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I. INTRODUCTION 

In this set of lectures I wish to bring together a 

variety of problems and techniques from various subjects 

concerned with non-linear stochastic systems. These include 

quantum field theory, wave propagation through a random 

medium, turbulent fluid flow, radar scattering from the 

sea surface, and others. 

A goal of the lectures is to discuss the issues on a 

more-or-less unified footing and bring to bear on them a 

technique, called the renormalization group method, which 

allows a quantitative assessment of the importance of the 

non-linearities of the problem in question. Under some 

circumstances the same method allows one to construct the 

correlation functions for the fluctuating variables of 

interest. All of this will be explained in some detail as 

we proceed and will presuppose no knowledge of the renorm- 

alization group as used either in quantum field theory or 

in statistical physics. 

Our plan is to begin with some familiar and often 

well documented examples and build on that. In the first 

lecture we start with consideration of a scalar wave 

propagating through a fluctuating medium and demonstrate 

how this is directly related to a particular "quantum" 

field theory. A similar task is carried out for diffusion 

of a scalar field in the presence of a random fluctuation. 
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For these examples we then discuss in detail the renormalization 

group analysis of their correlation functions. 

After these examples are considered in detail, we proceed 

to use the same tools to study turbulent fluid motion. We 

begin with a discussion of the time dependent problem of 

homogeneous, isotropic turbulence, then consider in some 

detail stationary, homogeneous, isotropic turbulence. A 

return to the decay of turbulent motion is made at the end. 

There are several references which have extensive 

treatments of various bits and pieces of the material here. 

I encourage the reader not to feel compelled to read them 

all in great detail, but to taste each for the flavor: 

V.I. Tatarskii, The Effects of the Turbulent -- 

Atmosphere on Wave Propagation, available from -- 

NITS, 1971 

V. Frisch, "Wave Propagation in Random Media," in 

Probabilistic Methods in Applied Mathematics, Vol. 1, - 

edited by A.T. Bharuchi-Reid, p. 75-198 (Academic 

Press, N.Y., 1968). 

Monin, A.S. and A.M. Yaglom, Statistical Fluid 

Mechanics: Mechanics of Turbulence, Vol. II (MIT 

Press, Cambridge, Mass., 1975). 

Bjorken, J.D. and S.D. Drell, Relativistic Quantum 

Fields (MC Graw-Hill, N.Y., 1965). 

Kogut, J. and K. Wilson, "The Renormalization Group 

and the c-expansion," Phys. Rep. 12C, 75 (1974). 
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Abers, E.S. and B.W. Lee, Gauge Theories, Phys. 

Rep. 9C, 144 (1973); -- 

Brezin, E., J.C. Le Guillou, and J. Zinn-Justin in 

Phase Transitions and Critical Phenomena, VI, 

C. Domb and M.S. Green, editors (Academic Press, 

N.Y., 1976). 
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LECTURE 1 Motion in a Random Medium as a Non-Linear 

Field Theory 

We'll begin with a discussion of a scalar wave 

l/J @t, propagating through a medium with a random 

index of refraction or random sound speed. Let's take 

here a medium with wave speed 

c ri?,:t‘, = c, + s c IT@) (1) 

with &C CC CO everywhere. The wave received at 
-, x,t from a source at go with a signal s(t) is given by 

c f- I aa I+ (2/t, = -~3(~7-~o)Sft)j ca) 
c CGyP 5-P 

because SC is small we may write this as 

i 
a”-12 7 ata 

+ aS ($1 _L aa c b?,t, = -~31~-~;) s(t), 13) 
CO c,” 2” >+ 

The piece 6 c G/t: of the velocity is assumed to be a 

fluctuating quantity, while co is a constant, or, in the 

ocean sound channel, a determined function of space and 

time. 

Let's now take the source to be mono-chromatic, 

s(t) = e -;lOt , and write $J[$t> = + (2) emiwt . When 

the variations in are slow compared to the 
-iw e t of the source, we make the slow medium 

approximation by neglecting the time-dependence of SC . 
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Furthermore we'll assume c,, is constant so the medium without 

FC is homogeneous. The wave equation now becomes 

(vat%; - F(2)) +(j;:) = ->3 (?-?o) 

with the fluctuation operator 

F(2) = a. xc cfg &,” ) ho = 
CO 

This is the prototypical equation for much of our subsequent 

w . (5) c 

discussion. It has been treated at great length by Frisch 

(1968), Tatarskii (1971), Mysak (1978), Barabanenkov, Kravtsov, 

Tatarskii, and Rytov (1971), and many others. Since we 

have a pedagogical goal here, much of the material found in 

those references will be repeated. 

I will occasionally employ an operator notation for 

equations like (4) and write 

(&-I - F) + = - 1 

The meaning of GO-l is nothing by when acting 
-> on functions of x . GO is the inverse of that and solves 

the 2 space equation 

(oa+ kz) G, (2) = S’ Ii?l. 

Henceforth, I will assume the medium to be unbounded and 

the wave C/J@) to vanish as I?/+ CO . The condition 

of outgoing radiation from 26 leads, as usual, to 
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s 

--) -‘, 

G,(x”) = d”% 
(an) * 

eLj’X 
g- fa+i & 

z -_ 1 e i k, 121 I~,~~~ ~~. 
4% 

at D= 3 
121 

Now the solution of (6) is 

+ = - (f&y-& 

= - I G=-G 1 0 0 
I- G,F I- FG, 

This has the expansion 

+= 4 G, t G,FG, + G, FGo!=G, + .JL. ) 

18) 

(10) 

(II) 

which provides the formal solution to the problem at 

hand. 

The physical question, however, is not + ,but what 

field 4(z) is received at ?when properties of the 

medium are averaged over. We call this <+ci;>) . 

Since F(s) is a random function, we must specify that 

probability distribution functional for it. For this, 

suppose first that F(z) is specified not as a function 

over all labels g= (X,,Xa;., XI,) of some D 

dimensional co-ordinate space with -CQCXi COO 

IL?) 
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but at a discrete set of points j=l,2,'* "N in that 

space. Now these Fj are a set of random variables. At 

every j we have a random variable which ranges over 

-oo<sc +ca with some joint probability distribution 

P CFI, %;.. FN] . As a concrete example, suppose 

P[Fj] is gaussian 

q‘: = /Lxp[-; c" 
iA= I I 

with a normalization factor arranged so 

1 do;..’ dFN P [Fj? = 1. (14) 

Since 

s 
;dFje 1 

-gQF&QE@ 

j-1 = 

(ti M)‘ja 
) 115) 

N” r (& flya (kd-? (16) 

Generally we won't specify N since the quantities of 

real interest are averages of functions of the variables 

Fj. These are given as 

-; .;=,I 

<F(F;,... Fhl)) = \dF,-+, ~(VFAJ~ e " 
.__-_____ 

"jQ Fe 
) w ---_. u 

s dF,...dF, e-i z.-t%’ 
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for our gaussian (13), and G cancels out. 

Furth 

of polynom 

convenient 

ermore, we will often be interested in averages 

ials in the Fj, and for this it is extremely 

to construct the generating function 

?f [T,;, "1 &I = 
s 

r"i=J- 
dF;..dF, p[F,, . ..Fti] e '=I ' ' 

If we know this, then 

CFk) = [dF,'..dF, FA ‘3 [pi] 

Z aG%l , 

a Tk 
'J&=0 

. CM> 

(a01 

and other averages are given by the appropriate derivatives. 

(If ;m=LOn , the function ;f i%3 is known as 

the characteristic function for p Nil ). In our gaussian 

example, we can evaluate z [J] directly and find 

z r.Ji] = mp -& Q~~,J~ r,, Jk (ai) 
I 

where the matrix r is the inverse of M: TM, y,=S;l 
j-1 

From this we find for the moments in a gaussian distribution 

< 5 FJ> = 51 ) e+c (a31 
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which is all quite familiar. 

Returning to our medium we wish to let the label j 

on Fj become a continuous index 2. This now emphasizes 

the role played by space as a purely labeling, non-dynamic 

quantity in field theory. Then our function p [s] 

becomes a functional P [F(Z)] . The limiting procedure 

requires a certain level of careful mathematics to allow it 

to be presentable, but no mistakes have ever been made to 
4 

my knowledge by simply considering x to be the limit of 

a bunch of points j=I,a;-N as N'P7.X) and the spacing 

goes to zero. 

For a gaussian we would write 

P [FC?)-j= “1 9np -i \dD,x dDx I=(?) M h$j) FCj’) ) h4j 

where properly speaking 

urge you to ignore this,@!ar:c ~:r~~,dw~~',"6':~:"I ard 

watch it cancel out of physically sensible quantities. 

