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ABSTRACT 

The Y and T spectroscopies are analyzed in the framework of a recently 

proposed potential model which incorporates linear confinement and asymptotic 

freedom. Given the Regge slope a’ (a’ taken to be I GeVe2) and the QCD scale 

parameter A (Ars taken to be 0.5 GeV) the potential is completely determined. 

Excellent agreement with experiment is found, including in particular leptonic 

widths and hyperfine splittings. This supports a short distance behavior of the 

quark-antiquark potential as predicted by quantum chromodynamics. We also 

demonstrate in a model independent way that the Y and T spectra provide a lower 

bound on the QCD scale parameter A; we find Am > 0.1 GeV. The properties of 

(ba and possible (t?, (ta and (t6) spectroscopies are studied, including weak 

interaction effects. The implications of the Y, T and possible heavier quarkonium 

families for quantitative tests of QCD are discussed. It is shown that a (ti) system 

with m(ti) > 40 CeV would provide an accurate determination of ~~~ 
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I. INTRODUCTION 

Around the time of the discovery of the J/Y resonance’ in 1974 Appelquist 

and Politzer’ were led by the idea of asymptotic freedom to suggest that heavy 

quarks would form non-relativistic positronium-like bound states, which should be 

observed as narrow resonances. Since then the charmonium modelL has been 

extensively developed, motivated by the hope to gain insight into the fundamental 

theory of strong interactions by studying their “hydrogen atom.“3 

Over the past six years, a successful description of the Y- and T-families 4-7 

has been achieved, and many predictions 3,8-9 of the charmonium model have been 

confirmed experimentally. Theoretical efforts have been concentrated on the 

exploration of specific potential models as well as the application of rigorous 

methods derived from nonrelativistic quantum mechanics. IO-11 The result of these 

efforts (with respect to the static quark-antiquark potential) is summarized in Fig. 

I, where various phenomenologically successful potentials are shown. In the region 

0.1 fm <r < 1.0 fm, which is probed by present quarkonium families, a flavor - - 

independent l6 potential has emerged, which appears to be determined by 

experimental data. At large and short distances, however, a variety of asymptotic 

behaviors have been suggested, all of which seem to be compatible with 

present experimental data. 

Theoretically, based on strong and weak coupling expansions in quantum 

chromodynamics (QCD), one expects the static CQQ potential to be Coulombic at 

short distances and to grow linearly at large distances. The potential, obtained by 

a simple superposition of both asymptotic limits, has been studied extensively by 

the Co:nell group, 15 _) resulting ir: a successful descripticn of the !‘- and T-families. 

More recently various authors have investigated potentials which incorporate 

logarithmic modifications” of the Coulombic part at short distances due to 
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vacuum polarization effects in CCD. Richardsomi’ in particular, has put forward 

d simple and elegant :?nsatz which provides an excellent description of the (ca- 

and (b&spectra and incorporates asymptotic freedom qualitatively. 

Recently, we 13 have examined the relationships between the Regge slope CL’, 

the CCD scale parameter /I and the quarkonium potential, which we studied in 

terms of its dimensionless e-function. These investigations led to further insight 

into the nature of Richardson’s potential and to a new B-function which possesses 

the asymptotic behavior at small coupling constants as required by perturbative 

QCD to two loops. The two-loop contribution to the S-function and the one-loop 

correction to the potential have to be incorporated consistently, in order to relate 

the short distance behavior of the quark-antiquark potential to a well-defined QCD 

scale parameter, say ‘1~ 18 These considerations led us to a new quarkonium 

potential’;dihich agrees numerically with Richardson’s potential (as well as other 

Potentials shown in Figs. 1 and 2) for distances probed by the Y and T families. At 

shorter distances, however, differences among the various potentials become 

substantial. These lead to predictions for heavier quarkonium systems which differ 

significantly among the various potential models. The present work is a detailed 

study of the ?y, ‘7 and possible heavier quarkonium systems in the framework of 

QCD-like potential models, especially the one proposed in ref. 13. 

In principle, given the Regge slope CL’ (e.g. a’ taken from light hadron spec- 

troscopy) and the QCD scale parameter A (e.g. Ai;iS obtained from deep inelastic 

scattering experiments) our potential is completely determined. This is in contrast 

to other models where free parameters of the potential are determined using 

quarkonium data. In practice it turns out that quarkonium spectra give us a more 

accurate determination of a’ and jLm in our potential model. The resulting values 

of CL’ and hs are I GeVm2 and 0.5 GeV respectively (due to the different number of 

effective flavors for quarkonia and light hadrons as well as other uncertainties, we 

expect that different ieterminations of 3’ should agree to only within 20%). 
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However, even if one accepts the success of QCD-like models, the question 

remains whether these achievements really provide evidence in favor of theoretical 

expectations based on QCD or whether they just demonstrate their consistency 

with experimental data. These doubts are enhanced by the success of a class of 

essentially logarithmic potentials, IO,19 Investigated in great detail by Quigg and 

Rosner, and ,\lartin,12 which have no resemblance with the theoretically expected 

asymptotic behaviors at neither small nor large distances. 

In this paper we address ourselves to the question what we can learn from 

quarkonia about asymptotic freedom and quantum chromodynamics in general. Our 

analysis shows that a heavy quarkonium system of mass m > 40 GeV would clearly 

distinguish between the various potential models. It would probe the (Q@ potential 

at sufficiently short distances to test the prediction of perturbative QCD, and it 

would also provide a clean determination of the scale parameter A. In view of the 

various theoretical and experimental uncertainties in the application of perturba- 

tive QCD to deep inelastic scattering and other processes, an independent 

determination of the A parameter in QCD by means of heavy quarkonia would be of 

great importance. The quantities, which are most sensitive to the short distance 

part of the (QQ potential, are leptonic widths and hyperfine splittings. Our 

analysis of the Y and T families leads to the theoretical predictions (c.f. Sec. III) 

ree(Tl q (1.07 ? 0.24) keV 

and 

AE ,~- = 99 (MeV 7 
C 
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The agreement of these results with experimental data supports a short distance 

behavior (of :he quark-antiquark potential ds predicted by quantum chromody- 

namics. Furthermore, ?he numerical values for the Regge slope and the QCD scale 

parameter, 3’2 1 GeVe2 and “E -0.5 GeV, are in quantitative agreement with 

results obtained from light hadron spectroscopy and deep inelastic scattering 

experiments. 

The paper is organized as follows: In Sec. II we review the basic theoretical 

expectations concerning heavy quark-antiquark bound states. Section III deals with 

the (cc), (b6) and (bc) families in the framework of a specific potential model which 

incorporates asymptotic freedom and linear confinement. In Sec. IV \ve discuss in a 

model - independent way the implications of present and (hopefully) future 

quarkonium systems for quantitative tesjs of QCC. Section V is devoted to a study 

of (ti), (ta and (6) spectroscopies, and in Sec. VI weak interaction (i.e. 2 boson) 

effects are briefly discussed. In Sec. VII we summarize our results and comment on 

remaining problems. ‘Appendix A deals with details of the potential r~sed, .a& in 

Appendix B we give a brief discussion of QCD corrections to leptonic widths and 

the origin of the various uncertainties involved. 
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II. THE STATIC CQC$ POTENTIAL AND .ASYMPTOTIC FREEDOM 

it present a theory of bound states in quantum chromodynamics does not 

exist, and even its nonrelativistic limit, which should be applicable for heavy quark- 

antiquark systems, cannot be derived from first principles. One therefore has to 

start from a set of reasonable theoretical expectations, which will (hopefully) be 

put on a firm theoretical basis in the future. Our theoretical expectations are the 

following: 

(I) The mass spectrum of heavy quark-antiquark bound states has the form 

- 
M”!CC) = Lrn 

’ Q 
+ En(m 0’ w (2.1) 

where m 
Q is the quark mass and E&mQ,_~ V) is the energy eigenvalue of the nonrela- 

tivistic Schrodinger equation with a flavor-independent potential \‘h. 

(2) The asymptotic limits of the static (Qa potential read 

V(r) k, kr 
r+ m 

(2.2a) 

(2.2b) 

where k is the string tension and !, the QCO scale parameter. 

(3) In order to relate these asymptotic behaviors to experimental data, one 

has to specify at what distances corrections to Eqs. (2.2) are expected to be 

negligible. For the lack of a more definite criterion we choose, at short distances, 

ri r I 
- c ’ 2 2 = 100 

rc “FE 
(2.3) 
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in accord with analyses of deep inelastic scattering processes where for momentum 

transfers Q with l,Qi 2 > Q-2, Qc2.‘.I$s = IOOz perturbative calculations are 

consmered to be reliable. 21 

The static (Q@ potential V’(T) is a quantity that has the dimensions of mass. 

;t depends on dimensionless parameters (e.g. group factors) characterizing the QCD 

lagrangian and (if the masses of light quarks can be neglected) a single scale which 

we may choose to be A or the string tension k. In order to disentangle these two 

ingredients which determine the (QQ3 interaction it is useful to look at the 

dimensionless E-function of the running coupling constant related to the potential. 

This is the approach of ref. 13, which we shall now’ review. 

