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ABSTRACT 

The most general S matrix for the 30 first generation 

quarks and leptons shows many features of SU(5) with no 

symmetry constraints imposed beyond global conservation of 

electric charge and weak isospin. All helicity-conserving 

four-point amplitudes conserve baryon number if there are 

no transitions from uR or ii L quarks to other states and 

must violate B conservation if such transitions occur. 

B-L conservation is violated in four-point-functions only 

in single-helicity-flip amplitudes. 
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The--existence of an SU(2) xv(l) classification'for two 

completely different types of particles which seem to belong 

together in common multiplets motivates a search for a higher 

symmetry to unify the two and be the non-Abelian gauge theory 

of the world.2 However, this has happened before with the SU(2) x 

U(1) of isospin and strangeness and the SU(3) gauge theory 

of the eightfold way which brought strange and nonstrange 

particles into unified multiplets. Today the unification of 

strange and nonstrange particles into flavor SU(3) remains, 

but the p, w and K* are no longer an octet of gauge 

bosons and flavor SU(3) has been revealed to be an accidental. 

symmetry based upon our incomplete knowledge of the number : 

of flavors. To prepare for a repetition of history we look 

for those properties of quark-lepton unification independent 

of higher symmetries or more general gauge theories. 

We therefore examine the most general S-matrix for 

the thirty quarks and leptons in the first generation, commonly 

classified in the 5, 5*, 10 and lO* representations of SU(5). 

under the assumptions only of conservation of electric charge 

and weak isospin. The resulting selection rules and conserva- 

tion laws are easily demonstrated with the aid of the following 

unorthodox linear combinations of well known quantum numbers 

K = 3(B-L)-H (la) 

p = 3(B-L) -OH 3(Q- 13) 
4 ~' 5 

= E 4-$ (Q-1,) 

8 = 3(B-L) -H 
-4 '. 

- (Q-13) = P-2 (Q-13) 

(lb) 

(lc) 

where B is the baryon number, L the lepton number, H 
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the helicity, defined as +l and -1 respectively for right 

and left handed states, Q the electric charge and I3 the 

third component of the weak isospin- The motivation for intro- 

ducing these quantum numbers is seen in the simple structure 

of their eigenvalues for the fifteen quark and lepton states 

of the first generation and their fifteen antiparticles listed 

in Table I. The pentality quantum number P has the following 

remarkable properties: 

1. Although it is a linear combination of two terms 

with quarter-integral and tenth-integral values, the values 

of P for the first generation fermions are only fifth- 

integral. 
.- ~~ 

2. The total pentality of a multifermion state cannot 

change by a fifth-integral amount in any transition which 

conserves Q and 13. Thus the pentality is an additive 

quantum number with fifth-integral eigenvalues which is allowed 

to change only by integral amounts in any transition which 

conserves Q and 13. This gives the pentality selection 

rule 

6P = 60 = 0, 1, 2 . . . . . . . 

This immediately implies that 

6K = 4n , 

where n is an integer. Since 6H and 6(8-L) are both 

even integers, the selection rule (2b) requires that 6H/2 

and 6(B-L)/2 must either be both even integers or both 

odd integers. Thus transitions with odd and even helicity .' 

(2a) 

G’b) 
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flips have different selection rules for B-L. 

For odd-helicity-flip transitions. 

6H = 2(2n+l) - 6(B-L) = 2(2n'+l) (2c) 

where n and n' are integers. Thus B-L cannot be conserved 

in odd helicity flip transitions. For helicity conserving 

and even flip transitions 

6~ = 4n C. 6(B-L) = 4n' (2d) 

where n and n' are integers. In four point functions 

6H=O, 2 or 4 and d(B-L) =0 or 2, since 6(B-L) =4 

can be achieved only in a transition between two leptons and-. 

two antileptons which cannot conserve Q and 13. _ Thus 

B-L is conserved in all helicity-conservinq and double-flip 

four point functions which conserve Q and Ijl 

We can now classify all three types of helicity amplitudes 

occurring in four point functions. 

A. Helicitv conservina vrocesses: 6H=O, 6P=6~,=6i3=6(B-L) =o 

These have the form 

(P1’ P2) + (P,,P,) (34 

where Pi denotes any state having the eigenvalue P=Pi, 

together with all other processes obtained from (3a) by crossing. 

