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ABSTRACT 

We observe that the theory of the Yang-Mills field with bare mass 

is included in the framework of spontaneously broken gauge theories, 

except that the Higgs field is realized nonlinearly. With the nonlinear 

symmetry associated with the Higgs field taken into account, the SU(N) 

massive Yang-Mills theory and the associated SU(N)L X SU(N)R 

nonlinear 0 model are shown to be renormalizable and asymptotically 

free theories in two dimensions. 
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I. INTRODUCTION 

1 Extensive studies of non-Abelian gauge theories m recent years, 

both theoretical and phenomenological, originate in the proof of their 

renormalizability2 in 1971. Renormalizable massless Yang-Mills 

theories’ give rise, via the Higgs-Kibble mechanism, 
3 

to renormali- 

zable theories of non-Abelian massive vector mesons. Such spontane- 

ously broken gauge theories, 1,2,4 however, exclude the theory of the 

Yang-Mills field with bare mass, conventionally de.fined by the 

Lagrangian 

~[A]=-+ Aa- a,;.,, 
abc b c2 1 2 

P ” 
ApAv,) +z m2(AL) . 

In this form the massive vector field (Proca field5) A; is no longer 

regarded as a gauge field (since the mass term is not gauge-invariant) 

and the renormalizability problem is difficult to investigate. 

There have been various attempts 
6-10 

to explore the renormalizability 

of the massive Yang-Mills field. Most approaches are, in essence, 

based upon the non-Ableian generalization of the Stueckelberg formalism 

for neutral vector-fields. 
5 

Within the generalized Stueckelberg formal- 

ism the gauge-field character8 of the massive Yang-Mills field mani- 

fests itself at the cost of introducing unphysical scalar fields. It becomes 

possible to quantize the massive Yang-Mills field in arbitrary gauges by 

use of the path-integral quantization. In four space-time dimensions 

power-counting in covariant gauges indicates the nonrenormalizability 
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of this field theory, which has been verified by explicit one-loop 

calculations. 6’ lo Recently the renormalizability of two-dimensional 

massive Yang-Mills theory was studied; the conclusion was yet 

indecisive. 9’ f”“’ 

It has often been observed 
7-10 

that in the generalized Stueckelberg 

formalism the most divergent part of the massive Yang-Mills theory is 

lumped in the form of nonlinear chiral Lagrangians. This remarkable 

chiral structure is neither accidental nor approximate. In this paper 

we shall point out that the massive Yang-Mills theory is expressed as 

a spontaneously-broken gauge theory in which the Higgs field is introduced 

according to the nonlinear realization of chiral symmetry. 
12 Viewed as 

a chiral gauge theory, massive Yang-Mills theory exhibits a richer 

symmetry structure than in its conventional form. In particular, the 

combined use of the gauge symmetry and nonlinear chiral symmetry 

enables one to discuss the renormalization of massive Yang-Mills theory. 

We shall prove the renormalizability of SU(N) massive Yang-Mills theory 

and, as a by-product,that of the SULK SU(N)R nonlinear 0 model in 

two dimensions. The latter by-product should be regarded as a gen- 

eralization of the case of the O(N) nonlinear c model, 
13,14 

the renor- 

malizability of which was recently studied in connection with the problem 

of phase transitions i3-f5 in 2 + E dimensions. 

Interest in the nonlinear o model stems from analogous nonlinear 

structures of lattice gauge theories, as formulated by Wilson, I6 and 
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aims at understanding the phase transitions leading to quark confinement 

in gauge theories. In particular, the O(N) nonlinear o model, which in 

ordinary perturbation theory realizes a spontaneously-broken 

(O(N-1) -symmetric) phase, is known 
13-15 

to possess, in the non- 

perturbative large N limit, a fully O(N)-symmetric phase realized 

linearly with the occurence of a bound state; such a symmetry restora- 

tion mechanism leads to color confinement in the transverse-lattice 

gauge theory of Bardeen and Pearson. 1-I 

In Sec. II we begin with a brief review of the nonlinear realization 

of chiral SU(N)L X SU(N)R, symmetry and set up our notation. In 

Sec. III we couple the SU(N)L gauge field to the Higgs field which is 

realized nonlinearly according to the regular representation of the 

SU(N)L X SU(N)R symmetry. A suitable choice of the gauge condition 

shows that this chiral gauge theory is identical with the massive Yang- 

Mills theory. The content of this section can be extended to other 

gauge groups in a straightforward manner. 

In Sec. IV we derive the Ward-Takahashi (WT) identities 
2,17 

associated with the local gauge symmetry and nonlinear chiral symmetry 

of our massive gauge theory. In Sec. V we prove, by intensive use of 

the WT identities, the renormalizability of two-dimensional SU(N) 

massive Yang-Mills theory and the associated SU(N)L X SU(N)R non- 

linear IJ model. An important observation here is that the ultraviolet 
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structure of massive Yang-Mills theory is essentially determined by 

its nonlinear e model component. 

In Sec. VI we present an explicit calculation of the one-loop renor- 

malization counter-term for SU(Z) massive Yang-Mills theory, mainly 

to verify the argument in the foregoing sections. 

ln Sec. VII we discuss the short-distance behavior of our SU(N) 

models. Like the O(N) nonlinear cr model, 
13-45 

both SU(N) massive 

Yang-Mills theory and the associated nonlinear o model are asymp- 

totically free in two dimensions 19 and have a nontrivial ultraviolet- 

stable fixed point in 2 + E dimensions with E > 0 infinitesimal. 

In Sec. VIII. we present a summary of our result. We speculate 

on the phase properties of massive Yang-Mills theories and the related 

SU(N) nonlinear o model in two and higher dimensions. 

Throughout this paper we shall employ dimensional regularization 
20 

to control ultraviolet divergences, preserving the WT identities in 

arbitrary dimensions. Special care is taken to separate infrared and 

ultraviolet divergences; we shall refer to the infrared regularization 

procedure in Sec. V. 
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II. NONLINEAR o MODEL 

In this section we review the SU(N)LX SU(N)R nonlinear o model 

which is used to describe the Higgs field in the succeeding sections. 

Let us consider an (NX N)-matrix field M transforming according 

to the (N,E) representation of SU(N)L X SU(N)R*2: i. e., 

M-M’ = UL M U+ 
R’ (2.1) 

where the transformation matrices U L and U 
R are SU(N) matrices. 

The hermitian conjugate M+ of M transforms according to the (m,N) 

representation 

+ 
M +M 

+I 
= URM+U; . (2.2) 

The nonlinear o model based on the regular representation of 

WWL X SW’UR is defined by the Lagrangian 

=.$?= a Tr [(a#M+) (a’M)]. 

with the field M subjected to the constraint 

M+M = MM+ = F2t, 

det (M/F) = 1, 

(2.3) 

(2.4) 

where F is a real constant. In the presence of this constraint the 

Lagrangian (2.3) is the only chiral invariant Lagrangian that involves 

at most two space-time deviatives. 
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The constraint (2.4) means that the matrix M/F is an SU(N) matrix. 

