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Nonleptonic weak decavs of strange hadrons are complicated by
the interplay of weak and strong interactions. Models based
either on symmetry properties or on the selection of certain tvpes
of diagrams are hoth open to criticism. The symmetries used are
all broken in strong interactions, and the selection of some
tiagrams and neglect of others is never seriously justified.
Furthermore, the number of related decays of strange hadrons is
small, so that experimental data are insufficient for significant
tests of phenomencological models with a few free parameters,

The discovery of charmed particles with many open channels
for nonlieptonic decays has provided a new impetus for a theoretical

understanding of these processes.” '

The GIM current provides a
well defined weak hamiltonian, which can justifiably be used to
first order. The QCD appreach to strong interactions gives

flavor-independent couplings and flavor symmetry broken only by

quark masses. In a model with n generations of quarks and 2n
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tOn leave from the Department of Physics, Weizmann Institute of
Science, Rehovot, Israel.



flavors, a flavor symmetry group SU(2n) can be defined which is
broken only by Hweak and the quark masses. Here again, the same
two approaches of symmetry and dynamics have been used. But both
types of treatment tend fo consider only the symmetry properties
or dominant diagrams of the weak interaction, including some
subtle effects, while overlooking rather obvious effects of strong
intEIactions.j’A
A simple example of how strong interactions can completely
change flavor dependence predictions is given bv the K_r+ and
K°n° decays of the D°. Some treatments suggest that the K°7°
decav mode is strongly suppressedB’a relative to Kwﬂ+. However,
both the K°r° and Kn' states are linear combinations of iscspin
eigenstates with I1I=1/2 and I= 3/2. To see effects of strong
interactions, the decay amplitudes should be expressed in terms of
these iscspin amplitudes. Suppression cf the K°1° mode implies
that the two amplitudes nearly cancel in the K°n°® mode and add
constructively in the K—w+ mode. This cancelation is changed by

final state interactions which shift the relative phases.
This phenomenon is seen éhantitatively in a simple model5
which neglects enhancement factors and couplings to inelastic
channels and assumes that all final state interactiens can be
parametrized by phase shift factors, 9161 and e163. The D°

decay amplitudes are

1

AR~k r Ty = J(1/3) A3ei53-./(2/3) Aleiél (la)

A(D® >R°r°) = J/(273) A3e153+/(1/3) A1e161 (1b)

where .Al and A3 denote the I1=1/2 and I=3/2 amplitudes when
the final state interactions are neglected. The effect of final
state interactions on models predicting the suppression of the
neutral state (1b) is tested by assuming a complete suppression

in the absence of final state interactions. Then

Al = -2 A3 (2a)

(%]



8T(D°+ XK r 1)

T(D° - K°=°) ) ; .
{9 cot {(63—51)/2]+l;

The neutral decay is seen to be suppressed only if 632151.
But the I=3/2 channel is exotic and has no resonances; the
I=1/2 channel is not exotic and has manv K* resonances. The D
mass is sufficiently close to the resonance region so that the two
%7 phase shifts should be affected very differently bv nearby
resonances. This i1s shown dramatically in a recent partial wave
analysis of elastic K= scattering.7’8 The I=1I s-wave shows
& resonance with & mass oI 1.5 GeV and a width of 200=300 MeV,
giving an s-wave phase at 1.85 GeV varving berween 100° and 1460°
for different sclutions. The I=73/2 s-wave shows no resonances
and a swooth phase variation well deseribed bv an effecrive range

fict with a value around =-25° to -30° at 1.85 For é.~%_=

Ge'.

-180° the suppression is completely reversed, (D% -K°-°) =

8?(D°*»K_r+), and other predictionsB’a are drastically modified.
Even above the resonance region there is a considerable

energ) range in tne Regge reglon where phases of exotic and non-—

exotic amplitudes are known to be very different. Only at high

energies where the Pomeron completely dominates the scattering

amplitudes and gives an almost pure imaginary phase can the

difference between 53 and ‘fl be neglected. Thus the experimental

fact that the K°-° and K r decavs are of the same order of

magnitude is simply explained by hadronic final state interactions,
and any attempts to explain the data only by weak interactions or
gluon excnange diagrams without considering hadronic final state
interactions and isospin factors are open to serious criticism.
hote that the difference between exotic and nonexotic channels

is defined by hadron flavor exchange processes and these essential
physical features cannot be omitted from any rezlistic treatment.