B. Double-flip processes: dH=+d=--6K, 6P=+l=6B, 6(B-L) =O. 

The only processes allowed by the pentality selection rule (2a) 

have the form .." 

(2/5,2/S) + (-2/5,1/s) (3b) 
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together~with all other processes obtained from (3b) by crossing. 

C. Sinqle-flip processes: 6~=?2. The only processes allowed 

by the pentality selection rule (2a) have 6~=il= 66, 6(B-L) = 

+2 and the form 

(l/5,1/5) + (-l/5,-2/5) (3c) 

together with all other processes obtained from (3~) by crossing. 

All these results obtained from the pentality selection 

rule which assumed only conservation of Q and I3 can now 

be seen to be also SU(5) results. The eigenvalues of P are 

seen in Table I to label representations of SU(5). All the 

states in a given representation of SU(5) have the same eigen- 

value of P. Thus P turns out to be an SU(5) invariant, - 
although P is defined in terms of B and L which are 

completely outside of SU(5) and there is no group-theoretical 

reason connecting P with SU(5). The "pentality" quantum 

number P is seen to have the property analogous to triality 

for SU(3); it has the eigenvalues t(1/5) for the fundamental 

representations 5 and 5* of SU(5) and the eigenvalues 

f(2/5) for the 10 and lO* representations which are built 

from two fundamental representations. Note that the fif'th- 

integral quantum numbers arise naturally in this description, 

without invoking any SU(S), and that the selection rule (2a) 

that the fifth-integral pentality number P can only change 

by an integral amount is also derived without SU(5). 

The relations (3) are just the four point couplings 

allowed by SU(5),. The 6H=O transitions (3a) have the form 

mxn+mxn (da) 
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where m and n denote any representation of SU(~) among 

the 5. 5*, 10 and lo*. The AH = +-4 and +2 transitions (3b) and (3~) 

correspond respectively to the SU(5) couplings 

10x10 + 10*x 5 (4b) 

5x 5+ 5*x10* (4c) 

Our approach here is to note these connections with SU(5) 

as a guide to our formulation, but to keep everything completely 

independent of any symmetry assumptions beyond global SU(2) x 

U(l) * Thus all the results obtained for four-point functions 

involving quarks and leptons will hold in any generalization 

of the standard model which keeps charge and weak isospin con- 

servation regardless of how many additional Higgses, Schmigg-ses 

or Technicrats are introduced. The SU(5)-like results must 

therefore be present in any such formulation regardless of 

whether or not these symmetries are explicitly assumed. 

The "quasi-baryon number" fl has the very interesting 

property of being exactly equal to the baryon number B for 

all first generation particles except the uS and iiL 

6 =B-n(uR) +n(iiL) . (5) 

Thus in any process where B is conserved, which includes all 

helicity conserving transitions of the form (3a), baryon number 

is conserved for all processes in which n (u,) - n (6,) does not 

change, and must be violated in processes where this difference 

does change. In the standard model of SU(2) xU(1) where % 

and EL coupleonlyvianeutral currents which do not change quantm 

numbers, baryonnumber is conserved. But baryon number must 
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be violated in any extension which introduces helicity con- 

serving bosons coupling non-trivially to uR or uL. 

Almost any model which introduces new particles must 

admit 6H=O four-point functions in which the only external 

particles are first generation quarks and leptons. Including 

other generations with identical values of these quantum 

numbers does not change these conclusions. Unless these new 

processes treat uB and ii L in the same trivial way as 

the standard model of SU(2) XV(~), they must necessarily 

violate baryon number conservation. This is the basic reason 

wJy barvon number nonconservation must arise in any such uni- 

fication models. It is already recuired by consistency with 
_ 

charge and weak isospin conservation and the observed quantum 

numbers of the first generation of quarks and leptons. No 

further gauge theory is needed. This also explains why attempts 

to gauge baryon number would encounter inconsistencies. 

We now examine the three types of helicity amplitudes given 

in Eqs.(3) in more detail. 

A. Helicitv conservins 6H=O transitions. 

These can be characterized by the selection rules 6H= 

6P=6~=60=6(B-L) =O. They conserve B-L and 8, and there- 

fore conserve baryon number if n(uB) -n(GL) does not change, 

but must violate barvon number conservation if it does change. 

