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ABSTRACT 

Large distance contributions to the K"-ito mass matrix 

are often neglected but have important consequences for 

CP-violation. If "penguins" dominate ]AS[=l weak decays then 

these large distance contributions correspond to "(penguin) 2,* 

diagrams and receive potentially large CP-violating phases. 

We argue that this effect reduces the size of IE'/E~ by 

%1/2.5 in the KM model. In the extreme penguin limit, f=l 

and E~=O, we have Is:'/sI - l/SO. 
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Interest in the CP-violation of the K"-ko system has 

been recently aroused by the prospect of a refined 

measurement of ls'/sl lt2 which can distinguish between an 

effective milliweak vs. superweak underlying mechanism. 

Furthermore, it has been suggested that in the 

Kobayashi-Maskawa3 (KM) scheme this quantity receives 

contributions principally from "penguin" diagrams 4.5 and may 

be close to the experimental ueeer bound of =1/50.4 

Previously it had been argued that in the absence of penguin 

contributions the KM scheme is essentially a superweak model 

with IE'/E~ expected to be of order =1/450. We mention that 

the case for penguins is still open7 and that the KM model 

may indeed be effectively superweak (as in ref. 5) if such 

effects are small. 

Here we refer to any operator induced by W-boson 

radiative corrections to gluon emissions as a penguin, 3 

(Fig. 11, which includes the operator su ~" chA/2,d GuvA 

first occurring in two loops with an @(GF) coefficient.' This 

operator receives the same CP violation phase as the usual 

penguin operators (@5 and 66 of ref. 8) but we expect per the 

analysis of ref. 9 that its net contribution is small. Also, 

competing with the KM scheme are possible Higgs boson induced 

CP-violating interactions. lo Hence a measurement of Ic'/~l in 

the milliweak range does not necessarily imply the veracity 

of the Penguin mechanism. 
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The expected CP-violation in almost any model at the 

quark level within the context of the standard 

(SU(2)xU(l))electroweak x SU(3)color gauge theory will be a 

mixture of both superweak (lOCal AS=2 operators) and 

milliweak (local AS=1 operators) contributions. The novel 

feature we wish to discuss here is that the full AS=2 

amplitudes (K"-z" mass matrix) will contain both 

contributions from the local AS=2 operators and bilocal 

n (As~l)~~~ operators occurring in second order perturbation 

theory. Whereas the local AS=2 Operators are associated 

primarily with short-distance QCD (the usual box diagrams + 

corrections), the (AS=1)2 bilocals have predominantly large 

distance contributions which can be estimated by insertion of 

low lying meson and 2a intermediate states and use of PCAC. 

In the present letter we will not discuss the QCD radiative 

corrections nor the sizes of the KM parameters. 

The K"-Ko mass matrix is usually computed by way of the 

box diagrams of Fig. 2. Of course, we expect this 

perturbative calculation to be subject to large corrections 

for loop momenta less than a GeV or so. Hence, it is 

conventional to cut-off the loop integrals below some 

P2 = 1 GeV (as usual, the resulting physics must be , 

independent of )I~). The box diagrams are U.V. finite and, due 

to the GIM cancellation, we find that they are rather 

insensitive to IJ 
2 for u2/mz<<1, e.g., u2fl.75 and rni*4 GeV2. 

The real part of the mass matrix is controlled by the (u,c) 

GIM cancellation whereas the imaginary part involves only the 
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(t,c) cancellation. The box calculation gives the 

coefficient function of the local As=2 operator sY,d,sYud,. 

To estimate this short-distance contribution to the KLKS mass 
. 

difference one must next estimate the matrix element, 

<K"I:Yud:yud/~o>, which we expect to be subject to errors 

within a factor of =52 to 3. In what follows we will 

circumvent the need to estimate this matrix element directly. 