Any SU(N)- matrices are parametrized in terms of (N’ - 1) real para- 

meters. The parametrization we consider is provided by 

M= (aa+ina)XaEG+i??, (2.5) 

defined in terms of real fields na = (n 0 b 
, a. ) and o a= (o”,cTb) 

(a = 0 , . . ~, N2 - I), where we regard (N2 - 1) fields rb as independent 

fields while treating no and oa as dependent fields. The (NX N)- 

matrices Xa (a=0 , . . . ,N2 - 1) are the SU(N) generalization 
21 

of the 

SU(3) Xmatrices : Xk (k= 1,. . . , N2 - 1) are hermitian traceless matrices 

and X0 = (2/N) 112 1, normalized so that 

Tr(Xaxb) = 26 . 
ab 

(2.6) 

The product ab. A X us written as 

Xa~b = (d abc + if abc) xc , (2.7) 

where the real coefficients d 
abc 

and f 
abc 

are totally symmetric and 

antisymmetric, respectively; in particular, 

d am = t2,Ni/2 6ab ab0 
andf -0. (2.8) 

In what follows we shall make extensive use of the following U(N) 

notation: A lightfaced vector Aa (a = 0 , . . . ,N2 - 1) always stands for 

an N2-component vector and in particular its (N2-l)-components 
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Ab (b = 1 , . . . , N2 - 1) are denoted by a boldfaced vector A b ; 1.e. 

Aa = (A’,A). We shall, however, often denote an (N2 - l)-component 

quantity Aa simply by A a, regarding Aa as A a= (0,A). As in (2.5), 

the (NX N)-matrix Aa Xa will be denoted by 2, 

ii = Aa ka = (2/N)l” A0 1 + 2 . (2.9) 

Similarly, we write the (N2X N2)-matrices d bcaAa and fbac a 
A as 

(AX)bC = fbac Aa. (2.10) 

Vector and matrix indices will frequently be suppressed; e.g., AaAa, 

AaBa, CabBb and AaCabBb are denoted simply by A’, A.B, CBand 

A * CB, respectively. Appendix A lists some of useful formulae. 

We express the dependent fields =‘[rr] and oa[s] in power-series 

in TT so that M[rr] = F + i ii + O(m’/F), i.e. (Z/N) 1/z 0 c +F and 

ho .cr)+O as r-0. The SU(N) matrix field M[a] /F defined in this 

way is determined uniquely, as demonstrated by explicit construction 

in Appendix B. 

In terms of (na, oa) the field transformation property (2.1) 

M[rr ] + M’ = M[ $1 = ULM[ a] U+ 
R’ 

(2.11) 
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reads in infinitesimal form, i. e. ta a 
71 =lTa+6rr ,u - a - a 

uat15u, 

L 
and U 

R 
etc. 

6lT = + [(zi +rrx)dEL + (-5 tnX)66Rl , 

60 = + [(-5-i + UX)6CL + (~+uxx)6ERl I (2.12) 

where 6~ 
a L = (o,ij~~), 6~; = (0.6~~) and TT~ = (TO,& oa = (o’.o). If 

we rewrite (2.12) in the form 

6TT = lTX(6EL + &CR)/2 + Z(6dL : dER)/2, 

do = UX(6E L f 6ER)/2 - Ti(6GL - 6ER)/2, (2.13) 

it is clear that the fields TI and o belong to the regular representation 

of SU(N)L+R while no and o” are SU(N)L+R singlets. (Referring to 

the combinations + (hEL + SeR) and $ (6eL - deR) we call the corre- 

sponding two SU(N) symmetries SU(N)LtR and SU(N)L-R, respectively. ) 

The chiral Lagrangian (2.3) may also be written as 

9= + [(apo)'t (apn)2] . (2.14) 

We note that the SU(2)L X SU(2)R, version of the nonlinear o model 

is renormalizable and asymptotically free in two dimensions, as a 

particular case of the O(N) nonlinear o model previously studied. 
13,14 

We shall, in later sections, extend the proof of the renormalizability 
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of the nonlinear CT model to the SU(N)L X SU(N)R case, by an argument 

which emphasizes the symmetry structure of nonlinear realizations. 

III. MASSIVE YANG-MILLS FIELD 

Let us introduce the SU(N)L Yang-Mills field A; (a = 1,. . . , Nz - 1) 

into the SU(N)L X SU(N)R nonlinear o model (2.14). The gauge- 

invariant Lagrangian is given by 

yo[&,l = - 1. 4 FLy[A12 +$TrIM+$[Al~ILIAI Ml , (3.1) 

with Fa TV [A] = apA; - avA;+ g fabc ALA;, where we have denoted 

& simply by A; = (O,AJL). Here g is the coupling constant, and the 

covariant derivative ap[A] is defined as 

while its hermitian conjugate 9: [A] acts on the left; i. e. 

B gL[A] = B(zp + i i g zp). In the form of (3.1) it is evident that 

yo[A, ~1 has the local SU(N)L symmetry as well as the global 

SU(N)L X SU(N)R symmetry. Expressed in terms of (aa, era), 

yo[A, r] is given by 

yo[A,n] =- 1 4 (aWAy - a”A,+g AkX Ay)2 + i m2 Ai 

+ S {(a,~)~ + (apd21 

+$gA/( F+~x) ap,+ (-E+HX) apn) , (3.2) 
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with the vector-meson mass given by 
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(3.3) 

To quantize this system one has to impose a gauge condition. If we 

adopt the gauge condition il 
a 

=O(a=l a...> N2 - 1), yo[ A, a] takes 

the form 

yo[A,n=O] =- $ (a A 
P ” 

- avAp+g Alrx AJ2+ $ m2 A2, 
P 

(3.4) 

which is precisely the Lagrangian for the massive Yang-Mills field. 

The pure gauge-field nature of the massive Yang-Mills field is not 

explicit in this conventional form while it is manifest in the gauge- 

invariant form of (3.1) or (3.2). In the latter the vector-meson mass 

m = g F/2 comes from the nonlinearity of the realization 

M+M = (2/‘N)(02 + r2) = F2 = 4m2/g2, 

or, equivalently, from the nonvanishing vacuum expectation value 

< M+M> 0 
= F2. Correspondingly, in perturbation theory based on 

power-series expansions in g or i/F= (g/2m), the field 

V./N) 
i/2 0 

o =F+iii+O(rr’/F) develops a nonvanishing vacuum expec- 

tation value so that the global SU(N)L X SU(N)B symmetry of yo[A, V] 

is spontaneously broken down to global SU(N)L+R symmetry. As a 

consequence of the spontaneous breakdown of chiral SU(N)L-B 

symmetry there appear (N2 - 1) massless Goldstone bosons ~~ in 

perturbation theory. 
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In the (so-called unitary) gauge ra = 0, only the physical vector 

fields A; remain and the equivalence of the present chiral gauge 

theory and massive Yang-Mills theory is made manifest. This gauge, 

however, is unsuited for the discussion of renormalizability because 

of the vector-meson propagator of the Proca5 form (-g’“+p’p”/m2)/ 

(p2 - m2). For this very purpose, we may employ the standard gauge- 

fixing procedure I,21 
to quantize the theory in a gauge characterized 

by Fa[A] = - a’Aa .p. In this (Lorentz - and global SU(N)L x SU(N)R -) 

covariant gauge the Feynman rules are derived from the functional 

WJ. Kl =~[~lI~~l[dCl[d~lexp[i~dx{ Yeff[A I rr,c,q + 

J’* Ap + K. IT} ] 

with 

(3.5) 