Note that these processes are the only ones of the three 

types that can be mediated by a Yukawa coupling via a helicity 

conserving vector boson or by any boson classified in the 

adjoint representation of SU(5), and that the adjoint represen- 

tation contains bosons which change n (uR) - n (ii,). 
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B. Double flip 6S=t4 transitions. 

These can be characterized by the selection rules 6H=f4= 

-6~; 6P= rl= 68; 6(B-L) =O. These conserve B-L but have 68 = 

71. They violate baryon number conservation unless n(uR) - 

n(G,) changes by one unit in the proper direction to match 

the change in '3. These processes have the form (4b) in SU(5) 

and cannot be mediated by a boson classified in the adjointrepre- 

sentation of SU(5) but could be mediated by a particle such 

as a scalar Higgs which flips helicity and is classified in a 

5 or 5* representation. Equation (4b) shows that in an 

SU(5) description, such a four point function can only go via. 

intermediate states in the 5, 5*, 45 or 45* representations. 
_- 

C. Single-flip 6H=+2 transitions. 

These can be characterized by the selection rules 6H = 

*2 = 6(B-L): 6P = +l = 68, 6K = f4. These violate everything, 

including B-L and B. However, they correspond to the SU(5) 

couplings (4~) and can only arise in an SU(5) formalism via 

an intermediate boson classified in the 10 or lO* repre- 

sentations with derivative couplings. Thus as long as no 

Higgses or other particles classified in the 10 or lO* are 

introduced with derivative couplings to quarks or leptons. 

these processes will not occur and B-L will be conserved. 

We now list explicitly all processes which violate baryon 

conservation and examine the implications for proton decay. 

A. 6H=O transitions (3a) 

These are the only ones which can go via vector exchange. 

The quasi-baryon number B is conserved, and 6B#O requires 

the disappearance of a uB quark or its equivalent under 
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crossing. Thus the most general 6B#O, 6H=O process has the form: 

u,+X + Y(P=-2/5) +X' 

where fermions X and X' must have the same eigenvalues 

of P. The only candidates for Y are the companions of uR 

in the P=-2/5 multiplet (the lO* of SU(5)) which are the 

eR, iiR and aR. The ei is immediately excluded, because 

the transition UR -ei changes electric charge by ao=-5/3, 

and can only be balanced by the reciprocal transitions e- + u 

which restores baryon conservation. The transitions Up 
R 

and URaa R both involve a change in quasi-baryon number 

65=+1/3, and are related to one another by a weak isospin . 

reflection. They must be balanced by a transition X(quark) + 

X'(lepton1 to conserve 8. The only quark-lepton transitions 

which can balance the 6Q=-4/3 .of the uR+iiR transition 

are the d-re' transitions. The allowed baryon-number vio- 

lating processes with 6H=O are therefore: 

(6) 

+ uR+dR + iiR+eR (7a) 

% +dL + iiR+e+ L (7b) 

together with their weak isospin reflections, 

uR+% R R +a +5 

+ 
UR + u L +a +e R L' 

This immediately gives the result that the lepton emitted in 

nucleon decay must be either positive or an antineutrino, 

(7c) 

(7d) 

,^ 
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but cannot be negative, nor a left handed neutrino. 

The pairs of transitions (7a-7c) and (7b-7d) related by 

isospin reflection are required to be equal. However. there 

is no relation between the two pairs at this level, as they 

involve different W(2) xv(l) multiplets. In SU(S) these 

pairs are related only at the level of a gauge theory by the 

universal couplings of gauge bosons. At the global SU(5) 

level with independent Yukawa couplings for different SU(5) 

multiplets the two pairs involve the couplings of the 10 

and 5 of su(5) respectively to the bosons classified in the 

24. These couplings are independent if there is no higher 

symmetry like SO(10) or gauge condition which relates them. 

Note, however, that isospin relations alone are sufficient 

to predict that the positron decay modes are stronger than the 

neutrino decay modes, since the neutrino decay (7~) is equal 

to one of the three positron decay modes (7a) by isospin, and 

there are two additional positron decays (7b) and (7d). 