The generating functional for this gaussian distribution 

is 

;f [J(Z)] = mpddDy dDJ Jh?) Pi&$) J(j) 

with 

dDt WIG,?) rl$T,$) = FD (?-$I. 

la5) 

646) 

An average of F(z) or any powers, F(?l)"' F ( 2M ) , comes 

from z [J(Z)] 
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s dDu J-(G) F (21 
;E[J(x”)--~ - 1 ;dFlz) e p [Fii$j ) 6 7) 

by functional differentiation; for example, 

(F(i)) = TdFli?) F(ij’> P [F(Z)]. 
x” 

ca d 

These are just the continuum versions of (18) - (20). The 

integrals in (27) and (28) are integrals over -oa<F~ 00 

at every labeling point 2 of the D dimensional space 

on which the field F(g) lives. 

Returning once again to the gaussian (24) we have 

(F (xn))=o 

and 

(F(2) F(s)) = f-,$)s 

One last point: if the medium over which F(R) is defined 

is homogeneous, then <FL?:)-'. F(2-1 ) can only depend 

on the n-l differences -P -P . . . . 
x1-x2 

;:-F 
n n-l' This comes 

about because we could translate each point zi by 2 and the 

invariance of the medium under this means 

(F(Q.. F&,)) = ,‘~(?,+z) ‘.. F~?&?)>. /3Jl 

Choose &-x" 
n' say, and it is clear this average depends 

-5 only on -7 -3 -> XiXn' * . . Xnel-xn. Physically this means that 



-12- FERMILAB-Conf-78/74-THY 

there are no boundaries to the region in which we work, for 

translating by zwwould not yield the same averages for 

F(?$ F(?:,) if we hit or went out of the boundaries. In 

a real situation where there are inevitably walls, this 

translation invariance will usually be a good physical 

property when discussing functions "far away" from the 

walls. 

After this long digression we can come back to the 

solution (11) or (12) for the scalar field + felt at 
-+ x and ask for its average over realizations of F: 

<+l?)) = \ ;dFQ) P~Fk?)-j+~?) (3a) 

z - 1 $dF(?)P[Fiz)] (G.,+ G,FG, f G,JG,FG,+~,~). 133) 

For our gaussian distribution (24) we can write out the 

explicit value of the first few terms 

using (29) and (30). 

It is important to give in words the meaning of the 

series (12) or (34). The series (12)represents multiple 

scattering of the wave from the source at 2 0 on its way to 

the receiver at ?. (S ee Figure 1 where the quadratic term 

in F is represented). Waves emitted from z. may arrive at 
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2 without interacting with a fluctuation F: this is 

+=-Go ; it may interact once: this is-GoFGo, since Go 

brings the wave from 2. to the local fluctuation F and then 

Go carries it to 2:; etc. 

If the medium were not fluctuating, we could say no 

more. However, F fluctuates, and, what is essential, 

these fluctuations are correlated, since generally 

(FWF($)> f 0. (35) 

A fluctuation, therefore, at 2 "communicates" with a 

fluctuation at $, and a wave which scatters off F(z) 

interacts with itself, when it arrives at F(G). The 

mechanism of this self interaction is precisely the 

correlation of the fluctuations in the medium. The series 

(34) expresses all this explicitly for our gaussian 

distribution of fluctuations. Since the mean fluctuation 

is zero, one interaction of the wave with F averages to 

zero. 

Two interactions with F makes a very different 

story. Representing Equation (34) in pictures in Figure 2 

with Go represented by a solid line and r by a wiggly line, 

we can think of the 2nd term as a wave which arrives at 2 

and interacts with F(z). When it now goes over to 7 and 

interacts with F(;), that second interaction "knows" about 

the first because of the correlation in the fluctuations. 

The self interaction represents the information in the 
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fluctuating medium that a wave arriving at 7 got there via 

2 and those two points are correlated. It is this self 

interaction which is responsible for the non-linearity of 

the process of wave propagation in a random medium. 

As an aside at this point we should note that precisely 

these words apply to a quantum field theory such as electro- 

dynamics. There, for example, electrons (waves) propagate 

through the vacuum which is populated by fluctuations whose 

origin lies in the uncertainty principle. The fluctuations 

are correlated by the propagation of another wave (photons 

or light in electrodynamics) in just the way indicated by 

r in Equation (34) or the wiggly lines in Figure 2. In a 

quantum field theory, however, the fluctuations are them- 

selves dynamic and do not generally have a prescribed 

distribution functional. So there we have the interaction 

of two dynamical fields. In propagation through a random 

medium, the medium is taken to fluctuate in a prescribed 

fashion - given by P[F(s)] - and the passage of the wave 

is assumed not to disturb the medium by its interaction with 

it. The origin of the stochastic behavior in quantum field 

theory is the non-zero fluctuations of all co-ordinates 

becausesf0. In our wave propagation problem, the stochastic 

behavior comes from the specified fluctuating medium. Because 

the distribution functional for one of the fields - the medium 

F(g) - is given in the wave propagation situation, the problem 

is easier that in the case of interacting quantum fields, but 
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what is quite essential is the fact that otherwise the 

problems are identical. We will exhibit this explicitly 

below. It is no surprise, therefore, that techniques of 

analysis and approximation carry directly from one to the 

other. 

I want next to develop a formalism which exhibits the 

non-linearity inherent in the self-interacting scalar wave 

propagation. To begin we consider F to be non-fluctuating. 

The amplitude to receive a signal at ?l,"'zR from a source 

at x' o is just the product 

c$(?,,- 4,(&) = Gli',&) ... GCi;,iI) (36) 

where G is the operator - (Go-1-F)-1. 
+ 

The function G(Ga,xb) 

is like the element of a matrix, G, in a space labeled by the 

continuous indices 2 . Each factor G propagates a wave- 

independently of the other waves - from'?o to the appropriate 

receiver. 

We want to write G(ga, * xb) as a gaussian integral over an 

uxiliary field xc?). For this purpose we note from (24) and 

(30) 

G c%, &b) = 31 1 pxiz) xh%ux’,) Lq -$ \&pa %($) G“[q)q) (37) 

with 

‘““I’d. ’ Z px (2) q- + bSd> s(G) Go- x - ‘C ;$ TX@ 

SO 

G Ii& ?J = (x(~&mb~)x 
(39) 
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‘/a Formally "/1 = (infinite constant)(det G). We want to average 

this over the distribution of F and for convenience we wish to 

eliminate the factor 
'T 

and have F appear only in the expon- 

ential of (37). We utilize a trick here which has been employed 

in the study of electrons moving in a metal with random impurities. 

Generalize 9((x") to a field with M components: s(,@) d=l,q,,,,f'l ) 

and consider the integral 

1 ii? d+X4X,cu”) 
u3dSI 

X, (G),s(, ‘f) a”~ -a ~dDxdDza~ T&(x”) G-‘(i; Z) &(z-“) (40) 

=L- ‘q -M G G,$. 

This leads to 

d‘& Ci;) “x, Gh, ~$1 .u..p - z 1 ’ 

where the limit M-30 is to be taken after the integration is 

performed. Let's look at the argument in the exponential more 

closely. It is an action 

A& = 5 dlDz e$ i, [(oT(@$ k,“(‘?$ & Fh’) kE))“] (43-j 

If X(T) were an ordinary field, with the action, it would 

satisfy the Euler-Lagrange equation 
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@4) 

or 

[i?‘+ k: - F (i?] 9(, (2) = c 

We can regard x(z) as a kind of pseudo-stochastic field with 

a gaussian distrubition. 

Now we are ready to average G(zl,30 x ) over the fluctuations 

of F - [Act&,-J 

<c+KD = ;&lx") P[F@)]j g, d&@ T,(<)x,(%) e ) 146) 

2 

where the limit M+O is understood at the end of the cal- 

culation. 

If P[F(x)l is a gaussian, we can do the integral over F 

directly to find 

<+(?,)) = i ;, d?d,GhX,(n;)‘&k;\) m$ - Id% ,&j$(xl@)~ , fi’) 
iz 

where 

J% t&d = $, Kvx~d - Q%EKf] - $ j$c~Qdj r&j+, hgj~4~pj 

This is really the essential result of this section of the 

lectures. It gives the average signal received at 21 from a 
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point source at Z. in terms of an integral representation. 

It makes quite explicit the nature of the non-linearity induced 

by the medium. 

If F(z) is not gaussian, then we recognize the generating 

functional 

f, rJ(r’j] = s $&(u”) ?lF[il)] ‘L/lip idD$ &j) F$? 

entering (4 ) with . The effective 

lagrangian density for this case is 

&g = ; 5 [(vx,“-,g[s(,)“l - !&p,(&Jy c 

d- I 

To find the signal received at ??l,"'Gk from the source 

at 2 0 we desire 

<GG’,, ;(',) "- GC?Jo~ >. 

The product of Green functions is 

where during the integration we take M>N and then evaluate 

the M+O limit after the integral is done. The M-N integrals 

where components of ?, don't appear in the braces give 

(+$-M which as M-)0 gives exactly the product of Green 

functions desired. Again all F dependence lies in the 
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exponential factor, so the desired average over F is 

All of these quantities can be evaluated from the generating 

functional 

H&-j- j f,dx&i’) ,m+-- id”% ~Q.gh~cc~ --&$&‘)~p~~~) 6-q) 
u’ 

by taking MAO after computing the appropriate derivatives 

with respect to TP(?] at &=b . 