~,[A,G~l = ~oI&“l -$&y2-?? a’%qA] c, (3.6) 

(3.7) 

where Ca = (0. C) and p= (O,c) are the Faddeev-Popov ghost fields” 

obeying Fermi statistics. The functional measure [go] stands for 

the invariant measure (the Haar measure 23) on SU(NjL X SU(N)B and 

is given by 

[gnl = [ drrJwI*l 

l/w[r~] = K det [moo 1 + (5 -ax)] 
X x ’ (3.8) 

where the matrix [. . . ] in the last bracket is an ((N’ - 1) X (N2 - 1)) matrix. 

Accordinglyperturbation theory is constructed on the basis of the Lagrangian 
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CJ=~eff[A,~,C,~]+i&(n)(Q)lOg[~oo+(~-nX)]. (3.9) 

where n is the dimension of space-time. The last term proportional 

to &%I) serves to cancelZ4 the leading divergences (quadratic in 

two dimensions) in the ,k (k 22) proper vertices; practically one may 

entirely ignore this term by using dimensional regularization in which 

6(n) (0) can be put equal to zero. In the present covariant 

swe ~eff[A,n,C,~l preserves the global SU(N)L X 

SWWR symmetry of Eq. (3.1) and Eq. (3.2); the fields A 
P’ 

Cande 

belong to the regular representation of SU(N)L (i.e~..Ap-A;= ULArUL, 

etc.) and are SU(N)B singlets. In addition, ye,[ A, TT, C, c] is invariant 

under the local SU(N)L transformations 

drr = (ij!+ TX)&/2 

60 = (-?+ox)ae/Z 

6A cI = g-iVpiA]6e 

tic = cx 6612 

@ = -cy -* Fa[A]65, (3.10) 

where the group parameter 6e a = (0,6e) is defined as 6ea(x) = Ca(x)6 6 

in terms of an infinitesimal anticommuting number 6 E independent of 
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the space-time coordinate x p; (65, C, ?) anticommute among themselves. 

This gauge transformation is known as the Becchi-Rouet-Stora (BRS) 

transformation. 18 

In the present covariant gauge the most ultraviolet-divergent 

portion of the theory is contained in the nonlinear o model sector 

rather than the pure Yang-Mills sector. Power-counting and, in fact, 

an explicit one-loop calculation 
10 

show the nonrenormalizability of 

massive Yang-Mills theory in four dimensions. (Although ordinary 

spontaneously broken gauge theories are renormalizable in four 

dimensions, the present chiral gauge theory fails to inherit this 

feature because of the nonlinearity of the o-model sector. ) 

However, massive Yang-Mills theory and the associated SU(N)L X 

SU(NR nonlinear o model become renormalizable in two dimensions; 

we shall show this in the following two sections. 

With the present parametrization (2.5) of the M field the theory 

turns out to be multiplicatively renormalizable. This multiplicative 

nature of renormalization, however, is not common to arbitrary para- 

metrizations. With those parametrizations where renormalizations 

are not multiplicative, the renormalization procedure is more com- 

plicated and the renormalization constants may be field-dependent, as 

observed in the case of the O(N) nonlinear c model in Ref. [ 131. 

With the exponential parametrization 

M = Fexp (iOaXa/F) , (3.11) 
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where Oa (a = 1,. . . ,N2 - 1) are real fields, the gauge-invariant 

Lagrangian (3.1) is written as 

g(A,O) = - $ F pY[A]2+$(mA~-Eab(@)ap@b)2, 

Eab(0) = [{exp(iG) - l}/(i@]ab = nEo [(iO)“/(n+l)!lab, 

Gab= if acb 0’1 F . (3.12) 

The Lagrangian of this form was previously dervied from a different 

view point’ and used to discuss the renormalization problem. 10 With 

this exponential parametrization, however, the WT identities associated 

with the nonlinear chiral symmetry is not as simple as the one to be 

derived in the next section. 

IV. THE WARD-TAKAHASHI IDENTITIES 

Investigation into the renormalizability of gauge theories relies 

on the Ward-Takahashi (WT) identities which express the symmetry 

property of the Lagrangian in terms of relations for the Green’s functions. 

To derive the WT identities let us consider the generating 

functional of the Green’s functions 

WJ, K Fi, rl, JA p. G, x> PI 
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9 =J 
source P 

. A’+K. a+fj . c+c. q +H. c +p’* vp[AIC 

+G- (CxC)+;g 2:. (-y+ax)c 

*$g P. (ir+aX) c, (4.2) 

where J “,= (O,J,p), Ka= (K”,K),, Ha= (H’,H) andGa= (0,G) are 

commuting source functions while n -a= (O,Ti). Ila= (O,rl), P;= KLP& 

Ea = (2’) 2;) and Pa = (PO, P) are anticommuting source functions. 

We have, following Zinn-Justin, 
18 

mtroduced the external sources 

K0 Ha I > pa> Ga> 
P 

Za and Pa for the composite operators To ITI .3 

oalrrl, $[A] C, etc. to simplify the WT identities. Let us note that 

under infinitesimal global SU(N)R, transformations (2.12) the source 

term %ource changes such that ysource+ 2 
source + ‘R, 27 source’ 

‘R %ource =+[K* (-;i+irX,)+H. (Z+ex)]6eR 

1 
+zg 6ER,.[(~+PX)(~+rrX)C+(-~+zx)(-;i+crX)C]. (4.3) 

(See Appendix 0.) Accordingly, we make in (4.1) a change of field 

variables corresponding to this global SU(N)R transformation, noting 

the invariance of the integration measure. Then the result is the WT 

identity associated with the SU(N)R symmetry: 

3 

b 
W[J,...]=O, 

(4.4) 
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where b = 1 , . . . , N2 - 1 (i. e. b # 0), and the replacement 

0 
na -d/i8 Ea. r [,r] +v O[b/i6K], oa[r]+ea[6/ibK], (4.5) 

is understood within the square blacket. 