These results can be expressed as nucleon decays by adding 

a spectator u or d quark to the equation to give a nucleon 

on the left hand side and a pion on the right hand side. From 

(7a) and (7b) we obtain 

p + e++r" (8a) 

n + e++n- (8b) 

From (7~) we obtain 

(EC) 

(8d) 
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From (7d). we obtain (8a) again. 

B. Double-flip 6H =4 processes (3b). 

These are most conveniently listed in the crossed repre- 

sentation with three P= 2/5 particles going into one with 

P=1/5 and looking at each allowed value of the total electric 

charge. The complete set of 6H =4 processes are 

Q = +1 et+uL+ii *e + 
L R 6B = 6L = 0 (94 

uL+u +d +e + 
L L R 6B = 6L = -1 (9b) 

Q=O ei+dL+iiLe3 R 6B = 6L = 0 (9c) 

uL+dL+dLGj Fl 6B = 6L = -1 

Q = -$ dL+uL+iiL+dR 68 = 6L = 0 

_ (9d) 

(gel 

ei+iiL+iiL+d R 
6B = &L =+I (9f) 

These always conserve B-L, but have 6(3=-l and violate 

baryon number conservation unless they involve a single uR 

or ii L in which case the baryon number always turns out to be 

conserved. For each charge there is one 6B=O and one 6B= 

6L=?l process. Here also nucleons decay only into e+ and 3. 

C. Single-flip 6H=f2 processes (3~). These are 

also conveniently listed by electric charge in the crossed 

representation with three P=l/S particles going into one 

with P=-2/5. 

Q = -1 ,% +dR +dR +e- ,R 6B = -l,6L = +1 

Q = -$ dR+dR+; +'U 
R R 6B = -l,6L = +1 

(lOa) 

(lob) 
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ei+dR+dR+d R 68 = -1,6L = +l 

Q = +f ei+ii +d +u 
R R R 6B = O,~L = +2 

These all have 6(B-L) =-2 and 68=-l. All violate lepton 

conservation. Processes (1Od) which conserve baryon number 

have 6L=2. The others all have 6B= 6L=-1 and give nucleon 

decays into e- and v. 

We thus have demonstrated the following sU(5) like proper- 

ties of four-point functions without explicit assurpticns of SU(5). 

1. All selection rules obtained from full SU(5) symmetry 

are already requiredbyconswationof electric chargeandweakisospin. 

2. The four point functions are naturally classified into 

three types with different helicity structures, namely helicity 

conserving, double flip and single flip. This classification 

is in one-to-one correspondence with SU(5) classifications. 

3. The violation of the conservation laws of B and 

B-L can be stated very generally and simply: 

A. All helicity conserving and double flip amplitudes 

conserve B-L and allow nucleon decays only to antileptons. 

All single-helicity-flip amplitudes have 6(B-L) =fi2 and 

allow nucleon decays only to leptons. 

B. Baryon number conservation is violated in helicity 

conserving amplitudes only in those amplitudes which can be 

transformed by crossing to the decay of a right-handed up 

quark uR into two antiquarks and an antilepton. All other 

helicity conserving amplitudes conserve B. Thus B is 

conserved in the, standard model of weak interactions where 

the uR couples only via neutral currents and cannot change into 
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another state. 

C. The role of the uR iS reversed in double-flip 

transitions. All double-flip transitions which involve the 

creation or annihilation of a single uR or 6 
L conserve 

baryon number. All double-flip transitions which do not involve 

uR or uL or which create or annihilate a pair of them 

violate baryon number conservation. 

4. The three types of four-point functions have simple 

interpretations in terms of the SU(5) and Lorentz quantum 

numbers of exchanged bosons which could give rise to these 

couplings if they are coupled to the fennions with Yukawa 

couplings. - 
Some of these results have been previously obtained 

using specific models3 or symmetries, 4 particularly results 

on the conservation of B-L. Our results are more general, 

being model ~independent and assuming no higher symmetries. We 

also point out for the first time the close connection between 

the helicity structure of the amplitude and conservation of 

B and B-L. 