There is an alternative formulation of the generating 

functional for the present problem which is a bit less 

elegant, but is easier to work with. We again consider an 

auxiliary pseudostochastic field xl,?) which is gaussian, 

with zero mean and correlation function 

(3 G3 ~= <wIj;)x$)‘)~ 0 
(54 

For this field evaluate 

(X(Q~hy) m;)"~ = (I; (iy) cxi;,Fg 

+ a! GR,,Zb) G (i:,i;) ‘j 
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the last term is just 2! +(Z,‘, +&, . Next compute 

&r~)s;hi~)%KJ xc;>'2 = G ( 2/,?',) G(j;:,;r", GIi;,i;,) + 

pernwtotl&s -t 

3! G&?,,$) G&i;,) GI&,Z,) , (57) 

The last term is just 3! If we make a 

graphical representation of these averages with lines 

representing G(za,zb), then graphs with G(??o,%i) or G(gi,zjj) 

i,j # 0 are disconnected. They can be separated into two parts 

without cutting any lines. The connected parts are what we 

want. More precisely 

4) (a I’. +aJl = -$ <xc+ / xii;) x(igN), c‘,nnpCjpd 6 81 

= $ j ~dX(~lI-x(~,~.,,rx(~~~s;(~~)“j( “p-i Sex S.‘? ‘sQ’ 

cennecfEL.4 

We actually wish, as usual, the average of this formula 

over the fluctuations in F. Consider for this the quantity 

$, )jx(2) d!=(Z) PcF(i0-j {X&:bXIi;?X’f;)Nj y-$ \TXG”Yt ) kd 

COllll~~ J,,I 
where 

‘ij-‘= \&#lilFh’) Pk,G’)-j LLL/I -; \XG.‘X. (tiij 

This is the joint average over xl,?) and F(z) of the quantity 

in braces. It generates, on expansion in the non-linearity 
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all the terms in the direct 

representation of (G(~l,~O)"'G(~~,~O)>F 

plus terms like the one entering G(?l,z;) 

5 

4 
XI d% 
,j.q .l 

which is absent in the direct average over products of 

(-Go-' + F)-1 expanded in F. 

These extra terms represent corrections to the force-force 

correlation function r(z,g) and since that function is uncorrected 

in the problem at hand, we may use the formula (60) to evaluate 

<$i(ki;)~~. +4x;D I if we add the prescription that one must cast 

out all graphs that represent corrections or modifications to 

r('z,y?) (the wiggly line in Fig. 2). In quantum field theory, 

these insertions into the force-force correlation are essential 

and represent the dynamic aspect of the force field. Here the 

fluctuating field is not influenced by the passage of the wave 

through it, so we cast out all such effects in (60). With this 

rule implicit henceforth, we will use (60) in the next lecture. 

To close this lecture I want to take another important 

example of propagation in a random medium: convection of a 

passive scalar .sw) by a turbulent medium. The equations 

governing the motion are as usual 

2 .sG,tl f go s(q) = x,v%(i;t) + G&q) (64 J 
3-t 

where vj($,t) is the velocity field of the turbulent flow, 

&, is some diffusion constant and Q&‘-L) a source for the 

scalar quantity s($t). 

Write this as 
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~J,-M,V”-F) S = Q Cd 

and call ,a, the operator 

&-' = a,- n, o? ibh) 

The operator /=: -2.7 

scalar quantity proceeding 

flow, without altering the 

The inverse operator 

fluctuates,and again we have a 

through a medium, the turbulent 

properties of the medium. 

3, is 

:z 8 ct,) 
I 
& e’p’-II”S at 

. (ar)D 

ZZ ect&tp - qk7,i ] /@Kt,*.t,D’2 &? 

with 

with 

ectJ=r ,~C>Oj 01t~l=c; tee. 
Slx',t)is 

SCQ', = 
J 

JD@ .km,it; i$, qcf,xj ) 

g = (&-I +’ = go i : I-FdL, -!--% 1 i-59°F cl 
c 74 

as in the previous case. 

Following the example of scalar wave propagation we 

seek an auxiliary field, call it p[i;:t) , which will allow 

us to express averages of S G,t> over the random function 

F(z,t) via a generating functional. We would like B to be 

gaussian in some sense and have zero mean and correlation function 



-23- FERMILAB-Conf-78/74-THY 

8 = &-‘-F)-’ 

Since 8,' is linear in time derivatives, it is not 

possible to achieve our goal using only one field P cg,t) . 

Basically we are headed toward an action principle for the 

field P which will give 

( a, - %P-F) p c2,t) = 0 

as the Euler-Lagrange equation of motion. An action 

principle is cooked up to describe conservative systems and 

here we have a dissipative system. We introduce, then, two - 

fields: p@,+I and an anti-field p(?,i-t) which anti-diffuses 

so the net system is "conservative." The same issue appears 

in formulating a Lagrangian for the SchrGdinger equation and 

in that case F is precisely the hermitian conjugate field. 

With real dissipation, F@,t) has no completely compelling 

physical meaning. The idea of an anti-dissipating quantity 

is the best I've been able to do. 

The lagrange density for p and F is 

2 Cp,pl = ; p&t) 3 p,t) + )2, 5 F (iiy) T p,,t) 
at 

+ p (q-t) u" R,tl -v f3 cj;:t) ) 
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with 

A gg& 
at 

4 2.B - 32 g I 
at 

Next we introduce Ti;,/t) and to define the 

generating functional for p,p correlation functions 

2 bpj-j = 1 T*dpK’,t) &dfiG’,4 
-SdD~dpIld:(p,~~-7~-7~l 

e 
I . (74) 

Again we can do the p and is integrals here, but what we 

seek is 2 averages over the fluctuations in $(g,t). 

This requires a slight extension of our discussion of 

probability distribution functionals to distributions of 

vector fields like ?(z,t). It is easy to extend that 

discussion by considering the vector label simply to be 

a discrete label 

3 (?,tJ E= I,2, .‘.’ D 

in addition to the continuous space-time labels. A gaussian 

distribution of with zero mean velocity has the form 

P[u,(?,t!-j .- T q-$Pxdt d3dz ; ~jx;t)lv?p,(~~-t;~,~)~~~,~) 
P,m: , > (is> 

and in this distribution 

<v,(z,t) q ($,T)) = 5, (@if+) 1 (36) 
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where 

The generating functional we desire is 

z[-q,~] = S ~~ d?(;i’,t) PCvjVj Z[y,+jI* 
j&,.-D 

Since Op 
-a 

1s linear in 'U,we once again encounter the char- 

acteristic functional for P[vj] 

sv r: &I= \ ;, dv, (ji;t) P [vi] “P [d”u& &&‘,+i$$‘) 
z,t (79) 

which we need at J,($,t') = -p(cyl I?, p(U”,t3 . 

If P&J is our good old gaussian, we can evaluate the 

integral over v. to write 
J 

Effe=-bue &hbb - ‘j PT+ay 

where the effective action is 

\dDud+’ la Cp,$ = 

\d%dt’[; /2 $3 t M, 5 F oj B--j 

- k \dDxdt d=$c E?[~,t~[7RP(~,tj~~I~,C;~,r) p(g,x)a, pr5s) (80 . 
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If the distribution of v; is not gaussian, then in place of 
J 

the last term in (81) will apear 

Finally, to reconstruct the correlation functions of the 

passive scalar 5 (2, t) we need 

s (jq,-t)z l”D8 dz < p(?,c) j5 $‘,d> p Q ($15)) @a) I 
which leads to 

<m,t,b s(?N,t,l), = 

s $d%d TR f, Q ‘$‘, za) x 

x-c pG&b pKfN)tJ Pi~,t,j.,,~(~,t~~>fIP,v l 
(83) 

t h,$ gives us precisely the needed P,E correlation 

functions on appropriate differentiation with respect to 7 
and 

r 
then evaluated at for example, 

<pcir’,tl j5ip))B,p,v = ~aa,q! I 
i 

(84) 

a’I~*:th3~j~ ?j=Gj=b 

Again Eqs. (48) and (81) or their variants when ? or F 

are not gaussian are the essential result of this lecture. 
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They demonstrate precisely the nature of the non-linearity in 

the dynamics of %(?I or /3(9/t) and p(qs) induced by the 

fluctuations of the medium-either sound speed fluctuations or 

turbulent velocity fluctuations. Furthermore, it gives an integral 

representation for the correlation functions needed to construct 

the averages over the acoustic pressure <+@I,.. $6;)) or the 

passive scalar <S(?&) a", s Gv,t~,~~. 