A complete description of the nonleptonic decavs must take

into account such final state interactions by a full dynamical



In the SU(BJUdS treatments, for example, the charmed mesons

transform like a 3 and Hwe has three pieces whizn transfornm

ak
respectively like a 3%, a4 6 and a 15. Thus there will be
independent amplitudes corresponding to all of the representations

appearing in the produc:s

3 x 3% i+8
3x6 = 8+10

B+ 10*%+27

It

3x 153

Each of these seven representations can define an independent
amplitude for & particular tvpe of final state, unless some are
excluded by the allowed “inal state couplings. In some cases
there may even be more anplitudes, as in the case of two nonequi-
valent octets lixe vectcr-pseudoscalar final states, where both
D and F tvpe couplings are allowed and independent, and there are
ten independent amplitudes.
For the particular case of decavs into two octet pseudoscalar
mesons, Bose staristics of a 0+ state excludes the antisymmetric
10 and lO* representations and uniquelv chooses the D coupling
for the octet so that onlv five independent amplitudes remain.
But five is still an unwieldy number for extracting the physics
of symmetry breaking when the predictions are violated bv experiment.
The product ixh simplifies when the initial state transforms
like a singlet under the symmetry group and the relevant terms
in Hweak are classified in only one irreducible representation.
In this case the final state transforms like these relevant terms
in Hweak and there is cnly a single amplitude.
As a simple example of this approach, we begin with the
isospin group, for which symmetry breaking effects can be completely
neglected in the strong interactions. The Cabibbo favored component
of the charm-changing part of Hwea' transforms like the charged
components of an isovector. The F meson is a singlet under

isospin. It immediately follows that only isovector final states



calculation, including enhancement factors and couplings to inelastic
channels as well as phase shifts.6 Since such calculatiens are not
possible at present, two alternative approaches can be used. One

is to use phenomenclogical models together with hadron scattering
data and constraints from analyticity and unitarity to estimate the
final state interactions.9 Another is to use subgroups of the full
flavor symmetry group SU(2n) which are approximate symmetries of
strong interactions, thus automatically taking into account all

final state interactions which are invariant under this approximate
symmetry.

One popular procedure has been to neglect the mass differences
among the light (u,d,s) quarks and to assume that the old SU(B}udS
symmetry is a good symmetry broken only by Hweak’ while rejecFing
all higher symmetries as being badlv broken by masses.l’z’lo’ll
In this way, a number of independent SU(3) amplitudes are defined,
which are taken as free parameters in fitting the data. The dis-

advantage of the SU(B)U approach 1s that a large number of

ds
different amplitudes contribute to any given process, and it is
therefcre difficult to interpret the underlying reason for anv
disagreement in fits to data. 3U{3) breaking is not easily
incorporated into these treatments.

An alternative approach is to use other subgroups of the maximum
flaver symmetry, chosen to give simple predictions. The effects
of symmetry breaking can then be considered for each individual
case, and the simplicity of the predictions makes the underlying
physics more transparent. In general, symmetry does not lead to
simple predicticons because there zare too many different independent
invariant amplitudes. If the initial state transforms under the
symmetry like a member of an i-dimensional representation of the
group and Hweak transforms like a member of an h-dimensional
representation, then the number of independent amplitudes is equal
to the number of irreducible representations appearing in the product
ixh which are also allowed for the particular final states con-

sidered.



+
are allowed for Cabibbo-favored F decavs and we obtain the well

known selection rule,

T(F -ty =0, (3)

since the spin zero n+n° state has isospin 2. This selection
rule follows only from the isospin transformation properties of
Hweak and the isospin invariance for the strong interactions and
should be unaffected by SU(3) symmetry breaking, strong final-state
interactions or an increase in the number of quark flavors. It is
therefore no surprise that this selecrion rule holds in an SU(3)
treatment even when the number of flavors is increased from four
to six.

The D+ and D° mesons constitute an isospin doublet. With an

isovector Hwe two values of isospin are allowed for the final

ak’
state, 1=1/C and 3/2. Thus isospin gives no simple predictions
for D decavs; the best obtainable is a triangular inequality
relating D°—+K_n+, ¥2(D°~K®+°) and D+?+E°ﬂ+. Again it is no
surprise that this inequality holds in SU(3) treatments independent
of the number of quark flavors.‘2 The contrast between this compli-
cated inequality and the selection rule (3) shows the advantage of
an initial singlet state,.

We next consider U spin, under which the D® meson transforms
like a singlet. The importance of [ spin for charm-changing non-
leptonic decays has beer pointed out by Donoghue and Welfenstein. s
U spin is particularly useful in the four quark model, in which
the charm-changing part of Hweak transforms like a pure U spin

vector, and the final state in D° decays is pure U wvector. The

U spin analeg of the selection rule (3} is

T(D°+K°K®) = 0 . (4a)

Here again the Bose statistics within a multiplet forbids the
antisymmetric U spin vector state for a spatiallv svmmetric

two-boson svstem. However, the selection rule {2a) is not as



solid as the isospin selection rule (3) for two reasons.