Let us consider the Fourier-transform of V(? and define a physical running 

coupling constant p(Q2), P = g2/16n2 = ,%x-/4 li, (for momentum transfer 6, Q2 E d2) 

35 

V(Q’) z - 
16n2C2(R)p(Q2) 

Q2- ’ (2.4) 

where the group factor C2(R) equals 4/3 in QCD.” We emphasize that p(Q2) is a 

physical quantity and therefore independent of the choice of gauge and the 

subtraction scheme. For large values of C2 perturbative QCD implies 

dc3 rv I 

Q2+ m bob 22 
(2.5a) 

A 

where 23 

b, = i 

=I = T (C,(C))* - 2 C2(G)Nf - ZC,iR)K, (2.50) 
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Frr xYa.11 r z rre iLt.5r.s frrr Eq. ;xa) 

P(Q2) - 5 [ I + C(Q31 

Q2+ 0 Q2 

The s-function related to the running coupling constant p(Q2) is given by 

6 (p) = Q2 d- p(Q*) 1 
aQ* Q*=Q’(p) 

(2.k) 

(2.6) 

and from Eqs. (2.5) we read off its asymptotic behaviors 

B(p) - -bOp2 - blP3 + O$+) 
P+O 

(2.7a) 

. (2.7b) 

Losing the boundary conditions Eqs. (2.5) for both large and small values of Q* the 

running coupling constant can be expressed in terms of the ?-function: 

(*..%a) 

and 

In 5 = In p + 
Q2 J 

pwd” [; + &-j (2.8b) 

Equations (2.8) are uniquely determined by specifying the asymptotic limits of 

-(C2), as given by Ecs. i;.i’), and by the requirement thar the occurring integrals 

are finite. In particular the integral over the inverse S-function in Eq. (2.8a) is 

,well defined only after the one- and two-loop contributions have been subtracted. 
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The sum of Eqs. (2.8a) and (2.8b) reads 

K I 
Ini = bgP 

bl 
A 

+2 In (hop) + 

bO 

+In p-Lmdx [k + &] (2.8~) 

where the explicit dependence on Q2 has dropped out. Since the running coupling p 

is a function of Q*, self-consistency requires the R.H.S. of Eq. (2.8~) to be 

independent of p. ;A simple examination shows that this is indeed the case. For 

convenience, we shall put D = I in Eq. (2.8~) for later use. 

In order to relate the scale parameter A in Eqs. (2.5) and (2.8) to the A 

parameter in a specific regularization scheme one has to calculate the complete 

one-loop contribution to the static (Qa potential. For the m scheme one 

obtains13’~c,:: 

$C,(C) -EN \ 
9 fi 

(2.9) 

The relation between the constant K in Eq. (2.8b), the string tension k and the 

asymptotic Regge slope a’ is given by 

CT’ I I 
q 2nk q 4rr2C2(R)K 

The combination of Eqs. (2.Z), (2.9) and (2.10) leads to an expression of the dimen- 

sionless quantity VA*- in terms of the B-function 13 
VS 
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ln(z’??$S) = -In(4n2C2(R))-$ $!C2Ol-?Nf) -k-slnbo 
i 

bl 

0 0 

. (2.11) 

Obviously, the 3-function determines the relation between a’ and ArS. Setting the 

scale of the theory by fixing a’ or AFS,one then obtains the(Qopotential via Eqs. 

(2.8) and (2.4). 

In principle, the B-function can be evaluated directly from QCD. At present, 

however, this has not been achieved and only the asymptotic limits, corresponding 

to the leading contributions in weak and strong coupling expansions, are known 

theoretically. However, any interpolation between these two asymptotic regimes is 

restricted empirically at intermediate coupling strengths by the requirement that 

the resulting potential has to provide a description of the Y and T spectroscopies. 

An example 13 which satisfies this condition is given by 

6&J = - 
I bl I -kp 

bOp2 l-e -l’bopl 
+Zze 

bO 

where 6(p) approaches 

B(P) II - bOp2 - bIp3 - 
bI(bI - kbol 

P+o bO 
p4 + O(p 5, 

, (2.12) 

and 

3(P 1 I - -p +q + O(b) 
Pm 
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!Ve note that 8 is related to the 3-100~ contribution to B(p). So far this coefficient 

has non been calculated, and therefore we treat 2 as a free parameter. From the Y 

and : spectra we infer L= 24. An immediate consequence of this choice of the 6- 

function is the relation between the Regge slope CL’ and the scale parameter A. 

Carrying out the integrations in Eq. (2.11) yields 

In at A& = - In (4n*C,(R)) + In b. +$i[yE+ht] 

- k ( $ C,(C) - TNf ) 

v&Ye Y - 4.5772... is Euler’s constant. ,E - For QCD with ? flavors one obtains 

, 2 1 Ars = G.27, i.e. a Regge slope of CL ’ U” I GeV -2 corresponcs to a scale parameter 

Ars s 500 MeV. 

The E-function characterizing Richardson’s potential can be recovered in two 

ways. One possibility is to neglect the two-loop contribution at small coupling 

strengths, i.e. b , = 0. The intriguing feature of the resulting B-function, 

BRich(p) z -hop * I-e 
-l/boo 

3 , 

is the essential singularity at p = 0. Precisely this structure is expected if classical 
-, 

field configurationscG -7 are important for the transition- between weak and strong 

coupling regimes. The other way to recover Richardson’s Potential is to take the 

limit P. + m in Eq. (2.12). It is obvious from Eq. (2.13) that A;iis becomes infinite in 

this limit if the Regge slope c(’ is kept fixed. It is therefore not possible to infer a 

well-defined QCD scale parameter h from Richardson’s potential. It may rather be 

considered as the limiting case obtained as A;tiS approaches infinity (cf. Sec. V). 
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The term proportional to bI in Eq. (2.12) is relevant only for small values of p 

due to the large negative coefficient in the exponential function. The potential 

which results from Eq. (2.12) differs therefore from Richardson’s potential only at 

small values of the running coupling constant, i.e. at short distances (cf. Fig. 2). 

These differences, however, lead to substantially different predictions for heavier 

quarkonium spectroscopies which we will investigate in Sec. V. 

A comment on the B-function defined in Eqs. (2.4) and (2.6) is in order. The 

Callan-Symanzik B-function in the Gell-Mann-Low renormalization group approach 

is defined within the perturbative formalism (order by order to all orders). To two 

loops the a-function is universal, i.e. renormalization-scheme independent, and 

gauge-invariant. Its three-loop and higher-order contributions are in general’ 

gauge-dependent and scheme-dependent. In contrast, we have defined the B- 

function in terms of a physical couplingconstant, which is directly measurable in 

experiments. Consistency implies that our definition of the B-function must be 

gauge- and scheme-independent. Also this definition does not require the B- 

function to have a small coupling perturbative expansion (in fact, the B-function in 

Eq. (2.12) has an essential singularity at p = 0, so that its expansion around p : 0 is 

only an asymptotic series. As it is clear from Eq. (2.8a) the scale parameter A is 

defined after two subtractions which involve the coefficients b. and bI. In order 

for A to have a well-defined meaning the coefficients b. and bl have to be 

universal. Our B-function, is, of course, “process dependent”; it is defined in terms 

of a particular physical quantity, the quark-antiquark potential. Clearly the 

corresponding definition is also useful for other scattering processes. 

To conclude this section let us emphasize that the choice of the &function in 

Eq. (2.12) is by no means unique. Its appealing features are the asymptotic limits 

for small and large values of p (as expected on the basis of QCC), its interesting 

analytic structure at p = 0 (inherent in Richardson’s potential) and its simplicity. 

Ti-,e reacer is i--itc~c to iind orher examples wrich meet these criteria and provide 

zn adequate description o f the ‘? and T spectroscopies. 
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III. (ca AND (b@ SPECTRCISCOPI5.S 

I” Sec. II we have reviewed the theoretical framework for the description of 

heavy quark bound states, and we have discussed how to incorporate asymptotic 

freedom in the (Qa interaction. Given the B-function of Eq. (2.12) and the Regge 

slope CL’ 1 I CeV-’ the (QC?) potential is determinec via EC+ (2.4) and (2.8). 

Equation lG.11) implies etA2m = 0.27, from ivhich one obtains for the scale 

parameter A== 0.5 CeV. 

A. Mass Spectra 

Tables I and II summarize, for spin triplet states of the Y and T families, mass 

spectra, ratios of leptonic widths, velocities and mean square radii of the bound 

constituents ,which follow from the given potential and the relation Eq. (2.1) 

between masses and energy eigenvalues of the SchrGdinger equation. The 

agreement with experiment is satisfactory. The computed masses coincide with 

the experimentally measured’ ones within IO MeV, except for the 4S state in T 

family, where the disagreement is 40 MeV. This state, however, lies above the 

threshold for BE production, its width is about 20 &leV and corrections due to 

coupled channel effects are expected to be important. The only free parameters 

adjusted to obtain these results are the masses of the c- and b-quarks. They are 

determined by identifying the IS-states with the %’ and T resonances. 

8. Leptonic Widths 

In the framework of the potential model, the leptonic widths of the S-states 
-0 

are given by-” 

16rre 2a2 
r,,(nS) = Q 

?ln2(QQ) 
(3.1) 

In QCD,Eq. (3.1) is modified by radiative 
23 

and relativistic corrections 
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ee I-tiCx(?m )t >ns-Q ’ (3.2) 

the leading radiative correction can be calculated reliably in perturbation theory, 

whereas higher order radiative and relativistic corrections lead to an uncertainty A 

(a discussion of Eq. (3.2) is given in Appendix 8). Guided by our experience with 

nonrelativistic bound states in quantum electrodynamics the order of magnitude of 

A can be estimated as follows: 

(i) There will be higher order radiative corrections, and we assume their 

coefficient to be of the same order of magnitude as the lowest order coefficient, 

i.e. Arad q g ‘is2; 

(ii) for Coulombic bound states relativistic corrections, \\rhich are of order 

v2/C2, are also proportional to a2 and usually not distinguished from relativistic 

corrections. However, the Y and T families are not Coulombic bound states, and 

we therefore include an additional uncertainty A r-4 = v2/c2. Using the running 

coupling constant for A- = 0.5 GeV (cf. Fig. 3) and the values of v2/c2 from tables LlS 

I, II we obtain A(Y) q 0.39 and A(T) : 0.15, where A = Arad + Arel. From Eq. (3.2) we 

thus obtain the theoretical leptonic widths 

ree(Y) = 3.70 2 3.05 keV I 

and 

r..(T) q 1.07 f 0.24 keV 

where we have used ~~(3.1 GeV) = 0.31 and ~r~(9.5 GeV) = 0.20 (cf. Fig. 3). The 

measured leptonic widths for the T read 
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CLEG6 

CUSB:7 

DORIS? 