These results are easily extended to treat any n-point 

function. We first note that a pair of incoming or outgoing 

particles with equal and opposite pentality have no effect 

on the selection rules (2) and can be disregarded to give 

the same selection rules as an n-2-point function. We there- 

fore consider only "irreducible" n-point functions which 

contain no such pairs either directly or by crossing. There 

are therefore only two types of irreducible n-point functions 

which are natural generalizations of the two four-point func- 
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tions denoted by B and C above. 

Type B. These have the general form 

(2/51x + (1/5)"-x (lla) 

and have a change of pentality 

6P = (n-3x)/5 = 613 , (lib) 

where x is any integer which satisfies the pentality condition 

(n-3x)/5 = an integer . (UC) 

These transitions have changes in helicity and B-L given by 

6~ = n --(lid) 

6(B-L) = 36P+x . (lie) 

Type C. These have the general form 

(2/5)’ + (-l/5)"--y 

and have a change in pentality 

(124 

(12D) 

where y is any integer satisfying the pentality condition 

(n+y)/5 = an integer. (12c) 

These transitions have changes in helicity and B-L given by 

6H = -n+ 2y 

,,6(B-L) = 36P+y 

(12d) 

(12e) 
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Note that-if x satisfies the pentality condition (llc), 

y=n-x automatically satisfies the pentality condition (12c), 

since n+y=2n-x=2(n-3x) +5x. 

These two types of transitions correspond to the SU(5) 

couplings 

Type B. (lo)x + (5)"-x (13a) 

Type C. (10) + (5*)n-Y (13b) 

These results are seen to hold for the case of four- 

point functions, where the type A processes are reducible, 

the type B processes can be crossed to the form (lla) with 

x=3 and the type C processes can be crossed to the form 

(12a) with y=l. Note that x+y=4=n, and that 6p, 6H 

and 6(B-L) are in agreement with Eqs.(ll) and (12). 

For six-point functions, we have only one solution to 

the condition (llc), x =2, which has its companion solution 

to (12c). y=4. The irreducible six-point functions thus 

have the form 

Type B. x=~2, 6P=O=6f, 6H=6, 6(B-L) =2. 

(2/5)’ + (1/5)4 

with the SU(5) couplings 

(lo)2 + (514 

Type C. y=4, 6P=-2=68, 6H=+2, 6(~-L) =-2. 

(14a) 

(Z/5) 4 + (-l/5)2 
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with the SU(5) couplings 

(lo)4 -t (5*)2 . (15b) 

For eight-point functions there are two solutions to 

the condition (llc), x=1 and x = 6, with the companion 

solutions to (12c), 

eight-point function::=7 

and y = 2. These give the irreducible 

and 

and 

Type B. x=1, 6P=1=68, 6~=8, 6(8-L) =4 

(2/5) -. (1/5)7 

(10) * (5)7 

x=6, 6P=-2=68, 6H =8, 6(S-L)=U 

(2/S) 6 + (1/5)2 

(10) 6 * (5)2 

Type C. y=7, 6P=-3=68, 6H=6, 6(B-L) =2 

(2/s) 7 * (-l/5) 

(10) 7 + (5*) 

(16a) 

(16b) 

(16~) 

(16d) 

(174 

(17b) 

y =2. 6P=-2= 68, 6H=-4, 6(&L) = -4 

(2/5)2 -t (-l/5)8 (17c) 

(10) 2 + (5*)8 (17d) 

One example of the use of these higher n-point functions 

is in the suggested- process of neutron-antineutron mixing 

or neutron oscillations 5 which would be described by a six- 

point function. We examine the possibilities by looking at 
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the disappearance of two u-quarks and four d-quarks into the 

vacuum, 

(18) 

This process has 6~=-2 =6(8-L). There are three possible 

six-point functions which can give these selection rules. 

The irreducible six-point functions of type B, Eq.(14) and 

type C, Eq.(15) both have 6(B-L)= 2. The reducible six-point 

function constructed from a single-helicity-flip four-point 

function of type C, and an additional "spectator" pair also 

has 6(8-L) =2. We consider each individually. 

We first note that u-quarks appear in the 10 and lO* 

- representations of SU(5) and d quarks in the 5 and 10. 