1. ¢ spin symmetrv breaxing cannot be neglected to the sane
degree as isospin.

2. Hweak transforms like a pure U wvecter only in the four
quark model. With more than four quarks, a U spin scalar component
also appears.

The effects of U spin symmetry breaking are similar to these
already discussed for an analogous electromagnetic process.13 we

first note that U spin also predicts the following well knewn

equality between charged pion and charged kaon decavs of the D°,

e + - - \ .
T(DF KK ) = {p=rom oy . {4

The analeogous electromagnetic U spin predictions are

- JF = ;- + -7 -

c(e e — KK )= (ee +7 7). {3b}
The two symmetrv-breaking mechanisms discussed in connection with
the electromagnetic predictions (3) are alsc directlv applicable
to the charmed meson decav predictions (4).

1. Viclation bv SU{3) breaking of equalities or cancellations

between pairs of diagrams. The K°K® state contains two quark-

antiquark pairs, one ss and one dd. In the dominant diagrams
contributing to both forbidden reactions (4a) and (5a) cne pair
is created in a hard electroweax vertex and the other in a soft
strong vertex. There are two diagrams in which the roles ¢of the
ss and dd pairs is reversed. In the U spin or SU(3) limit,
these two diagrams exactly cancel. The symmetry is broken by the
s-d¢ mass difference, which can destreoy this cancellation. It is
reascnable to assume that the hard electroweak vertices are point-
like and are unaffected by the s-d mass difference. Bur if it
is easier to create nonstrange quark pairs out of the wvacuum than
strange pairs in strong processes, then the diagram in which the

ss pair is created strongly will pot cancel the other diagram



and the selection rule will fail. Whether this U spin breaking

is significant at this mass is still an open question, with argu-

ments presented on both sides.lo’lB’la
The equalities (4b) and (5b) do not depend upon such cancel-

lations but upon the equality of centributions from pairs of

diagrams in which a dd and ss pair is created by the hard

vertex, and the additional uu pair is created in the same way,

in both cases either hard or soft. If these diagrams provide the

major contribution, the equalities (4b) and (5b) would be less

sensitive to symmetry brezking than the selection rules {4a)

and (3a). In the electromagnetic case, there is also a dominant

diagram in which the uu pair is created bv the photon and the

d¢d and ss pairs are created strongly. However, this kind of

diagram is absent in the dominant contribution tc the D° decays

(4b) since the uu state is forbidden by U spin for a2 pure U spin

vector state, and additional U spin breaking is regquired to obtain

the diagram in the first place, as in the case of models with

more than four quarks discussed below. Once such diagrams are

introduced, the mass breaking-Tust also be considered; but the

mass breaking along canncot introduce a violation by this mechanisrm.

2. SLU{(3) breaking in resonance mass spectra. The predictions

{5) are clearlv violated at the ¢ mass, where the forbidden
reaction {3z) is equal to the allowed production of charged kaon
pairs, and there are no charged pion pairs. In the SU(3) symmetry
limit, the amplitude for the reaction (5a) via the ¢ would be
canceled by contributions from the ¢ and w, and these would
alsoc restore a charged pion amplitude sartisfving the equaliry (5b).
But because the vector nonet is not degenerate, the relations (5)
are strongly viclated.

A similar situation clearly obtains for the charmed meson
decay predictions (4). If there are any scalar meson resonances
near the D° mass which are not in degenerate nonets, the predic-

tions can be strongly viclated. Experimental information on



s-wave -7 and KK scattering amplitudes at the D wmass is necessary
in order to either take these eifects into account properly or to

prove that they are negligible. Without such information it is

very difficult to trust any caiculation which attempts to explain

the observed discrepancv between experiment and the prediction (4b).

The same appreoach used in Egs. (1) can be applied to estimate
the correction of the selection rule (4a) for final state inter-
actions in the KK svstem. Assuming isospin invariance we define

phase shifts 6. and ¢, for the final states of isospin zero and

0 1
one respectively. Then the amplitudes fcr the KK decays can
be written
T S . ifg L, iz, ,
A(D X K = (l/-)(AOe '-rnle ) (Ha)
A(DS - K°K®) = (l,-"}_‘)(AOelCG—Alel:1) (6b)

where z%] and Al are the amplitudes for the isoscalar and isovector
final states when the finazl srate interactions are neglected. The
selection rule (4a); implies thar AO=.%1 in the U spin vector
approximation. Wwhen this is substituted into Egs. (6a) and (é&n)

we obtain the correction to the selecticn rule (4a) due to final

state interactions as
- + - ,
FO7 xR = T 0-KK ran” [(5 -2 0/2] (6¢)

In the SU{3) svmmetry limit the isoscalar and isovector phase
shifts are equal and the selection rule (4a) is recovered from
{6c). However, in view of known symmetry breaking in the structure
of isoscalar and isovector KK resonances one would not gxpect
that 60 and il would be equal so close to the resonance region.