1.02 * 0.22 keV 

1.10 i 0.17 keV 

1.29 to.22 keV 

The uncertainties quoted for the theoretical leptonic widths of Y and T 

involve estimates of relativistic and radiative corrections. For ratios of leptonic 

widths of states in the same family the radiative corrections cancel. The 

relativistic corrections, however, will in general depend on the principal quantum 

number, i.e. they will not completely cancel. In the Y family we therefore expect 

uncertainties of about 30% for ratios of leptonic widths whereas in the T family 

relativistic corrections should be less than 10%. 

C. Hyperfine Splittings 

So far no completely satisfying theoretical description of the fine- and 

hyperfine-structure in charmonium 8p30 has been achieved. Due to the Thomas 

precession the fine-structure will necessarily involve long distance effects and may 

therefore be difficult to understand in the framework of the potential model. It is 

conceivable, however, that the hyperfine splitting is entirely a short distance 

effect which can be calculated in perturbation theory. To first order in os the 

HamiItonian3’ reads 

HHFS = ‘+ C2(R) (3.3) 

As our model accounts correctly for the leptonic widths without any “normalization 

factor” we have no reason to invoke a similar factor in Eq. (3.3) and the hyperfine 

splittings are uniquely determined. For the Y - nc splitting we obtain 

(~~~(3.1 GeV) = 0.31, cf. Fig. 3) 
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AE;-n = 99 MeV 
C 

which compares well with the measured 31 value, 

AEexp 
Y-Oc = (119 t 9) MeV 

It is interesting to compare the theoretical predictions for the hyperfine splittings 

and the leptonic widths, both of which are proportional to the square of the wave 

function at the origin. Compared to the experimental value, the lowest order 

leptonic width for the Y is too large by 62% and is reduced via first order QCD 

corrections by 85%. On the contrary, the lowest order hyperfine splitting is too 

small by only 16%. First order QCD corrections are therefore expected to be 

small. Their calculation is in progress, 32 and the result will provide a further test 

for QCD-like potential models. 

In table III we have listed predictions, based on Eq. (16), for the hyperfine 

splittings in the Y and T families. In the derivation of the Hamiltonian Eq. (3.3) 

binding effects are neglected, i.e. the quarks are considered to be on-shell. The 

size of binding corrections can be estimated by replacing m Q by HM(@ in Eq. 

(3.3). They turn out to be negligible except for the Y’ where they decrease the 

splitting by 43% as indicated in table III. At present there seems to be no way to 

resolve this theoretical ambiguity. 

D. El transitions 

The rates for El transitionsS”5’33’34 are given by 

4 
rif = TeQ 

(3.4) 
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where e 
Q 

is the electric charge of the quark, a the fine structure constant and w 

the energy of the emitted photon; the dipole moment Dif represents the overlap 

integral with respect to the radial wavefunctions, 

where 
s 

m 
Dif = 

0 
drRi(r)rRf(r) 

/ 

m 

0 
drRfRi = 6if 

and the statistical factor Sif for a transition (ji, ki) + (j,, ilf) (j and I. denote 

total spin and orbital angular momentum) can be expressed in terms of Wigner’s 

6 - j symbol,33’34 

(3.5) 

Sif = { if : k: Jzmax {ai, kf} f 

where s denotes the spin of initial and final state. For singlet states one obtains 

Sif = I/(2ji + I); for triplet states the relevant values of the 6 - j symbols are listed 

in table IV. 

Tables V and VI contain photon momenta, dipole moments and widths for 

various El-transitions in the Y and T family. For the T family, the splittings of the 

P- and D-states are not included. The fine structure splittings in the T family are 

expected to be smaller than those in the Y family. Yet their effect on the 

transition rates will be very important and may easily amount to a factor of 2. For 

the transitions Y’ + yx3, theory and experiment disagree by a factor of 2 to 4, and 

one has to expect a similar discrepancy in the T spectrum. We do not fully 

understand the origin of this disagreement, which is common to all potential 

models. One may, however, expect QCD corrections to the lowest order 

contribution which are considerably larger than in the case of the leptonic widths 
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because of the different magnitude of the photon energies involved in both cases. 

Clearly, the computation of relativistic and radiative corrections to the lowest 

order formula for El transitions 36 IS at present one of the major theoretical 

problems in quarkonium physics. 

E. (ba Mesons 

Given the c- and b-quark masses as well as the (Q@ potential from the 

analysis of the y and T families the spectrum of (ba mesons, which have a reduced 

mass mR satisfying Km, < mR < Kmb, is uniquely determined. The properties of 

the lowest spin triplet state and its first radial excitation are displayed in Table 

VII. Equation (3.3) implies a lowest order hyperfine splitting of 50 MeV for the 

ground state. We therefore obtain for the mass of the pseudoscalar (bS) ground 

state 

Mb+1 ‘SoI = 6.29 GeV 

The (ba system probes the quarkonium potential at distances where it is 

already determined from the analysis of the Y and T families. Any model which 

describes the ‘l’ and T spectroscopies should therefore yield the same predictions 

for the (ba system. This is indeed the case, and the results presented in this section 

can be regarded as firm. Similar values icr (ba masses have been obtained by 

others.37 
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IV. ASYMPTOTIC FREEDOM AND QUARKONIA 

The results, which we have presented in the last section, demonstrate that a 

potential model, which incorporates asymptotic freedom and linear confinement, is 

able to provide an accurate description of the properties of the Y and T 

spectroscopies. However, the questions remain: Is this success evidence for the 

theoretical expectations based on QCD or is the QCD-like potential model just one 

out of many different models all of which are consistent with experimental data? 

In particular, what are the uncertainties in the relationship between the Regge 

slope and the QCD scale parameter, o’A&S = 0.27, determined from the Y and T 

spectroscopies (as discussed in Sec. II)? 

Recently, Martin 12 has given an excellent fit of the Y and T mass spectra 

based on the potential A + Br”, a = 0.104 (cf. Figs. 1, 2, table VIII), whose 

asymptotic behaviors at small and large distances strongly disagree with theo- 

retical prejudices. The results for the ratios of the leptonic widths are not as 

excellent as those for the energy levels; furthermore, in order to obtain the correct 

absolute values of the leptonic widths on the basis of a power potential one has to 

choose either a small value for the c-quark mass yielding results for the El 

transitions which are even worse than those obtained in Sec. RID or a quark-mass 

dependent “correction factor” in the van-Royen Weisslopf formula. However, due 

to experimental uncertainties and the lack in our theoretical understanding of 

relativistic corrections, both the small-power potentials as well as QCD-like 

models appear to be consistent with present experimental data, and the evidence 

for asymptotic freedom from quarkonia remains unconfirmed. As we shall discuss 

later, only the existence of another heavy quarkonium system would settle this 

isscc. 
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It is interesting, however, that if the short distance part of the potential is 

indeed determined by perturbative QCD, the Y and T spectra put a lower bound on 

the scale parameter A. As we have pointed out in the introduction, the (Q@ 

potential appears to be determined experimentally for distances 

0.1 fm < r < 1.0 fm (cf. Fig. I). At short distances the Coulomb-like potential, 
38 

- - 

as predicted by perturbative QCD, reads 

VQCD - _ c2(R)crs(r) 
(r) r+ 0 r t 

Inln I 2 2 

es(r) = 4n 

bl 

I-- r %s C 
bo’n 1 2 2 

r *ET 

bo2 In 2 l2 
+ 1 +o 

r “m 
In 2 2 

r “x 
i 

c = g C,(G) - q Nf + 2YE f (4.1) 

where TE is Euler’s constant. In Fig. 4 we have displayed this asymptotic freedom 

potential for various values of Arg, assuming 4 flavors, i.e. Nf = 4 (for distances 

under consideration which satisfy r < r o, Ilro2 > 4m 
C2P 

the effective number of 

flavors is Nf = 4; for distances r > ro, the effect of changing Nf = 4 to Nf = 3 is 

numerically negligible for our conclusions). According to Eq. (2.3) the potentials 

are plotted for distances r < r 
- c) where rc 2 = l/(100 Ah). For Am = 0.1 GeV the 

“experimental” and the Coulombic potential overlap for distances 

0.1 fm 2 r ( 0.2 fm, and they are clearly different in this region, as is obvious from 

Fig. 4. A quantitative measure of this discrepancy, which is independent of the 

absolute normalization of the potential, is the slope, integrated over the region 

under consideration, i.e. AV s V(r = 0.2 fm) - V(r = 0.1 fm). The potentials shown 

in Fig. 1 satisfy the inquality 
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AV mm 2 a’ < AVmax - , 

AVmin = 458 MeV , AVmax = 566 MeV , 

the lower bound is given by the “softest” potential which is due to Martin 12 

whereas the upper bound is inferred from the “Coulomb + Linear” potential 

employed by the Cornell group. 15 The Coulombic QCD potential yields, for 

*m = 0.1 GeV, 

AvQ’~(A~ = 0.1 GeV) = 222 MeV , 

i.e. we have 

AVQcD(A~g = 0.1 GeV) < KAVmin 

We therefore consider values of AF;~s less than or equal to 100 MeV to be highly 

unlikely. This lower bound is further supported by the fact that a potential, given 

by VQcD(h~ = 0.1 GeV) for r” 0.2 fm and by the “experimental” one for r > 0.2 

fm, leads to unacceptable results for the T spectroscopy which are shown in table 

VIII. 

