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1. INTRODUCTION 

Soon after the introduction1 of the two dimensional SUlN) r-model as a close 

analogue to four dimensional nonabelian gauge theories, it was pointed out by 

several authors2 that in an appropriate N + m limit the model also displays the 

interesting phenomenon of dynamical generation of an abelian gauge interaction. 

In other words, a composite abelian gauge field dominates the interactions in that 

limit and leads among other things to confinement. Whereas the gauge field may 

be introduced initially as a dependent quantity and without a kinetic term in the 

Lagrangian, such a term is generated dynamically in the N + -limit. 

On the other hand, using some results from SO(8) extended super gravity3 the 

suggestion has been made4 that if the gauge fields that presumably mediate all 

interactions are not “elementary” but rather “composite,” in a manner similar to 

the SU(2) two dimensional o-model, then it becomes conceivable to construct a 

grand unified theory, from broken super gravity. 

Independently from the above, however, the question of whether gauge fields 

can be thought of and obtained as composite fields from some more fundamental 

interaction is in itself of course interesting. 

In this paper we consider this question and discuss models constructed by 

direct analogy with the SU(N) o-model. Our emphasis is on whether a kinetic term 

for a dependent gauge field already introduced in these models can be generated as 

a result of the equations of motion of the model itself; and then whether this 

phenomenon survives quantization. 

We discuss the problem in detail in Sec. II by reviewing briefly the Xl(N) o- 

model and then proceed to construct our model lagrangians for the abelian case in 

Sec. III and for SlJ(2) in Sec. IV. We then discuss some properties of the classical 

composite SU(2) gauge fields in Sec. V. We show in Sec. VI that the model survives 

quantization via a path integral approach and give in Sec. VII some concluding 

remarks. 
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II. COMPOSITE GAUGE FIELD IN THE 
TWO DIMENSIONAL W(N) U-MODEL 

In this model in two dimensional Euclidean spacetime, one considers an N 

dimensional multiplet of complex scalar fields Z transforming as a vector under 

global SU(N) and satisfying the constraint ??Z = 1. As this constraint restricts the 

fields only up to a general space dependent phase transformation 

one is led to consider the “gauge invariant” Lagrangian density 

9 = (ap - iAp)z(aa+ iAp)Z 

where Au is a “gauge field” transforming like 

A; = Al, - auA(x) 

(2.1) 

(2.2) 

(2.3) 

under this phase transformation. 

Clearly Ap as introduced above is a dependent field and hence as it is deter- 

mined through its equation of constraint (eqn. of motion!) its properties must be 

consistent with the above. In fact this is the case since one has 

a9 
aAu = O+ A1-l 

= !$Zapz- 8,f.z) (2.4) 

Thus the classical constraint does give the required property (2.3) for An and leads 

to a Lagrange density of the form 
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qz ZTZ 
2 = a Tf? 

u”: 
z-i-- 

2 
l i--L- 

2 (2.5) 

showing a fundamental current current interaction between the constituent fields 

z, f. 

A quantized theory may now be constructed by a path integral approach. One 

then finds that the constraint (2.4) is still satisfied. This may be done in several 

ways. The first approach is to integrate over the field A,, around its classical 

minimum and show that quantum fluctuations around it are quadratic and may be 

integrated out as a constant multiplication factor. The second is to impose the 

constraint on to the functional integral by an appropriate 6-function and then show 

that its effect is to provide only an inessential multiplicative factor, too. We 

detail here the first approach as it will be used later and since in it the constraint 

is not imposed externally. We have5 

/ 
dZdfdAu do exp d2x( a,- iqi)z(a Fi + iAu)Z - 0GZ - 1) \ 

I 
(2.6) 

where the o-field is used to impose the constraint fZ = I on the quantum fields. If 

we now integrate Au around its classical minimum by writing 

Ap = ;(zqZ, + n 
P ’ dAli 

+dn u 

then we obtain 

/ 
dzdZdnudu exp d2x( au+ iJ,)Z(ap - iJp)Z + il,‘_ Nzz - I) 

where JFi = l/Zi(f TuZ). 