A scalar resonance denoted bv e€(1300) with a width of
200-400 MeV has been reported under the f meson. If this reson-
ance and the K resconance at 1420 menticned above are members of

an 5U(3) nonet, a similar scalar state coupled only to kaons can

be expected under the f'{1516). If this resonance has a large
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width, its tail could still be appreciable at the D mass and affect
the decav to the K+R— final state with no effect on = m . A
relatively small resonant amplitude interfering constructively

with non-resonant background could explain effects of the order

of the experimental discrepancies reported for the relation (5b).
Until effects of this kind are properly investigated, any attempts
to fit the data by introducing new weak interaction contributions
are unconvincing.

Predictions from U-spin properties of Hweak which are less
sensitive to symmetry breaking may be obtained by using the
invariance of strong interactions under charge conjugation. The
U spin Weyl reflection which interchanges s and & flavors

induces the following transformations:
K® —K* {(7a)

K~ —K-~ (7b)
Thus & final state which contains only K° and ¥° mesons together

with K = and R_7+' peirs goes into its charge conjugate state
under the U spin reflection. Since the D° goes into itself
under anv U spin transformation, the transformation (7) relates
any D° decav into these particles to a D° decav to irs charge

conjugate state. For example, the assumption that E o transforms
W

ak

like a pure U spin vector which leads to the relations (4) also

gives the relation:
- 4+ - 4 -
T(D°*=+K°K 7t ) = T(D°>K°K r ) . (8)

Like the predictions (4), this prediction (8) no longer holds if
there are more than four quarks, or if there are additional
diagrams which introduce a U spin scalar component into the

effective H However, the kind of symmetry breaking discussed
we

ak’
in connection with Eq.(6) and in particular the effects of reson-
ances should not affect the relation (8). Thus a comparison of

the experimentzl tests of the two predictions (€) and {8} should
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give an indication of whether the vislation of (6) presently observed

comes from an additionmal U=0 component in H or from U-spin
w

eak
vicelating final state interactions. [However, subtle U-spin-symmetrv
breaking effects can still be present. The contribution of the

K*K™ state to K°K 7 is not balanced by the U-spin-reflection
contribution of :+f— to §°K+n_ because the §°K+ channel is
closed for p+ decay.]

Additional predictions are obtainable from U spin reflections
which relate Cabibbe allowed transitions to doubly unfavored
transitions. These follow from the property of the terms in

‘weak which generate these transitions as being related by U

spin reflection. Consider the 2C=1 part of Hweak in tne notaticn
cf Quigg
H(C=1) = Ts,duiV. . V. +{Fs,5ulV..V
(=1 s,auj\ll 29 \cs,su}ilzkzz
(9)
+-7 Wo oV .+ {&d.sulv. .V
_cd,au}\ll 21 cd,su}\lz'\zl

The first and fourth terms of (9) are seen to be two components
of the same U spin vector which go into one another under the
U-spin Weyl reflection, except for the difference in the coeffiji-
cients. These terms describe Cabibbo favored and doubly unfavored
transitions respectively. We thus obtain the prediction that anv
pair of favored and doubly unfavored transitions which go into

one another under the U spin reflection satisfy the relation,

4 + -4 “+ g ! !
D"~ f) 2D =£') _T(F +f") _ Y12¥01 |2

+ ]
T(D°~ f) I(F+—>f”) T{D -»£") Vll"22

(10}
wnhere f, f' or " denotes any Cabibbo favored fimal state for
the decay considered, and f denotes the doubly unfavored state
obtained from f by a U spin reflection.

For the case where the final states contain only the mesons
K° and K° and the meson pairs K+ﬂ- and K—ﬁ+, relations are

obtained between final states which are charge conjugates and



where effects of final state interactions can be expected to he
much smaller. For the case of finzl states of two pseudoscalar
mesons, the 1° and r also appear in simple U-spin equalities
because the contribution from the U=1 mixture of 7° and n
vanishes as a result cof a selection rule relared to the selection

rule (4a) bv a U spin rotation. Thus we obrain the relations,

+ - o x 3 - o o ! /
T{D* =K 7 ) _ T(D">K*-%) _ T(D" -+ K°r) - \12‘21 2 (11)
o - + o -y o oo ¥ v
Tk rteRny r-kem) | V11%a0

These predictions would be unaffected by a treatment of fina!l
state interactions like Eq.(la) if the phase shifts are invariant
under charge conjugation.
Note that for the particular case of the four quark model,
the quantity appearing on the right hand sides of Eqs.{10) and (11},

=tan where EC is the Cabibbo angle. However,

I EAFIEARRAPY. e
the results hold equally well for models with more than four quarks
with the parameters in the Hamiltonian (9) taking on the values
in the particular model. It is onlv the second and third terms in
the Hamiltonian which des:ribe the Cabibbe singly unfavoered
transitions which change their U spin transformation properties
and introduce 2 U=0 component when more than four flavors are
present. Thnis is discussed in detail below. Unfortunately,
relations like (10) and (11) which involve doublv unfaveored transi-
tions are more difficult te test experimentally because of the jow
rates for these transitions.