There are two more topics of some general interest which 

logically should be treated here in the fashion we have indicated: 

turbulent fluid flow and motion of a field-wave motion or dissipation 

in the presence of a random surface. We'll begin the second lecture 

with the first of these and relegate the second to an addendum-it 

will be discussed only if time permits. 
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LECTURE 2 Turbulent Fluid Flow; Beginnings of Renormalization 

Group Analysis 

In the examples we discussed in the previous lecture we 

had a scalar proceeding through a prescribed random medium 

without interacting back on the medium. The non-linearity 

of the resulting wave propagation or diffusion was induced 

by the fluctuations of the medium. Our next topic is turbulent 

fluid flow. It differs in an important sense from the previous 

examples because the non-linearity comes in the formulation of 

the theory while the stochasticity arises from some random 

initial conditions on the dynamical variables vj(?,t) - the 

velocity field. These random initial conditions can be generated 

by some given random external forces as we will explain below. 

The physical issue is the transport of these inital conditions 

to a distribution functional PFj(x,t)] at a later time by the 

non-linear dynamical equations-the Navier-Stokes equations. 

As our first topic in this lecture I will cast this problem 

into the same form as we cast the scalar motion through a 

random medium in the previous lecture; namely, a generating 

functional for correlation functions of the stochastic velocity 

field will be derived. To focus attention on the issues at 

hand, I will assume that the fluid is incompressible and that 

the flow is homogeneous and isotropic. Both the stationary 

and non-stationary cases will be treated. More general flows 

can be studied with the methods to be indicated; the idealized 
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example discussed will illustrate all of the essential points 

without adding to the notational burden already imposed by the 

basic structure of the equations. 

We turn then to the Navier-Stokes equations 

;: +v,y’, =-+-y/z +v,Vayj + Fj 64 

where the density? is constant, p is the pressure, Vti , 

the kinematic viscosity, and fj is an external body force. 

Since p is constant, the velocity field is divergenceless 

and this allows us to eliminate the pressure in the usual 

fashion. Take the divergence of (85) to find 

’ I?$ = SF; - V’~(Z’RZTJ~. 
F- 

The operator '/Va will mean 

s % (a = 1 

dDk $-~ f ($) 

C&P -jy+ i& 
(8 7) 

z2 - I 
4n s 

where i)(z) is the fourier transform of f(s). So 

-;“;p = -$V;R,,F,, + I$%, vp~zmd~) 
v w 

J 

and 

“-‘& + Aj,Q(v,,vL) = 
s- 

v aaT. + n 0 J in FYl 1 

64) 

(qd 
with 
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cjn =~ <Siti - y. q Jv” ) 

the projection operator on divergenceless vectors. Henceforth 

we'll take the external force divergence free since only that 

part of it enters the equation of motion 

Imagine that the force 5 [qtl is turned on at 

t=O before which time vj(??,t) = 0 and then turned off at some 

time t=T. If T is short, then as first argued by Saffman (1967) 

we have 

5 h?, T) = I;+ F; l&t) . 
0 

k9 4 

We want vj(?,T) to be our random initial condition, so we take 

Fj to be a random forcing or mixing of the fluid with statistics 

the same as we desire for vj(.?,T). For t7T, we can now ask how 

the fluid develops via (90). 

Since we have a viscous medium, the velocity will decay 

for t>T since energy is no longer being put in. As shown by 

Monin and Yaglom )for isotropic flow the only source of energy 

input to overcome the viscous dissipation is an external 

stirring force. The present discussion is then adequate for 

studying the development of non-stationary turbulence. 

Stationary turbulence is conceptually simpler since there 

is an additional symmetry; namely, time translation invariance. 

To achieve a stationary flow we need to force the fluid 

continuously, so we have to let F. 
3' the random external force, 



-31- FERMILAB-Conf-78/74-THY 

be on forever. For the rest of this lecture we will focus on 

this kind of mixing. 

There is no need of an auxiliary field now since it is 

the correlation functions of vj($,t) that we seek directly. 

We proceed by constructing a lagrangian density yielding (90) 

as the Euler-Lagrange equation. Because of the dissipation 

we require an anti-velocity field vj(??,t) for this construction. 

We are lead to 

$(vj,+j) = -I- 3 'SIzj t lJgc7,1Jci vWvj 

a at 

-- ’ ((nj,O,t nj, ~~~25 ~~~~ - FjVj l h) 

a 

A generating functional for correlation functions like 
- (v,, (j;:, t,) ,~- VE,, li$l*~) +f, (g,,TdJ “I ‘Sn ($L”m, -c&h 

where ( ) means average over the probability distribution 

functional of FjJis given by 

As ever, the lagrangian density is linear in Fj so we 

recognize 
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f, [&,I = ;, dFE,p) 7' ~F'&q,~dDud-t ~j(Z,t,Jj qt) 
2 ,P ' (961 

evaluated at Jn(?,t) = vn(?,t). The effective lagrangian 

density for turbulent flow is 

’ ((Aj,O,tc?j,~~)2rJ)zTQ~~- h 2~, CCtI e -- 

a 

Suppose the mixing force is gaussian. It must have zero 

mean since we have assumed isotropy of the flow. So we write 

and 

(lyc,t)F, (iJ,d& = qp Rj+), 

where space and time differences appear because of homogeneity 

and stationarity. Since Fj is divergenceless and we have 

isotropy, has the form 

Fj,(?-g,t-rJ = Aj, f'((?-$Ia, t--C). 

For the gaussian the generating functional ZF is 
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% tF [i&,-j = 4 5, ~=t& i: (ri’-$);t--c) &, $‘,d ) (101) 

remembering 0, ;ii?l=O . 

Putting together these results for a gaussian mixing 

force, or equivalently in the non-stationary situation a 

gaussian set of initial conditions, we can write the 

generating functional for v, V correlation functions 

- I 
Fi ccAjbl Vlt Aj,Vfl>Tj)~"71 Gl ' 

We see directly that even though the forcing was gaussian, 

the distribution of vj is not. The cause, clearly, is the 

non-linearity of the Navier-Stokes equation which has surfaced 

as the last term in (103). One could do either the vj or 

the Gj integral in (103) because Jq is at most quadratic 

in either; however, we will proceed by another route later. 

Having cast the problem of homogeneous, isotropic, 

stationary turbulence into the same general form as our 

description of propagation or diffusion of a scalar in a 

random medium, we return to those as they are somewhat simpler 
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to deal with in the next stage of our development which is 

the discussion of the renormalization group. 

We are actually going to discuss a slightly more simplified 

problem so we may focus on the issues. In the effective 

lagrangian for propagation of scalars in a gaussian random 

medium we encounter the correlation function fi?-iJ) of 

the fluctuations. This contains information on the magnitude 

of the fluctuations as well as the spatial scales over which 

the correlation is significant. I will set these scales to 

zero and write 

r (2-g) = - -& yq?-$), 
3 

(104) 

We may restore the scales later, if we wish. 

The effective problem we want to study is then 

z[~-j = 1 ;dXR) e - yo, p$ h,“x”+ $ xm4- TX] 
a 

, (lo5xl 

We will proceed by considering the perturbation series in 3, 

for various correlation functions. Immediately we will be 

led to the idea that the actual expansion parameter is not 

the constant 3h, but is a function of zor wave number-the 

Fourier conjugate variable to 2. We will then define a 

dimensionless expansion parameter which depends on an 

arbitrary scale in wave number space. As we vary this scale 

we will be able to determine where the effective dimensionless 

expansion parameter is small or large and thus determine how 
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good the expansion itself will be. 

Let's begin with the function 

i&r [; ‘VfJ’fk$&$~4] 
(104) 

= dDt &, (?-:-t”) !-i, (s-j’) i-i, (0) + 

d”t /-I~ G’-2) CI, ki’-$) (I-I,(o))~ 4 

d”t d=w tie R-t”)U, (&G> r-l, li7 -i/, ( &, to$~ 

+ 2; 
ii- 

AD2 dDw t-l, (?-#. @G))3 /-i. ($ -;d 1 

-t oh,31 

where 
c1,[;7) = d2 

s 

eip?; = - Go (2’) 
w= pa- I?; -LE 

as we would expect from Eq. (42). The terms of (107) are 

shown in Fig. 4. They are just the graphs in Fig. 2 with 

the wiggly r line reduced to a point. 

It is more transparent to write the series in wave number 

space where 

dDk 1 
(an>D gg- iE 
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+ kJoaa~;~J + &&J ] k3 A$;t + 

+ $ jpij:J j dDJ$+dDk3 (a7c)3"(hJ+Ba+~3-/3) s- ' 
j=l JJa-hz-iE. 

Examination of these graphs and of higher order graphs shows 

that Hc2)(p2) can be written as 

,y$ = p”- g - 2 (f) -I E 2 I-+ QJ”), ho) 

where to order 

'(pa' = - % &' A&.~ + !&$D 'ki;&=i, 

+ ho” d”hd”h d”k 6” (s,41a+j,a-P) + ’ 
5 

. (III) 
3! (air>“” J ‘--I ~j”k,“-;r 

The graphs contributing to 2 are shown in Fig. 5. 2 is 

often called the mass operator or self energy. It reflects 

the real dynamics entering into the calculation of H(g2). 