(2.7) 

(2.8) 
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The n 
u 

integration dearly is doable and leads to an inessential constant and 

the constraint Is implemented. Note here that if the quadratic fluctuations n 2 
P 

had 2 dependent coefficients then besides the implementation of the constraint 

further Z interactions would result; we would expect this to happen in general when 

a theory is quantized in this manner. However, considering again Eq. (2.8), we are 

left with 

/ 
dfdZdo exp d’x(au + iJI1)z(au- iJu)Z - &Z - 1) . (2.9) 

The effects of Ju may be now isolated by introducing a field B 
u 

and the following 

integral into the expression (2.9) 

J dBu6(Bu+ Ju’ = 1 

We then parametrize the 6 function as 

jdX,,exp -i/d2x2XuSCB,, + 3u) 

(2.10) 

(2.11) 

and obtain 

/ 
dzdZdodBPd;,Uexp iBu)z*(au + iBu)Z - o(?!Z - 1) - ZXui(Bu + JV) (2.12) 

where Au plays the role of a Lagrange multiplier field. Here again by a change of 

variables to 
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one finds that Eq. (2.1 I) becomes 

/ 
dfdZdodBl dXU exp 

ij 
i d2x(ap - iB;)Ba,, + iB;)Z -o (ZZ - I) - Au2 

The xu integration is now trivial and one thus ends up with an equation 

identical to (2.6). However, we know now that the constraint on 0; is obeyed and 

further that the integration over B’,, may nevertheless be performed independently 

from that over the constituent Z, z. This is all achieved without introducing any 

further interaction terms into the exponent of the path integral. This may not 

happen in general and such extra terms may indeed show up. 

Now that the quantum theory is well defined we note that the Z integration is 

quadratic and may be done exactly.’ In fact when this is done and then the limit 

N + m is taken, 6 a perturbative treatment of the gauge field B; may be performed. 

The interesting result shown in Refs. (2) is that although no kinetic term appears in 

the exponent of Eq. (2.13) for B;, it nevertheless displays in this limit a behavior 

characteristic of a true gauge field. Thus a composite gauge field is dynamically 

generated. 

Having seen the details above we are now in a position to clarify the question 

we address ourselves to in this paper. 

We ask whether it is possible to modify the Lagrange density of Eq. (2.2) in a 

way where the fields Z, 2 interact gauge invariantly with the gauge field Au in 

such a manner that the equation of constraint is still obeyed and further that when 

the constraint is satisfied a kinetic term is generated for the field A,,. Moreover, 

we require that all of this survives a quantization of the theory in a manner similar 

to the model discussed above with the possibility of generating some extra 

interactions. 
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We discuss this question for both abelian and SU(2) gauge fields. The classical 

Lagrangians are introduced in the following two sections and some of their 

properties discussed in Section V, whereas the quantization via path integrals is left 

then to Section VI. 

III. KINETIC TERM FOR ‘COMPOSITE GAUGE FIELDS-- 
ABELIAN CASE 

We start our discussion by considering the abelian case started in the previous 

section except now we do not restrict ourselves to two space time dimensions. 

If we define the covariant derivative 

D,,Z = (all + iAU)Z (3.1) 

then aside from the term already used before, namely vDvZ we can construct 

the following gauge and Xl(N) invariant combination 

SK = YoK 
vv Kuv 

with 

K 
PV 

: + 
- - 
DUZDvZ-DvZDuZ 

3 (3.2) 

In fact when the constraint fZ = I is imposed in Eq. (3.2) we find that the Ap field 

drops out and one obtains 

K 
PV 

= f -auZa>; 2 - r avFavz 1 (3.3) 



