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ABSTRACT 

Using an interation procedure we have found the six possible forms 

of classical solutions to coupled Yang-Mills and isodoublet scalar fields 

which are needed to learn the high order behavior of the perturbation 

series of that field theory. For some of these solutions we have obtained 

solutions in closed form; for others we numerically estimate their con- 

tribution to the asymptotic behavior of the perturbation theory coefficients. 

It turns out that in the limit of a pure Yang-Mills theory, the most impor- 

tant contribution comes from an instanton-anti-instanton configuration and 

leads to the conclusion that the perturbation theory is not definable by a 

Bore1 summation technique. 

e Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

Recently a simple method for large order estimates in quantum 

field theory (QFT) was suggested. 
1 

It is based on the calculation of the 

Feyntnan path integral for Green’s functions in large orders of pertur- 

bation theory by using the steepest descent method. At the first step of 

the calculation the classical solution of the field equations must be found. 

At the next stage we should verify that this solution satisfies the necessary 

conditions to be a saddle point of the functional integral and that it supplies 

the maximum possible value for the integrand. Finally the quantum fluc- 

tuations near the saddle point should be calculated. This gives the possi- 

bility for finding an overall constant in the asymptotic formulae. For 

renormalizable scalar theories such a program was carried out. I,2 The 

Sobolev inequalities3 were used in Ref. (4) to prove that spherically 

symmetrical solutions of the classical equations give the maximal possi- 

ble value of the integrand. For gauge theories the problem of showing 

the satisfaction of the saddle point conditions looks more complicated. 

However, in Ref. (5) a method was suggested that allowed this for the case 

of scalar electrodynamics: namely, to find the forms of the classical 

solutions and to verify the necessary saddle point conditions for them in 

a certain region of parameters. In this paper we apply this method to 

the model of Yang-Mills field interacting with a scalar field. This model 

is very close to the well known Weinberg-Salam theory of the electro- 

magnetic and weak interactions. 
6 

We show below that in this case there 
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are six forms of the solutions that can be obtained by using an interaction 

procedure in the parameter m/k where m and k are perturbative 

orders in the Yang-Mills coupling constant g2 and in the scalar self- 

coupling. In particular, when m/k- m, the solution with the maximal 

value of the integrand has the form of two instantons. 
7 

A short version 

of this work is published. 
8 

The method of Ref. (1) can be considered as a certain quantative 

formulation of Dyson’s original arguments9 of the divergence of pertur- 

bation series as a result of instability of the ground state for a negative 

sign of the coupling constant. The applicability of these arguments to 

the problem of the anharmonic oscillator in quantum mechanics was 

verified in Ref. (10). Furthermore, it was demonstrated that the 

asymptotics of coefficients of the perturbative expansion was inimately 

related to the discontinuity of Green’s functions on the cut in the coupling 

constant plane in the vicinity of g = 0. This discontinuity can be calculated 

at small g< 0 by using the semiclassical approximation for the probability 

of penetration through a potential barrier. 
10 

The saddle point method for 

this problem was carried out in Refs. (11-16) and was generalized to the 

case of QFT in Refs. (15,16). The Bore1 summability of the perturbative 

expansion was discussed in Refs. (1,17-19). Very interesting problems 

arise in spinor ,theories. 
20,21 

In the next section we formulate the model--the large perturbative 

orders of which, we are going to study. 
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II. MODEL 

The action for the SU(2) Yang-Mills theory with a triplet of vector 

fields A’ 
P 

interacting with a doublet of charged scalar fields 4 can be 

written in Euclidean space in the form 

SZ /Hd4x =ld4x I$ ?iy + l(ap - ig$. Ap)$[‘+ qi. (4) 

Here 

Fa = apA”, - avA; + g e Ab AC 
P” abc p v’ (2) 

is the intensity of the Yang-Mills, ~~ are the Pauli matrices. 

We set the mass of the scalar field equal to zero because we are 

interested only in the short distance behavior of Green’s functions. The 

momentum p of the normalization point for the invariant charges 

g2(p2)I 
p2 = $ 

= g2> X(P2)1 
p2 = p2 

= X is taken to be larger than the nor- 

malized mass of the scalar particle: p.>>m. 