In the present context a good name for t$')would be the 

self interaction contribution to the wave propagator. It 

contains the effects of fluctuations of the medium and the manner 

in which they cause the waves to interact back on themselves. 
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&p2) represents the full modification to the original wave 

equation since could be 

considered a renormalized or, better, self corrected wave 

equation. The multiple poles at p2 = ko2 are artifical and 

misleading. Frisch (1968) shows how they lead to so-called 

"secular" behavior. 

In graphical language what we have done in isolating c 

is to "chop off the external legs" - i.e., two powers of 

(pzko2)-l and also select those graphs which cannot be cut 

into two separate parts by cutting one line. This produces 

the so-called amputated one line irreducible vertex functions. 

One can give a formal definition of these irreducible functions. 

We really only need the definition for 

/-v4’) (Z, “) zq) = (x (x”,, ‘.’ Xx’,) ) 

and that is done in pictures in Fig. 6. We will call r (41 the 

amputated one line irreducible par.t of H (4) . It has the 

external legs of H(') amputated and only keeps graphs which 

are connected: the terms H(2)H(2) appearing in H(4) are not 

in r(4) Speaking loosely, rl4) represents the guts of the 

interaction between the waves propagating in the random medium. 

The lowest order contributions to r 141 are shown in Fig. 7. 

Algebraically they are 

pq,... ,&) = -Jo + La 
a I 

o((&+&)+ c4 g+l + d q&$4)] + 
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(I 14) 

This series tells us how strongly waves in the medium interact 

with each other. The series in via' tells us how strongly waves 

in the medium interact with themselves. r (4) defines an 

interaction strength that is wave number dependent. It is 

useful to define a renormalized interaction parameter at some 

arbitrary,symmetric point in wave number space, say where all 

pp in r'*'($,.++) ;ya> 0 . Calling this renormalized 

interaction parameter 2 , we have 

r”‘qJj+, 4 -?I $0”’ Cd 
pi =p 

Clearly the value of 1 will depend on P" ' which is quite 

arbitrary. So 2 cannot have any physical significance in 

itself. It is an infinite series in IO and could be used as 

an expansion parameter as well as ;1, . 

Let us look back now at the series for r lab (pa) z 

H1a'[Pa)-'= +a -&," _ 1 (pa) 

the coefficient of p 2 in rfal 
, Because of the inter;zn, 

and the constant term in 

are changed. Expanding z(ba) = 2 (0) t ka 2 '(~7) +.. , we see 

rta’(pa)= pa (,+2’(o)) - k,” (I+ >(D)) +“. l 1116) 

So just as 2, was renormalized by the interaction, so are p 2 

- which reflects the basic $@x>" t erm in the effective 

lagrangian-and k02 -which reflects the 

in the lagrangian. 
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All of the basic parameters in the 

by the interaction. We can "undo" this 

over to scaled fields via 

FERMILAB-Conf-78/74-THY 

lagrangian are resealed 

resealing by changing 

txR(3 = .z’/a BXI?) c/r?) 

so Hk”’ (;$ = ;f j-/ c3J ($5)) 
h?) 

and r ;’ (pa) = z-’ r fa’l (pal. ONI 

Also we can define a resealed k02 by 

!4," = z. A," 

To determine Z and ZO we ask that 

r la) (#)“I R / pa=pa = 
z-’ ( /2-J?;) > 

so 

and also 

(IWh 

= g’ (p a,” - q+ua)), (/ad 

zo= I+ ia 2 I 9 J 
0 /” 

a Ifal $71 = 1 = t-’ a r ta-l $9 
1 

. h4) 
5j? pp Y” psp 
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This gives 

t= I- 32 
ap p/p - I 

C 125) 

In all this, the parameter where I choose to define the 

dimensionless scaling coefficients Z and ZD is the same as in 

the redefinition of 'h from /-7 141 . That is a convenience; it 

is not necessary to choose these renormalization points - which 

are arbitrary after all-the same, 

Why have we done all this? Well, as one can see from the 

series for r la1 or ff4' the size of the correction terms to 

- 20 or to p2-k02 are dependent on wave number. Those 

corrections are the direct representation of the non-linearity 

induced by the medium. We want to examine how important that 

non-linearity is in any given regime of k space. The deviations 

of z, 2 o, or %/A, from unity are also a measure of the importance 

of the non-linearity. 

In addition, we will find that the series in x7 may 

be quite a divergent one,since the dimensionless version of 

xl can become quite large in certain regions of wave number 

space. The parameter 2 is an infinite series in 2, and may 

itself serve as a better expansion parameter than IO . This 

mapping from 'A, to 'x which improves the convergence of the 

series expansion of r@'or 141 r ,or whatever,is one of the key 

goals of the present analysis. 

Just an aside here. At D=4 dimensions, most of the 

integrals we have written down in the series for r ia) 
or ri4' 
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are divergent. To define the theory then, one needs a 

renormalization prescription like the one indicated. In the 

present case we do have certain integrals to be careful about, 

but the renormalization is not necessary. It is a tool for 

exploring the importance of the non-linearity in any given 

realm of k space. This attribute will be clear soon. 

We need one more useful set of observations. The parameter 

2, (or>) is not dimensionless, so it doesn't provide a "true" 

measure of the size of the terms in perturbation theory. To 

identify a dimensionless parameter of expansion we need to 

indulge in a bit of dimensional analysis. 

Return to the action 

\ 1 dDx ; (ax)” +,a 7 a + 3-0 “x4 , 
4! I 

It is dimensionless. Let [quantity] represent the dimensions 

of a quantity in powers of wave number k. So 

Then from the action we learn 

and 

ry = A4-D. h8) 
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We could construct &,kre4 and call it our dimensionless 

parameter, but then it would not help us probe the size of 

the non-linearity in k space. Instead we form the two 

dimensionless quantities 

and 

or in terms of renormalized parameters 

and 
v-= !A.,” p . 

(130) 

0311 

(13a) 

(1331 

We are now ready to explore the consequences of the 

arbitrariness of)u and to see how it helps us explore different 

realms of k space. This is the guts of the renormalization 

method. group To draw even closer attention to the method, 

I will butcher the already butchered problem by setting 

k0 = 0. This gives us only one dimensionless parameter to 

deal with. kO#O can be restored, and I will indicate how- 

after the smoke clears. 

Suppose we have evaluated as many terms in the series 

in lo for, say) r (a) 
as we are able. We will have constructed 

a function r'a'(~a,l\O) . If we go over to 1 and fia: we 
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will have a re-organized series,now in 1 and not in A,,. These 

functions are related at every p2 by 

a@ rp(p) a#“) = pfa, (p”, JOI. 
The function r(a'(p",&) never heard about the normalization 

point pa where the new expansion parameter 2 was defined, so 

it must be true that 

/~“a 3 rfaVfj 2,) =o . 
Y” 

(135) 

Since, in principle, P ca) 
is the full function determining <+ (3): 

<+(a:))= 3 
1 

2 Fez ) (I361 
@dD rLaVpa, aoc) -iE 

all relevant physical information is in it. Its independence 

of P expresses the arbitrariness of ,U and emphasizes 

unphysical nature of 
P. The utility of /"c is about to 

emerge. 

From the chain rule and (134) we derive from (135) 

[ P 23. 
3/"" 

+ A L$ a + cbg t-k") ++1,f9 = 0 ) (134 
%I I 

where 

Nc$= paiLaj 
I 

) 

3/u Jo *lied 

and 

ccg) = pa a 
Pa 

c 139) 

(134) 
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This tells us how we must vary g and the scale of 7 as 

P is varied, so no change occurs in the physics. This is 

the renormalization group equation. It is an exact partial 

differential equation which A r(a) must satisfy. If we know 

the coefficients A(g) and C(g) even as a series in g, the 

solution of the differential equation will give us a non- 

perturbative solution for m-l 

rf: 
and hence for r la) via (134). 

If we knew either rltior exactly, all this would be 

merely a check on our arithmetic-and not even an enjoyable 

one. Let me repeat that an approximation to A(g) and C(g) will 

give an improved version of pra) in a manner to be demonstrated 

explicitly soon. 

Let us return for a moment to a bit of dimensional 

analysis. Since rt'ipa,gyal has dimensions k2 it can be 

written 

SO 

rd”‘(jP,g/d = jl” J&qua J!$ 

r$kp, 8, f9 = g pa $J i$%p/~~ ) 3) 

= g rRta’ +“) 3J pa/s > * 

This means 

1143) 
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and the renormalization group equation reads 

i 

~$-Ak@ - (ckJ,-ll] rR(=‘) @“, $J,d =O' (144) 

9 

To solve this we use the method of characteristics which 

introduces f(-C> satisfying 

49 = - A qidl ; @ol =g ; -c= l&J < * (l45) 

This allows us to case (144) into 

Utilizing the absence of explicit Z dependence on the right hand 

side of (145),we can cast the solution to the renormalization 

group equation into 

r:'kpa, 2,fl = r,fVpa, pbp+.i9 y 

This is a traditional moment of rejoicing in the use of 

the renormalization group to study the dynamics of non-linear 

stochastic systems. It shows explicitly how the function r cal 

at wave number &$/? depends on a dimensionless expansion 

parameter ^( 

number ET8 -7afL.s. 

which clearly varies as the wave 

If $(-%c) is ever small, then a 

perturbation expansion of R r(a) is going to yield an excellent 

approximation to (a\ rR . (It is true we'll need Z(g) also, but 
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that will come shortly.) The only information we need is the 

function A(g), for then g '-J+J 0 is determined)(l45). 