It is important to realize that there are also 

independent large distance 0 -0 contributions to the K -K mass 

matrix as well as the box contribution. These correspond to 

effective "bilocal operators" of the form: 

c a0 I @As=1 1 ‘n><nl@As=lIKo> 
(1) 

n mK-En 

where the intermediate states will be constrained to have 

energies E,<u. Exactly how many states to include in the 

summation and the u dependence of the result are delicate 

questions. Fortunately, however, the predominant 

contributions are from the low lying states with energies of 

order m K' For example, in the KLKS mass difference one 

conventionally discusses the KL and KS self energies 

separately. 11 KS receives primarily 2r intermediate state 

and KL receives r",no, etc. contributions. The 271 states 

give both negative (E2n<mK) and positive (E2n>mK) 

contributions to the dispersion integral and might be 

expected to roughly cancel for a cutoff of P = 1 GeV2. 
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Similarly the p,~, etc. resonance contributions are expected 

to be suppressed = B(mZ;/m; ) (possibly summable in a 

short-distance 12 computation ). Hence, we shall assume the 

predominant contributions to the mass matrix in eq. (1) come 

from the r" and no poles in the KL self energy. With the aid 

of PCAC this is given by: 13 

=sAmKLKS 
0 0 

71 rn 

(2) 

= -.75 (cf. .48?.02 expt.) 

Note that this result is both negative and of roughly the 

same magnitude as the experimental result. The purely 

short-distance box diagrams give the correct sign to TsAmK K 
LS 

and we argue that the size of this contribution must be 

sufficiently large to overcome the negative large distance 

piece of eq. (2). 

In the approximation of "penguin dominance" in which we 

assume the penguin operators, es,@6 and t77 are a large 

fraction, f (in the notation of ref. 4) of the AS=1 

nonleptonic weak decays then these large distance 

contributions are predominantly the "(penguin) 21, diagrams of 

Fig. 3a with small corrections as in Fig. 3b. For large f=l 

we see that there is no overlap between the process of 

Fig. 3a and that of Fig. 2 which is why these are independent 

additive contributions. For small f-0 the large distance 
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contributions of Fig. 3c are more delicately separated from 

the short distance pieces of Fig. 2 with which they merge for 

E,llJ. Hence our separation into (large distance)+(short 

distance) is relatively clear in the large f limit. 

Consider now the mass matrix element uK12 = <K" IT Ii?'> 

where we write: 

-52 
box 

=+2 
no, no -LM12 I--- 

The real part of&l2 is just the K K LS mass difference: 

i Am box 0 0 n rn ,... 
KLKS 

= ReA12 + ReUK12 . 

(3) 

(4 1 

The mass matrix also contains small imaginary parts in 

the (KM) model. box For ./K12 these are just the usual 

"superweak" phases as discussed in ref. 6: 

= 2s2c2s3sin 6 Pl ReJZbE): E EM Re,$E); 

p1 is subject to calculable QCD corrections which have been 

studied extensively elsewhere,14 but in the rough 
. approximation of neglecting these effects we Car, obtain p1 

directly from Fig. 2 6 (this is very insensitive to the u2 

cutoff since it involves the (t,c) GIM pair): 



Pl = 
sin2~2(l+nlogn)-ncos262(l+logn) 

ncos4F2+sin482-nlogn(sin2202) 
(6) 

where n = mz/m2 t (terms of order o2 have been neglected in N 

and D) and 81=BCabbibo, e2, B3 and 6 are KM angles. 

For the large distance contributions we expect that 

Fig. 3c gives very small CP-phase effects. These are the 

"charm sea" effects as discussed in ref. 6 and yield the 

small /E'/E~ = l/450 discussed there. Indeed, if f Z u2/4m2 
C 

we can ignore these contributions entirely. Hence, we see 

that for large f the 
0 0 

dominant CP=phase contribution to 

n rn r... 
"%2 comes from Fig. 3a and is given in terms of the 

milliweak amplitude of Gilman and Wise 4 

0 0 Im&f$2'n 0 0 '-. 71 rri r.-. ') = -2fs2c2s3 sin6 P2 Re&U12 1 (7) 

where again P 2 is subject to large calculable QCD corrections 

but, in the approximation of neglecting these, we have: 4 

m2 
P2= ln(n)/(log(C 

u2 
] - sin2e210gn) . (8) 

(we shall parallel the discussion of Gilman and IVise in the 

following. 4 Note the sign in eq. (7) is consistent with 

eq. (9) and (10) in our definition+2 = <K'IT/K'>). 
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We also have an additional. contribution to Imc.K12 from 

the convention of defining A0 in the amplitude 

<2n,I=OIHAS=11Ko> = Age 
i6o 

(9) 

to be real. Before this redefinition Gilman and Wise give 

AO = (1 + i fs2c2s3sin6 P2)Re A0 

E eiS Re Ao; 5 1 fs2c2s3sin6 P2 . (10 1 

Hence, after the redefinition: 