Green’s functions G(xi*. . xM; yi.. . yl+ zi.. . zN) in this theory 

can be calculated by using the perturbative expansion in the charges g 

and A: 

G(x 1aaa zN) = c 
Zm k 

kz ) A Gkm(xle .a zN), (3) 
k, m 

where Glnn(xi.. . zN) is given in the Lorentz gauge by the Feynman 

path integral” 
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G km(xl.. . xM; yl.. . yN; zo.. . z,) = 

l-r 
x,v,a,z 

dAz(x) dQr(x) d6”r(x) &(aOAz) Det(aOvO(A)) 

. in Am, Jo drj (Yj) m:j(zj’ 
1 

ew [-%A, 4, g, A) -/d4x H’(A, 4, g. A)] . 

Here H’ is a counter term corresponding to the renormalizations 

of the scalar field mass, of the wave function, and of the charges g and 

A. It can be calculated in low orders of perturbation theory. The factor 

Z. is chosen in such a way that Go0 is equal to the product of the free 

Green’s functions. The integration over g2 and A in Eq. (4) is performed 

along contours closed around zero. The contribution of the disconnected 

diagrams to Eq. (4) is not essential at large k and m (see Ref. 1). 

According to the method of Ref. (1) we should find the saddle point 

in the integral (4) for each variable A, 4, g, X. This saddle point can be 

obtained as a solution of the stationarity conditions of the functional 

2 
$=S+meng +KPnX,&b=O. (5) 

The variations of A and 4 give the usual classical equations. We 

should find their solution with a finite action. This means that the 

solutions must be space-limited. Due to translational and dilatational 
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invariance of the action (1), an arbitrary solution can be expressed in 

terms of one having its center at x = 0 and its scale equal to unity: 

XO’Y X-X 

4 (x) 
x 1 

X-X 
$I -+,“‘:“’ ++. 

i ) i ) 
(6) 

The solution T(x) or z”(x) is not invariant under the shift and scale 

transformations. Therefore, we can hope to conserve only invariance of 

the solution under the 10 parameter subgroup of the total 15 parameter 

symmetry group of the massless action (1). It is convenient to make the 

invariance obvious by passing to five dimensional coordinate space accord- 

ing to the equationz3 

2x 2 
z =-y 

P 1+x 
p=1,2,3,4; z5= v 

x +1 
, z;=1 

jd5Z 6(q - 1) q jdS5 = /d4x (2)4 , (7) 

and to new fields xi and Y 

6(x) = -z- Y(Z) 
Hx2 

;iy(x) = 
azi + az. azk 
ax Ai a.& ax = (8) 

Y ” v 
hik - zi Zk )* 

Here the five components of Ai satisfy the constraint 
23 

ZiXi = 0. (9) 
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Using the previous formulas we can rewrite the action (1) in a form 

manifestly invariant under the 10 parameter group of rotations of the 

five-dimensional space: 