We can determine A(g) and C(g) or equivalently 8 9") 

and Z(g) by perturbation theory. Other techniques rely on 

a saddlepoint method for doing the appropriate functional 

integral. The information we need is in (114) and the definition 

of 2 via 

rrl i$ $ h 'pa 
= -;f-y = z-a rf4Vjqqa 

p; =p 
and (125), the definition of Z. Because the p2 dependence 

in trp"> is 0 (x:-J we have, 

z= I + 0 Ix;1 

and to o[$J it does not affect the 'h ,I,, relation which 

) 1148) 

(14d 

is 

) (150) 2= lo- Tla < [d(&~q) + tit&+$& d($,+&) 
Tzpa 

-x,-3&? I 
:: 

a 
(IsI) 

= -Ah, - 3% I (pa= $q3). 
a 

To do this integral we use the identity 
I 

I dx - z 
ctb 

-__ 
rsx t b (1-x) ] a 

) Cl5d 
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to cast it into 

(ar)D I (pa) = \ Lx 1” 0 [&=+ apGI x+xp+-y 

= dD% 
Cg”+ paxw-;&]a 

C/54) 

after changing variables to $ = k" + x$. 

In D dimensions we can evaluate this using the result 

so 

and 

dDA 

ha+ Ql” 
) (156) 

rcp2=47$)= ir”)%a-g ($a p&y ) (,S?) 

c4Wa rtD-a) 

B * 

(158) 

At B=3, K,= $57C3!d /a . KD is positive for 

2~Dc4. From all this we can determine A(g) 

A($ = pa $a 9 ) 
2h, {lied 
a @-4k! 

=P’$a 'b) 1, -F;rd 
Ig l( 

CId 

(lGO1 

= - (4-D) 
a Fl 

+ 3(1-$)Ko” > 061) - 

(4nJD’2 
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OX- 

A rg = - (4-Q) CJ t cl/ ga . 

At 7)=3, Rrqg > 0 . 

This result enables us to solve for Z(T;) 

d&) = 42 g(T) - a j(d”, 

dz 

p) = e 2 ) 
I + 8 p$s,) (e’4-D”‘a _ , ) 

As 300 
5 

I + 3 I”&) ( E - (-)/a- , ) 

(Isa) 

(163) 

II G4) 

(165) 

p..y~~ 30 Cl661 

providing CJ c (4-D) /qa (167) 

while as E 30 

s'-!i$ E) --, (4-D) /at (/68) 

At D=3 the parameter which naturally appears in perturbation 

theory is (see (161) for example) 

Looking at the perturbation series we see that as I'+ 00 , 
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the correction terms to vanish 

rapidly. This makes good physical sense since as p%ca , 

in <+(Z))) 12113 0 . At very short distances from the source, 

the influence of the fluctuating medium should be completely 

negligible; and this analysis affirms that. More precisely, 

we learn that the physical realm of g is between 

0 5 ~(-hz~ gj 5 6-D) h.Q ho) 
and, in the present approximation, that requires 

The physics of the situation chooses where g(O) must lie. If 

j(o> > (4-D) /aa , then as 5 -00, p-b El would blow up. 

What is most remarkable about this result is not its 

ability to reproduce the +J~-?oo limit, but what it says about 

the +o limit; that is, the behavior of <+(x"j) for very 

large distances from source to receiver, where the influence of 

the fluctuating medium is essential as it has the opportunity 

to "act" many, many times. Our result says that even in this 

limit, the effective dimensionless expansion parameter at D=3 

is smallland perturbation theory for r 191 (or any FIN) for 

that matter) is accurate. 

Rather than labor on this point, I want to make some 

general remarks about the structure of g(t) given A(g). The 

important feature of A(g) in finding the behavior of 
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for g+O or f-7~ is the location of zeroes. Suppose A(g) has 

a zero at g=gl where A'(gl)> 0. Then near g=gl we have 

dF$zj -----.-= 
d-c 

- A’lj,) (j(5) -9,) 

and 

~@?jcA= $I+ 5 
+ A 'fg,, 

(a- $1 

0 72) 

l/731 

As E+O %I * Such a behavior has a 

name: gl is called a fixed point of the non-linear differential 

equation for g(7;). In this case we have a long distance or 

infrared (k-30) fixed point. if A'(gl) < 0, we have a short 

distance fixed point, j(-% g)-291 as g+ 00. 

For our A(g) we have two zeroes: g=O where the slope 

A yo) = - (4-D)/& -so this is a short distance fixed 

point, governing the Pn-3 00 limit of the theory. We also 

have a zero at 3, = (4-D) /ga where A'(j;)= b-D) /a ; this 

is a long distance fixed point that determines the behavior of 

correlation functions as p2->O. 

We will end this lecture on the renormalization group with 

two remarks. First I have said that using the differential 

equations of the renormalization group one can improve on 

perturbation theory. I want to exhibit this explicitly now. 

If we calculate Z(g) in perturbation theory, we find 

From Z(g) we can determine C(g) to be 
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Z(g) I however, satisfies a renormal ization group equation 

.$ kj z(a) = "2) /A$) ) (14 

which follows directly from (138) and (139). With the 

boundary condition Z(0) = 1, we may integrate this 

-t+ Q/q S9dx c(x1 IA (x) ’ 0 
Cl??) 

and in this formula use our knowledge of /q (x)= - c4-Dh/a -4 a xa 

and C (~1” CXa to write 
‘91/a 

+$ = (I- a/j,) ,:a 
Il?8) 

valid for ?3 cgl* When gl is small, we can even have high 

confidence in the numerical accuracy of the approximations to 

C(x) and A(x). In any case (178) certainly is better than a 

power series in g. In particular in the crucial region 

around g 6 gl where perturbation theory is really unbelievable, 

this formula gives a representation of Z(g). In the next 

lectures when we come to the details of turbulent flow, we 

will probe this technique further to construct functions such 

as r raJ (pa) . Z(g) is the simplest example around, so 

we'll be content with that right now. 

Lastly, I rpomised to comment on the restoration of 

k. and, if one desires, the scales in r(c) -the fluctuation 

correlation function. The method of attack is really identical, 
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except we now have two, g and r , or more dimensionless 

parameters on which dimensionless functions such as A(g,r) and 

C(g,r) depend. This means we will have two effective parameters 

2(-c) and T(r), and we must search a two dimensional parameter 

space for limits as g30 or E-?~J , The problems involved 

are straightforward and are explorable by the routes we have 

indicated. In general, the physics will change as the number 

of parameters is increased, and one must carefully examine 

each situation. In particular, the physical boundary conditions 

such as above where as c+60 (short distances) j $'-J.y g‘,+ 0 9 

must be attended to as one will often find disjoint limit sets 

of the parameter space; only one will be relevant to the physical 

situation at hand. 

This completes the material for the second lecture. The 

essential point which I wanted to convey is a method for 

examining the importance of the non-linear terms in a field 

theory such as the ones generated by scalar waves in random 

media or turbulent flow. By identifying an effective 

dimensionless expansion parameter we have in essence made a 

mapping from the parameters which appear in the generating 

functional, such as IO or kg, to a set of quantitites in 

which a perturbation series will often converge much more 

rapidly. The mappings like 2 %p) will be explored more 

throughly in the coming lectures. 

In the next two lectures I will turn my attention to 

a detailed exposition of the perturbation theory and 
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renormalization group analysis of stationary and non-stationary 

turbulent flow of an isotropic, homogeneous incompressible 

fluid. The development will rest to a large extent on the 

ideas discussed in this lecture and on the generating functional 

in Equations (102) and (103). 
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LECTURES 3 AND 4 The Renormalization Group Applied to 

Homogeneous, Isotropic Turbulence 

In this second set of two lectures I want to explore in 

some detail the use of the ideas and methods introduced above 

applied to the study of homogeneous, isotropic turbulent flow 

of an incompressible fluid. This is a somewhat idealized 

problem, but contains a large amount of symmetry: spatial 

translation invariance and rotational invariance, thus making 

the complicated calculations a bit easier. Very good reviews 

of the kinematics and the experimental situation in homo- 

geneous, isotropic turbulence are in Batchelor (1953) and 

Monin and Yaglom (1975). Although such flows are clearly 

not exactly correct in naturally occurring phenomena-the 

oceans and atomospheres are stratified, are rotating, and 

have boundaries-flows in wind tunnels where the turbulence 

is produced by a grid do seem to approximate isotropy. 

Our plan here is as follows: (1) we will discuss the 

generation of isotropic turbulence by an external randum 

mixing force and try to make a few useful statements about 

such forces. One of our tools will be to consider non- 

stationary flows a long time after the mixing has occurred. 