For values of Arss 0.2 GeV perturbation theory becomes unreliable before 

the potential overlaps with the experimentally known region r > 0.1 fm. Therefore 

present quarkonia cannot distinguish between different values of AK as long as 

they are larger than or equal to 200 MeV. In order to illustrate the sensitivity of 

heavier quarkonium spectroscopies on the scale parameter we have considered two 

potentials corresponding to Am = 200 MeV and Am : 500 MeV, which characterize 

a range of values compatible with the analysis of deep inelastic scattering 
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experiments. 39 The first potential (cf. Fig. 5) is obtained by extrapolating the 

“experimental” potential logarithmically below 0.1 fm until it intersects with the 

short distance QCD potential; in the case A== 500 MeV we use the potential of 

section III. The results for the IS - 25 mass differences and the ground state 

leptonic widths of a possible (ti) system are displayed in Figs. 6 and 7 (for details, 

see Sec. Vl. They are compared with predictions obtained from the potential 12 

A + Br”, u = 0.104. It appears obvious that a toponium of mass m(ti) 2 40 GeV will 

be able to distinguish between power potentials and asymptotic freedom potentials 

as well as between different values of A,v~. We expect differences in the IS - 2S 

mass splittings between different potentials to be more than 70 MeV, and the 

leptonic widths will differ by more than 50%. 

We therefore conclude that given -the c- or b-quark mass, i.e. the absolute 

normalization of the potential, the (t3 spectrum is very sensitive to A. The reason 

is simple: the toponium spectrum will determine the “experimental” potential down 

to distances of about 0.04 fm. Here the slopes of various asymptotic freedom 

potentials are quite similar; however, they differ substantially in their absolute 

normalization due to the different strength of the running coupling constant for 

different values of A (cf. Fig. 4). For instance, a change of Am by 100 MeV 

changes the potential at 0.04 fm by about 300 MeV. Given the “experimental” 

potential down to 0.04 fm it can therefore distinguish different values of A. 

Unfortunately, the absolute normalization of the “experimental” potential is known 

only with an uncertainty of about *It00 MeV which will lead to an uncertainty of 

+ 150 MeV in the determination of A. 

A more precise determination of A may be possible by measuring hyperfine 

splittings“ and electromagnetic and hadronic decay widths, where QCD correc- 

tions have recently been calculated by Barbieri, Curci, d’Emilio and Remiddi 40 and 
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Barbieri, Caffo, Catto and Remiddi. 41 At m(t$ : 60 GeV, for instance, a change of 

ills by 100 hleV will change the running coupling constant by s 7% (cf. Fig. 3) and 

consequently the total hadronic width by 3 20% A measurement of r had Cti, with 

an accuracy of 20% would therefore determine the A parameter with an 

uncertainty of r 100 MeV. This, in turn, would fix the normalization of the 

potential up to i 300 MeV and thereby restrict the uncertainty of the quark masses 

to + 150 MeV. Of course, these quantitative estimates must be used with caution, 

but we consider it an exciting possibility, that the next quarkonium system might 

indeed provide the connection of the nonperturbative and the truly perturbative 

regimes and in this way determine the entire (Qa potential as well as the A 

parameter in QCD. 
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V. HEAVIER QUARKONIUM SPECTROSCOPIES 

In this section some properties of heavier quarkonium spectra are listed for t- 

quark masses in the range 15 GeV( mtc 80 CeV. The calculations have been 

carried out for the two (QQ) potentials (shown in Fig. 5) which at short distances 

approach Coulomb-like QCO potentials characterized by scale parameters 

Am = 200 MeV and AIM7 = 500 hleV respectively. 

We have computed the ground state binding energies (EB, tables IX, XII), the 

excitation energies for the first three S-states (En - EI, tables IX, XII), the first 

two P-states (Enp - EIs, tables X, XIII) and the first two D-states (E,D - EIS, 

tables X, XIII), We also listed the ratios (E3 - EI)/(E2 - El) (tables IX, XII) and 

(E2s - EIP)/(EZS - Els) (tables X, XIII) which are most sensitive to the effective 

power 10 characterizing the potential at distances of the corresponding mean square 

radii. The leptonic widths of the ground states have been evaluated with (Tee(IS), 

(0) cf. Eq. (3.2)) and without (Tee(ISI, cf. Eq. (3.1)) radiative corrections (the value of 

crs(2mtl can be read off from Fig.3); in addition the ratios of leptonic widths 

(ree(nS)/ree(lS)), the velocities (<v2/c2> ls) and the mean square radii (<r% K,s) 

of the ground states are listed (tables XI, XIV). 

Figure 8 shows the binding energies of the first four S-states and the two 

lowest P- and D-states. In Fig. 9 we have plotted all S-states below continuum 

threshold as a function of the t-quark mass. Following standard methods IO,33 we 

have estimated the continuum threshold (CT) at 

E CT = 2mt + 0.91 GeV (5.1) 

The number of S-states encountered below continuum threshold agrees with the 

semiclassical estimate of Quigg and Rosner 42 
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(5.2) 

The mean square radii of the ground states are displayed in Fig. 5, indicating the 

distances down to which the (Qa potential is probed by toponium systems of 

various masses. 

The effect of logarithmic corrections to the Coulomb part of the (Q@ 

potential and their importance with respect to (ti) spectra has previously been 

investigated by Krasemann and Ono 43 and Krammer, Krasemann and Ono. ‘lr Ref. 

43 contains also a discussion of the fine and hyperfine structure of (6) 

spectroscopies, based on the Breit-Fermi hamiltonian. 

In Table XV some properties of a (t$ system with mt = 20 GeV and mt = 30 

GeV are compared for A% = 0.2 GeV, AFT = 0.5 GeV and Richardson’s potential. 

As mt increases, the differences between these models also increase. The 

predictions of the three models are clearly distinguishable experimentally. This 

illustrates once more that a toponium system will lead to quantitative tests of QCD 

as well as the determination of the scale parameter A. 

It is a straightforward exercise to evaluate (6) and (6) mass spectra. Their 

ground state masses are given by 

M(ta = mt + mC + EB(ta 

hI(tiS) = mt + mb + EB(ta , (5.3) 

where mc : 1.48 GeV and mb = 4.88 GeV. The binding energies EB(ta and EB(tE;) as 

well as the square of the wavefunctions at the origin are plotted in Figs. 10 and II 

as functions of the corresponding reduced masses mR(ta and mR(tn. 
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Figure 12 displays the S-wave binding energies EB of various quarkonium 

2 % systems as a function of the corresponding mean square radii <r > . Obviously, 

the following relation holds approximately, 

EB 
1 V(<r’>‘) (5.4) 

independent of the quark mass and the principal quantum number of the S-state 

under consideration. This is not unexpected as power-law potentials of the form 

V = XrE imply” 

EB 
1 dV = Cfrz> +iV> 

= (1 + g<v> , (5.5) 

and smoothly varying potentials satisfy <V(r)>” V(< r2>?. Equation (5.4) provides 

a useful guide to estimate the relation between binding energy and size of the 

quarkonium system under consideration. 
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VI. Z BOSON EFFECT 

So far, we have neglected weak interaction effects. The Ieptonic widths 

quoted are actually Ieptonic widths due to the electromagnetic interaction: 

(Q@ + y* + Q-Q+. For Y and T families, the contribution due to the 2 boson is 

negligible. However, for the t quark, the 2 boson-mediated decay is important. 

This has been discussed in the literature. 45 For r;(Qa+ fT, the lowest order 

electromagnetic and weak decay widths are given by (in familiar notation), 

2 
rcc+ y*, z*+ fn = ‘9 4e 

mG 

Q21$m I2 1 
f 

2 2ef 
2 v vf(m - mZ 

ef +- 
eQ [(m 52 - mZ212 + mZ21Z2 (2 sin 2t3,12 

v 2(vf2 + af2)m Ir 
+ 

eQ2 
c 

22 
(mc2 - mZ ) + mZ2rz2 (2sin 26,)’ 1 t ’ 

(6.1) 

where the sum is over all fermions (quarks are to be counted three times due to 

color); the standard model implies 

V = v e P = ‘T = 
-I + 4sin2 BW 

a e = a u 
= aT = -1 

“V 
=v =I 

V 

V” 
= vc = Vt = 1 - $ sin2 El w 
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a 
” 

= ac = at = I 

FERMILAB-Pub-80/94-THY 

6.2) 

“d = “s = “b = -1 +Itsin26 3 w 

ad = as = ab = -1 

To obtain some idea of the magnitude of the width, let us consider r(C -f y *, 

2; al1),46 taking rz = 3 GeV, sin2 BW = O.2347 and mZ = 89 GeV. Clearly the 2 

boson effect becomes dominant as mg + mZ. This is displayed in Fig. 13. For 

comparison, we have included r( 5 + y * + all) and r(r; + 3 gluons + hadrons). 

The three gluon decay mode is estimated from the T decay using the lowest 

order formula. Using the data available, 35 we obtain cxs(m(T)) = 0.20 and 

A 
% 

= 0.240 GeV. (Of course, the relation between A 
% 

and Am is determined by 

the os correction to this process.) 48,49 It is intriguing to note that for mg > 70 

GeV, the weak interaction dominates in the 5 decay width followed by the 

electromagnetic interaction while the strong interaction provides the weakest 

contribution to 5 decay. 

This remarkable phenomenon, namely the reversal of the strengths of the 

strong, electromagnetic and weak interactions, persists even for m > m <- ze The 

leptonic widths of 5 and its S-wave excited states increase as the mass of the 

states approach that of the 2 mass. In Fig. 14, we have plotted the ratio 

r = 
!L+I1- 

r(c+y*, z= !L+?J 
r(s+y*+ a’a7 

6.3) 

for different values of the Weinberg angle. The signal of the resonance peak is 

proportional to the leptonic width, 
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s 
6x2 reerf oce+e-+ c + fi)dE rl‘ - - 

or 

/ 
RdE .r 3 Tee 

For a given energy spread 6 E, the resonance signal would have a peak value of 

s RdE 
R peak = J 

As an illustration, if 6E = 100 MeV x (E/100 GeV)‘, we have 

R peak = 1.06 ( “ye’ ) ‘r(c + y*, f+ e+e- , in KeV) 

(6.5) 

(6.6) 

where 5 can be any of the S-wave bound states. R peak as well as the nonresonant 

contribution to R, which is strongly affected by the Z pole, are displayed in Fig. 15. 