S +S5y= jdS5 

+$ I[ Lij - ig z (, 

where 

& Lij A; + gZiEabc A>; +(($I+ (;;:)I’ f 

ZiZj - ZjXi) (IO) 

~~~ = zi aj -z. a. , 
J 1 

is the infinitesimal anti-hermitean generator of rotations in the plane (i, j). 

Using the invariance of the functional (10) under gauge transformations, 

we can choose the following Lorentz-like gauge condition 
23 

[ai-zi(za)j Ai=o. 

Then the classical equations for the action (IO) have the form 

(12) 

(-~L;j+2)A~geabc[-4A;ajA;-2(akA;)A;]+g2 (ZA;A;A;- ZA>;AJ”)+ 

+gz. 
2 1 

iTaY-Y”iraLikY 1 
(-$L;j+2+h[Y12+$A;) Y -lL (iTa)ziA~Y+~Z.A,L..(ira)Y=O 

2 ij 2 L.l’J 

I I 
Y2. f 2 4 Ai ) Y”+$ Lij (iTa) ziAT Y“-L Z A L (iTa) Y”= 0. 

2 i j ij (131 
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These equations should be combined with conditions (9), (12): 

ZiAi = 0 (ai -Z,(Za)) Ai = 0 . (14) 

Variation of the functional (5) with respect to g2 and A leads to the 

relations 

k=- as ,mz-- as 

alng' afnx ' (15) 

that fix the saddle point value for g2 and A in Eq. (4). In the next 

section we find the form of the solutions of Eq. (13) that satisy the 

necessary saddle point conditions. 

III. THE FORM OF SOLUTIONS OF CLASSICAL EQUATIONS 

To solve Eq. (13) we need some Ansatz for the form of their solution. 

For this purpose we use the same procedure that was applied to scalar 

electrodynmaics in Ref. (5). 

To begin with, let us consider the case 

m<<k. (16) 

Then it is natural to expect that the saddle point in Eq. (4) will be 

close to that of the purely scalar theory. In the scalar theory the 

solution fulfilling the necessary saddle point conditions is shown to be a 

constant on the 5-dimensional sphere. I,2 It can be obtained easily if 

we put A=0 in Eq.(13): 

(17) 
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where U is a constant spinor. The solution (17) provides the maximum 

possible value for the integrand in the path integral for the large order 

394 coefficients of perturbation theory. Other solutions with the same 

property can be obtained by using the shift and scale transformations 

(see(b)). We shall fix the position of the solution in the four dimension 

Eucliedean space and its scale by imposing on it the following constaint: 

dS5 da& +) Zi = 0. 

(0) _ In the approximation A. 
1 

- 0 the solution (17) satisfies this constraint. 

Using (15) in region (16) we get the following characteristic values 

for fields Ai and Y 

Y-h/i;, Ai-&%&. (19) 

Therefore we can omit in the first approximation all nonquadratic 

terms for the field A in action (20) when calculating the integral (4) in 

region (16). It corresponds to the linearization of the first equation of 

(13): 

1 -; .:tz+{ /YO(‘}$) i- 0. (20) 

The term of the zeroth order in A vanishes due to the relation 

Lij Y(O) = 0. A nontrivial solution of Eq. (20) does not exist for all values 

of g. In the general case we have the following solution 

A’:)(n) =. .C q, 
1 

Z. 11,12...ln rll...in l1 . ..Z. 
n f 1 a (21) 



where z. . ..z. 
II 

1 
is the symmetrical traceless polynomial P”(Zr): 

n 

hi i Z....Zi =o, 
r r’ i ‘1 n i 

. - 
and r) 

I?1 . ..1 
are some arbitrary coefficients. 

1 n 
-(I) The eigenvalue g(,) corresponding to functions (21) are 
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i ) 
(2) 2 = - 2 

‘(n) 
1 Y(0)j2 

(n+l)(n+ 2). 

(22) 

(23) 

The series (3) in the region m>> 1 has a finite radius of convergence 

in g2 which is determined by the minimal eigenvalue for g (I) in Eq (20) . . 

This minimal value corresponds to n= 0 in Eq. (23) but the corresponding 

eigenfunction (21) does not satisfy the subsidary conditions (14). Hence 

we must take the next value for g (1) m Eq. (23) that corresponds to the 

eigenfunction with n = 1 in Eq. (21): 

(g(l))2 = - + = 6 k I ; 

lyOl 

$1) = E ; 
r rr’ Zr! . (24) 

Here we have separated a factor E in order to normalize r) in a 

suitable way (see (32), (40)). The matrices qrr’ should be antisymmetric 

as is seen from conditions (14): 