Next let us derive the WT identities associated with the local 

SU(N)L symmetry. It is important to note that under the BRS trans- 

formation (3.i’O)the composite operators vp[A] C,(Cx C), (-;i+ox)C 

and (C+ax)C remain invariant, as is easily verified. On performing 

the BRS transformation on the integration variables A 
P 

and TT in (4.1), 

we areleft with the desired WT identity: 

J *6 
6 

P &PI* 
+K.-+H.&,+ij.-&+J - 6 

6P P 6J,, 1 w= 0. (4.6) 

Similarly, a change of variables ca-+ca+6 ca in (4.1) leads to the 

equation of motion for the ghost field Ca: 

(4.7) 

Our next task is to rewrite (4.4), (4.6) and (4.7) in terms of the gener- 

ating functional F of proper (i.e. one-particle irreducible) vertices 

defined by the Legendre transform: 
25 

r[ A, ,n,, C, c; K”, Ha, p. G, Za, Pa] 

= Z[ J, K,. . . ] -Jdx(Jp. Ap+K. ,+ij. C+c. n), (4.8) 
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with 

Z[J,K,fj,rl,H,p,G,~,P]=-ilogW[J,K,;j,~),H ,... I. (4.9) 

where A “,= (O,AJ, ra= (0, n), Ca= (0, C) and ca= (O,c) now stand for 

the new variables defined by 

A;=%, nazEa, C”=G, C”=-?!$ 
6K 6rl 61) 

(4.10) 

For later convenience we have duplicated the same notation (A 
k 

,r,c,e 

in (4.10) as was used for the bare fields (A , r, C, c) earlier. It is 
P 

necessary to distinguish them for the time being, but this notation 

will turn out to be useful in Sec. V where no distinction is necessary. 

Note that the Legendre transformation is made on the independent fields 

A I 71, C and c only. It follows from (4.8) and (4.10) that 
P 

J”,=-xa, Ka=..~,~a=+~a,,a=-~a, 
6A 6na bC 6C 

P 

62 br bZ 6r 
-z- - =- , etc. 
6I‘? 6K”’ &Ha bHa 

(4.11) 

In terms of l?[ A, pi, . . . ] , the WT identities (4.4), (4.6) and (4.7) 

are rewritten as 

=+nX)g+ (?-f&X) H+(g+Px)$ 

+ (-F+izx) = a 
6C 

1 
= 0 (a=1 a..., N2-I), (4.12) 
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ix 6r 6r 6r 6r -.-+-.--H.--w. 
671 6P 

me-1 z.(CjpA’“) 
62: 6C 6G (Y 6C 1 =O, (4.13) 

m a-- .&I- =o 
lJ 6pa sea 

. 

EL 

In (4.12) and (4.13) 

6rt61ro stands for -KQ and TT 
0 

stands for &F/&K’. 

(4.14) 

(4.15) 

(Such replacement is simply a matter of notational convenience, 

making the relevant expressions compact by use of the U(N) notation. ) 

As a counterpart of the SU(N), WI identity (4.12) we can also 

derive the WI identity associated with global SU(N)L symmetry. 

Equivalently, we may simply use the WT identity associated with 

SUN)L+R: 

(4.16) 

which means that A 
P’ 

?* 8, c, c, e 
P 

, G, P and & belong to the 

=JW)L+R regular representation. 
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V. RENORMALIZATION 

The procedure for the discussion of renormalizability of gauge 

theories is well known. 18 
For completeness we outline the procedure 

due to Zinn-Justin. First by the renormalization transformation 

Ap==Ap m=c~ A- r’ 1 ‘rs a ’ = q 0, K” = (Z2)-“‘K;,..., 

F = ZF Fr, m = Zm mr,. . . , we define the renormalized quantities 

A:, r,“, etc.; these renormalization constants are to be determined 

successively in the loop-wise expansion of P[ A, IJ, C, 25,. . . ] = 

f 
P= 0 

r%$, rrrs Cr’ cr.. . . I. 

At the zero-loop (tree-)level, P is given by the bare Lagrangian 

%ff + Xource with every quantity replaced by the corresponding 

renormalized one, P (“)=/ti@o’=j~t &&a~~,...]~+ yWurce[KO,,...]}. 

If we calculate the one-loop correction I’(i) on the basis of this tree- 

level Lagrangian, we shall find the ultraviolet divergences. The one- 

loop renormalization counterterm &I’ is then given by the divergent 

part of P(l) so that /dx &$/(I) = - r(*)(div). An important consequence 

of the WT identities for I?, (4.12) - (4.14), is that the one-loop renormal- 

ized action / dx(@‘) + A2 (1) ) itself satisfies the WT identities up 

to the one-loop approximation; furthermore, if follows by induction 

that the complete renormalized action /dx pr = /dx( y(‘)+Ay) 

must obey the WT identities to each order in perturbation theory. The 

possible structure of the counterterm A2 is constrained by power- 

counting and is further restricted by the WT identities. The proof 
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of renormalizability is completed if one can show that the renormalized 

Lagrangian yr determined in this way has the same structure as the 

initial bare Lagrangian. 

The above renormalization procedure is concerned with the 

removal of ultraviolet divergences alone. However, since the T( fields 

are massless in perturbation theory, we must take special care to sepa- 

rate ultraviolet divergences from infrared ones in the course of renor- 

malizations. A possible way of avoiding the infrared problem is to 

carry out renormalizations somewhere off the mass shell. An alterna- 

tive trick is to introduce a soft symmetry-breaking term which gives 

rise to a mass term for the 71 fields, as employed in Refs. [ 13,141. 

In practice, the external source Ho(x) can be used as an infrared 

regulator since, if Ho(x) is kept to be a constant Ho(O) in the course 

of perturbative calculations, the source term H’(O) co(x) = 

(N/2) 
i/2 0 H (O)[F - (a2/NF) + . . . ] generates a mass term for the 

TT fields. 

In two dimensions the fields Aa ra, ca, Ca and ca are dimen- 
P’ 

sionless in units of mass; and the coupling constants 1/F and g = 2m/F 

have dimension equal to zero and one, respectively. The external 

source pi has dimension one while KO> Ha, g Ga, g Ea. gPa have 

dimension two. Power-counting tells us that the counter-term A2 

consists of local polynomials (of fields and sources) of dimension two. 

The general form of A9 is considerably restricted by the following 
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observation: In the Lagrangisn Y eff (3.6) any interaction vertices 

that involve the A 
P 

field carry at least one power of the dimensional 

constant g. As a result of this, the counter-term Ay does not 

contain more than two A 
P 

fields; in particular, Ap and g needno divergent 

wave-function and coupling-constant renormalization, respectively. 

(The gauge parameter cy also requires no divergent renormalization.) 