Both the resonance peak signal and the background are greatly enhanced by the 

presence of the Z pole. This should help the search for heavy quarkonium states in 

the vicinity of the Z pole, where--due to high statistics--even a small signal to 

background ratio may be observable. 

Around the Z mass, the energy difference between the 5 ground state and its 

highest excited state below the continuum threshold is of the order of 2 GeV. For 

mz>-m< the leptonic widths of the higher excited states would have more 

contributions from the 2 boson than that of the lower excited states. Hence we 

can even envision the situation where the resonance peak of a higher excited state 

is bigger than that of a lower state. In fact, if m 5 s mZ, a whole array of new 

exciting phenomena can be expected. 



30 FERMILAB-Pub-80/94-THY 

VII. SUM?:ARY AND CISCUSSION 

In the preceding sections we have reexamined the evidence which quarkonium 

spectroscopies provide for quantum chromodynamics. So far a theory of mesons 

and baryons, which would allow a systematic computation of their mass spectra, 

has not been derived from the fundamental interaction of quarks and gluons. 

Therefore we had to start from a set of theoretical expectations, based on QCD, 

which appear to be generally accepted: the nonrelativistic nature of heavy quark 

bound states, the flavor independence of the binding force and the asymptotic 

behavior of the potential at large and small distances as dictated by linear confine- 

ment and asymptotic freedom. 

It was shown that a potential model, based on this set of assumptions, yields 

an accurate description of both the ‘?- and T-families. Furthermore, the 

parameters characterizing the large and small distance behavior, i.e. the Regge 

slope, or’ and the QCD scale parameter A, are in quantitative agreement with values 

measured in light hadron spectroscopy and deep inelastic scattering experiments; 

we obtain CL’ = 1 GeV -2 and ~~~ = 500 MeV (given the B-function Eq. (2.121, the 

sensitivity of the T spectrum with respect to A can be seen by comparing the 

models 2 and 2a in table VIII). We also find that the absolute values of the leptonic 

widths and the Y- nc hyperfine splitting are in agreement with experiment. AS 

these quantities are particularly sensitive to the short distance behavior of the 

(Qa potential, this agreement strongly supports the idea of asymptotic freedom. 

The only failure of the potential model appears to be the El transitions where the 

discrepancies between our predictions and the measured rates amount to a factor 2 

to 4. However, as the emitted photons carry momenta of only a few hundred 

megaelectronvolts, we expect large QCD corrections to the lowest order transition 

amplitudes. Within our present theoretical understanding of the El transitions we 

do not consider the discrepancy between experiment and zeroth order theory to be 

very worrisome. 
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Unfortunately, our lack of understanding concerning the El-transitions as 

well as the fine structure of charmonium does not allow US to determine the c- and 

b-quark masses accurately. Potential models employ c-quark masses ranging from 

1.1 GeV to 1.9 GeV. In addition, there are uncertainties in the theoretical 

predictions for leptonic widths because of unknown relativistic and higher order 

radiative corrections. These theoretical ambiguities as well as experimental 

uncertainties prohibit a clear distinction between QCD-like models and the 

logarithmic or small-power potentials on the basis of present experimental data. 

Only a heavier quarkonium system will settle this issue. 

It is interesting, however, that the ‘l’ and T families contain already 

quantitative information on the A parameter, if we accept that the short distance 

behavior of the(QQ potential is governed by asymptotic freedom. For small values 

of A, i.e. small values of cis, one expects a Coulombic potential up to large 

distances. Therefore the “experimental” potential, which has been measured down 

to 0.1 fm, provides a lower bound for A. Our investigations lead to A,%> 100 MeV. 

The analysis of deep inelastic scattering experiments suggests values of Ars 

between 0.2 GeV and 0.5 GeV . 39 Our calculations of (tt) spectra demonstrate 

that the next quarkonium system will allow a distinction not only between QCD- 

like and small-power potentials, but also between different A parameters. This 

would be most valuable since the determination of A from deep-inelastic scattering 

processes is plagued with ambiguities due to unknown higher twist effects. The (ti) 

family will measure the (Qa potential down to distances of about 0.04 fm. If the 

value of Am ranges indeed between 200 hleV and 500 MeV the toponium spectrum 

will provide the connection between the perturbative and the nonperturbative 

regimes and in this way determine the entire (Qq) potential. 

We have dealt mainly with the evidence for asymptotic freedom which can be 

inferred from quarkonia. The evidence for linear” confinement appears--at least 

at this moment--to be weaker. Thus, at present any determination of the Regge 
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slope, based on quarkonia, can only be consistent with experiment. The (ti) 

spectrum will contain many excited states with mean square radii between 0.5 fm 

and 1.0 fm. An accurate determination of the (Q@ potential may lead to a dear 

identification of the expected linear asymptotic behavior. At distances larger than 

1.0 fm, however, the simple potential picture breaks down due to threshold effects, 

and the existence of light quarks seems to demand a relativistic, field theoretic 

treatment. 

An important question, which remains to be investigated in detail, is the 

influence of nonperturbative effects 26,27,51-53 on the short distance part of the 

(Q@ potential. In principle the potential proposed in ref. 13 has included both the 

perturbative and the nonperturbative effects (phenomenologically, of course) for all 

distances. However, it is still interesting to estimate the nonperturbative effects 

from a theoretical point of view. For example, let us consider gluonic vacuum 

fluctuations, characterized by a nonvanishing expectation value 

4 5 <O I$/TI) GuvGUvj O>. A simple dimensional analysis suggests that the effect 

of o on the potential is negligible for distances less than 0.1 fm, which are relevant 

for our discussion of the perturbative part of the potential. With o = 0.012 

GeV4 51 we obtain &V(r) 5 $r3< 2 MeV, a correction of about 0.2% to the 

perturbative Coulomb-like potential. 

We have only briefly discussed weak interaction effects. 45 These are of 

great importance if the toponium mass is close to the Z-boson mass; in this case a 

variety of new phenomena can be expected. 

Besides measuring the quark-antiquark force, heavy quarkonia may also 

exhibit additional states, not expected on the basis of a potential model. Such 

“vibrational states”54 are expected as a result of coherent gluonic excitations and 

have been investigated on the basis of string models. The existence of these states 

would provide further evidence for additicr.al glconic degrees of freedom. 
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In conclusion, the theoretical expectations based on QCD lead to a potential 

model for rcarkcr!ia which is in excellent agreement with experiment. The (Qa 

potential has emerged as a conceptually simple, experimentally well-measurable 

quantity, which allows a comparison with QCD at all coupling strengths.27’55 

Further theoretical work on fine structure, electromagnetic and hadronic tran- 

sitions and decays and, hopefully, the discovery of a new quarkonium system will 

provide stringent quantitative tests of the fundamental theory of strong 

interactions. 
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APPENDIX A 

The potential, used in Sec. III, is defined in terms of the B-function Eq. (2.12), 

I 
l/hop bl 1 -ep , g,x24 , +---2 6’ 

bO 

the relation Eq. (Z&C), 

Jn(bop)+ bl I %--- + 
box bo2 ’ 

and Eq. (Z.(i), 

V(Q2) = -’ 
16n2C2(R)p(Q2) 

Q2 

In order to obtain V(Q2) one first has to carry out the integration in Eq. (2.8a), 

yielding 

b. In a - yE - El&p) , (‘4.1) 

where yE : 0.5772... is Euler’s constant and E,(x) the exponential integral. 56 We do 

not know how to invert Eq. (A.l) analytically; a very good approximation, however, 

is given by 

^p (Q2) = 1 

boln I+ri(Q2JQf 
i I 

A2 ’ 

, (A.22) 

where 
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2 
n(Q2) = ’ 

! ’ 

bl’bO bl 

%I/ 
exp 2 (yE + El(Qo(Q2)) ! (A.2b) 

bO 

and 

po(Q2) = 

boln (i+$) 
(A.2c) 

It is easy to check that p(Q2), as given by Eq. (A.21, has the correct asymptotic 

behaviors. 

^p(Q2) F 3 
Q -to Q 

9 (A.3a) 

and 

^p(Q2) ry I bl 

Q2+m A2 bo,$ -q 
(A.3b) 

Equation (A.32), together with Eqs. (2.9) and (2.10), leads to the relation Eq. (2.13) 

between Regge slope a’ and scale parameter AK~. A numerical comparison shows, 

that at intermediate values of Q2, >(Q2) approximates p(Q2) with an error of less 

than 1%. 

The potential in coordinate space is given by 

ic;, = - 16T2C2(R) 
s 

d3q ^p(q2) .‘;;: 

(2nj3 a2 
, (A.4) 
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and may be convenientIy written as 57 

V(r) = kr - 
2W2(R) 

V(x 

bO 
r 

where 

1 
k = 2na’ 

4b0 
v(x) = 7 6(Q2) - x 

Q2 
sin (T x) 

(A.52) 

9 (A.5b) 

, cA.5~) 

the parameter A can be expressed in terms of the string constant k or the scale 

parameter Ars, 

A I ($$J , (A.5d) 

, L = 24 . (A.5e) 

v(x) varies slowly with x, and for our numerical calculations we have used a linear 

interpolation between 26 points which are listed in table XVI. 

