

to calculate correlation functions. 
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3.1 WAVE FUNCTIONS AND THEIR MONODROMY PROPERTIES 

The main result of the last lecture was an expression for 

the real part of the NLS field u(a) which is normal ordered 

with respect to the finite density ground state, 

u(a) = <u> : exp G P(a) : (60) 

where p(a) is given by (54). The graphical representation of 

c(a) is shown in Fig. 3. Using this expression, one may 

construct graphical series expansions for any n-point function 

<u(al) . . . o(a,)> by expanding each exponential and .using Wick's 

theorem. For example, a typical graph for the 4-point function 

is shown in Fig. 7. Representing the sources uJ(ai) by 

horizontal dotted lines and imagining the time evolution of the 

graph as proceeding from bottom to top, it is easy to 

distinguish scattering vertices from pair creation and 

annihilation vertices. For example in Fig. 7, u(a,) creates a 

pair of particles, one is scattered by c(a,) and the other by 

c(a,), and they are both annihilated by u(a,). The rules for 

evaluating a graph follow directly from the expression for U(a) 

and include: (1) A propagator (-i)/(q-is) for each phonon line, 

(2) a vertex factor (55) or (56) for each internal phonon 

vertex, (3) A factor e 
iqai 

for the attachment of a phonon with 

momentum q to a source line ai, and (4) A momentum integration 

for each closed loop which remains after the dotted source 
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lines are removed (i.e., for closed loops of internal fermion 

lines). 

An important consequence of the graphical expansion for 

correlation functions is that the logarithm of the correlation 

function is just the sum of "connected" graphs where 

connectedness is defined after removal of external source 

lines, e.g., Fig. 8a is disconnected while Fig. 8b is 

connected. When viewed in this way, the graphs for a 

correlation function have a connectedness StKUCtUKe which we 

would usually associate with a partition function (i.e., the 

full set of graphs is just the exponential of the connected 

graphs). This is not entirely unexpected -- in the 2-D Ising 

model, the correlation function <0(x)0(y)> can be regarded as a 

partition function for a lattice with a line defect between x 

and y.l" In the present case the exponential form of the 

correlation functions follows directly from the application of 

Wick's theorem to exponential operators of the form (43). 

From here on we will confine OUK attention to the 

two-point function 

G(x) = <a(X)U(O)> . (61) 

The graphical series for log G(x) is shown in Fig. 9. This 

series may be loosely described as a fermion bouncing back and 

forth (albeit in both space and time) between fixed sources at 

0 and x. In order to calculate log G(x) it is convenient to 
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also consider "wave function" graphs which represent an 

external "probe" fermion impinging on the sources, bouncing 

back and forth a certain number of times, and emerging. (The 

conceptual similarity between this construction and that of 

Jost solutions in the inverse scattering method is amusing.) 

These wave function graphs can be divided into four distinct 

sets according to whether there is an even or odd number of 

bounces (phonons) and whether the first bounce is at 0 or at x. 

In this way we define four functions Vi(p,p') i = 0,1,2,3. The 

graphical series for these four functions is shown in Fig. 10. 

In addition to their implicit dependence on x, these functions 

also depend on the initial and final momentum of the probe 

fermion, i.e., p and p'. actually, in order to calculate the 

two-point function, it suffices to consider functions of a 

single momentum variable vi(p), i = O,..., 3, which are obtained 

from the Vi's by taking the limit p'+". This can be represented 

graphically by contracting the last phonon to a point, as in 

Fig. 11. 

Next we note that, for the two-point function, all graphs 

contain only pair creation and annihilation vertices (i.e., 

there are no scattering vertices). The creation and 

annihilation vertices have the important property that they 

vanish at zero momentum transfer (c.f. eq. (56)) and thus 

cancel the pole of the attached phonon propagator. This means 

that the sign of the is in the propagator is irrelevant and may 

be chosen for convenience. For reasons which will become clear 
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shortly, we will reverse the sign of the is's in all the phonon 

propagators attached to source line x. Graphically this means 

reversing the direction of the arrows on the upper phonon 

lines, as in Fig. 12. This leads to a convenient 

simplification. To illustrate, let's consider a typical graph, 

Fig. 13. In addition to the phonon propagators, this graph 

contains a product of vertex factors of the form 

1 w1 o3 =--x-- + other terms 
VG w2 w4 

(62) 

Here, the Other terms are all characterized by the fact that 

one or more of the wits are absent. It is easy to see that all 

these other terms vanish upon integration for x>O, because the 

Pi integration associated with the missing Wi is of the form 

JdPi (P 

e-ipiX 
= 

i-l+pi-iE) (pi+Pi+l-ie) 0 (63) 