-T 
tl = -ii. (25) 
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Other constraints on ; 
7-r’ 

are obtained below from the condition 

that the iteration of Eq. (13) in the small parameter E is possible. We 

can expand the coupling constant g and the fields xr, Y in the series: 

Kr=E;; z + e2 $2) + e3x(3)+ 
rr’ r-1 

. . . 
r r 

Y = J- -t U+E Y 2 (2) + . . . 

g2 =+6X+e . . . (26) 

and calculate the coefficients in the series from relations (15). For 

example we have the following equation in the second order in E: 

(2) Ak =--gi- -: ( (2))2 ( ) nL,Zli-6nb.n: z E 
k3 3k’ k’ abc * 

(27) 

The left hand side of Eq. (27) does not contain the first harmonics 

due to our choice of z(f) (24). It means that Equation (27) has a solution 

for A:’ only if r) satisfies the constraint 

b c c 1 rl ,17 = Cl Eabc rla, (28) 

where C is an arbitrary constant. 

In sich a case we can find g(2) to make the right hand side of 

Eq. (27) equal to zero 

(g(2))2 = 6 A Cf. (29) 
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Analogous reasoning in the third order in E gives two more constraints: 

aab 
r/llrl = C2nb, (30) 

Sp(nallb)tlb = c3rla * (3i) 

where C 
2 

and C 
3 

are arbitrary constants. It can be verified that the 

fulfilling of the constraints (25), (28), (30) and (31) is sufficiently for 

conducting the above iteration procedure to the arbitrary order in E. 

Below we shall find all solutions of these constraints. 

To begin with, let us consider the case when Ci =# 0 in Eq. (28). 

Then we can set Ci equal to unity thus eliminating the ambiguity in 

extracting the factor E in Eq. (24): 

[ rlbcl = Eabc Ila . (32) 

So, we must find three pure imaginary antisymmetric matrices ina 

that have the commutation relations of the generators of the SU2 group. 

In a general case such matrices provide a representation of the SU2 

algebra in some subspace of the five dimentional coordinate space. Due 

to the constraint (30) this representation is irreducible or it consists of 

irreducible representations with the same weights. We have only three 

possibilities for suchmatrices. Namely they can correspond to repre- 

sentations with isospins T = 2,l and (i/2 X l/2) and can be written in the 

form (see Table 1): 



-13- FERMILAB-Pub-78/41-THY 

I 0; = Y;dYJc,d, C-E act’ 6dd’ - ‘aed’ ’ dcl) ’ 

II ul = yiyj,, (-Earn,); a,c’,c = 1,2,3 , 

III q; = y1 y1 qa ; 
v ” P” 

t&v = 1,2,3,4, 

where the matrices 
i i 

y 
cd’ Y,. y: satisfy the conditions 

y;,= 0, Yib = YL,> SP&ls = bik. 

(dab (Yi),d = $Nac hbd + dad bbc) - $ dab 6cd 

(33) 

(34) 

(35) 

Y;Y;, = fJcc, 2 YiY”, = (P)ij’ P2 = P 

= (P)ij’ P2 = P , (36) 

and can be written in the following particular form after an appropriate 

orthogonal transformation in the five dimensional space (see Table 1) 

2GZi y1 a), = 6 t;‘,-z4;i ;.l+izjab 

i 
Yc = hit’ Y 1 =6. 

P w - 
(37) 
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The matrices na 
P*v 

in Eq. (35) differ from the ‘t Hooft matrices only 

by a factor (see Table 1) 

~~=;f;-;;;), U2=(; ; i-i). V’i(i i-;-i). (38) 

Now we consider the other possibility C1 = 0 in Eq. (31). Then it 

can be shown that by an appropriate ortogonal transformation 

a i j a 
Vij = Yi, Y., 11.1‘1 , 

J ‘J 
Y;, y”1, = bij 9 (39) 

These three matrices can be transformed to the following form 

and Ia 1, 1; are some vectors in isotopic space. 

If we substitute expression (40) in Eq. (33), we get three possibilities 

(see Table 1): 

2 2 
IV v;) = (a;) = 1, $1; = 0 

V 1; = 1;, (I;), = 1 

VI (P;,” = 1, 1; = 0 . 

(41) 

(42) 

(43) 
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2 
The case (1;) = 1, 1: = 0 can be reduced to Eq. (43) by au appropriate 

orthogonal transformation (39). In Eqs. (41)-(43) we choose a certain 

normalization of matrices r~ thus eliminating the ambiguity in separating 

the factor E in Eq. (24). 

Now we can pass on to finding the form of the solution of Eq. (13). 