Doubly unfavored transitions can be enhanced in decay modes with
neutral kaons, since the states actually detected are not K° and
K° but RL and KS. These coherent mixtures of K° and K° cffer
the pessibility of measuring interference berween the favored and
doubly unfavered amplitudes,l6 thereby obtaining a2 signal which is
linear in the small amplitude rather than quadratic. However, the
detercination of the contribution of this interference term requires

an additienal measuremsnt to normalize the direct term. This ic

possible in tne case of the relaticns (11) only if both the KL and



KS decay modes are reasured. The relation (1l) then predicts that

the KL and Kq nodes are no longer equal, but nave a difference
proportional to the square roct of the right hand side of (11).

I1f there is a nontrivial relative phase between V and V

_ 12V21 11V22
due to CP violation, the decays D°—>KSM° and IV-+KSM° would no
longer be equal, where M° 1is any neutral pseudoscalar meson. This
might be a possible test for CP violation.

We now generalize this approach to the use of larger flavor
symmetry groups. Predictions from such higher symmetries are
quite likely to be violated. However, if the predictions are
simple, it may be possible to analyze the symmetry breaking mechan-
isms, in a manner similar to the above examples. In this way it
might be possible to restore communications between treztments
which use only svmmetries and treatments which use oniv dynamical
dizgrams and which normally ignore one. another. To obrain simple
predictions, we look for subgroups of the general flaver symmetry
group SU{2n) to find those in which initial states are classified
as singlets.

A natural generalization of the U spin group SC(2)dS which
acts only on d and s quarks is the group which acts on all
"down-type" quarks with charge -1/3, and which we denote by SU(n)d.
This is just U spin for a four quark model and is SU(3)dSb for a
six quark model. Wwe can also define the analogous group SL‘(n)U
wnich acts only on "up-tvpe' quarks with charge +2/3. States
which contain no "down-type' quarks are singlets in Stkn}d and
simple predictions are obtained for their decays using St(n)d, as
we have already seen from € spin which is the special case of
n=2., The same is true for St(n)u and decavs of states which

contain no '

‘up-type" quarks and are singlets in St{n)u. But
charmed mesons contain at least one "up-type" quark and cannot
be singlets in St(n)u; thus only SU(n)d singlets mav be found.
Yor mesons containing b quarks the opposite is true and SU(n)u

mayv be useful in nenleptonic decays of such states, We do not

13



consider this possibility further here and restrict our treatment
to decavs of charmed mesons.

We now investigate the transformation properties of Hweak
under SU(n)d. We first ncte the chain of subgroups of SU(2n},

Su(2n) = SU(n)U};SU(n)d z SU(n)C

SU(Zn) — SU(n)uxSE(n)d > Sli(n),,

" 1

where SC(n)\C and SU(n),, are groups obtained by combining the "up'
and "down' groups intco a single "horizontal symmetry' in two wavs
which differ by a generalized Cabibbo ratation. SU(n}C is the
groun which transforms the n quark doublets inte one another,
where each guark doublet is defined by the weak current. St(n)M
is the analogous group in which the gquark doublets are definec by
eigenstates of the mass matrix. The flavor-changing parts of

the generalized GIM current for n generations each contain &
single "up" and a single "down" tvpe quark operator. Thev thus
transform like the fundamentzal representations of St(n)u and
St(n)d respectively; e.g. lixke the 3 and 3* in a six quark

4

rmodel. The current-current interactions in ® a1 therefore trans-
28

forms like a linear combination of singlet and adjoint representa-
tions. HBowever, the intervaction hamiltonian must transform like 2

singlet of SU{(n)_. t¢ give the GIM cancellations. Thus the repre-

C

sentations of SU{n) and SU(n)d in SU(n)U}{SC(n)d rust be the same,
u

either botnh singlet or both adjcint. The charm-changing part of

Huea’ cannot be a singlet under SU(n) , and must transform like
veax u

conjugate members of the adjoint representation (octet for a six

quark model) for SU(n)u and SU(n)d.

We now mote that the neutral charmed mesons as well as charmed

barvons containing only ¢ and u gquarks must be classified in
the singlet representation of SU(n)d, since thev have no down-tvype
guarxs. Thus decays of these states intc states constructed from
the same SU(njd multiplets are described by a single amplitude,
one which transforms like the adjoin: representation of SU(n)d.