(Here and elsewhere, we take x>O.) Thus, we get simplified 

series for the functions vi(p), shown in Fig. 14. After 

removing external factors of W- +1/2 , we can write these series 

as 
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v,(p) = l+(iX) 
dpl dp2 

“I?;;- - 
e-i(~l+~21x 

WA- + . . . 
217 (P+P1-iE) (pl+p2-iE) w2 

(64a) 

.-itEPijx 
' (p+pl-iE) (pl+p2-iE) (p2+p3-iE) 

1 w2 -- 
w1 "3 

+ . . . (64h) 

dpl dpZ 
V2(p) = 1 + (iA12/K - 

e -i(pl+p2)x 
"z+ . . . 

27 (p+pl-iE) (Pl+p2-is) wl 
(64~) 

v3(p) = (iI) 
dpl e-iplx s- 2n p+p1-iE w1 

dpl dpZ dp3 
+ (iX13j&- 2a 21 

e-i(CPi)x 
x (pfpl-iE) (p1+p2-ic) (p2+p3-iE) 

w3 Wl -+ . . . 
w2 

(64d) 

Here (following JMMS) we have introduced a parameter X which 

counts the number of phonons. Eventually, we'll set X = 1. 

The key to determining the correlation function is a 

monodromy property of a 2x2 matrix Constructed from these wave 

functions. Define 
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Y(P) = 
j:wy %d;] (y; W(P) II) 

(65) 

From the series (64) we see that the functions vi(p) are 

analytic in the lower half p-plane. We also define functions 

'i(p) which are analytic in the upper half-plane by making the 

replacement (p-ie)+(p+is) in the first propagator of each term 

in the series. The discontinuity vi(p) - Vi(p) is obtained by 

replacing the first PrOpagatOK (-i)/(P+pl-iE) by 2rs(p+pl). 

Graphically this amounts to a removal of the first phonon line. 

A fundamental property of these series is that if the first 

phonon is removed from the set of graphs for v,(p) it becomes 

essentially the set of graphs for v 1 (-p) and vice-versa, and 

similarly for v2(p) and v3(-p). This leads to the discontinuity 

conditions 

vg(P) - Go(p) = - AeiPx W(p) vl(-p) 

Vi(p) - Cl(p) = - Xeipx &)VO (-P) 

v2 (p) - V2(p) = - Aeipx &)v,(-P) 

v3(P) - v,(P) = - Xeipx w(p) v~(-~) 

(66a) 

(66b) 

(66c) 

(66d) 

Because of these conditions we can write 
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Y(P) = (:::;; ;;:I;) fipx;'p' ;) c - ;) (67) 

The first factor in this expression is manifestly analytic in 

the upper half-plane, and so we have isolated the upper 

half-plane singularities of Y(P) within the explicit function 

w(p) appearing in the second factor. w(p) has a square root 

branch cut both above the real axis from c 1= -kF + in t0 

c2 = kF + in and below the real axis from c4 = -kF - in to 

C3 = kF - in. Let us denote by Y, a closed curve around the 

branch Point cr, as shown in Fig. 15. We will demonstrate that 

Y(P) has the following fundamental property: when it is 

analytically continued around the closed curve Y,, r=l,...4, it 

returns to the same function multiplied by"a constant matrix, 

Y(P) ___) Y(P) Mr 
yr 

(68) 

The constant matrix Mr is called the monodromy matrix. The 

monodromy matrices are somewhat analogous to the scattering 

data in the inverse scattering method. To demonstrate the 

monodromy property (68) around the branch points cl and C2, we 

simply use (67) and 0bserv.e that w(p) acquires a minus sign 

from going around either branch point. This gives (68) with 
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Ml = M2 = (69) 

Similarly we can isolate the lower half-plane singularities of 

Y(p) by writing 

Y(P) = yy ;;;;) fiyy”’ y) (-: 

This leads to (68) for r = 3 and 4, with 

M3 = M4 

We also note the asymptotic behavior of Y(p) which can be 

off directly from the definition (65) and the series (64), 

-1 0 
= ( ) -2x 1 

0 

) 
1. 