Batchelor and Proudman (1956), Saffman (1967) and others 

(see Monin and Yaglom (1975), Sections 15.3-15.5) have 

shown that at very long times into the decay period one is 

exploring the small wave number behavior of the velocity 

or other correlation functions. We will subsequently 
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need this behavior, so we record the appropriate results at 

the outset. (2) Armed with a discussion of an essential 

physical point, we turn to stationary, homogeneous isotropic 

turbulence and study the perturbation theory in the non- 

linearity, "$,Q , of the Navier-Stokes equation. We 

will see that the perturbation theory is fine for very large 

wave numbers, but fails badly when either the wave number is 

small or when the Reynolds number is large and the wave 

number is neither small nor large. (3) We will then carry 

out a renormalization group analysis of this perturbation 

theory. During this we will introduce a renormalized 

Reynolds number which is a certain mapping of the original 

Reynolds number. This renormalized object will turn out to 

remain finite even when the original quanitity becomes 

enormous. So it will clearly be a better expansion para- 

meter then the "bare" Reynolds number. At the same time 

we will discover that the problems we were having at small 

wave number are "cured". After all this we will utilize the 

full power of the renormalization group method to give a 

procedure for constructing the correlation functions of the 

stochastic velocity field. In particular we will consider 

the two point correlation (y(?,d,)~+($,-c) ) and explore 

the information it contains on the energy spectral function 

E(k). 

A bibliographical note here: the perturbation series 

as we shall write it was given a number of years ago by 
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Wyld (1961) and studied in some detail by Martin, Rose, 

and Siggia (1973). It is contained in various forms in 

Kraichnan's work (reviewed by Leslie(l973)). The small 

wave number regime of the theory was first studied with the 

renormalization group by Forster, Nelson, and Stephen (1977) 

and independently by Abarbanel (1978a). 

(4) The last topic we will take up will be a return 

to non-stationary flow. This is interesting in itself, 

and, in addition, allows us to justify a number of items 

in our first pass at non-stationary turbulence. 

We begin then with the Navier-Stokes equation 

22 -l..rj i- a7vj = - bJp/, *o,v~~gj + Fj 
at 

for an incompressible flow I;:12;J=O . We can eliminate p 

as usual, and vjq=0 let's us consistently choose yFj=C. 

The stochasticity in the flow comes from random boundary 

conditions vj(x,T) at some initial time T, or, as em- 

phasized by Saffman (1967), equivalently by the operation 

of a pulse of random forces Fj. Suppose these forces are 

gaussian with zero mean (required by isotropy anyway) and 

operate from some initial time -Ti to some final time Tf. 

Then the correlation function for the forces can be written 

as 

‘F,‘~“F,J~,‘))=~Aje(~)~(B~(~r;l~)Slt-~)e(tt~ )O(Ti-tI (IS’) 
4 
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In this to measures the strength of the forces, QjQh) 

is the operator 

t;dd - ge- ay7a /‘p (It?1 > 

introduced before. ?(k02 2 x ) contains the information on the 

spatial dependence of the force correlation, where k 0 -' is 

a distance scale connected with the range of the forces. 

We have taken the correlation to have zero range in time; 

that is, the forces must act at the same instant or they 

are uncorrelated. One can modify this by replacing s(f-71 

by another distribution. 

The factor ? (ko2xy is chosen to have dimensions 

(wave number) D so its fourier transform 

r, W/a?;) = )rJL fP r^ (I?; XX) m) 

is dimensionless. If the forces have a finite range, then 

&ko2 2 x ) will vanish rapidly for kox large, and m will 

become small for k 5 kg. This is a good feature from a 

physical point of view. Energy is then being pumped into 

the flow at wave numbers k. and will be transported by 

advection (?.VU- ) to larger wave numbers where it will 

be dissipated by V, used, 

Suppose the forces are strictly zero outside a range 

ko-% > so that we might approximate r (ko2x2) by (D=3) 

^ri$” x”) = !&y 0( 9iia - x3 Cir3j 

This is a bit extreme but will help us see what to expect 
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for finite range forces. From this we find 

rM(ka/g) = ld3K ,;q7,' e(&cx") 

= 4RB,3 [ 
ha 

&+ 
b 

$ cm&) 
0 -pi0 

This oscillates for all k and for large k falls more 

or less as k -2 . At k=O it is finite, r, lo>= 4~U/3 a 

This example illustrates that even for strictly cutoff finite 

range forces, the k=O behavior of FM does not reflect that 

in an easy and obvious fashion. Since k and x are con- 

jugate variables, the k+O, x+N connection is as usual, but 

one must be cautious. To take a smoother example, consider 

for which 

r, (ka/A.$ = 8r ( $2; tl)-a 
0 

Again !? M falls rapidly as k -Oo,and FM(O) f 0. 

(I 86 > 

I emphasize 

these simple examples since the behavior of *r,(O) will soon 

be an issue, and in any case it is useful to recognize that 

short range forces and correlation functions in real space 

do not require the k30 limit of the correlation function in 

wave number space to vanish. So r,(O) f 0 is not a statement 

;J' enormous distances playing a role in the forces generating 

the turbulent flow. 
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Now we want to imagine that after the mixing has ceased 

at t = Tf, the flow develops under its own steam transfering 

energy via v’.Vvi up to higher wave numbers where Q0k2 

dissipates the kinetic energy into heat. For t 77 Tf, it 

is natural to expect the flow to have significantly decayed 

so vj is small and the non-linearity is playing a negligible 

role. The effective equation of motion in this late state 

of decay is then 

'2 - Vb P) llyj (x",,-t) r F; Ix;-tJ 

From this and the force correlation function (180) we can 

evaluate the velocity-velocity correlation function 

xe ix~~(~(~~,) ?Q(o,+) 088) 

h-l pet, T) !P)) cixq) 

where 

iiso) 

and the real information lies in the scalar function 

P, (2'0)(t,r,k2). The relation of this scalar function to 

the energy spectrum function E(k,t) which gives the energy 

in the flow in the wave number interval k to k+dk 

(Batchelor (1953)) is 
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From the linearized Navier-Stokes equation we have 

;j2(aio’ [t,y Aa) = 
s 

dsdw’ eeLwteiW” g r (ha/As) I: 
taz)’ 4m 

0 
TF 

Lc-iuiL)D~a)jiUl+~~da)?-' dp e.L'w-w' . "P 

(i41) 

0s a) 

Let's now look at t 7 Tf, so times into the decay 

period, then 

g$,.p+a) = &arm pp$,‘j z;~~‘t(eav~ka~ _ e-avekaLj . 1193) 
4 0 

For large times,where we expect the linear approximation 

to be accurate, the factor @ - avokat kills m (2ao) unless 

k2: 0. (More precisely k2t - ("(1)). Expanding the coefficient 

of this exponential factor gives 

$x) t, A2) = Yea i T++T-,) r, (0) e- 
av, ?zat 

+ ow) . (144) 
-m,r, -lj 

The role of r,(O) is now explicit. 

Batchelor (1953) argues that the velocity correlation 

function +ij(2'o) should be analytic near k=O. Since $ij(2.0) 

has a factor Aji(k), this requires $(2,0), the scalar cor- 

relation, to behave as k2 to the first or higher power as 

k2 +o. This means 

r, 03”) -m7,w~, 
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where hM(0) is likely non-zero. Tracing this back to our 

discussion of f,(O), we see that this requires a peculiar 

oscillatory behavior of the forces in 2 space. 

On the other hand Saffman (1967) suggests that it is 

not the velocity correlation function which should be analytic 

at k=O, but the correlation function of vorticity, that is, 

curl 7". This introduces two more powers of k into the 

discussion and leads to the result that if r,(O) f 0, the 

vorticity-vorticity correlation function is analytic, while 

$jl . (',O) is not Saffman then shows that under his assumption, 

the quantity ~,"C(O) is an invariant of the motion while if 

rM(s2) = s2hM(s2), bo2h,(0) is not. 

Furthermore, when rM(0) f 0 we see that the energy 

spectrum for t >> Tf behaves as 

E!P+) ," lx"-' (I 46) 
tnT, 

for small k. At these times,long after the mixing force 

has been turned off, the degrees of freedom of the motion 

should have come to some kind of equilibrium with each other 

and the equipartition theorem would then suggest the behavior 

(196). 

From a variety of points of view, then, albeit all are 

heuristic, r,(O) # 0 is suggestive as a general behavior of 

the wave number space correlation function of the mixing 

forces. We'll choose r,(O) = 1 as our standard convention, 

throwing all other factors into %02/4. 



-63- FERMILAB-Conf-78/74-THY 

As we turn to a discussion of stationary turbulence, it 

is useful to investigate the behavior of our $("')(t,t,k2) 

for -Ti<tiTf as Ti,Tf-?OO. This means that the mixing force 

is on always, but that is precisely what we need for stationarity 

of the flow, for turning off the mixing allows viscous decay 

to occur. When -TctcTf, we find from (192) 

ii! (a’O’(f,t,~~) = i - C av0’a’~~) r, ik%:) $ 
avo ha 

So as Ti,Tf-3&, 

~(a40~~C,t,ka~ - ;II,“_ I-, @F/q), 
8v, ha 

cisa:, 

which is independent of t as it must be for a stationary 

flow. In this situation the energy spectrum is 

E (6) *J kf+3 I-, (ha/&:, ) 

but one must caution that this result holds only when the 

linearized Navier-Stokes equation is a good approximation. 