In addition, the ghost fields are coupled to A 
P 

through the g(a’e) * (A X C) 
P 

vertex which is proportional to the momentum of the outgoing ghost field 

i?, and they have no direct coupling to (oa, aa). Consequently, A2 

does not contain any terms that are proportional to c a, pa and/or Ga. 
P 

Thus the power-counting argument alone can restrict the renormalized 

Lagrangian Y r[Ar. s,,;.. 1 = kfeo)+ A? to the form 

kf, = y’“(A, rr,C,~,~,Gl+g~[P,~;rl,C] 

+K’,+‘],] + Hada[a] , 

1’ -&(a”~p)2-ce apvp[A] C 
y d.J” 

rA,.~l - $ F;” [A 

+,p’- Vp[-Al C +; gG . (CXC). (5.2) 

(5.1) 

Here the functional a[ P, Z; 1~, C] islinear in C and linear ineither P 

or C, and ,+‘[r] and 4a[a] = (d’[r], d[ ~1) are functionals of TI alone. 
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On dimensional grounds, @, j” and da contain the dimensionless coupling 

constant l/F but neither g nor a space-time derivative. 

Our next task is to determine the further structures of Ye+ [A,rl, 

@[P, Z; XT, C] , /“[ ~1 and da[ s] by means of the WI identities. Now 

let us first substitute the action /dx yr into the SU(N)R WT identity 

(4.12) and isolate the coefficients of K”i Ha, etc. The result is the 

following set of equations: 

-& 3+$ (A 4~+xnx)lk;0, 

,k+ 66’ - 
P 

bn 

0 1k 
+a - TX =o, 

(5.3) 

(5.4) 

J [ dx (%PX)gt (-~t~~)~+(~~‘t~+~~)~lk=O, (5.6) 

+at,x 
f 

(5.7) 

where k, P and m run from 1 to N2 - 1. The first three sets of 

equations (5.3) - (5.5) serve to determine /‘O[ V] and da] ~1. If we make 

identification /L”[ ~1 - r”[ ~1 and darn] + oar ~1 in these equations, they 
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imply nothing but the SU(N)R transformation property (2.12) of na and 

Da; furthermore, if we take into account the SU(N)LtR symmetry (4.16) 

they represent the SU(N)L transformation property in (2.1:2) as well. 

Therefore, if we introduce the (N X N) -matrix JA?z[lT] = da[TT] Xa t 

i(/P]n] X0+ G), it transforms according to the (N, R) representation of 

SU(N)LXSU(N)R ;.,&![v] -+A’ =J&!~vT’] = UL J&n] U;, where the 

transformed field TT’ is defined by (2.12) with (no, oa) replaced by 

cp”> da). We next note that the hermitian matrix field J#[ T~M[ “Ii 

is invariant under the SU(N)R transformation: 

6R(AA+) = + 6 E; - ( & do f 2--77x 
) 
ab (6,6iTb) (J&f+) = 0, 

which means that the J$![ IT] A[ ~1’ is a constant hermitian matrix 

independent of 2. (Recall that at the tree-level doIn] O -0 [ll] = 

(N/2)1’2 (F + 0 (v2)) and therefore hR (-A-&? +) = 0 implies 

6 (-AA ‘)/ Ema = 0. ) Analogously, the hermitian matrix A[ ~1’ A[ ~1 

turns out to be a constant matrix. It is equally important to note that the 

determinant det A [ ~1 also is independent of 2 since it is invariant 

under SU(N)L X SU(N)R transformations. With these observations in 

mind let us turn to (5.3) - (5.5). We should look for those expressions 

for /‘[IT] and da[ ~1 which are power-series in JJ and which are 

normalized so that d”[ r=O] = (N/2) 112 F’ and v’[ 0] = 4 [ 0] = 0, 

where F’ is a real constant; (recall in this connection that the counter- 

term consists of polynomials of fields and sources so that the above 
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power-series nature is preserved in perturbation theory). With the 

normalization condition A[ n = 0] = F’ , the matrix A[ ~1 /F’ 

becomes an SU(N) matrix; i.e. J#[,v] A’[,*] = A’J# = (F’)’ and 

det (d[~] /F’) = 1. In Sec. II and Appendix B we have noted that the 

power-series parametrization of an SU(N) matrix normalized in this 

way is uniquely determined. Therefore F’, /‘[a] and da[ IT] can be put 

equal to F, s”[ V] and oa[ V] defined in Sec. II, respectively. 

Let us next look at the WT identity (5.6), which implies that 

a[ P, 2:; TI, C] is a scalar under the SU(N)R transformation 

ba 

ba 

or in the U(N) notation 

ba 
(Z+nx) , (5.8) 

where 6s 
b 
R = (0, d eR), and (b, c) run from 1 to N2 - 1 while a runs from 

0 to N2-1. Analogously, it follows from the WT identity associated with 

the global SU(N)L symmetry that @ is also invariant under the correspond- 

ing SU(N)L transformation on P, Z, TI and C. Possible forms of @ are 
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determined from the following symmetry argument. Let us write 

M=G+i?, 

Q=E=C 
-. . (5.9) 

The (NX N) - matrix fields M and N transform according to the (N,$ 

representation of SU(N)L X SU(N)R, i.e. M+M’ = UL M Ui etc., 

while Q transforms according to the SU(N)L regular representation 

Q-Q’ = UL Q UL and is an SU(N)R singlet. In general, SU(N)L X SU(N)R 

invariants are constructed from appropriate products of M, M:N, Nt and 

Q by taking traces or determinants. We know that m is linea,r in Q 

and in either N or N’. Note that Q, NM’ and MN+, which are SU(N)R 

singlets, transform according to the SU(N)L regular representation. 

Accordingly, both Tr (NM’Q) and Tr (MN+Q) are SU(N)L X SU(N)R 

invariants. Moreover, in view of the nonlinearity of the realization 

M’M = F2 and det (M/F) = 1, one may readily be convinced that these 

are the only invariants that meet our requirements for CD. They lead 

to the following invariants 

(I) =Z~(-ii+ox)C+P*(~+nX)C, 

(II) = E * (;;t ,X)C + P* (i; - uX)C , (5.10) 
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in terms of which @ is written as 

@[P,z:;r,C] = a(1) +b(II). (5.11) 

A further constraint on Q follows from the WT identity (4.13). Let us 

substitute (5.1) into (4.13) and pick up the coefficient of K”: 

&co, LiTTo 6G o 
p--.-z . 

6P0 6rr 6P 

At the same time we obtain the WT identity 

+ g . (C x C) 1 =o. 
Substitution of (5.11) into (5.12) and (5.13) shows that 

b=Oanda=$. (5.14) 

]A, ~1, the WI identity (4.13) now reads 

6 Y :ge v Eb [A] 6Ab - 5 (;i - *X) 
ab 

alrb = 0, 
P 

(5.12) 

(5.13) 

(5.15) 

where a and b runfromttoN’-1. From this identity and (5.7) it 

follows that Y :I;* [A, v] has the local SU(N)L symmetry as well as the 

global SU(N)L X SU(N)R symmetry. This symmetry property and power- 

counting are sufficient to determine possible forms of 2 ‘“;* [.A> ~1 . 
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Let us first consider the case of the pure nonlinear CT model; we 

turn off the coupling to the gauge field gr-0. According to power- 

counting 2 ;:* [A = 0, n] can involve at most two space-time derivatives; 

this determines 2 “*[A = 0, ~1 uniquely: 

>k;:; 
[A=O,r] = + 6 Tr[(apM+)(a’M)], (5.16) 

where (3 is a constant which, at the tree-level, is equal to one. If we 

make the scale transformation p 1’2(M, ca, va, F) + (M, oa, ITS, F) and 

P 
-i/2 0 (K ,Ha)- (KQ’,Ha) in (5.1) and (5.16), p can effectively be put 

equal to one. Consequently we have learned that the renormalized 

Lagrangian L! = .[g O,z] in (5.1) has the same structure as our initial 

bare Lagrangian in (4.1); this shows the renormalizability of the 

SUNL x SWVR nonlinear cr model. 

