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In the following, I wish to discuss the property of the QCD 
vacuum by focusing on2 the expectation value of the color-singlet 
composite operator (G" 1 the square of the gluon field strength 
tensor. Just as thg:q'operator plays the primary role in studying 
t% "quark content" of the vacuum, especially its chiral property, 
(G 1 measuring the "gluon content" of the vacuum, gives us a 
va%abie bit of information on its complex structure. Theoretically, 
if one assumes importantcs of certain field configusathons, such as 
dilute gas of instantons, finds <Ol(a /n)(G ) IO>* to b? 
non-zero and positive. On the'z:her hand, throcgh thg"QCD sum rules 
this quantity is directly related to the properties of physiqal 
resonances and has been determined experimentally to be So.012 CeV . 

Now a natural and an important question is whether we can deduce 
from QCD that (Ga I2 condenses quite generally without assuming 
dominance of certai!?configurations. We have addressed gurselves to 
this question and have the answer ig tp affirmative. In the true 
non-perturbative vacuum of QCD, (Gu,) condenses with positive 
(magnetic) sign. 

The standard method to study condensation of an operator, call 
it 3, is to construct the effective potential for it by first 
computing the generating functional in the presence of a source term 
J$ and then Legendre-transforming the result. This procedure, 
although straight forwardly implemenbable $17 such theories as 
Gross-Neneu model or O(N)-symmetric X$ model in the large N limit, 
is next to impossible to carry out for QCD at present. 
for a trick. A trick is provided by the trace anomaly equation 

This 6~~l;; 

J coupled to the operator 
Let us recall that in QCD with massless quarks, the 

vacuum state, takes the form 
Because of the PoincarS 

hand side is nothing but 4 times 
the energy density Thus if we can derive a similar 
equation in the presence of 9: we will obtain E(J), from which the 
effective potential can be constructed. 

Our ability to derive such an equation rests on the fact that 
the operator $ appears already in the action. In the generating 
functional Z=expiW, the4additiog of2the above4source $erm2amounts to 
a simple change Id x 1/4(G ) +(l+J )Id x 1/4(G ) (where 0 
signifies bare qtiantities). In%e axis? gauge spg&??fied by the 
constraint 6(n,,Ao), this (l+Jo) factor in turn may be eliminated by 

*It is to be emphasized sha?, throughout, <OI(Gauj210> means the 
difference b~etween (G;,) in the true vacuum and 5fn the perturbative 
vacuum. m 
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the resealing g* :g*/(l+J ) 
the generating fu%titlnal 

g I ,A$:(l+J )1'2AE, and we are left with 
i entica in f%m to the one without the -- 

source. This we know how to renormalize and we can derive the 
anomaly equation from it. There is however one complication, which 
can be readily seen by expanding W(J) in powers of J; 

W(J0).W(0)+J0Gw/GJ0~J~~*w/~J~+.... As (-6/6JO) effects an insertion 

of a "hard" operator, we need to remove the extra infinities caused 
by the multiple insertions of $0. This turns out to lead to mixing of 

infinite number of operators ($~~n=, 2 
, I..*,- 

under renormalization. 

Without giving the details let me just assert that this is handled by 
renormalizing J by a Z-factor which itself depends on the source: 

JO.JZJIJ]:J(Z~l JZ:')+J*Zy)+... ). Here the renormalized source J is 

defined such that (-6/6J)"w(J)I _ gives the renormalized n-fold 
insertion of $. This evidently is iG!te analougous to the case of the 
usual coupling constant renormalization and is of no mysterious 
nature. 

Now that we have done away with technical complications, we can 
follow the analysis of Ref. 7 and get the desired anomaly equation. 
For the vacuum state it reads 

+01f3;~10> : E(J) = U%gJV2gJ)(l+J)0 , 

where g*:g*/(l+J) and @(-6/6J)W(J). 
includini, in particular, 

This is an exact result, 
long wave length excitations. With E(J) at 

hand, we can perform the Legendre transform and obtain the effective 
potential 

V($)=(g(g,)/2g,)(l+J)$-J$ . (2) 

It seem at first that we still do not know how to compute E(J) or 

V($). The important observation is that $ is the independent variable 
so that we must substitute J=-RV/a$ everywhere J appears in the above 
equation. We then, realize that it is 2 non-linear differential 
equation for V($) ---9 which may be solved at least for small g. With 

g(g,)=-bOgi-b,g;-..., we get the solutions sketched in Fig. 1. (For 

$<O, the energy yill only go up.) Referring the details to the 
original paper, we see from this figure that we have a stable 
non-perturbative 
upper 
clearly shows the 
the FeSUlt. announced in the beginning. It is worth emphasizing that 
the negative character of R function is crucial for this result. 



A brief remark would be helpful bhere: a similar potential 
obtained in the past by various people should not be confused with 
the one we have discugseg. 
singlet 
Vacuum ex~~a~~~n~n 

Their poteniial is not for the composite 
the octet vector potential. 

(%Yie' optth?rco&&ite operator is what is 
relevant for QCD sum rules. 

Fig.1. Effective potential corresponding 
to two different truncations of f3 function 

12 t2e remainder, I would like to describe how the condensation 
of (G ) is related to confinement. 
useful'8bject is the vacuum 

For the confinement problem a 
average of the Wilson loop operator 

Y(C)X+'(C)>Xl/NTrP exp igbcAudxu>, where C denotes a closed loop. 

Recently it has been shown' that this object can be made finite by 
the usual renormalization procedure once one isolates the self-energy 
of the test particle. Then, in the axial gauge the renormalized Y(C) 
satisfies the renormalization group equation, (~a/a~+B(g)a/ag)Y(C)=O. 
Let US for simpJicit$ take the loop to be ahcircle of radius r. 
Noting that g R/ag effects an insertion of $, after Wick rotation, 
the above equation can be readily be transformed into 

(a/ao+M*b))Y(c)=o , (3) 

where0 (5 is the area of the loop and M2(a)=(5(g)/ga)A@, 
A@ld x(@ (x)-$). 
G(x) it-i' the 

Here 4,(x)($) is the vacuum expectation value of 
presence (absence) of the loop, i.e. 

4 (x)=<~(x)Y(C)>/<Y(c)>. 
dgpendence of 

This equation tells us that the area 
the Wilson loop is governed by the integrated 

difference of condensation with and without the loop. If the local 
difference tends to zero rapidly away from the loop, A@ would be 
proportional to o (i.e. h (o) s constant) and one obtains so called 
the area law. The fact that the difference enters is of great 
importance for the correct sign. The Wilson loop being a source of 
chrome-electric flux, @ (x) near the loop is less magnetic than I$ 
i.e., AQ<O. This togeEher with the negative character oft 6 function 
gives the desired sign for the area dependence. 
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