For a’ s I GeVe2 one obtains A rp 400 MeV, i.e. the smallest non-zero x-value 

in table XVI, XI = 0.01, corresponds to a distance rl p 0.005 fm. At such short 

distances t(r) has already approached the Coulombic potential for ArS = 0.5 GeV 
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which we then use to extrapolate V(R) to even shorter distances, assuming Nf = 4. 

The entire potential is finally given by: 

i(r) = kr _ 3~ v(Ar) 
27-k-- y r >O.OI fm - 

and 

V”(r) = - &$! 1+(2y +53, ' 462 
E 751n 1 -m 

Acr2 
MS 

r < 0.01 fm , (~.6) 

with A MS = 0.509 GeV, k = 0.153 GeV2, a' = 1.04 GeV -2 
, A = 0.406 CeV, 

yE = 0.5772..., and v(x) given in table XVI. 
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APPENDIX B 

Recently the question of relativistic and radiative corrections 58 to the 

leptonic widths of heavy quarkonia has been investigated, and different conclusions 

have been drawn concerning their importance. It seems to us that Eq. (3.2) is a 

reliable estimate of radiative corrections. We believe, however, that a consistent 

evaluation of all v2/c2-corrections is a hopeless task before a much deeper under- 

standing of bound states in the framework of QCD has been achieved. In order to 

substantiate this opinion and to obtain a clear picture of where various 

uncertainties may arise, we will briefly review how Eq. (3.2) arises in the frame- 

work of the Bethe-Salpeter CBS) formalism for relativistic bound states. 

Let us assume that the (Qa system can be described by a Green function 

G(\V, p, q) which has poles at bound state energies M,(Qa = ZW,, 

Ji(Wn’P%(Wn,9) 
C(W, P9 4) n W _ W _ ic ’ WSWn , (B.1) 

n 

for simplicity, we consider the quarkonium system in its c.m. system, i.e. the total 

&momentum is given by P lJ = (2W,, 6); p and q denote the relative 4-momenta in n 

initial and final state, and $(W,, p) is the BS wave function. The Green function 

satisfies the BS equation 

G(W, p, q) q (271)~6~(P - q)GF(W, P) + G,(W, P) 
s 

d4q’ K(W, p, q’)G(W, q’, q) , (B.2) 
(2n)4 

where GF(W, p) f iS (1) (KP + p) iS (2) (-%P + p) is the free two particle propagator. 

At least in perturbation theory, Eq. (B.2) defines a kernel K(W, p, q), including self- 
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mass corrections of the quark propagator, in terms of G(W, p, q). (Eq. (8.2) is a 

means to sum up contributions from Feynman diagrams which arise in perturbation 

theory. It does not imply, of course, that C(W, p, q) has poles corresponding to free 

quark-antiquark states, as is the case for G,(W, p). The mass parameters in 

C,(W, p) represent effective, constituent quark masses.) The BS equation for the 

wave function reads 

+cWn, P) = GF(W,, d d4q K(W,, p, q)JI(W,, q) 
(21rj4 

. (B.3) 

Equations (8.1) and (B.2) imply the normalization condition 

I 
JP .&I qw,, p,& 
(2nj4 (2n? n C GF-$,, $2 I#? ‘(p - q) - K(W,, p, q) I 

$(W,, q) = 1. (0.4) 

In general it will be necessary to employ perturbation theory 59 to calculate 

$(Wn, p). Writing the kernel as 

K : Ko+6K (8.5) 

one obtains 

am,, PI = +o(W”, P) 
4 4, 

(3 $So(Wn, q’+ 6K(W,.,, q, q’)‘Jo(Q’, 4’) 
I 

+ J d4q + ko(Wn, p, q)6K(Wn, q, q’)Jlo(Wn, q’) + @(6K2) 
(21rJ4 (210 

) (8.6) 

where 

‘%W, p, q) = Go(W, p, q) - 
‘!,owc~“, P)3iON’“, 4) 

W-Wn-ic ; (8.7) 
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JI, and Go represent wave function and Green function corresponding to K. (the 

superscript “0” for the unperturbed energy eigenvalues W,,’ has been dropped in 

Eqs. (B.6) and (8.7)). 

The success of the potential model for quarkonia suggests that a natural 

choice for K. is an instantaneous kernel of the general form 

Ko(W, p, q) = Ia Va(W, (6 - ;ij2, “p2,;i2) rk” r’;’ , (8.8) 

where ril) (2) ( r& ) are Dirac matrices acting on the particle (antiparticle) spinor 

indices. The quark propagator reads 

S(p) = A + (;h, A- (;h, 
PO-Ep+iE + po+Ep-iE 

where 

iii (6, = &- (Ep + H(;)) 
P 

E,=m , H(c) = y”(;; + m) 

In the non-relativistic limit one obtains 

SNR(p) = 
(1 + -You2 (I - YOU2 

po+m+g -iE 

(B.9) 

(8.10) 

Correspondingly, the BS equation for the wave function becomes 
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I = &I- 1 vL 
p. NR 

(w,(;-‘s,2,;2,$2) 
(p +Wn-m-g +i~~~po-Wn+m+~ -i.c) 1 (2n)4 

0 

x \ 

(2) 

, (8.11) 

as in the non-relativistic limit only the large (small) components of the particle 

(antiparticle) part of the wave function survive. Equation (8.11) implies that the 

scalar wave function @.(;I, defined by 

s 
dp 
+oNR(W”’ p) : ~“(PfX” (8.12) 

obeys the Schrodinger equation 

2 2m+ m -2w, f (8.13) 

if the non-relativistic limit of the kernel satisfies the condition 

1 ]1v ;,cw, ($ - ;;j2, p’, ;i2) [ 
I+y l+y + r g + (1) 1-y I[ 1 -Y (2) Or --2 

2 L 2 1 
= vcI;-ql) ( 

I++ )“‘i l-Y+ f2) 
f (B.14) 

(Eq. (B.14) is obviously fulfilled by the frequently employed linear combination of 

vector and scalar exchange); V( 1 c - ;i 1) is the phenomenological potential used to 

calculate the quarkonium spectra (thus the nonrelativistic limit of the BS kernel K. 

determines the (Qa mass spectrum up to relativistic v2/c2 corrections); for a 

general combination of singlet and triplet states the spinor part x in Eq. (B.12) is 

conveniently written as 
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x=Jt 
l+Y 
+(ay,+bs’) , 2 a +b2 = I , (8.15) 

where s’ = (0, ;) represents the spin polarization in the c.m. system. The BS wave 

function $oNR(Wn, p) reads 

$0 NR(W”, p) = 
2W,-2m-E m 

+2 Q,(~;)x~ . (8.16) 

(PO + Wn - m - 2m p+ i&p0 - W, + m +& - itz) 

The normalization condition Eq. (8.4) corresponds to 

s 
-ik @ 
t21d3 ” 

*@$“c;) = I 

In order to obtain the leptonic width one has to calculate the amplitude 

mu = rieQ/($ rr[yu$(Wn,d] 

. (8.17) 

, (B.I~) 

which, in powers of 6K, is given by (Eqs. (B.6), (B.7)) 

r 
w 

= -ieq &L &T (W q) & &K(Wn,q,q’)$o(Wn,q’) 
(21d4 (2d4 O “’ ” 

- ie 
s 

dk 
4 

Q dq b tr [ ypio(Wn, P, q)6K(Wn, q, q’)JI,(Wn, q’)] + O(SK~) 
(2d4 t21d4 (2d4 

(G) (I! 5 -ieQ(Tnp + Tnu + . ..) (B.19) 

eQ denotes the electric charge of the quark. In the non-relativistic limit we imme- 

diately obtain +iL (cf. Fig. 161, 
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rFiNR = J($ tr [YuGoNR(Wnj P)] 

= nsu$“(0) (8.20) 

The first order correction in 6K is given by 

r(I) n).i = J dk d4q db tr [ yuco(Wn, p, q)6 KN’,, q, q’~~,(Wn, q’) 1 
(2n)4 t2n)4 (m)4 

. (8.21) 

Here we have neglected the derivative term in Eq. (8.19). To leading order in as, 

to which we will confine ourselves in the following discussion, this term is only a 

counterterm6’; beyond the leading order in as this contribution is included in the 

estimate of the uncertainties in Sec. III. 

The integrations in Eqs. (8.19) and (8.21) involve all momentum transfers 

(q - q?2 which occur in the kernel 6 K(Wn, q, 9’). For small momentum transfers 

the wave functions occuring in co can be treated nonrelativistically. Overlap 

integrals, such as 

.5hi d4q’ T (u’ q)6K(Wn, q, q’)$,(an, q’) 
(2n)4 (2*)4 O “’ 

, 

vanish in this cinematical regime as, by definition, 6K approaches zero in the 

nonrelativistic limit. Therefore small momentum transfers do not contribute to the 

integrals in Eqs. (8.19) and (B.21). For large momentum transfers e. cannot be 

treated nonrelativistically. But now one can neglect binding corrections and 

calculate the contribution to the corresponding integrals in perturbation theory. 

Replacing Go by GF and using the BS equation for the subtraction term involving 

Ko, one obtains 
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r(l) np = s &Z dliq tr [yuCFK:)o(Wn, q)l 
(2 d4 (2d4 

+ d&d& 1 
(2d3 (2d3 +2 

V(I~-~l)~n(~hr[ Yuxnl . (8.22) 

2mck -2W 
” 

To leading order in cxs K(Wn, p, q) and V( 1 p’ - 5 1) are given by 

K(W,, P, q) * ~I~C~(R)Y~ (‘) Y, (2)DUu(p -q, h2, 5) , (B.23a) 

k k 
D,“(k) = 

g!JV +t k2; YE 
c-i) 

k2 - A2 + i E 

vcl;-;il) J - 
4msC2(R) 

l;-;ilL 2 

t 

(B.23b) 

Using Eqs. (B.23) the non-relativistic, zero-binding limit of Eq. (8.22) reads (cf. 