(78) 

(71) 

read 

Y(P) s ("ypx ;) [l+o(l/P)I (72) 

The monodromy property of Y(P) leads directly to the 

result that Y(p) satisfies a set of first order linear 

differential equations. Near each of the branch points cr, 

r=l I..., 4, we may write 
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h 
Y(P) = Y(p) (p-c,) Lr (73) 

where G(p) is regular and nonvanishing at p = cr, and Lr is a 

constant matrix related to the monodromy matrix by 

Now consider the function (aY/ap) Y-l. It is easy to see from 

(73) that this function has a simple pole at cr with residue 

n 

A 
r 

= Y(C,) Lr G-l (cr) (75) 

Combining this observation with the asymptotic behavior implied 

by (72), the function (aY/ap) Y-l can be constructed 

explicitly, leading to the linear differential equation 

ay -= 
ap 

1 
.il & + (ix YJ] y (76) 

The fact that the monodromy matrices for Y are independent of x 

implies that Y also satisfies a differential equation in x. By 

noting that, for p =: cr, 

A ay -1 
sy = 2 (P-c,) 

Lr 
(P-c,) 

-Lr ~-1 _ aTi ;-I -- 
ax 

we see that ay/ax y-l is an entire function of p, namely a 

polynomial. Let us write the asymptotic expansion of vi(p) and 
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v,(p) as 

'i(P) - 1 v. (0) + 0 1 
p+m.P 1 ( > 7 

i = 1,3 

where vi(O) are functions of x only. Then the function aY/ax 

y-l may be explicitly constructed, giving 

ay -= 
ax ( 

ip -iv3 (O) 
ivl(O) ) 

Y 
0 

(79) 

Note that this procedure may be used to construct a 

differential equation for Y with respect to any parameter which 

appears in Y but not in its monodromy matrices (e.g., for our 

case we could construct equations for aY/ac,). The totality of 

such equations may be written 

dY = SlY (80) 

where Q is a differential form describing variations with 

respect to each parameter which leaves the monodromy invariant. 

Poincare's lemma, d2(anything) = 0 (i.e., the equality of mixed 

second partial derivatives), leads to consistency conditions on 

Q itself 
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dR=Sl-n (81) 

This is quite analogous to the "zero curvature" condition which 

arises as the consistency condition for a Lax pair in the 

inverse scattering method. In that case the coefficient 

matrices in the Lax pair depend on the local field variables, 

and the consistency condition becomes the nonlinear equation of 

motion. In the present case it turns out that the coefficient 

matrices in Sl can be related to the two-point correlation 

function. The consistency condition (81) reduces to an 

ordinary nonlinear (Painleve) differential equation for the 

correlation function. 

The full set of linear equations satisfied by Y is given 

by (80) with 

fi= 

r=l 
AZ dlog(p-c,) + (tx 1) dp + (i;i(o) -i;3(o)) dx . 

(82) 

For the purpose of determining the two-point function 

G(x) = <a(x) (83) 

we only need to consider variations with respect to p and x. 

Moreover, we can now finally let our mass gap parameter n go to 

zero, allowing the branch points to coalesce on the real axis. 

The monodromy matrices around Yl and Y4 (c.f. Fig. 15) at -k F 
can be combined to give 
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M- = M4"l = (2: ;r:J 

while the combined monodromy at +kF is 

M+ = M2M3 = y::' :", 

FERMILAEGPub-82/67-THY 

(84) 

(85) 

Note that both M+ and M- have eigenvalues Cl and K2 where 

K 1 = 1 - 2X2 + 2iX A-3 (86a) 

K 2 = 1 - 2X2 - 2i.X &--P (86b) 

With these observations, we are led to the linear system 

dY = ClY (87a) 

with 

Q = [& + -& +f; ;)]dp + (i,3Coj -i;3'o? dx 

(87b) 
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3.2 PAINLEVE EQUATION FOR THE TWO-POINT FUNCTION 

The analysis of the linear system (87) which leads to the 

nonlinear equation for the two-point function has been 

discussed in detail by JMMS (Ref. 6, Section 6 and Appendix 4). 

I will just review the essential points and then state the 

result. The crucial observation is that the logarithmic 

derivative of the correlation function may be obtained from the 

large p limit of the wave function Y(p), specifically, from one 

of the two diagonal components v. or v2. To see this, first 

imagine taking the derivative 8/3x of the series for log G(x) 

shown in Fig. 9. The graphs in Fig. 9 have a factor emiqix for 

each phonon attached to the upper dotted line, so a/ax simply 

introduces a factor -i?,. 
11 

in the nth graph. Each qi in this 

sum can be used to cancel the associated pole, represented 

graphically by contracting the phonon to a point. The n 

contracted graphs obtained are all equal by cyclic symmetry, so 

we obtain a factor n to cancel the l/n in the series for 

log G(x). In this way, we obtain the series for a/ax 

[log G(x)] shown in Fig. 16. Next we consider the large p 

behavior of the graphs for v,(p). The 0(1/p) term is obtained 

by dropping the first graph (which is just unity) and 

contracting the last phonon on the left in all the rest. The 

two fermion lines which now terminate on the lower dotted line 

can be brought to the same point without affecting the value of 

the graph. Thus we again recover the graphical series shown in 
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Fig. 16. The result is that the correlation function is 

related to the large p behavior of the wave function by 

vo(p) J' 1 + -1 ?- log G(x) + 0 5 P ax 0 P 
(88) 

Using this relation and the linear equation for aY/ap in (871, 

the logarithmic derivative of the correlation function can be 

expressed in terms of elements of the matrices A+ and A-. We 

ah0 know that the matrices A+ and A _ are related to the log of 

the monodr omy matrix by a similarity transformation 

(c.f. Eq. (75)), and hence their eigenvalues are known from 

Eg. (86). For X = 1, all four eigenvalues are equal to l/2. 