Let us next include couplings to the gauge field. Since Y::* [A>al 

can contain at most two A 
M 

fields, its most general form is given by 

y*“[A,n] = $ Tr [M+~~IAl~“IAJMl+~yTr[(a~M+)(a~M)] , (5.17) 

where y is a dimensionless constant. We have fixed the overall nor- 

malization of the first term by an appropriate resealing of M, F etc. At 

the tree-level y vanishes, and the term proportional to y, if any, is a 

part of higher-loop renormalization counterterms. Now recall the 

softness of the gauge-field coupling, as characterized by the dimensional 
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constant g. In particular, on dimensional grounds the inclusion of the 

gauge-field coupling does not affect the divergent part of wave-function 

renormalization of the TI fields. Therefore, comparing (5.16) and (5.17) 

we conclude that y is an effect of finite renormalization (i. e. finite 

resealing of T, F etc. ). Since finite renormalization is inessential in the 

proof of renormalizability we may simply put y = 0. Thus we have again 

learned that the renormalized~ Lagrangian yr coincides with our 

bare Lagrangian in (4.1). This completes the proof of the renormal- 

izability of two-dimensional SU(N) nonlinear o model and its associated 

massive Yang-Mills theory. 

The wave-function renormalization of the z field and the renormal- 

ization of the coupling constant l/F are two basic divergent renormal- 

izations we have to carry out; accordingly we introduce the renormaliza- 

tion transformation 

lT = z1121r and F2 = XZF2 
r’ 

The mass renormalization of the vector field A 
)I 

is not independent: 

1 m =- 2 g F = (=) 
112 

mr’ 

where mr = $ g Fr is a renormalized mass, which in general is 

different from the physical vector-meson mass. [In (5.18) we have 

assumed the SU(N)L+R, summetry. As is well known, i once we know 

the renormalizability in the SU(N)L+R symmetric case, the theory 
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remains renormalizable even when the global symmetry is spontaneously 

broken down to smaller symmetries. ] 

The foregoing proof tells us that the composite operators n”[ n] and 

ca[ .rr] are multiplicatively renormalized. Although the SU(N) 
L+R singlet 

fields a’[ n] and cr”[ n] appear to mix under renormalization, the mixing 

a is avoided owing to the discrete symmetry ii - - TT a of the chiral 

Lagrangian (2.14). (Recall that s”[ -?] = - ~‘]rr] while ea[ -n] = ca[ ~1 , 

see Appendix B. ) In perturbation theory the pure nonlinear c model 

preserves this discrete symmetry. It is broken in the presence of the 

SU(N)L gauge field but still governs the divergent part of the renormal- 

ization of the above composite operators. Accordingly, cO[ ~1 , for 

example, is made finite by an appropriate resealing c”, = (Y. Z) -i/2 0 
0 [Tll; 

the external source for this finite operator is given by HF= (Y,Z) . 
i/2$ 

The renormalization constant Y. can be put equal to one, as well shall 

see below. We differentiate (4.12) once with respect to b(x) and let all 

external sources vanish except for Hz(x) which we put equal to a constant 

+J). The result is the WT identity 

<DO> r o Fab(P2 = 0) + (H;/Yo) bab = 0, (5.19) 

where <cJ:>~ f 6I’/6HF(x) is the vacuum expectation value of e:(x) and 

Pab(p2) is the Fourier transform of the renormalized inverse rr prop- 

agator 62r/6a~(x) 617:(y). sime c,:>~, HF and Fab(p2) are finite 
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Y. must be finite; consequently we can simply choose PO = 1. Proceed- 

ing with the WT identities in the same fashion one can further show that 

CT 
0 a 
$ Or) = z 

-i/2(,0 a 
,0 ) are finite operators. Thus the renormalization 

transformation we should use is U(N)LX U(N)R symmetric, The com- 

posite operators (-ii+ uX)C and (Z+ nX)C are multiplicatively renormal- 

ized but they in general mix under renormalization. 

Perturbation theory is developed on the basis of the effective 

0 0 
Lagrangian (3.6) with the source term Hr cr [ V] added as an infrared 

regulator: 

2! eff[&~,C~,l +$+I = ST! free[A>yCr>~rl + b&a 

CAP)’ - 2 (apAJ2 <ree = - i (apAl, - bvAC1)2 +$ m2 r 

mrA 
)I- a 

pTr 
+t (apnr)2 

1 2 2 - 2 --K 
2 vr-ca c. (5.20) 

where K 2 = (2/N)l”Hr/Fr and we have chosen HL to be a constant. 

The free propagators derived from this free Lagrangian are listed in 

Fig. 1. The interaction Lagrangian yint~ 
when expanded in powers 

of A and in, contains an infinite number of interaction vertices. 
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VI. ONE-LOOP CALCULATION 

In this section we calculate the one-loop counterterm in the SU(2) 

case, to verify the argument of Sec. V. Expressions for SU(2) are 

obtained by putting 0’ +u and (a’, u) + 0 everywhere in the foregoing 

sections. In particular, the matrix field M[ IT] is given by 

M[r]=cr+i~* .T with 0 and na (a = 1,2,3) subjected to a constraint 

02+rr2=F2 or a[~]= m. 

As is well-known, 
26 

the steepest-descent approximation to the 

evaluation of the functional integral (4.1) gives the effective action F 

up to the one-loop approximation. (In what follows we regard (4.1) as 

written in terms of renormalized quantities although the subscript r is 

suppressed. In addition we put p 
P 

= G = P = ZZ = 0 for simplicity.) 