14
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This can be seen explicitly by noting that the 4C =1 part of the
Hamiltonian (9} transforms like a member of the adjoint representa-

tion of SU(n)d, as the ¢ and u quarks are singlets in SU(n) For

4
the decay of a neutral charmed meson, or a charmed baryon centaining
onlv ¢ and u quarks, the final state transforms under SU(n)d like
{9) if there is no additional flavor symmetry breaking. Thus the

final state transforms like the quark-antiquark pair state,

Ly = v Vv iag v v 'ss ;v tda . s 2
e \11V22|sd>+\12\22 ssy+ V. V__ tddo+ v dsy . (12)

11 21" 12" 21

Note that in the conventionzl GIM four-quark model, where V. =V

11 ‘227

- av =- o s . . e, _
cos UC an 12 Y | = sin BC and EC is the Cabibbo angle. the coef

ficients of the s and dd terms in (12) are equal and opposite.

W~

Thus %f 1s a pure U spin vector, and this leads to a numbeyr of
well known relations between decavs. For more than four quarks the
coefficients of is§> and ﬂdé) are no longer simplv related, and
there is also a U-spin scalar componeﬂg in §f.
This U spin property can also be seen by noting that the state
(12) is the projection into the sd subspace of a state which trans-
forms like the adjoint representation of SU(n)d. For the four quark
model the sd subspace is the entire space of SU(Z)d and the require-
ment that a state which transforms like a member of the adioint
representation is orthogonal to the singlet makes the coefficients
of :s§> and [da> equal and opposite. When the space becomes larger,
the orthogonality no longer relates these coefficients, since ortho-
gonality with the singlet can always be fixed by adjusting the
coefficient of the |bb) term in the wave function which has been
omitted from (l2) as irrelevant for the decays under consideration.
We can now see the interplay of different tvpes of flaver
symmetry breaking. For the case where no flavor symmetry breaking

is assumed other than thart in Hw Eq.(9) defines a definite

eak’
linear combiration of U-spin scalar and vector coemponents, with
coefficients which are completely determined by the elements V.j
of the quark mixing matrix. Thus the breaking of the simple U-spin

+ - + -
equalities of the four-quark model{e.g. D">K K =D®-x 1t , Eq.(4D1)
9

15



is completely fixed by these parameters. If flavor symmetry breaking
is assumed but SL(B)UdS is s5till assumed to be unbroken, as in the
treatments c¢f Refs.1-2, then U spin is conserved, but the U

spin scalar and U spin vector components of the final state are no
longer related and are described by two Independent amplitudes.

This can be seen in Quigg's Table I, where there are five independent
reduced matrix elements in the SU(3) analvsis of charmed mesen
decavs. However, only twe linear combinations appear in the decavs
of D°'s into charged pions and kaons, namelv the combinaticns
2ZT+E-5 and 3T+2G+F-E, corresponding to the U spin vector

and scalar components of the final state.

We now consicer the possible effects of wass breaking on SL‘(n)d
flavor symmetryv. Since our symmetry only involves negatively
charged quarks, there are two distinct mass differences which
break the symmetry. For simplicity we consider the six-gquark model.
The generalization tc mere generations is trivial. The relevant
mass differences are:

1. The d-s mass difference. This alsc breaks old-fashioned
SU{3) and 1s neglected in the-conventional SU{3) treatments.

2. 7The mass difference between the b guark and the light
quarks,

Note that in the tree approximation, no b gquarks appear in
charmed meson decavs, since they are not present in either the
initial nor final states. Thus the breaking of SU(B)d by the high
mass of the b quark is irrelevant in the tree appreximation. The
d-s mass difference can appear in the tree approximation, in
diagrams where éd or ss pairs are produced from cclored gluons.
Flavor svmmetry requires that such pairs be preduced with equal
amplitudes, but the mass difference can suppress strange quark
production. However, no such pair production occurs in the tree
diagrams for two-bodv D° decays into charged kaons and pions.

Thus flavor symmetry breaking can be inserted here only when

diagrams invelving loops are important.



We now apply this formulation to the particular case of D°
decays into charged picns and kaons. This case is particularly
simple since the charged pions and kaons are in U spin doublets
and in the fundamental representations of SU(n)d. There is thus
only a single amplitude for the four final states. The results
can be read off immediately from Eq,(l2), since the two meson
final state is obtained from the wave function (12} by simply
adding a uu pair which is a singlet under SU(n)d. The final

state in the charged pion-kaon pair sector is then

T -t v -+ ; "',+
Yo = U Vo K Dy Vo IR ey VT DV K >
{13a)
.-+ . =+ L -+ .
= v Ko F (T +A [ (I =f) = = v . \r'
Vi Voo BT D (C ) (KK D= (Dm8) 270 DV V7 K D
{13b)
where [ and . are the linear combinations of Vllv7l and
Vi,Y,, defined in Ref.l which project out the U spin vector and

scalar parts of the wave function. Note that A vanishes in the
four quark model where (12} is a pure U spin vector and that =
is required to be small in the general case in order to fit the
experimental information available on the quark mixing matrix.
Estimates of the ratio Eﬂ/ﬂif 1/15 have been given in the
literature.l With this value it is impossible to fir the observed
branching raticos with the wave function (13).