We remember that the iteration of Eq. (13) in terms of E does not meet 

- any difficulty provided the matrices IJ in Eq. (27) satisfy the conditions 

(28), (31) and (33). The solution is expressed as a series in E;. It can 

depend on the following invariants 

(qaqa)ijZiZj, (uaqanbqb)ij ZiZj’ 1 (qaqb). 
2 

z. z. 
liJi If Jl 1 

. . . I (43) 

and so on. The use of constraints (28), (30), (31) gives us the possibility 

to reduce the number of independent invariants. 

To begin with, let us consider case I (33). Then an arbitrary invariant 

function can be expressed in terms of the following invariant structures 

(see (37)) 

sn = sp (z”) . 

Furthermore, independent invariants can be obtained from the 

expansion of the characteristic polynomial 

P3(X) G Det (z” - XI) = - X3 + X2 Spz - X i (Sp(s’) - (SP$~) + 

+$ (sp2)3 - + (SP;2) SlG2) + $ sp$, . 

(44) 

(45) 
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Due to Eq. (36) we get 

spz = 0, Sp(& = ZiZi = 1 , 

and therefore in this case we have only one independent invariant 

s=+ Sp(Zj3 = Det 2 . 

If we introduce the matrix 

h 
ab 

we can express S in terms of matrices nik by using the formula 

Sp(h3) = 6(11 - 108S’). 

Further, there is the following useful relation: 

z3 = ++ s.I, 

because the eigenvalues of 2 due to Eq. (45) satisfy the equation 

(46) 

(47) 

(48) 

(49) 

-A3-~x+s=o. (51) 

Now we want to find the possible structures on which the vector 

potential A: can depend. Generally these structures may be of the form 

(2” yi 2”) bc Ea’bc tgkjaa, I (52) 

with arbitrary n, m, k. But if we take into account relation (50) and the 

identity 
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E a,bc 6aa” = E abc ‘a/a”‘eabc6ca”-e aa’c ‘ba” ’ (53) 

the number of independent structures can be reduced to three. Thus we 

can look for a solution in the form 

A; = eabc al(s)~Yi+a2(s)~2yi+a3(s)~ZYiZI cb 1 
:;: 

Y = UY(s), u u- 1, (54) 

where ai and Y(s) are functions of S (47). The expression (54) can 

be written in terms of matrices n: if we use the relations (see (48)): 

vit,zk= - 2Eabc(%.) 
l cb 

, habqFkZk = - 2 eab& - 6z”‘yiz? , 
cb 

(h21ab vykZk = - 2 E abc(zyi- 30”22yi% 18s2y) 
cb . 

(49a) 

Ansatz (54) does not contradict the system of Eq. (13). The 

equations for ai( Y(s) can be easily found if we express the action (10) 

in terms of these functions. Using the formula 

(55) 

we get the following expression for the action (IO) in terms of the functions 

ai and Y(s): 
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ll3v’x 

s = d/b n2 / ds/W(~a’2+$Wa1~+$Wa’32-2a’a2)+18a2+9Wa~+~Wa~ 

-1/3v% 

+ g c 3a3-3SWa2++Wa:++Wa5(3a-a3) w2a4 i 
2 216 3 

+iWa2az++Wa2a3(a-9Sa2)-aW2aia3(a-Sa2) t 1 
21 
2 12 wa: 

t- 
* (56) 

where 

w = I- 5452; a = al + 3Sa 1 
2 -Ta3’ (57) 

The differential equations for ai and Y are easily obtained from the 

condition of stationarity of the action (56) 

6s = 0. (58) 

Let us consider now cases II, III, V and VI (see (33)-(35) and (40)- 

(43)). Here we can construct only one independent invariant: 

s = )lij 77.. z. z. , 
1 lJ2 Jl J2 

(59) 

and only one possible structure for Ai( Therefore the solution of 

Eq. (13) can be found in the form 

Aa = nFkZka(S), Y=UY(s), U+U=I. (60) 
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The simplest way to obtain the equations for a(S) and Y(S) is to express 

(10) in terms of a(S) and Y(S) is to express (10) in terms of a(S) and Y(S): 

n1/2 -1 
dS S T(T+3-ql)+l 1 

C 2S2(.1 -S)(a’)2+3Sa2+< Sa2Y2]+ T(T+i)(-gSa3+:g2S2a4)+ 

+ 4S(1 -s)(Y’)2+2Y2 +$ Y4 
I 

, (61) 

and then to use the stationarity condition (58). 

In Eq. (61) T is the total isospin of the representation realized by 

matrices n and n 
1 

is the dimension of the subspace in which it acts 

(see Table 1). 

At last we consider the case IV (41). In this case we can construct 

two independent invariants 

SI = - (q;),,zizj> s2= - (q2) Z.Z., 
9 2ij ‘J 

and two possible structures for Aa: 
1 

Z a (S ,S ) k 2 1 2 

(62) 

(63) 