Fig. 17) 

,(I) 
nu = 4naSC2(R)$$O) d!J? tr [ y, S(-Y2Pn+pbV, S&P,+p) yxx n 1 D”’ (P2J ~5 ) 

(2d4 

-1 A. 1 

(2nj3 < (p’2 + X2) 

tr [Y~x,] 
1 

(8.24) 

The integrals are readily evaluated, yielding 

$1) 
w 

= v’?s~ 2 C2(R)+,(0) 
c 

In $ -t + 2n T + 21n T?, + c(ln k -In i ) 

, (8.25) 
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where L(l) IS the counterterm arising from self-mass insertions on the quark lines 

and the derivative term in Eq. (B.I?), 

L(lI = In A +; + 21” i + <(In $ - In $ ) 

Equations (8.25) and (8.26) yield the final result (C2(R) = 4/3) 

C 
8a 

r nIJ = d+$ JO) 1 - $ + . . . I 

(8.26) 

, (8.27) 

implying immediately the familiar correction factor Eq. (3.2) for the leptonic 

widths, first obtained by Barbieri et al., based on the QED calculation of Karplus 

and Klein.29 

Relativistic corrections to Eq. (8.27) will have at least three different 

origins: 

(I) v2/c2-corrections to hi:, 

(2) v2/c2-corrections to the perturbative part of T (1) 
W’ 

(3) non-perturbative v2/2c-contributions due to differences between K and K. 

for small momentum transfers. Given a particular Lorentz structure of Ko, the 

corrections of type (1) can be calculated in a straightforward way. However, the 

task to evaluate the corrections of types (2) and (3) appears to be rather hopeless. 

In particular, the type (2) corrections are not of relative order as v2/c2, as one 

might naively expect, but rather proportional to as v/c 61 and therefore cannot be 

neglected compared to the corrections to T (0) 
w’ 

In summary, the first order QCD corrections to the van-Royen Weisskopf 

formula appear to be a reliable estimate of radiative corrections. In particular, 

they are independent of the Lorentz structure of the zeroth-order BS kernel, as 

they involve only its non-relativistic limit, i.e. the (QQ potential. On the other 
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hand, a complete treatment of the relativistic corrections appears to be impossible 

without a much deeper understanding of bound states in QCD. 
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Table I. Cc?‘) spectrum: masses, ratios of leptonic widths, velocities 
and mean square radii. The mass of the ground state is input; 

it determines the c-quark mass, mc = I.48 CeV. 

State Mass [ GeVl <r2>’ [fml 

1s 3.10 

IP 3.52 

2s 3.70 

ID 3.81 

2P 3.97 

3s 4.12 

2D 4.19 

4s 4.48 

I 0.23 

0.25 

0.46 0.29 

0.29 

0.32 

0.36 

0.36 

0.44 

0.32 

0.25 

0.42 

0.67 

0.85 

0.87 

1.05 

1.20 

1.22 

1.48 
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Table II. (b@ spectrum: masses, ratios of leptonic widths, velocities 
and mean square radii. The mass of the ground state is input; 

it determines the b-quark mass, mb = 4.88 GeV. 
With respect to the CESR normalization, M(T) = 9.433,7 

the b-quark mass is given by mb q 4.87 GeV and the masses 
of excited states are smaller by 27 MeV. 

State Mass [&VI u2/c2 > <r2>’ [fml 

1s 

1P 

2s 

1D 

2P 

3s 

2D 

3P 

4s 

3D 

5s 

State 

AE [MeVl 99 65 (42) 46 23 18 

Table III. Lowest order hyperfine splittings AE 5 Ec3Sl) - Ec3SO) 

in Y and T families. For Y’ the number in brackets 

is obtained by replacing mq by KMCr’) in Eq. (3.3). 

Y Y' T T'I T’ 

9.46 

9.89 

10.02 

10.14 

10.25 

10.35 

10.43 

10.53 

10.62 

10.66 

10.86 

1 0.077 

0.069 

0.44 0.075 

0.072 

0.078 

0.32 0.085 

0.083 

0.090 

0.098 

ii.09.z 

0.13 

0.26 

0.25 

0.23 

0.39 

0.50 

0.53 

0.65 

0.75 

0.77 

0.87 

0.95 

0.97 

1.1 
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2 
Table IV. The statistical factors for 

El transitions (ji, 2 i) ++ (j,, Zf) (cf. Eq. (3.6)). Sate the 

symmetry of Sif with respect to interchange 

of initial and final quantum numbers. 

(Q, 2+1) (Q+l, Q+l) (Q+Z, Q+l) 

I 
(Q-I, Q) i ’ (2fi+l)2 

(Q, 2) I 

I ’ 

(Q +2) 
(Q +1)2(2Qt1)2 (Q+1)2(2Q+l)(2Q+3) 

(Q+I, I!) I I 
(Q i1)2(2Q+1)2(2Q+3)2 (Q+1)*(2Q+3J2 

1 

(2Q+312 

Table V. Lowest order rates for El transitions in Y family. Photon momenta are 

computed from the measured masses of the x states: 

M(Q = 3.415 GeV, IM(X,) = 3.510 GeV, M(x2) q 3.550 GeV. 

Experimental data are taken from Ref. 35. 

transition ky [MeVj Dif [fml rEl(keV) 

Theory Experiment 

‘y’ + YX, 

* YX ’ 

+ YX 2 

x +Yy 0 

XI * Y’y 

; -, + yY 
L_ 

259 -0.517 58 I5 + 7 

170 -0.517 49 15 f 7 

132 -0.517 38 15 + 7 

305 0.416 182 

390 0.416 381 

426 3.416 496 



FERMILAB-Pub-80/94-THY 

Table VI. Dipole momenta and El transitions in T family. The 
statistical factors can be obtained from Eq. (3.6) and table IV. 

transition 

2D + 2P 

I 
ky [ MeVl Dif [ fml rEl t keV1 

178 0.532 14.8 

2D + 1P 526 0.049 3.25 

3s + 2P 100 -0.524 2.55 

3s +lP 450 0.002 3.10-3 

2P + ID 109 -0.365 1.60 

2P + 2s 227 0.382 15.9 

2P + 1s 760 0.047 9.00 

ID + IP 247 0.388 21.1 

2s +lP 129 -0.322 2.06 

1P + 1s 421 0.223 34.5 

Table VII. (ba bound states: masses, wave functions 
at the origin, velocities and mean square radii 

State / Mass [GeVI IQ(O) I2 [ fmw31 <v2/c2 > <r2>’ [fm 1 

IS 6.34 16.5 0.15 0.34 

2s 6.91 9.86 0.18 0.71 



57 

Table VIII. Predictions of various potential models for the T family, 
12 compared with experiment. Model 1: hlartin ; model 2: Buchmtiller, 

Grunberg and Tye, 13 As : 0.5 GeV; model 3: Richardson 17 ; 

model 4: Bhanot and Rudaz14 (the range of predictions, which are 

dependent on the b-quark mass, is given); model 5: Cornell group 15 ; 

model 2a: model 2 with Am = 0.4 GeV; model 2b: potential 2 for 

distances r > 0.2 fm, asymptotic freedom Coulomb-like potential 

for r < 0.2 fm with Am = 0.1 GeV. The first column contains the 

leptonic widths in keV, the second and third columns the excitation 

energies in MeV and, in brackets, the ratios of the leptonic widths 

with respect to the T. 

I T T’ T ” 
I 

Experiment 

aj Pei. 5 

b) Ref. 6, 7 

Model I 
(Martin) 

Model 2 
(Buchmuller, 
Grunberg & Tyf 

Model 3 
(Richardson) 

MO&l 4 
cGhanot and 
Rudazj 

%lodel 5 
(Cornell group) 

Model 2a 

Model 2b 

___ 555 

(0.42) 

1.07 - 1.77 561 - 566 

(0.47 - 0.76) 

560 

(0.48) 

1.03 528 

(0.47) 

0.50 486 

(0.64) 

1.29 ? 0.22 553 * 10 

(0.45 * 0.08) 

1.02 + 0.22 560 f 3 

1.10 + 0.17 (0.45 + 0.07) 

___ 560 

(0.43) 

1.07 555 

(0.46) 

889 t 4 

(0.32 ?r 0.06) 

890 

(0.28) 

890 

(0.32) 

886 

(0.30) 

881 - 879 

(0.34 - 0.51) 

898 

(0.34) 

857 

(0.34) 

805 

(0.51) 
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Table IX. Properties of (ti) spectra: S-states 

(potential with “~5 = 200 h2eV, for comparison). 

G-E, 
-EB 

/ E2-El E;-E, E4-El ~ z 
E2-EI 

[CeV 1 [ hleV i 

15 693 

20 807 

25 898 

30 974 

40 1101 

50 1207 

60 1330 

70 1386 

80 1466 

[ h.leVl [ AleV 

572 574 

587 887 

600 901 

610 913 

629 939 

645 964 

661 990 

679 1017 

698 1046 

I MeV 1 

1094 .528 

1101 .511 

1112 .502 

1123 .497 

1148 .493 

1175 .495 

1203 .498 

1234 .498 

1266 .499 

Table X. Properties of (ti) spectra: P- and D-states 

(potential with AM3 = 200 MeV, for comparison). 

mt 

I 
E2s-ElP 

Elp-EIS : E2P-EIS : EID-EIS E2D-EIS ; E2S-E1S 
[GeVl ~ [MeVl ~ [ Me’+‘] I [hleVl i [MeVl 

15 j 446 

20 ; 459 

25 470 

3. ~ 480 

40 500 

50 521 

60 545 

70 572 

80 600 

784 

801 

816 

831 

860 

.22 

.218 

.217 

.213 

890 

920 

951 

983 

700 

719 

734 

74s 

774 

8OC 

827 

856 

885 

c 

950 

964 

979 ~ 

993 I 

1023 ~ .205 

1054 .I92 

1085 .180 

111s .I58 

1152 .I40 
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m 
t r,,(IS) T~;+Is) 

[QV 1 t keV1 [ keV1 

15 3.00 

20 2.85 

25 2.85 

30 2.83 

40 2.91 

50 3.13 

60 3.35 

70 3.61 

80 3.90 

Table Xl. Properties of (ti) spectra: 

leptonic widths, velocities, mean square radii. 