S FERMILAB-Pub-80/83-THY 

Thus if we take as a Lagrangian density 

9 : $p 
K +vDpZ (3.4) 

then the constraint equation on A 
!J is unchanged, namely A 

u’ 
Remarkably now, however, if this constraint is implemented in the Lagrangian 

density of Eq. (3.4) we find 

2z = ti[(ak3, - avJp12] + (a, + iJUEC(av - iJ,)Z . (3.5) 
- 

Thus ZK of Eqs. (3.2) and (3.3) plays the role of a “kinetic term” for the composite 

field J i-1. We shall show in Section VI that implementing the constraint on A,, into 

the quantized theory is unchanged by our addition; however isolating the effects of 

the composite gauge fields A 
P 

= -Jv requires the introduction of a Lagrange 

multiplier field X,, that does not integrate out completely but introduces further 

interactions into the Lagrangian. 
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IV. KINETIC TERM FOR COMPOSITE GAUGE FIELDS-SU(2) 

The source of the abelian gauge freedom in the SU(N) o-model discussed 

above is the invariance under a general phase transformation of the restriction 

ZZ = 1. Thus in order to build a o-model with an SU(2) gauge invariance one must 

generalize the space of Z fields in such a way that the phase invariance group of 

the restriction becomes the full SU(2). As emphasized by Giirsey and Tze’, 2 most 

naturally then belongs to quaternionic projective space. Thus instead of the 

elements Zi, i q l...N be complex numbers we shall now consider them as 

quaternionic numbers. If we use as quaternionic basis vectors the quantities oa = 

(I, -io. -io,, I’ _ -io3) with 2 being the Pauli 2 x 2 matrices we then have 

z. a-O,..., 3 
I :qiad” ) i=I,...,N 

where the 4N quantities qa are real. We also define 

zi = 02Z~u2 

where ZT is the transpose of Zi. Thus 

Zi = qio-i;i.G 

(4.1) 

(4.2) 

and 

2i = qio + i$i. S 

and hence 
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1 ZiZi = -y rcqy + ;..;, 1 i, :. I ‘2 ! 
is d quaternionic scalar quantity. 

The restriction TZ q I therefore allows a general SU(2) “phase” transforma- 

tion of the quaternionic elements Zi. Thus it is invariant under 

+ + 

Z’ = zu t U=e i U/2 A(x) C SUt2) 

(4.3) 

(4.4) 

With this choice for the field space Z, ? we now proceed along lines similar to the 

previous sections. :Ve introduce a quaternionic gauge field A,, which under the 

gauge transformation U transforms as 

A’ z 
u 

u-‘Auu + iv-Iauu (4.5) 

and consider the covariant derivative 

DvZ = Z(T,,+iA,,) 

We now construct the Lagrange density 

+ (a,- iq,)Z*Z(~, + iA,) 
i 

(4.6) 

where 

PK = !i Tr K . K PV lJv 

and 
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K + iP,) - (ly - iAv)z*Z(cti + iA,) . (4.7) 
.i 

b, 
4 

dcts only on the field Z preceding it and the order in which the quantities are 

,written allows for thinking of them as appropriate matrices with all operations as 

matrix multiplication. 

Clearly again the field 41 is introduced as a dependent quantity and in this 

case K TV is dependent on 
41’ 

m contrast to the abelian case. The constraint 

equation for A,, may be worked out and both ZK and the other term in Eq. (4.6) 

give the same result, namely 

A I-1 
= &zQ = -Jv 

This is of the same form as before except that all quantities are quaternionic. 

One notices however immediately that A. _! is purely a “vector” quaternion, 

namely that it is of the form 

(4.8) 

(4.9) 

Therefore there are only three independent quantities A;, precisely what is 

required of an SU(2) gauge field. Furthermore the constraint on A,, satisfies the 

assumed gauge transformation properties of Eq. (4.5). Vast importantly when the 

ronstraint is implemented into the Lagrangian of Eq. (4.6) we get 

9 = _: Tr au:,,,, -2v;u - i[jU,J\,] ’ + (au + ;3p:)f~.:iZp - izuj 
1 i 

. (4.10) 

Thus .9;PK plays again the role of a “kinetic ” term for the composite W(2) gauge 

field JU, just as in the abelian case. 
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V. SOME PROPERTIES OF THE CLASSICAL LAGRANCIANS 