We first shift the integration variables: 

Ap = ALt + H 
P’ 

st 
lT =TT +x. 

c =cst+dJ, 

c =pt+q, (6.1) 

whereA st st ,~i ,C 
st -st 

and C 
P 

are determined so that the exponent in 

(4.1) becomes stationary. Up to the one-loop approximation, these 
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stationary fields are the arguments of the effective action F. 26 We 

change the integration variables from (A 
CI 

, a, C, p) to (Br, x, $. q) and 

st st 
henceforth denote (A , TT , C 

‘P 
st,?t) simply by (Air, lT,C,C). Then we 

expand the exponent around the stationary fields and extract the term 

L(1) [ B,x, $,T] which is quadratic in B ELIX.+,T. The one-loop con- 

tribution to the effective action F is obtained by evaluating the Gaussian 

functional integral 

/ [dBl [dxl id+1 [dTl exp i t/ dx L%ELx,il’>~l] , (6.2) 

where we have set the weight function w[ ~1 (3.8) equal to one by assuming 

the use of dimensional regularization. Since L contains, 

in particular, a term of the form 

$ (al*,xa) wab [ rl apxb, (6.3) 

with Wabfril=gab ab 2 +TTrl/u, (6.4) 

we make a further change of variables x a + $a z vab,rr]Xb so that 

(6.3) is brought to the form + (aQ2. That is, we choose Vab[ X] = gab + 

P rra7ib. where p[n]= i/{cr(u+ F)}. The Jacobian associated with this 

change of variables is given by 8($)/a(x) = 5 det Vab[n(x)] =v(f/~]n(x)]) 

which is again put equal to one by use of dimensional regularization. (As 

a matter of fact, this Jacobian exactly cancels the previous weight function 
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WIT]. ) Expressed in terms of I$ , L (1) takes the form 

++(aptd2+ $5 a N ;bar,$b+$4aMab$+ apBvaT ab BPb 
PW 

+ $ Bw p g”b + Bka (Q$ a” 4b + RFb cAb ) 
P” 

(6.5) 

ab ab ab whereN .M ,T 
ab ab 

U Q Rab 
P CLVP’ )*y’ PV’ CI 

are functionals of Ay and ?I. 

Expressions for these quantities are rather complicated; accordingly 

we simply remark that T 
ab 

and U 
ab are functionals of A alone and 

F*yP PV P 

quote the following result 

TT[M+;(N,-N;,‘] 

= (11~~) {(ap,u)2 + (apnj2 } + 3 {(aFai0)2 - HO/U). 

- 2(m/F)2 4: + 2(m/F3) .A’* (TO 
P u- uaPT + = x aPTT) 

+ 3 (m/Fo2) Ap*8’(~ IT) , (6.6) 

Q 
ab 

= $ g [(F - CT) gab + each ,T’ - navb/(F + CT)] . (6.7) 
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There are five types of diagrams which give rise to the one-loop ultra- 

violet divergences; see Fig. 2 (i) - (v). Since Tab and TJF: involve 
PVP 

ACI alone, diagrams (i) and (ii) are common to the massless pure Yang- 

Mills theory and give rise to divergent terms proportional to A2. In 
P 

the pure Yang-Mills theory, however, there is no mass renormalization 

and therefore the ultraviolet divergences coming from (i) and (ii) must 

add up to vanish. Diagram (iii) yields the one-loop divergence of the 

2 div(iii) = ITr[M+i(NV-NF) “] , (6.8) 

where I stands for the ultraviolet-divergent part of 

[i/2(2r)n] 
/ 

dnk(l/k2), i.e. I = 1/{4r(2-n)) as n-+2. 

Similarly, diagrams (iv) and (v) lead to the following one-loop divergences 

2 div (iv) = I cy Tr (QQtr), 

j;4div(v) = - I 2am Tr (Q) . 

(6.9) 

(6.10) 

Substitution of the expression (6.7) for Q shows that these two expressions 

combine to vanish. Consequently, the one-loop renormalization counter- 

term is given by .y = - zdiv(iii) with the substitution of (6.6). It 

is easy to see that this counterterm is compatible with the WT identities. 

In particular, the divergent renormalization constants Z and X are 
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determined to be (put N = 2) 
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z = I - (E/F;){N - (2/N))I, 

X = 1 + (4/FE){N - (l/N)}I, (6.11) 

where we have recovered the subscript r. The above expressions with 

general N correspond to the SU(N) case; in this case we have deter- 

mined them from the one-loop A A 
P v 

-, Apr - and TI’TT- propagators 

using the power-series expression (B.6) of Appendix B. 

VII. ASYMPTOTIC FREEDOM 

The O(N) nonlinear e model is asymptotically free and has a 

nontrivial ultraviolet-stable fixed-point in n = 2 + E dimensions 
13-15 

with E > 0 and infinitesimal. This short-distance feature is also true 

for the SU(N) nonlinear o model and therefore common to massive 

Yang-Mills theory as well. To see this let us consider the renormal- 

ization group equations, 27 which, e. g., for the renormalized inverse 

.,ranb propagator rab(p2) = 6 ab I( p2), takes the form 

[ ra+p (m) a (e) a 
ar- K+P $g-h 

(4 rtp2. e m 
1 

2 I r> a; I4 = 0 I 
r 

(7.1) 

where p is an arbitrary reference mass (or, more definitely, one may 

regard p2 as denoting the renormalization point p2 = p2) and 

eE p n-2/ (4~ FE). In n = 2 + E dimensions, the coupling constant 1/ E’z 
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and the TT field have dimension (2 -n) and (n - 2)/2, respectively, in 

units of mass; correspondingly, by means of the dimensionless coupling 

constant e = p n-2/(4 nF;) we have defined the continuation of i/F2 into 

n dimensions. 

As is well known,27 p(e) and By are given by 

p(e) = old/d&, Y(“) = $ (tddk) in Z, (7.2) 

where d/dp is a derivative to be taken with bare parameters m and F 

fixed. Noting the fact that 1/ (4 1~ F2) = e p 2-n(XZ)-1 is a bare parameter 

independent of p and using (6.14), one finds that 

p(e) = e(e - 2Ne) + O(e2c). (7.3) 

Similarly, if follows from (6.11) and (7.2) that the anomalous dimension 

p of the or field is given by 

p = {N - (2/N)} e + O(ec). (7.4) 

As a consequence of U(N)L X U(N)R symmetric renormalization, the 

0 composite operators 71 [ ~1 and oa[ TT] have the same anomalous 

dimension. It is clear from (7.3) that the theory is asymptotically free 

in two dimensions while there appears a nontrivial ultraviolet stable 

point e critical = e/(ZN) of order E in 2+ E dimensions. 
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VIII. CONCLUSIONS 

In this paper we have presented a systematic study of Yang-Mills 

field theories with explicit mass terms. We have shown that these 

theories may be considered within the conventional framework of m,ass 

generation via the Higgs-Kibble mechanism in gauge theories. The 

unique feature of this class of theories is that some or all of the Higgs 

fields are realized nonlinearly. For these nonlinear realizations the 

Higgs sector of the theory involves solely the Goldstone bosons which 

are absorbed by the Higgs-Kibble mechanism. In a particular (unitary) 

gauge, the entire nonlinear Higgs Lagrangian is reduced solely to the 

explicit mass term for the gauge field. 

As an example of this mechanism, we have studied an SU(N) 

massive Yang-Mills theory. In the case where all masses are degenerate, 

the equivalent Higgs theory involves nonlinear chiral Higgs fields, having 

an SU(N)LX SU(N)R symmetry. The SU(N)L symmetry is gauged while 

the SU(N)R symmetry reflects the mass degeneracy and symmetry of 

the massive Yang-Mills theory. 