With this information, the consistency conditions (81) can be 

reduced to a single nonlinear equation for 

f(x) : x & log G(x) (89) 

The equation, 

(xfW)2 = -4(xfl-l-f) (Xfl,(fl)2-f) (90) 

is equivalent to a Painlev& equation of the fifth kind. 
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3.3 CONCLUSION 

The results of Jimbo et al constitute a complete theory of 

correlation functions for the impenetrable (c=-) delta-function 

gas. At the present time, the theory for the general (finite 

c) Bethe's ansatz model is not as well developed. In these 

lectures I have tried to described the c=m results in the 

context of the more general quantum inverse method and 

Gel'fand-Levitan transform, in the hope that the latter will 

eventually lead to a more complete theory. In order to clarify 

the nature of the problem for finite c, let me recapitulate the 

essential elements of the c=m treatment with a view toward 

finite c. The JMMS treatment is based on the properties of 

free fermion operators and Jordan-Wigner transformations. For 

finite c these both have a natural generalization in the R 

operators and the Gel'fand-Levitan transform respectively. By 

using the Gel'fand-Levitan expressions for the nonlinear 

Schrodinger fields $*(x) and $(y), one can generate series 

expansions for the finite c correlation functions. The problem 

of cutting off the infrared singularities represented by 

vanishing momentum denominators is more subtle than it is at 

C=CO, but this problem has been solved, and it can be shown that 

the terms in the series expansion are well-defined to all 

orders. The Gel'fand-Levitan series for the two-point function 

reproduces the results of JMMS at c=- and has also been used to 

study higher order terms in the l/c expansion.7r23 Although the 
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0(1/c) term can be written in closed form in terms of Painlev'e 

V functions, the analysis is rather cumbersome and the 

possibility of calculating all terms in the large c expansion 

and summing them up appears remote without some further insight 

into the problem. The essential complication which makes the 

finite c problem more difficult is that the R operators are not 

fermion operators, but are rather "Zamolodchikov operators", 

I.e., they commute by a two-body S-matrix. Thus, when we 

compute matrix elements of expressions involving R operators, 

the various Wick contractions contain different products of 

S-matrices. So far this complication has prevented an analysis 

of the finite c correlations along the lines of the monodromy 

arguments of Jimbo et al for the c=m case. On the other hand, 

the similarity between the c=m monodromy arguments and the 

quantum inverse method itself is quite suggestive. The series 

expansions for the wave functions vi(p), Eqs. (64) have the 

same form as the Gel'fand-Levitan series for the Jost solution 

of the quantum inverse problem, with the functions w(p) and 

(,-1(p) in the wave functions being replaced by the operators 

R(P) and R+(p) in the Jost solutions. In fact, the linear 

equation (79) for Y(P) is precisely analogous to the 

Zakharov-Shabat eigenvalue problem. Further pursuit of theses 

intriguing connections may eventually lead to a general theory 

of correlation functions for integrable systems. 
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FIGURE CAPTIONS 

Two-body wave function. 

Three-body wave function. 

Graphical expansion of the Jordan-Nigner transformation. 

Analytic structure of Eq. (48) in the complex p plane. 

(a) A scattering vertex in the finite density ground 

state, Eq. (55). 

(b) A pair creation vertex, Eq. (56). 

(a) Graphs for Eq. (57a). 

(b) Graphs for Eq. (57b). 

A typical graph for the four-point function. 

(a) A disconnected graph for the two-point function. 

(b) A connected graph for the two-point function. 

Series expansion for log G(x). 

Series expansions for Vi(p,p'), i = 0, 1, 2, and 3. 

Reduction of a graph for Vi(p,p') to a graph for vi(p) in 

the limit P'-+~. 

Graphical result of changing the signs of the iE's in the 

upper phonon propagators. 

A typical graph for v2(p). 

Series expansions for vi(p), i = 8, 1, 2, and 3. 

Contours for defining the monodromy matrices Mi, i = 1, 2, 

3, 4. 

Graphical series for (a/ax) log G(x). 
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