Thus the most general SU(5) coupling which can describe 

the process (18) is 

(lo*)'x (51Sx (10)6-'-s + (O> (19) 

where rc4 and and sc2. Additional constraints on values 

of r and s are now provided by the selection rules which 

choose three allowed sets of values. For convenience we use 

the SU(5) labels for the multiplets. However, all results 

are independent of SU(5) as above and could be written 

with the pentality labels. 

A. Reducible Six-Point Function with a Conjugate 
Pair Added to (4~). 

Since the 5* does not appear in Eq.(19) the only conjugate 

pair which can be added to (4~) is lo-lo*. This gives r = 1, 

s=3 in Eq.(19) 'and the SU(5) coupling 
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10*x (5)3x (10j2 -t lo> (2Oa) 

corresponding to the particular transition 

uB+3dR+uL+dL + lo> (20b) 

This transition clearly has 6H=-2 = 6(B-L) and 6021, as 

expected for a single-helicity flip four-point function. 

B. Irreducible Six-Point Function of Type B. 

This has r=2,8=4 in Eq.(19) and the SU(5) coupling 

(10*)2x (5j4 + lo> 

corresponding to the particular transition 

2uR+4s + lo> 

(2la) 

(21b) 

This transition clearly has 6H=-6, 6(B-L)=-2, 6B=O, as 

expected for Type B. 

C. Irreducible Six-Point Function of Tyce C. 

This has r=O,s=2 in Eq.(19) and the SU(5) coupling 

(5j2x (lo)4 -c lo> 

corresponding to the particular transition 

(22a) 

2dR+2dL+2uL + IO> (22b) 

This transition clearly has 6H=2, 6(B-L) =-2=6f3, as expected 

for Type C. 

The three transitions (20b), (21b) and (22b) are the only 
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ones allowed by conservation of electric charge and weak 

isospin for neutron-antineutron mixing. Note that all of 

these involve helicity flip, and that (21b) is a triple- 

helicity-flip transition. 

All these results were rigorously obtained without any 

SU(5) symmetry assumptions. Yet one may be suspicious of 

hidden connections because the particular linear combinations 

(1) were chosen ad hoc and turned out to have SU(5) properties. 

We therefore investigate the properties of such linear com- 

binations in more detail and look for possible implicit 

connections between them and higher.symmetries. 

In any scheme which unifies quarks and leptons and _ 

places them into common multiplets, quantum numbers are needed 

like generalizations of hypercharge with the same eigenvalues 

for a large number of states including both quarks and leptons. 

The quantum number P has only two pairs of equal and opposite 

eigenvalues t1/5 and +2/5 for all sets of 30 states in the 

first three generations. Among the quantum numbers labeling 

quantities conserved in SU(2) XV(~), the linear combination 

of B-L and Q-I3 appearing in (lb) is almost uniquely 

chosen by the requirement that only two pairs of eigenvalues 

should appear. Since baryon number and electric charge are 

both third-integral for quarks and integral for leptons, a 

linear combination of these two must be found which is not 

third-integral in order to have a common eigenvalue for quarks 

and leptons. The combination Q- I3 is used to give the same 

eigenvalue for both members of~an isospin doublet. The most 
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general 1.inear combination E-x(Q-13, has the eigenvalues 

(l/3) - (1/6)x for the left handed quark doublet and (l/3) - 

(2/3)x and (l/3) + (1/3)x for the right handed u and d 

quarks respectively. This gives three independent eigen- 

values for the quarks alone, without considering antiquarks 

and leptons. These can be simplified only if two of these 

three eigenvalues are equal and opposite. The three values 

of x for which this occurs are x=4/5, 2 and -4. With 

these values we define 

A = (B-L) -+I,) = (4P+H)/3 (23a) 

u = (B-L) -2(Q-I31 = -213P -_ (2~3b) 

" = (B-L) +4(Q-I31 = 5x (23~) 

where the additional term -L is needed to keep the same 

eigenvalues for quarks and leptons, and h is seen to be 

simply related to the pentality P. The quantum number u 

is also seen to be identical with the right handed isospin 

recently introduced by Marshak and Mohapatra. 5 The number 

V is seen to be 5x where x is the eigenvalue of X for 

the isospin mirror state, u-d and e-v. 