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The solution in the form (63) satisfies Eq. (13) and the differential 

equations for ai(S1, S2)Y(Sl, S2) can be obtained from the stationarity 

condition (58) if we express action (10) in terms of these functions: 

S = 8n2jdS1 y:S2 ~$2 

aa aa 
-e 

+‘2 as, as2 
+2 ay ay -- as1 as2 1 a2+s a 2 

2 
2 11 22 ++-SlS2a~a~+Y2+$Y4*+ X 

(64) 

I 

We have found in this section all possible forms of solutions which 

satisfy constraints (14) and can be obtained by iteration Eq. (13) in the 

parameter E- m (see (24)). In the next section we shall find exact 

solutions for some cases and estimate the actionrfor others.. 
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IV. GREEN’S FUNCTIONS IN HIGH ORDERS 
OF PERTURBATION THEORY 

We consider at first the cases II, III, V and VI. The action (61) 

can be rewritten in the form 

2ir512 
( 
T(T+3-nl)+l LD 

> S = g2.r~~~r~~~ [ diish1)4-n1~~2+2(DI-21A2+b2+(nl-3i02+ 

+ 
T(T+i) 

T(T+3-nl)+l 
-2A3+xA4 

2 
T(T+3-nl)+l 1 (A2$2+x $4) , f (65) 

if we introduce new variables 5 and new functions A, 4 by the following 

definition 

SC-L.- a = 2 A(e); Y = i 
T(T+3-nl)+l 1 

112 

Ch2t ’ 
2s $(5), x =+ . (66) 

g 

In the case III (T = i/ 2, n1 = 4) we obtain the following Euler equations 

i 

d2 -- 

dC2 

=0 

AL 

dS2 

(67) 

It can be easily verified that there is an exact solution of this system of 

equations 
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4 Sh 25, 
8I-‘O 

A= Ch2&+ Ch2co ’ ’ =+i &h25+Ch2~0 ’ (68) 

where the parameter 5, is related to x by the formula 

e*O = (12~-1)~‘~. (69) 

The solution (68) can be obtained by using the iteration procedure in 

the parameter E (see (17) and (24)) (E-X - i/6). 

In terms of four-dimentional variables and fields this solution takes 

the form 

4Qa x 

A;(x) = ‘” ” 
p4 -1 4(*i) +~3 

g 
2 

(x + P2P + P2x2) P2)(*+P 
22 

x > 

114 
P =(12x-i) . (70) 

We see from this equation that our exact solution for the vector field is 

proportional to the product of two inst~antons 

Aa = 
4rla 

)IVX” 1 

II g 2 
x +A 

2’ (71) 

with two different scales 
x1 

-1 
=p and X2=p . The action (65) can be 

calculated for the solution (68) 

s = 16~’ --so=-2+ 

3(Sh450 -45,J 

g2 2 Sh2 25, 
. (72) 
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According to the method of Ref. (1) Green% functions in large orders of 

the perturbation theory are given by the following expression (see (4)): 

Gkm - exp (-y(k,m)) , (73) 

where y(k,m) is the value of functional (5) at the solutions of its 

stationarity equations (13) and 

2 as 
k=-g 2, m=-ig . 

ag 
(74) 

For our exact solution (68) we obtain by using (72) the equation 

I f(Zc,) Z e2’0 th2c0 
5, + $ Sh2Zco- + Sh2<OCh250 

k+m =- 
25, Ch 25, - Sh 25, k 

I S =k+m. (75) 

It turns out that the solution of this equation 5, = 5, (k+ m/k) is complex 

for real values of k+m/k. In Fig. 1 the curve in the complex plane 25, 

is plotted on which I m f(25,) equals zero. When k+m/k grows from 

unity to infinity the solution of Eq. (75) moves along this curve. There 

are two different solutions of the equation. For the first one, the point 

in the 25, plane moves from 25, =0 at m=O to 25,= lr/2i at m=m. 

For the second one the point moves from the point 25, = 1.3 + 2.8 i to 

250=m+ in/ 2. Therefore for one classical solution (68) we have two 

saddle points in the integral (4). 
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Taking into account the solutions with complex conjugate values for 

2co 
we can write Eq. (73) in the form 

Gk,m = A * (lTTye )kim Re [C (&)I ktm J (76) 

where for our case C(m/k+m) due to (5) and (75) has the form (see (72)) 

c (em) = S$2S,) (e”‘;;+ I ) 

-- 

k-Fm , (77) 

ami 5, should be determined from Eq. (75) as a function of m/ktm. We 

computed the modulus and phases of C(m/k+m) for the two possible 

branches 1 and 2 (see Table 2). At m/k-m the value of r; o for the 

second branch tends to infinity. From Eq. (68) we see that $ vanishes 