One may consider the models introduced above simply as o-models by 

eliminating the Au fields altogether. In this case a unified notation may be used 

for both the abelian as well as the SU(2) case. We have 

.(I - Z3avz - a.J7.(l - z.BalJzl 2 

+Tr (av-~)Z.z(~U+~) (5.1) 

where ;I is an N component complex field in the abelian case and an h’ component 

quaternionic field for SU(2). In both cases f2 : 1 is understood. The “gauge” 

invariance of 9? is now implicit. One may fix the gauge by taking ZN to be a real 

scalar in the abelian case and a quaternionic scalar, i.e. a real constant, in the case 

of W(2). Furthermore classical equations of motion are best studied in terms of 

independent unconstrained variables ti, i = l,...,~ - ‘4 1. There are various choices for 

these but to illustrate our points we choose two specific ones to facilitate contact 

with other works. These points are first that a Cribov type of ambiguity exists in 

these models even after a choice of gauge’ and the second 7. 1s that the kinetic term 

of the W(2) model allows instanton solution with a maximum winding number N, in 

contrast to a full-fledged SU(2) gauge field. 

A. “Gribov Ambiguity” 

One way to see that a Gribov ambiguity exists in our models even after a 

choice of gauge is to follow the method of Ref. 8 and change to the independent 

unconstrained variables $z i defined by 
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2@. 
7 _ I 

1 
i=l 

il + &, 
,...,N-I 

1~~1 = .I-Sj 

(1 +Fc, 

In this case the Lagrangian becomes 

i auTaae - avTatiei 

16 

(I + T@j4 
[a~ii4Tav~ - a,a.&$.aii+ 1 

+ 16(1 - W[ ~j-+$‘“” 
(L ~,.YyOj’ 

(7%) + GQdav(T~ 

‘< ,1 : i:a.$l 
+ Tr 

[ 

j_ + ic 
sq+‘q+ 

1.1 + q))’ il + Y$‘$J4 1 
)I'- }' 

unless of course T@ = I for in that case the Lagrangian may be rewritten as 

+ Tr 

(5.2) 

(5.3) 

which is of the same form as Eq. (5.1) with @ now an N-l dimensional field! Thus 

for all configurations T@ = I one has to remake a choice of gauge and so on. This 

of course is so, clearly because for & = I,1 Zwl = 0 vanishes and a specification of 

reality lzcc17e~s meerirgless :iw. Xis cf ct~::z~e is sirr1:ly xi-e s?.me phenomenon 

-?I-1 :-ar appear:, lr 7;~ sir-ale C. i-model as Csccsseo ii: Ref. U. 

(5.4) 
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R. The Kinetic Term and Instanton Soltitions 

An expected property of the kinetic term for the SlJ(2) case is to possess 

instanton solutions. To see that this is so we now choose the following set of 

unconstrained coordinates t: 1’ 

ti = &I t i = I,...,N-I (5.5) 

where 

lzy / = I- 
v’ i-z 

This choice is made :nainly to make contact with the work of Giirsey and Tze in 

Ref. 7. The kinetic term may be written now simply as 

YK q $ Tr ’ a.di 

-J 1’ 

with 

'Tt 
Au =+- 

1 +it 

(5.6) 

This is the same as 

.PK = ‘6 Tr .; ~:I~i, 
b i’ 
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and is precisely the parametrization used by G&sey and Tze to study instanton 

solutions for SU(2) gauge theory. For the equations of motion for ti derived from 

Eq. (5.6) automatically minimize the action derived from PeK and are equivalent to 

the duality or self-duality of the field tensor derived from A u. Such solutions are 

studied in detail by these authors and we refer the reader to their paper for details. 

We make here however the following observations: 

1. Our composite gauge field Ap is expressed in such a way that instanton 

solutions for the kinetic Lagrangian exist and are known in terms of the constituent 

fields ti. 