The leptonic widths do not include weak 

interaction effects (potential with 

As = 200 MeV, for -comparison). 

3.77 

3.58 

3.50 

3.48 

?.58 

3.77 

4.04 

4.35 

4.70 

reec29 r,,(35) T,,(crS) 

r,( Jim ree( <v2/c2>1s 

.43 .29 .24 

.43 .29 .23 

.43 .28 .22 

.43 .28 .21 

.44 .27 .20 

.435 .26 .I9 

.42 .24 .I7 

.40 .23 .I6 

.38 .21 . 15 

c i 

.026 .I3 

.020 .I1 

.017 .I9 

.014 .09 

.011 .07 

.OlO .06 

.009 .06 

.008 .05 

:r3 ‘ils 

[ fml 

.00.x .05 
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Table XII. Properties of (tT) spectra: S-states. 

(potential of ref. 13, A= = 500 MeV). 

15 

20 

25 

30 

40 

50 

60 

70 

80 

778 629 941 

932 674 989 

1064 718 1040 

1182 762 1090 

1390 847 1191 

1572 929 1288 

1738 1006 1381 

1892 1082 1472 

2036 1154 1560 

m t ~ -% EZ-EI E3-EI 

[CeVl / [ MeVl I [MeVl : I MeVl 
1 

E,,-E E3-E2 I - - I I EZ-EI 
[UeVl / 

1166 / .496 
/ 

1209 I .467 

1258 I .448 

1309 .430 

1411 I .406 

!512 i .386 

1610 .373 

1706 .360 

1799 .352 
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Table XIII. Properries of (tT) spectra: P- and D-states 

(potential of ref. 13, AMY = 500 MeV). 

m 
1 ElP-ElS EZP-EIS 

[CeVI [ kleV 1 

15 ! 528 

20 I 576 

25 623 

30 668 

40 754 

50 835 

60 911 

70 984 

80 1054 

T 

I 

[ MeV 1 [MeVl [ Me\’ 1 

866 786 

920 843 

973 900 

1026 955 

1129 1060 

1227 1160 

1321 1255 

1411 1347 

1500 1435 

i EID-EIS E2D-EIS 
E2S-ElP 

E2S-EIS 

1035 .I61 

1089 .I45 

1144 .I32 

1200 .123 

1308 .I10 

1412 .I01 

1514 .094 

1612 .090 

1706 .087 



m 
t 

[GeV 1 

15 

20 

25 

30 

40 

50 

60 

70 

80 
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Table XIV. Properties of (t?) spectra: leptonic 

widths, velocities, mean square radii. The leptonic 

widths do not include weak interaction effects 

(potential of ref. 13, Aa= 500 MeV). 

T,,(lS) : r;t' 
/ ree(2S) I ree(3S) T,,(I'S) 

(lS)I r 
ee 

(IS) I ree(19 reec IS) 
; <V2/C2> ,s. <r2>' IS 

[ keV I _ [keVl 

! 

4.79 1 6.43 

5.10 

5.33 

5.68 

6.26 

6.69 

7.14 

7.54 

6.69 

6.99 

7.29 

7.86 

8.41 ~ 

8.93 
I 

9.43 ~ 

- 

i.92 9.90 

- 
I I [ fml 

.35 I .23 

.33 ~ .21 

/ 
.31 I .I9 .I4 .025 .08 

.30 .I8 .I3 .022 .07 

.28 .I6 .I1 .019 .06 

.26 .I4 .I0 .017 .05 

.25 .I4 .09 .016 / .04 

.24 .I3 .09 .015 ~ .04 

.24 .I2 .08 .Ol4 .03 
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Table XV. Comparison of (t?) spectra for different QCD-like potential models. 

-__ _______--__~---~~ ----.-- 

= 20 Gev 
I 

mt 
A= = 0.2 GeV hh,!~ = 0.5 GeV Richardson (Nf q 3) 

---- -__ 

-EB [ MeVl 807 932 975 

E2 - El [MeVl 587 674 700 

E3 - E, CMeVl 887 989 1017 

ree(2S)/ree(lS) .43 .33 .31 

ree(3S)/ree(lS) .29 .21 .I9 

mt = 30 CeV 

-EB [ MeVl 

E2 - El [MeVl 

E3 - El [ MeV 1 

ree(2s)/ree(is) 

ree(3s)/ree(ls) 

974 1182 1240 

610 762 801 

913 1090 1136 

.43 .30 .29 

.28 .I8 .I7 
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Table XVI. ::ume ri.xl values of the dimersio~less fwction v(r) characterizing 
the QCD-like potential of ref. 13 (cf. Appendix .A, Eqs. (A.5)). 

x.. i 0 0.01 0.02 0.03 0.04 0.05 0.10 

vn / 0 0.249 0.300 0.339 0.370 0.397 0.499 

% 0.20 0.30 0.40 0.50 0.60 0.70 0.80 

Y n 0.624 0.707 0.766 0.811 0.845 0.872 0.893 

x n 0.90 1.00 1.10 1.20 1.30 1.40 1.50 
-. 

Y n 0.911 0.925 0.936 0.946 0.953 0.960 0.965 

x” j 1.60 1.70 1.80 1.90 2.00 

” n 0.970 0.974 0.977 0.980 0.982 
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Fig. I: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

FIGURE CAPTIONS 

Various successful potentials are shown. The numbers refer to 

the following references: (1) Martin, Ref. 12; (2) Buchmiiller, 

Grunberg and Tye, Ref. 13; (3) Bhanot and Rudaz, Ref. 14; 

(4) Cornell group, Ref. 15. The potentials (I), (3) and (4) have 

been shifted to coincide with (2) at r q 0.5 fm; the “error bars” 

indicate the uncertainty in absolute, r-independent normaliza- 

tion. States of the Y and T families are displayed at their 

red square radii. 

The short distance behavior of various potentials is shown, 

The numbers refer to the following references: (1) Martin, 

Ref. 12; (2) Buchmiiller, Grunberg dnd Tye, Ref. 13; 

(3) Richardson, Ref. 17; (4) Bhanot and Rudaz, Ref. 14; 

(5) Cornell group, Ref. 15. 

The running coupling constant crs(Q) in QCD with 4 flavors for 

different values of A1~s. The 2-100~ contribution of the B- 

function is included, i.e. 

2-100~ asymptotic freedom potentials for 4 flavors and 

different values of Ah% at distances r’ rc, rc2 = l/(10012 &is,. 

For comparison the potentials (I) and (2) of Fig. 2 are also 

displayed. The “error bars” indicate the uncertainty with 

respect to absolute normalization. 
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Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. S: 

Fig. 9: 

Fig. 10: 

Fig. II: 

Two (Qa potentials which approach asymptotic freedom 

potentials ivith \:s I 200 \!eV and Ars q 500 hleV at short 

distances (see text). ?lean square radii of (ti) ground states 

(denoted as i (2mt)) are shown for ~~~ = 500 MeV and 

different quark masses mt. 

15-2s mass differences as function of t-quark mass mt. The 

solid lines represent the potentials of Fi,g. 5, the dashed line 

Martin’s potential.i2 

Ground state leptonic widths as function of t-quark mass mt. 

The solid lines correspond to the potentials of Fig. 5 and are 

based on fq. (15) with d running coupling constant as(2mt) 

inferred from Fig. 3. The dashed line shows the results of 

8Uartin’s potential. I2 Here we have ignored weak interaction 

effects, which would only enhance the differences (cf. Figs. 

13. I4 and Sec. VI). 

Binding energies of lowest lying S-, P- and D-states of a (ti) 

system as function of the t-quark mass mt IAm = 500 MeV). 

(ti) S-wave bound states below threshold as function of the t- 

quark mass. The binding energies have been computed for a 

potential which corresponds to A,M~ : 300 MeV; it satisfies 

V(Am = 200 MeV) ,V(Am = 300 MeV) 2 V(Ars = 500 MeV). 

Binding energy and wave function squared at the origin of 

lowest (ta bound state as function of mR: mcmt/(mc + mt) 

(Am : 500 MeV). 

Binding energy and wave function squared at the origin of 

lowest (tn bound states as function of mR 5 mbmt/(mb + m,) 

‘*KS = 500 MeV). 
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Fig. 12: 

Fig. 13: 

Fig. 14: 

Fig. 15: 

Fig. 16: 

Fig. 17: 

Binding energies of the S-states versus the corresponding mean 

square radii for various quark masses, compared to the (Qa 

potential CAMS = 500 MeVl. 

Z-boson effect. Electromagnetic, electroweak and hadronic 

decay widths as functions of the toponium mass m 
P’ 

r (< + b(a)W) denotes the potential width due to the weak 

decay of the tm-quark; for a detailed discussion, see 

J.H. Kiihn, ref. 45. 

Ratio of total and electromagnetic leptonic widths for 

different values of the Weinberg angles d ,xi. 

The value of R as a function of energy; 

R peak = o(e+e- + c, + y l , z* -t f?)/o(e+e- + y*+ I.i+u-), 

where the beam spread (cf. Eq. (6.7)) has been included. 

Lowest order amplitude for leptonic width (cf. Eq. (8.20)). 

First order QCD correction to lowest order amplitude for 

leptonic width (cf. Eq. (8.24)). The wiggly line indicates an 

exchanged gluon, the dashed line the static Coulombic inter- 

action. 
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