With the fundamental structure of massive Yang-Mills theories 

determined, we have focused on the renormalizability and perturbative 

aspects of these theories. The renormalization problems were studied 

using the standard covariant gauges where the divergence structure is 

softer than that of the original unitary gauge. In this formulation, it is 
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clear that the principal divergences are those associated with the 

nonlinear Higgs sector of the theory. 

In four space-time dimensions the divergence structure remains 

untractable for the nonlinear Higgs theory. However, in two dimensions 

the analogous O(N) nonlinear o models were known to be renormalizable. 

We have extended this proof to the SU(N)Lx SU(N)R nonlinear o model. 

Using these results, the nonlinear chiral gauge theories (massive 

Yang-Mills theories) were shown to be renormalizable in two dimensions. 

This proof requires the full use of the Ward-Takahashi identities for the 

global SU(N)L x SU(N)R symmetries as well as those associated with the 

local SU(N)L symmetry. 

We have further shown that these theories are asymptotically free 

field theiries. This fact implies that these theories are governed by a 

nontrivial ultraviolet fixed point above two dimensions. Whether the 

theories may be extrapolated to four dimensions while maintaining 

control of the short-distance behavior remains an open question. 

We may also speculate on the phase behavior of these theories in 

two and higher dimensions. In two dimensions, the SU(N) nonlinear 0 

model (chiral Higgs theory) is expected to exist in the nonperturbative 

symmetric phase. The perturbative Goldstone phase is expected to be 

unstable due to infrared instabilities as a result of Coleman’s theorem. 28 

This result could be established explicitly in the O(N) models at large 

N. 
13-15 

We have not been able to extend these explicit calculations to 
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the SU(N) models. Above two dimensions these theories should exhibit 

a phase transition with,the weak coupling phase being the perturbative 

Goldstone phase. 

Contrary to the IJ model, the massive Yang-Mills theory is 

expected to remain in the perturbative broken-symmetry phase even in 

two dimensions. The Higgs mechanism is expected to prevent infrared 

instabilities at least for weak coupling. For strong coupling, a symmetric 

confinement-phase may exist as in the case of O(N) gauge theory. 29 

Above two dimensions we expect similar features to exist so long as the 

short-distance behavior remains under control of the ultraviolet-stable 

fixed point. 



-41- FERMILAB-Pub-78/29-THY 

APPENDIX A 

In terms of the “SU(N) notation,” (XB)’ = d cabAaBb and 

(A X B)’ = fcab AaBb read 

(XB)’ = (2/N)1’2 (A * B) = (2/N)1’2(Ao B” + A. B) , 

(xB)k = (2/N)1’2 (A0 Bk + AkBo) + (xB)k, 

AXB=AXB ((AX B)’ = 0). (A.1) 

In view of (2.7) the product 22 is rewritten as 

$6 = ((x+iAX)B)‘Xa 

= (2/N)(A*B) 1+ {(2/NJi(AoBa +AaBo) +((x+iAX)B)a]xa, M.2) 

where XB expressed in terms of boldfaced vectors denotes an (N2 - 1)- 

component vector, (xB)k (k $ 0). 
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APPENDIX B 

In this appendix we study the parametrization of the SU(N) matrix 

M[z]/F = (a+ i?)/F, @.I) 

normalized so that M[ ~1 = F + if; + O(r2/F). 

In What follows we shall put F = 1 for simplicity. 

Since M[z] is an SU(N) matrix connected to the unit matrix, it is 

uniquely written as 

M[n] = o^+ iG= exp(iQ, W3.2) 

aa in terms of a traceless hermitian (NX N) matrix $ = u A , where 

us(x) (a=l,... , N2 - 1) are real functions. Repeated use of the basic 

formula 

;;c; = (2/N) u2 1 + (Gu)a xa (B-3) 

enables us to cast exp(iu”) into the desired form (B.1); in particular, 

IT(U) is given by 

T = {I - (u2/3N)} u - $iiu + O(U~~). (B.4) 

[In deriving this expression we have used the relation u x(‘iiu) = 0 which 

follows from the identity 
21 

f 
abk dkce 

+f 
ebk dkca +f 

cbk dkae 
=o (B.5) 
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valid for SU(N). ] We can solve (B.4) for u in a power-series in TT and 

express n’fu) and aa in powers of IT; this procedure defines the 

parametrization (B.l) uniquely. The first a few terms in vO[ ~1 and 

oa[,n] are given by 

(Z/N) 
112 0 71 = - (~/~N)IT.%+ . . . . 

P./N 
112 co = 1 - (1 N) 7r2 - (i,2N2)(v2)2 - (1/4N) ~*;i;ia+ . ..) 

(T = - + (1/4N)(~~) %r-;;i3~+(1/12N)(7. ;ild?F+..., 63.6) 

where omitted terms are higher order in the 2 field. The overall 

normalization constant F is recovered if we replace (V a, oa) by 

(ra/F, oa/F). 

By making hermitian conjugation in (B.2) we learn that v”(-u) = - va(u) 

while oa(-U) = us(u). Correspondingly, n”[~] is odd in IT whereas aa[ ~1 

are even in *. 
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APPENDIX C 

In this appendix we calculate the change of the source Lagrangian 

(4.2) under an infinitesimal SU(N)R transformation. Since the first term 

on;the right hand side of (4.3) is trivial we shall confine ourselves to the 

second term. 

Let us first note that, in (NXN)-matrix form, (2.12) reads 

6(5+ iA) =t [6,(6+ i?) - (a+ iG)GR]. 

The P and C terms in piource (4.2) are written as 

g(P,z) =$ g Tr[P{e($+ i8) + ($- i$) ?} 

+ i Z{Z(G+ iG) - (c- i$C>]. 

(0.1) 

cc.3 

Applying the left transformation on (C.2) gives 

Finally repeated use of the formula (A.2) leads to the desired express- 

ion (4.3). 
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FIGURE CAPTIONS 

Fig. 1: 

Fig. 2: 

Free propagators. All the fields and parameters are 

renormalized quantities; the subscript r is suppressed, 

The parameter 2 K is an infrared cutoff. 

Diagrams (i), (ii) and (iii) represent the propagation 

of B 
v’ 

ti and $I, respectively. Diagram (v) represents 

a mixed BP- 6 loop. 
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<T-;(P) A:(P)> = i 
p2-In2 

- gkv + {(i - a)( ~~ - p2) - cm2}~(p2)pp py 
3 

cjab 

<T’A;(P)&J)> = “mpPD(p 
2 ab 

)6 

<T*na(p) rb(-p)) = i(mn2 -p2) D(p )b 2 ab 

<T’Ca(p)Cb(-p)> = i/p2 

D(p’) = 1/[p2(~2-p2)-a~2rn2] 

Fig. 1 
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