2. These instanton solutions however can carry a maximum winding number 

of N-l. For cls shown in Ref. 7 the solutions to the equations following from the 

Lagrangian of Eq. (5.6), the instantons have 8(N-I)-3 parameters. This is precisely 

the maximum independent number of parameters for a winding number N-l 

instanton in W(2). Thus our composite gauge fields do not embody the full 

topological structure of a true gauge field unless N, the number of components in 

the constituent fields Z, is allowed to go to infinity. Thus it seems that the natural 

choice for the construction of composite gauge fields is to look at an appropriate 

N * m limit of the Lagrangian densities we have constructed. 

3. As a corollary of the above, our Lagrangians represent then gauge theories 

with a truncated topological, and hence classical ground state, structures. These 

may be of interest by themselves as approximations of increasing complexity (with 

increasing N) to the true gauge theory. Thus for example an N = 2 model would 

represent a gauge theory with only one instanton solution which may be interpreted 

as a theory with a doubly degenerate classical ground state! Larger N involves an 

increased degeneracy until the full gauge theory is reached. 
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VI. PATH INTEGRAL QUANTIZATION 

In defining a quantum theory out of the Lagrangians discussed above, special 

attention should be paid to the constraint equation on A p. For while classically A,, 

is forced to take on the value i/2 Z~<Z and consequently a kinetic term for this 

composite object is acquired, one must show that quantum fluctuations of A 
u 

around this extremum do not wash out this effect. In other words, one must show 

that this extremum is a stable minimum (and not say a saddle point!) and that 

preferably the fluctuations are integrable with minimal effects. We saw that this 

is indeed the case for the SU(N) a-model discussed in Section II. We proceed now 

to discuss our models along similar lines. 

Keeping to a simplified notation and dropping gauge fixing and other terms 

we ire interested in the following path integral 

J dZdZd ibda exp i J (2 + o(fZ - I))dx (6.1) 

The integration over the o field is needed to enforce the condition fZ = 1 and the 

Lagrangian is of course 

.A?= %Tr i [(au - iA,,)Z*Z($J + iA,)-(a,-iA,)?!*Z(5,, +iA,,)l ’ 

+ Tr [ (au - iA,,)z*Z($ + iAP) 1 
u (6.2) 

We consider now fluctuations of AU around its classical minimum i/2 z%Z. We 

may write 

AM = @+‘z + I- ; dA + dn u I-1 v u (6.3) 

in which case rhe integrand in the exponent becomes 
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.v = $4 Tr [F,,“(J) - i [n,, nu 17’ + Tr i-0 
!J 

+ iJp)Z*Z(a, - iJ,) 

7 
c $2 - U(fZ - I) I 

i 

where 

FVV(J) = a,,& - a& - i[J,,, J,l 

J!J 
I zT”- 

‘7 $ (6.4) 

Clearly in the abelian case [n,, n,] vanishes and the only fluctuations in r 
I-I 

are quadratic as in the two dimensional case. These can be integrated out leading 

only to a multiplicative factor. In the non-abelian case the situation is somewhat 

more complicated. Nevertheless one immediately notices that the fluctuations are 

quadratic in any one component of n:, and at most quartic in this field. In fact the 

nu integral can be done formally exactly. To see how this comes about let us first 

expand the equation for the integrand above. We get 

2 = “u ( Tr [ FUv ~:)I * + 2n;cabCf;ynyb + !+;n; n;(&adgbe - eeabd)j 

(6.5) 

where we have used the definitions 

and 
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a au I? ‘J = vu7 (6.6) 

If for the moment consider small II~ dnd neglect the quartic terms the 

integrand has a term quadratic in nti and of the form 

(6.7) 

The quantity in parenthesis can be diagonalized in internal symmetry space by a 

global SU(2) rotation. The resulting three by three matrix has diagonal elements: 

:i I = 2s 
ilv 

~~ 

x2 = 26 ,Y-&;v 

x3 = 2Silv+~%~‘,\, (6.8) 

If we call this diagonal matrix V then the ri )-1 integration can be performed leading 

to an effective Lagrangian of the form 

2 q !4 Tr (FUv(J))’ - tr In det Mft3 

+ Tr (au + iJU)z*Z(TU - iJp) - Tr o(.?Z - 1) (6.9) 

Therefore an extra term symbolized by !.I is introduced by the quantum 

fluctuations. 