Note that the wave function (13) corresponds to the following
relation between Quigg's amplitudes for the U=1 and U=0 compon-

ents of the final state
2T+E~-S = (1/2)(3T+2G+F-E) . (14)

The observed branching ratio, which gives a much higher
+ - + -
K K decay relative to 7 7 than indicated by the wave function

(13) can be fit in Quigg's formulation by using values of the

amplitudes which de not satisfy the condition (14). This corresponds

to enhancing the U=0 amplitude on the right hand side of (13}
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relative to the U=1 amplitude on the left. From our formulation
we see that this violation of (l4) cannot take place in the tree
approximation, anc we are led to consider diagrams involving loops.
There are two kinds of loops:

1. A quark-bosen loop, in which a quark emits a W and then
absorbs it, changing flavor in the process. This is often called
the penguin diagram. In the symmetry limit the c— u transition
is forbidden; the three diagrams c¢c-+d-u, c¢c~+s-u and c-+b=+u
exactly cancel. Mass differences can destroy this cancellation
and give a contribution which breaks the symmetry. Whether such a
diagram can gquantitatively explain the data is pevond the scope of
the svmmetry treatment and is left for specific model buillders.
Note, however, that in this case the dd or ss pair in the final
state must be createc by a gluon from the vacuuc. 7This pair will
then be in a U=1{ state if U~spin breaking is neglected. The
contribution to the final state from this loop diagram can he
expressed in Eq.(13) as 2 modification of the parameter 2 from
the value given by the quark mixing matrix. If tnis contributien
has the proper phas¢ to increase . and the proper magnitude, it
could enhance the K K decav. However, it deoes not seem
reasonable tc celculate this diagram without considering U-spin
breaking, because there are strong indications that it is easier
for a gluon to create a non-strange quark pair fron the vacuum
than a strange quartk pair. This U spin breaking could be esti-
mated by using data from other decavs into strange and nonstrange
channels.

R
2. Quark locps. To explain the difference between K K

and r+r decavs, loop dilagrams are needed in which ss and dd
pairs are annihilated and created. However, these can simply be
called final state interactions in the -+~ and KX svstems.
This immediatelvy leads te the question of the behavier of the rv
and K& s-wave sczattering amplitudes in the vicinity of the

D° mass, which ha:z been discussed in derail above in connection



with the simple U spin prediction (4b). Without additional
information on the strong amplitudes in this region, models of
weak interaction cannot be tested convincingly in these decays.
We now consider the application of SU(n)d to other charmed
hadron decays locking for singlet states. All doubly charged
baryons E++ must contain three quarks with charge 2/3 and nene
of charge -1/3 and are therefore 21l singlets in SU(n)d. All
states of such a baryon and twe charged mesons, B++M1M2 transform
under SU(n)d like the meson component Mle, since the barvon B
is invariant. Thus the requirement that the final state must
transform under SU(n)d like the state (12) immediately leads to

the result:

_!-..+.

I(Bf+'+B, MM (DM M)
i i 12 172 (15)
+—  _++ ’

™ - V'M' :ﬂ 0*}1 '

T(B; =B, M) (D 1M,) )
++ ++ .

where B, and B are doubly charged baryoens which can be

i f e

)

initial and final states in a charm~changing decay; e.g. (Bi ,Bf
can be (cuu,LT+) or (ccu,cuu), and (MI’ME) and (Mz,Mé) are pairs
of charged meson states in the same U spin multiplet. These
meson states can also be meson resonances, and Mi and Mi can
be the same state.

From the observation that (p,E+) transform under U spin and
SU(n) like (r",K ), we obtain

TP M) T AMKT) T(D° M)

- - 3 (16)

- +
T(cuu+MlZ ) F(cuu+MZZ ) T(cuu-+M3p)

where Ml, M2 and M3

meson rescnances, which are all in the same U-spin multiplet.

are any positive meson states, including

Unfortunately the doubly charged (cuu) charmed baryon baryon seems
to have a2 mass above the threshold for the decay into Acw+, 50
that weak decay branching ratios are very small.