in the same limit and the relative scale of two instantons goes to infinity. 

The scalar field becomes inessential and we end up with the pure Yang- 

Mills theory. In particular the action in the limit is twice that of a 

single instanton (71). An appropriate solution of such form was used by 

Bogomolny and Fateev’ intheir work on large order estimates in the pure 

Yang-Mills theory. Note, that the expression (68) is not the only 

solution of Eq. (67). For sufficiently large x the re are other real 

solutions. In the limit x>> 1 the vector potential for these solutions 

almost coincides with the one for exact solution (68) and the scalar field 

tends to zero but instead of a plateau at I+<5, as in (68) the scalar 
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field here has one or several bumps of a finite size. The action on these 

solutions at x - m almost equals the one for solution (68) and is smaller 

on the values of the order of l/x. However it can be verified numerically 

that the region where other solutions of Eq. (67) give the larger value for 

C(m/k+m) in Eq.(76) is negligibly small (Im/k+m-i(<<l). 

We can expand the action (72) near its value for the pure scalar theory: 

16.x2 sz - 

g2 

1-6 
h(-l)h 

'(htf)(h+z) “=12 1 (78) 
h=O 

Using Eq. (75) we obtain the following equations for the calculation of 

Y and g 

m= S+(Zty) $ - i612 6 5 yh(-l)h(h-l) 

g h=Z (h+2)(h+3) 

161~~ 
m 

ktm=S: - h wh - 

g2 
2-6 hG1 ’ (h+l)(h+2) ’ 

I 

We can find the solution of Eq. (79) in a series in dm : 

(79) 

(53’3) 

which gives us the possibility of calculating C(m/k+m) in Eq. (77) for 

small miktm: 
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= - Pn So(y) - +m emin,-s 

*i$- g (&)3’r+... (81) 

The appearance of irr in Eq. (81) results in sign-alternating coefficients 

Glan (76) at sufficiently small values of m/k. 

Now we pass to the discussion of the solutions of the Euler-Lagrange 

equations for all other cases (see (56), (61) and (64)). Using the above 

mentioned procedure of iteration in the small parameter E - (x - l/6) we 

can find these solutions and the action on these solutions (cf. (78)). 

Furthermore, this parameter can be found from the saddle point Eq. (74) 

as a series in s (cf. (80)) and we can obtain C(m/k+m) in 

Eq. (76) in terms of the series at small m/k+m (cf. (81)): 

~n~Ci(~m)~=ln3-~mln6-Bi($--)2+... , (82) 

where the values for Bi are given in Table I for all six cases. We see from 

the Table the maximum contribution to the large order asymptotics comes for 

small m/k+m fromthe classical solutionwith T = 2 (54). Forarbitraryvalues 

of m/k+m we have estimated the actions (56), (61) and (64) byusingappro- 

priate trial functions. The simplest trial functions are the lowest spherical 

harmonics (ai = const, Y = const, a 
2 

= a3= 0 for Eq. (51); ai = const, Y = const for 
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cases (60) and (63)). This estimate is in rather good agreement with 

the value of the action in the case when we have the exact formula (72). 

It turns out that just as in case III we have in cases I, II and IV two 

solutions when we use Eq. (74) in order to determine the saddle points 

for g2 and A. The values of PnlC(m/k+m)/ for the first solution can 

be calculated from Eq. (82) with high precision in the whole region 

O<m/k+m<i. The values of Pn/C(m/k+m) [ for the second solution 

in cases I, Il and IV are significantly smaller than those in cases III. 

In Table I we give the results of numerical estimates of C(m/k+m) for 

these two solutions in the limit m/k-O. For the second solution we 

obtain in this limit Y equal to zero for all four cases and therefore 

there are four different forms of solutions of the pure-Yang Mills 

equations. For the case II (T = 1, nI = 3) (see (65)) that solution can be 

found in an exact way 

A = 
(83) 

and the action for this solution is 

Lsq$m) die -i 813 = 2.275 e 
-i67.3” 

16~~ 