This condition already suggests one of the general features 

found in unification schemes, the classification of quarks 

and antiquarks in the same multiplet. The condition that two 

quark states have equal and opposite eigenvalues of an additive 

quantum number which is constant in a multiplet gives quarks 

and antiquarks the same eigenvalue of this qauntum number. 
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Values of X, N and v are also given in Table I. But 

A which is related to the pentality P is the only one with fracticmal 

. eigenvalues. Thus the fifth-integraleigen~ues are a natural resultofthe 

SU(2) xv(l) classification of quarks and leptons and the condi- 

tion restricting the eigenvalues to only two pairs. The normal- 

ization of the operator (11) is chosen to keep the coefficient 

of B-L equal to unity. Thus all three are conserved if 

B-L is conserved and conserved modulo 2 if B-L is not 

conserved. The fractional eigenvalues makes conservation 

modulo 2 a much more serious constraint for h than for u 

and v. 

The mysterious relation between the fifth integral __ 

eigenvalues of the operator A and SW(S) is clarified by 

noting that these eigenvalues have a simple interpretation 

in the SO(l0) classification when the right handed neutrino 

is included which has an eigenvalue of -1. They are just the 

eigenvalues in the spinorial representation normally used to 

classify the quarks and leptons of the U(1) generator4which 

appears in the W(5) xU(1) subgroup of SO(10). If the opera- 

tor h is identified with this U(1) generator in SO(l0). 

the classification and all the quantum numbers in Table I 

are evident. However, B and L are not defined in the 

usual SO(l0) description, and the physical meaning of this 

U(1) generator is not obvious. There may be a deep underlying 

significance to the fact that the eigenvalues of h are the 

same as those of the u(1) generator for the 16 dimensional 

spinorial representation in which the quarks and leptons are 
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classified. This does not necessarily require that the opera- 

tor as defined by Eq.(23a) should also be equivalent to this 

u(1) generator for other representations in which Higgs or 

technicolor particles might be classified. 

We thus see that there is an underlying SU(5)-like struc- 

ture present in the quantum numbers of the existing particles. 

This seems to go beyond the well known result that they just 

"happen to fit" into two complete irreducible representa- 

tions of SU(5) and their conjugates. There are also SU(S)- 

like properties.of the four-point S-matrix as well. The 

tantalizing question still remains whether these properties 

indicate a basic underlying symmetry or merely an accidentaL- 

symmetry like flavor SU(3). 

The first indication that all was not well with the 

flavor SU(3) gauge theory was w-4 mixing. Two inequivalent 

representations of SU(3) were degenerate for reasons completely 

outside SU(3) and mixed badly to give states far from SU(3) 

eigenstates. This should not happen in the gauge theory of 

the world. Such mixing can test any higher symmetry, but 

cannot yet test SU(5) because there are no pairs of particles 

like w and $I classified in inequivalent representations 

of the symmetry group and allowed to mix by the existing-con- 

servation laws. For SU(5) two inequivalent representations 

are needed with the same pentality. The observed quarks and 

leptons are classified in the 5, 5*, 10 and lO* representations 

of SU(5) which all have different values of pentality and 

whose states cannot mix without violating the conservation 
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laws for~the known additive quantum numbers of electric charge, 

weak isospin and color. 

The absence of a pair of states like a-$ which can 

mix makes unambiguous tests of SU(5) very difficult and explains 

why so many SU(5)-like results are obtainable without Su(5). 

Since SU(5) is of rank 4, the same as SU(3)xSu(2)xU(l), all 

the additive conserved quantum numbers in SU(S) are already 

in SU(3) xSU(2) xv(l). Thus imposing SU(5) invariance can 

give no new selection rules based on additive quantum numbers. 

Since pentality is determined by the eigenvalues of the addi- 

tive quantum numbers, then pentality selection rule is already. 

implied by SU(3) xSU(2) xv(l). Non-trivial selection rules __ 

based on the non-Abelian quantum numbers of SU(5) are possible 

only when representations other than 5, 5*, 10 and lO* are 

present, so that couplings exist which are forbidden by SU(5) 

but allowed by pentality. and mixing can occur. As long as 

no other representations of SU(5) are present, the only kinds 

of SU(5) predictions which are not already present without 

SU(5) are relations between processes like (7a) and (7b) 

which depend upon SU(5) Clebsches. These are not easily 

tested. 
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