We thus see a one-to-one correspondence between D° decays

into charged mesons and the decays of doubly charged baryons into

1%



states containing two particles in the final state which are
members of U spin doublets and possibly additional U spin singlet
particies. This follows from the Wigner-Eckart theorez for SU(n)d,
which states that the matrix element for the transition is given
by a reduced matrix element multiplied by a Clebsch-Gordan
coefficient for SU(n)d. This does not apply to final states
containing neutral mesons because these are classified in the
adjoint representation of St(n)d; e.g. the octer in a six-quark
model. Because there are twe couplings (commonly called D and F)
for this case, there are two allowed SU(n)d amplitudes for this
case and no simple predictions are obtained. In the D° decays,
simple predictions are still obtained because Bose staristics for
a O+ state of twc identical octets requires the D-type coupling.
For the barvon decavs there are no such constraints, unless two
mesons in a final state like those of Eq.(l4) are in a definite
partial wave which requires D-type coupling. This complication
does not arise with charged mesons, hecause they all contain
one u-type quark or antiquark and one d-tvpe, and are therefore
classified alwayvs in the fundamental representation of SE(n)d.
The coupling of the fundamental representation and irts conjugate
to the adjoint representation is always unique.

Further relations between charmed meson decavs are obtainable
directly from Quigg's tables and the additional relation (1s).
In each case the symmetry breaking must be examined individually
on some dynamical basis, analogous to the discussion above for
Egs.(4~6). 1If the SU(n)d symmetry breaking mechanism conserves
U spin, Quigg's results are valid with no additional constraints
like (l4) on the amplitudes. The relation (14) between the U= 0
and U=1 amplitudes in the final state no longer heolds, but SU(B)uds

symnetry is still good since isospin is alwavs assumed to be good,

and U spin combined with iscspin is egquivalent to SU{3} .
u

ds
Alternativelv one can keep the relation (14) and correct for the
strong interaction breaking by explicit models; e.g. introducing

phase shifts for the U=0 and U=1 channels, analogous to the



isospin phase shifts used in Eq.(6). It may be possible to obtain
vounds on the efifects of symmetry breaking by imposing general
constraints like analyticity and unitarity on these phase shifts
or by reasonable extrapolation of experimentallv measured phase
shifts at lower energies.

In each case, however, the question arises of whether the
SU(n)d symmetry breaking which conserves SU(B)uds is sufficiently
stronger than the breaking of SU(B)udS itself to justify taking
cne inte account and neglecring the other. For the case where
the final state is dominated by a non-degenerate nonet of reson-

ances, the breaking of SU(B)U cannot be neglected. But there

ds
may be cases where such mixing of U spin eigenstates is not

important and SU(3) . conserving mechanisms wnich enhance the
uds

small U=1{ component in the wave function (13) could be crucial.

REFERENCES

1. For a general review see C. Quigg, Z. Phvsik C4 (1980) 55.
M. Suzuki, Phys. Rev. Letters 43 (1979) 818. Ling-Lie Wang
and F. Wiliczek, Phvs. Rev. Letters 43 (1979) B8le.
N. Deshpande, M. Gronan and D. Sutherland, Phvs. Lett. 90B
(1980) 431. H. Fritzsch, Phys. Lerrc. 86B (1979) 343,
H. Fritzsch and P. Minkowski, Phys. Lett. 30B (1980) 453.
4. N, Cabibbo and L. Maiani, Phys. Lett. 73B (1978) 418.

D. Fakirov and B. Stech, Nucl. Phvs. B133 (1478) 315.

LEn3
+

L2

5. H. J. Lipkin, Phys. Rev. Letters 44 (1980) 710.
6. J. F. Donoghue and B. R. Holstein, Phys. Rev. D21 (1980) 1334.
7. P. Estabrooks et al. Nucl. Phys., B133 (1980) 490,
8. P. Estabrocks, Phvs. Rev. D19 (197%) 2678.
G. C. Sorensen, private communicaticn.
10. M. B. Einhorn and C. Quigg, Phys. Rev. D12 (1975) 2015.
11. R. L. Dingsley, S. B. Treiman, F. Wilczek, and A. Zee, Phvs.
Rev. D11 (1973) 1919.
12. J. ¥. Donoghue and L. Wolfenstein, Phys. Rev. D15 (1977) 3341.
13. H. J. Lipkin, Phys. Rev. Letters 31 (1973) 656.
4. H. Fritzsch and J. D. Jackson, Phys. Lett. 66B (1977) 365,
15. H. J. Lipkin, in: Deeper pathways in high energy physics,

Proc. Orbis Scientiae {Coral Gables, 1977) eds.
B, Kursunoglu, A. Perlmutter and L. F. Scort (Plenum,
New York, 1977) p. 567.
16. S. B. Treiman and F. Wilczek, Phys. Rev. Letters 43 (1979) 1059.