,(84) 

m-o, 

which agrees with the estimate obtained by using the trial functions above. 



-28- FERMILAB-Pub-78/41-THY 

Thus, we have found six different forms of solution of the classical 

equations for the SU(2) Yang-Mills theory with a scalar field by using 

our iteration procedure and have estimated the contribution of each of 

these solutions to the asymptotic behaviour of coefficients of the per- 

turbation series. More exact asymptotic formulas for Gk 
, 
m can be 

obtained only if we calculate in Eq. (4) the integral over small fluctuations 

near these saddle points. It is a rather difficult.problem because we 

have found only one exact solution. In the case of the other five solutions 

we can obtain only in the form of a series over the parameter (x- i/6). 

In Ref. (24) it was argued that in the Yang-Mills theory for scattering 

amplitudes on the mass shell there are factorial contributions from 

certain Feynman diagrams resulting from renormalization effects. It 

would be desirable to find the total contribution of all such diagrams. 

We are grateful to A. Belavin, E. Bogomolmy, V. Fateev and 

V. Gribov for helpful discussions. One of us (L. L. ) wants to thank the 

Stanford Linear Accelerator Center and the Fermi National Accelerator 

Laboratory for their hospitality during his visit in the U. S. A. where 

this work was completed. 



-29- FERMILAB-Pub-78/41-THY 

REFERENCES 

1 
L.N. Lipatov, JETP 72, 411 (1977). - 

2 
E. Brezin, J. C. LeGuillon, and J. Zinn-Justin, Phys. Rev. E, 

1544, 1558 (1977). 

3 0. V. Besov, V. P. Ilyin, S. M. Nikolsky, Integral Representation of 

Functions Moskow,“Nauka” (1975). 

4 
C. Itzykson, G. Parisi, J. B. Zuber, Phys. Rev. Letters 2, 306 (1977). 

5A.P. Bukhvostov, L.N. Lipatov, JETPE, 1658 (1977). 

6 
S. Weinberg, Phys. Rev. Lett. E, 1264 (1967); and A. Salam, 

Elementary Particle Theory, ed. N. Svartholm (Almquist and Forlag, 

Stockholm, 1968). 

7 
E. Bogomolny, V. Fateev, Phys. Lett. 7lB, 93 (1977). 

8 
A. P. Bukhvostov, L. N. Lipatov, E. I. Malkov, JETP, Letters, in print. 

9 F. J. Dyson, Phys. Rev. E, 631 (1952); A.M. Jaffe, Comm. Math. 

Phys. 1, 127 (1965). 

10 
A. I. Vainstein, “Decaying Systems and Divergence of the Perturbation 

Series” Novosibirsk preprint (1964). 

11 
J.C. Langer, Ann. Phys. 41, 108 (1967). 

i2C. S. Lam, Nuovo Cimento i, 258 (1968). 



-3o- FERMILAB-Pub-78/41-THY 

13 
C.iVI.BenderandT.T. Wu, Phys. Rev. z, 1620 (1973). 

14 
J. C. Collins, D. E. Soper, Princeton University preprint (1977). 

15 
G. Parisi, Phys. Letters, 66B, 167 (1977). 

16 
E. Bogomolny, Phys. Lett. 67B, i93 (1977). 

17 
D.V. Shirkov, Nuovo Cimento Lett. c, 452 (1977). 

18 
V.S. Popov, V.L. Eletsky, A. V. Turbiner, Phys. Lett. 72B, 99 (1977). 

$9 J. C. LeGuillou, J. Zinn-Justin, Phys. Rev. Lett. 2, 95 (1977). 

20 
C. Itzykson, G. Parisi, J. B. Zuber, Phys. Rev. 16D, 996 (1977). 

21 
E. Bogomolny, V. Fateev, Phys. Lett. in print. 

22 
L. D. Faddeev, V.N. Popov, Phys. Lett 25B, 29 (1967). 

23 
S.L. Adler, Phys. Rev. E, 3445; g, 2400 (1973). 

24 
G. It Hooft, lectures given at the Ettore Majorana Int. School of 

Subnuclear Physics. Erice, 1917. 



-31- FERMILAB-Pub-78/41-THY 

TABLE I 

Iv 4 a ik PIUl 
a ik 

+e2v2 
5 

42 
-1,083 180” -3.045 180” 

5 
V 

Fi 
-1.371 180’ - - 

VI 
5 

2 a ik jlql zs -1.289 180’ - - 

Variables for the various cases considered in the text. 
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0.3289 

TABLE II 

l- 

0.4751 

PnlCl 1.099 1.962 

.- 

arg C 180’ 175.4’ 

1.863 

169.70 

0.2685 

-1.340 

191.5” 

Tabulated values for C(m k+m) in Eq. ,’ 77) for two different solutions 

of Eq. (75). 

161.,2’ 

016549 0.8339 0.9243 

-0.973 

82..2” 

1.511 1.227 0.037 -1 633 

149.5” 1133.3’ 1 122.4’ j 113.0’ 

-0.623 

37.5” 

-0.356 

16-4’ 

0 

0 
cp 
- 
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FIGURE CAPTION 

The curve on which Im f(2E0) = 0 in Eq. (75). 
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