If we now consider the quartic term we note that we can write 
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i 17;: II,” = ii-%! jnvl cos opv 

a=1 

(6.10) 

where 0 
UV 

is an “angle” in the internal symmetry space between the u and v 

components of n ~. This angle is of course invariant under rotations in this space. 

The quartic term thus becomes 

lnp I 2 l!J2 ( 1 - (cos ep”)2 ) (6.11) 

and is invariant under rotations that diagonalize the quadratic term. In fact since 

cos‘ 5’ 1 this term is always greater than or equal to zero, that is of the same 

sign as the quadratic F ~iv dependent term A, so that at best it can modify the n,, 

integral but not change its character. Thus including the quartic term would only 

complicate the n 
1J 

integral without changing the main result, namely that the 

kinetic term persists in the quantized theory with extra interactions symbolized by 

a modified matrix M. 

In order to isolate the effects of Jv we introduce the following 6-functional 

into the functional integral 

I dBu6(Ju + B,,) = I 

and finally get the model in the form 

s d??dZdodBvdA,,exp [ iTr /‘ ( :i[Fv,,(B)l 2 - In det M?,,“(B) 

+ ( au - iB,,)z *Z( su + iB,j - o(%. - 1) 

- $,‘(B,, + ;$Z, 11 (6.12) 
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The 2, f integral now is quadratic with coefficients depending on the fields B , o 
‘il 

and the Lagrange multiplier field h . 
v 

This may be done and a perturbation 

expansion in terms of the remaining o, X 
u 

dnd Bu fields can be attempted. This 

and further study of the quantized version of this model will be left for future 

publications. We note however here that the presence of X 
P 

is in the spirit of 

introducing collective variables by Jevicki and Sakita,’ something that becomes 

more justifiable in N+ - limit to be taken in our model as the natural limit 

required for a gauge field with full topological structure. 

VII. CONCLUSIONS AND DISCUSSION 

We have seen in the above that it is possible to construct Lagrangians where 

composite abelian and nonabelian SlJ(2) gauge fields follow as a result of the 

equations of motion. Other non-abelian composite gauge fields can be constructed 

in a similar manner and will be dealt with later. Thus we may conclude that not 

only is it possible to “parametrize” a gauge field in a composite manner but that 

this compositeness follows from ordinary equations of motion. In path integral 

language this means that the integral over the dependent field Au picks up its 

leading contribution when 9 is minimum at A = i/2 f%Z and in that case this 
P 

composite object appears with its own kinetic term in 9. Quantum fluctuations of 

Ali around this minimum are then argued to introduce further interactions but not 

to eliminate this leading contribution. 

One important observation is that as long as we consider a-models of finite N 

then the composite gauge field does not have the full topological structure, thus 

indicating that it is then natural to consider the N-t m limit of our models. 

Furthermore it also shows that the composite gauge fields considered by the 
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authors of Ref. li may be such “truncated” gauge fields. This of course raises the 

question of whether this in any way diminishes the value of their suggestion. In 

other words, if the gauge fields are elementary they presumably carry the full 

topological structure; but if they are composite that structure may be limited by 

the symmetry group of the underlying constituents unless the N+ m limit is 

considered. Which, if any, of all these possibilities does nature choose? 

Finally if we consider other fields in the Lagrangian, such as Dirac fields, 

coupled to the Z fields via the currents J l- 
lJ 

=+?$Z such as -@,$I ~ then clearly 

the fact that J 
v 

becomes effectively a composite gauge field one expects that the 

J mediated interactions between the $5 become identical to the interaction 

expected from a gauge field. In particular all of instanton physics can be 

incorporated here. For the path integral over Z, z does cover, for any N, all gauge 

theory instantons with winding number up to N. 

Of course many problems remain to be considered concerning the above 

models and for example the exploration of the various properties of the “truncated” 

composite gauge fields seems also to be of interest particularly as concerns 

questions of CP violation. These questions ano others are currcrtly being pursued. 
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