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In the following, I wish to discuss the property of the QCD
vacuum by focusing a%%2 the expectation value of the color-singlet
composite operator (G vl , the square of the gluon field strength
tensor. Just as th¥ qq operator plays the primary role in studying
thg “Euark content™ of the vacuum, especially its c¢hiral property,
(G v) , measuring the "gluon content" of the vacuum, gives us a
vaEuable bit of information on its complex structure. Theoretically,
if one assumes importantc§ of certain field configugat'ons, such as
dilute gas of instantons,” one finds <O|(a /m)(G} ) lo>* to be
non=-zero and positive. On the other hand, throﬁgh the QCD sum rules
this quantity is directly related to the properties of physisal
resonances and has been determined experimentally to be v0.012 GeV .

Now a natural andzan important question is whether we can deduce
from QCD that (Gav) condenses quite generally without assuming
dominance of certaiH configurations. We have addressed ?urselves to
this question and have the answer ig tge affirmative. In the true
non~perturbative vacuum of QCD, (G v) condenses with positive
(magnetic) sign. H

A?he standard method to study condensation of an operator, call
it ¢, is to construct the effective potential for it by first
computing the generating functional in the presence of a source term
J$ and then Legendre-transforming the result. This procedure,
although straigh& forwardly implemenEable in such theories as
Gross-Neneu model’' or O(N)-symmetric A model” in the large N limit,
is next to impossible to ecarry out for QCD at present. This 6c?lls
for a trick. A trick is provided by the trace anomaly eguation ' in
the resenceaof2 the constant source J coupled to the operator
$=fd"'x 1/4(G)°. Let us recall that in QCD with massless quarks, the
tracﬁ anomaly equation, in 2the vacuum state, takes the form
<0|6"{0>=(28(g) /g)<0| 178(G2 ) |0>. Because of the Poincaré
invagiance of the vacuum, tﬁg left hand side is nothing but Y4 times
the energy density €=<0|0 0|0>. Thus if we can derive a similar
equation in the presence of 9, we will obtain £(J), from which the
effective potential can be constructed.

Our ability to derive such an equation rests on the fact that
the operator ¢ appears already in the action. 1In the generating
functional Z=expiW, the additiog ofzthe above, source termaamounts to
a simple <change Jd x 1/4(G )} (1+J.)fd x 1/8(62 )¢ (where O
signifies bare quantities). Inugge axial gauge spgggfied by the
constraint ﬁ(nuAg), this (1+J0) factor in turn may be eliminated by

*It is to be emphasized &ha?:, throughout, <0](Gav)2|0> means the
difference between (G ) in the true vacuum and ¥X the perturbative
vacuum. W
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the rescaling g§05g2/(1+J ), AE ={1+J )1/2AU, and we are left with
the generating functional igentica9 in form to the one without the
source. This we know how to renormalize and we can derive the
anomaly equation from it. There is however one complication, which

can be readily seen by expanding W(J) in powers of J;

W(J0)=W(0)+J06W/6J0+%J362w/6J§+.... As (—6/6J0) effects an insertion

of a '"hard" operator, we need to remove the extra infinities caused
by the multiple insertions of ¢0. This turns out to lead to mixing of

infinite number of operators {¢g}n_1 > » under renormalization.
=lscyeney

Without giving the details let me just assert that this is handled by

renormalizing J by a Z-factor which itself depends on the source:

JonZJ[i]zJ(Zgol JZ§1)+J2252)+...). Here the renormalized source J is
defined such that (-8/83) (D) | .o &ives the renormalized n-fold
insertion of ¢. This evidently is guite analougous to the case of the
usual coupling constant renormalization and is of no mysterious
nature.

Now that we have done away with techniecal complications, we can
follow the analysis of Ref. 7 and get the desired anomaly equation.
For the vacuum state it reads

%<0|9EJ10> = €(J) = (B(gJ)/ZgJ)(1+J)¢ ’ (N

where g§=g2/(1+J) and ¢=(-8/8J)W(J). This 1is an exact result,
ineluding, in particular, long wave length excitations. With e{Jd) at
hand, we can perform the Legendre transform and obtain the effective
potentizl

V($)=(Blg)/2g ) (1+0)9-3¢ . (2)

It seem at first that we still do not know how to compute €{J) or
V($). The important observation is that ¢ is the independent variable
so that we must substitute J=-93V/3¢ everywhere J appears in the above
equation. We then, realize that it is a non-linear differential
equation for V(¢), which may be solved at least for small g. With

BCgJ)=-bOgg~b1gg-..., we get the solutions sketched in Fig. 1. (For

$<0, the energy yill only go up.) Referring the details to the
original paper, we See from this figure that we have a stable
non-perturbative vacuum Sor Hhich $>0. (SEationary value for the
upper curve, e.g., is g ¢=Wexp(-c~1-2/b.g"), ¢ is a constant, which
clearly shows the non-perturbative nature of the vacuum.) This is
the result announced in the beginning. It is worth emphasizing that
the negative character of B function is erucial for this result.



A brief remark would be helpful chere: a similar potential
cbtained in the past by various people should not be confused with
the one we have discusseg. Their potential 1s not for the composite
singlet operator (Ga )°, but for Aa, the octet vector potential.
Vacuum expectation viYue of the comPosite operator is what is
relevant for QCD sum rules.
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Fig.1. Effective potential corresponding
to two different truncations of B function

Ig tBe remainder, I would like to describe how the condensation
of (G ) is related to confinement. For the confinement problem a
usefulugbject is the vacuum average of the Wilson loop operator

Y{C)=<¥(C)>=<1/NTrP exp igﬁcAudxu>, where C denotes a closed loop.

Recently it has been shown9 that this object can be made finite by
the usual renormalization procedure once one isolates the self-energy
of the test particle. Then, in the axial gauge the renormalized ¥(C)
satisfies the renormalization group equation, (p3/3u+B(gla/agl¥(C)=0.
Let us for simp%icit take the loop to be a.ppircle of radius r.
Noting that g 9/8g effects an insertion of ¢, after Wick rotation,
the above equation can be readily be transformed into

(0/30+M° (0))¥(C)=0 , (3)

where, 0 is the area of the loop and ME(G)z(B(g)/gU)AQ,
AP=Sd x(¢_(x)-d). Here ¢ (x)(¢) is the vacuum expectation value of
$(x) in- the presence® (absence) of the loop, i.e.
¢ (x)=<d(x)¥(C)>/<¥(C)>. This equation tells us that the area
dgpendence of the Wilson loop 1s governed by the integrated
difference of condensation with and without the loop. If the local
difference tends to zero rapidly away from the loop, A% would be
proportional to o (i.e. M (g) v constant)} and one obtains so called
the area law. The fact that the difference enters 1is of great
importance for the correct sign. The Wilson loop being a source of
chromo-electric flux, ¢ (%) n=ar the loop is less magnetic than ¢
i.e., A9<0. This togefher with the negative character of £ function
gives the desired sign for the area dependence.
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