IKo> -f e-i51Ko> 

IKo> + eq~o> 

we have the additional contribution to ImdZ12: 

(11) 

0 0 
(Im',@12)redef. = 2fs2c2s3sin6 P2(Red12 box + Re42?' ) 

(12) 



9 

Taking together the three contributions of eqns. (5, 7. 

and 12,) we have: 

(Im.M12) = (2s2c2s3sin6 

+(2s2c2s3sin6 

Pl Re,,i(y - 
0 0 

(2fs2c2s3sin6)P2 Re.,U' n 12 

0 0 
P2(ReUK12 box + Re&12'n ) 

= (2s2c2s3sinb)(Pl+P2)Re&kyx . 

(13) 

(14) 

Hence, we observe that the large distance CP phase 

contribution of Fig. 2a cancels against the phase 

redefinition, large distance piece of eq. (12). The result 

of eq. (14) in the notation of ref. 4 is just 

Irn%2 
box 

= (Em + 2S).ReA12 , (15) 

The important point of the present discussion is that 

the rhs of eq. (14) and eq. (15) involve only the short 

distance contribution to ReM12. By eq. (4) above this is not 

directly identifiable with AmK K 
L S' 

Let us define a parameter z as follows: 

2Re-'K12 = --z AmK K . 
LS 

(16) 
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Hence we obtain from eq. (4): 

21mAq2 
Am = I(Em + 25)(l+z)I : 2J21E1 . 

KLKS 

Also, from the definition of E' one has: 4 

IE’I = &lCwl , w=z . 

So our final result is: 

13 = ~~(2s:FEm)I’Iik I 

(171 

(18) 

119) 

where lwl=1/20. 

If we take the PCAC estimate of eq. (2) seriously we 

E’ 
-E i- &12E::m 1 ' (20 

have 2~1.5 and hence 

which is of course l/2.5 smaller than IE'/E/ in refs. 4,s. 

) 

Now we expect that this result is roughly true only in 

the penguin dominance, f--l limit, since in that limit is the 

(penguin)2 process Fig. 3a clearly separable from the box 

diagrams of Fig. 2. Hence in general there will be some 

dependence upon f in z. 
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It is amusing that in the limit cm/25 = 0 that eq. (20) 

predicts IE’/EI to be equal to the experimental upper limit 

=1/50. This can only occur if Pl/P2 ~0 in the (KM) scheme but 

also may conceivably occur in Higgs induced CP-violation 

models if the box contributions (which now involve W and 

Higgs together) are anomalously small due to cancellations. 

This result is the extreme limit of a milliweak model in 

which the CP-violating AS=2 amplitude occurs only through the 

large distance (AS=1J2 processes. 

Gilman and Wise discuss several possibilities in their 

analysis with z=O. The most dangerous limit is mc=1.5, mt=15 

GeV, u=l and Os=lS" with f =.75. The result is Ic'/elGW=1/13 

which for us is reduced to the value =1/33, closer to the 

upper bound. We expect that even the pure "superweak" result 

of ref. 6 will be reduced by the large distance corrections 

to IE'/El superweak zrl/lOOO, though this involves the limit 

f==O, which is expected to be less reliable as discussed 

above. 

After completing this work we realized that similar 

ideas were discussed previously by Wolfenstein. 15 We differ 

from ref. 15 primarily in our use of the convention ImAO=O, 

and hence in observing the cancellation of eq. (14), and our 

identification of the (penguin) 2 diagrams of Fig. 3, which we 

feel clarifies the separation between large and small 

distance conributions. Wolfenstein also attaches greater 

unreliability to estimates of the parameter he defines as 

0(=-z). We expect that in fact 1<2.~2 as discussed above for 
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f2u2/mz. We are therefore confident that a measurement of 

Ic'/~1~1/100 would be a strong indication that penguins are 

important provided that possible Higgs (or other) induced 

CP-violation effects can be eliminated. Higgs“ becomes 

decreasingly likely as the mass of allowed residual charged 

Higgs scalars increases. 16 
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FIGURE CAPTIONS 

Fig. 1: Penguin diagram. 

Fig. 2: Box and crossed box diagrams. 

Fig. 3: (a) (Penguinj2 diagram; (b) Corrections to pure 

(PenguinI process. 