Nevertheless, we see an important factor of k -2 entering 

here; a factor which is canceled in the non-stationary 

flow at k2+0. Since the fluid is being mixed constantly 

and predominantly at ki kg, one would not expect equi- 

partition to necessarily apply. Nonetheless, if fM(k2)b~k2, 

it would appear to do that. But this is a bit artificial, 

since if rM(k2)kk4, the mixing again is strongly absent 

at small wave numbers, but E(k)- kD+l. Forster, Nelson, 

and Stephen (1977) argue in favor of rM(k2)w k2 using 
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the E(k) N kDe3r(k2) connection for stationary turbulence. M 
They connect this to Saffman's results, but as we have seen 

there is an extra k2 factor in the non-stationary case, so 

one must exercise caution. 

We now turn to stationary, homogeneous, isotropic 

turbulent flow and develop the perturbation theory for it 

when the flow is mixed by a gaussian random force. Our 

task, simply stated, is to evaluate the functional integral 

(102) for the generating functional for all velocity and 

anti-velocity correlation functions 

So much for the statement of the problem, now for the work. 

We begin by looking at the effective lagrangian 

i (y,Tg =.+T Qj + <do -Q-j a, nq 

If we make the scaling 

we find 

-~-?iJ~X; * & ((Aj,O,+AjlVn)~)'XaxR ) 
4 
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which puts the to in front of the non-linear term and shows 

how the scale of the random force sets the magnitude of the 

non-linear effects. 

The action 

s d"x dt J(X;,f$) (aos) 

is dimensionless. We can exhibit the dimensions of the 

ingredients in CL by writing dimensions in wave number, k, 

and frequency, Lo , units. Since 

Lx1 = I$-' jaO6) 
and 

[gJ = co-1 lS!OFL) 

we deduce from (205) 

(208) 

and 

(aOQ) 
(a/O) 

(art> 

Of course, [kg] = k. PO is going to act as our expansion 

parameter, but as in the previous example of scalar wave 

propagation, it is not dimensionless. The combination 

a, = Y, AoD2 
?a 

Cara) 

is dimensionless and is the Reynolds number based on the 
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external length scale k. -1 . To see this we note that 

using k. as the wave number scale, the dimensions of vj 

are 

&kiy,] = b$J !!?,""-' /rvo13'a 613) 

using [&I- [L)a]h: . So Reynolds number would be 

?2+ 
R, = x a & k,, a 

%Jkb o/a % 
G! 141 

as noted. 

However, we want to introduce a wave number scale into 

the problem, call it kN, which we can vary to explore the 

response to changes in k2 when fo, Vo, and k. are fixed. 

So we have two dimensionless quantities 

$jo= z&p:) ) 
d 

(3.15) 

which will be the "bare" dimensionless expansion parameter, 

and 

6216) 

which measures the scale of wave number relative to the 

external length in the theory. 

With a dimensionless parameter in mind we can begin 

looking into perturbation theory in $0. If we setpo=O, 

then .$.tXj, ffj) is at most quandratic in fields, so we can 

do the xj and xj integrations to find the generating 

function ~[c'j,,j7 for Xj, Xj correlation functions. 
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Only two are non-zero in lowest order of $0. They are 

G:;; &to> = kxdt e 
;(g.ii'-wt) 

xx; cr;,tj j7, b,d > ) Cal?) 

= a;&) [ -;~a’~~~~-’ ) 

and 

G;;~(j$o\ = kxdt e 
; $&u tl 

<%j (?,t) Xl lo,‘) > ) Ca 20) 

= A; p (Q jq”’ ha, d , la a~) 

= Ai2 Ck) rmp”/8a) [b+, k’l h +V,,h$, haa) 

The factor A,,(h) in each of these comes from the isotropy 

and homogeneity of the system and from ~J;xj= ~4(j = 0. 

To develop a diagramatic expression for the expansion 

in 9 o we will associate a solid line with each factor 
"x, 

and a dotted line with each%j. Since there is a definite 

direction in time, we associate an arrow going to the left 

with a positive frequency ; an arrow to the right, a neg- 

ative frequency. This gives the diagram elements in Fig. 8. 

At the next order in Y n we find the interaction vertex 

where aXj of zl, W1 and a "x, of z,,w2 fuse to a?(, of 

T&i;; +iY2, w=w tw 
1 2 
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a, WJ = 

G:;lk’ (j&o> Go;; 6,, q,) G::: &lo) x 

x -L 30 ~ (S&p + &AA * 
a Can) a 

(aa3) 

This suggest we define a one line irreducible vertex 

I& (&qil,, WI, 2,) 4 by amputating the G(1'1) 

factors. The lowest order term in r is shown in Fig. 9. 

Studies of higher order correlation functions and 

higher orders in perturbation theory in $0 show that 

GO 
(Ll), G l2,O) 

0 ' and fO are the ingredients needed to 

construct any graph desired. The graphical rules that 

emerge are these: 

1. At any given order of sb draw all topologically 

distinct graphs constructed out of GG("'), GO(2yo), and 

r(Fig. 9). 

2. Integrate d% dwaround each closed loop. 

3. At each vertex conserve 2 and w . 

4. With each graph associate a weight of unity except 

for closed loops containing two factors of Go (1,1) _ 

these have weight &. 

You will find these rules in Wyld (1961) and more explicitly 

in Martin, Rose, and Siggia (1973), the appendix of Foster, 

Nelson, and Stephen (1977) or Abarbanel (1978a). Martin, 

Rose, and Siggia (1973) also discuss the integral equations 
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(Dyson equations) which represent the formal sum of pertur- 

bation theory. 

To order bpo2 we can evaluate G. 
Jl ("l)(i?,w) by calculating 

the graphs shown in Fig. 10. A factor Ajl(k) can always be 

extracted from G. so 

Gus’ (~,~, = njn (~~ /el""‘(~', W) . h24) 

p’l) may be written as 

_ -i*tvJia - t W,d 625) 

where to order PO" 

z:l$.oLo) = - g dDgdw’ r, (%.;‘) 
4CanY%! ( -,wo'6a) (iur't"~$a)~-I(W-U)l)+v~(~-el)'lr 

Y 
I 

< - ,$$&J, 
8 D-l 1 

gj Ajn(kIf, 

which on doing the w' integral becomes 

z t+J = - f 
4tanlD 5 

q r, w/A:) 
avq" [-ilo tv, lga + q-&q 

8; $1 calg, y 

x Ita\_ 

L 

a$.@-$) , 

-% (n-l)(q,a 8 I 

If k2300 with to, vo, k. fixed in this formula,23 constant. 

This means it becomes negligible relative to the -iW +% 8" 

in W"' > - ' In this limit then, 

lowest order term in a(l,') 

the corrections to the 

are not important and the dis- 

sipative and kinetic terms dominate over the advective. The 
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effective Reynolds number when k2+o0 is very small. 

In the limit k2-7 0, W-3 0 we must exercise a bit 

more care. Since L vanishes as k2 in this limit as does 

-cw+v*,,= , we should extract a factor of k2 before pro- 

ceeding. Then we find that the dimensionless form 

2 /v I?: d? r, yl 
JO f$; 1 

r (aa81 
8 

For any Y o, Vo, and kg, when r,(O) # 0, this integral is 

divergent for small $ in D 64 dimensions. The correction 

term to -iW+V, ha > then swamps the original term and per- 

turbation theory is completely incorrect. 

Of course, if Ro2 is very large numerically, then for 

finite k2 , w the correction to -iwtv, apa 1s numerically 

large and a simple perturbation expansion in it is not 

wise. Regardless of the numerical size of Ro, since it is 

a fixed external parameter, when k becomes large enough, 

'/J,p + 0 Similarly, regardless of how small 

R. may be (as long as it's non-zero), z/VOga blows up for 

k2-?0 in D<4. 

This is really a crucial stage in our development. 

We see in the simplest example of perturbation theory, 

that the quality of the expansion depends on the regime of 

phase space and the dimensions of space as well as the 

numerical value of Ro. For R. large, we eventually have 

a reasonable perturbation theory, when k goes deep enough 

into the dissipation regime. Our efforts will now be 
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focused on dealing with the k'+o behavior keeping in mind 

the "boundary condition" that whatever we do must yield 

the known k2+oo limit. Once we have control over these 

two ends of the wave number space, we can attempt to assess 

the success we have had in the intermediate k range. One 

can anticipate, but not guarantee, of course, that tying 

down the k2-? 0 and k2+a behavior of a rather smooth 

function in one smooth formula, will yield good results in 

the middle. 

Before launching into the renormalization group cure, 

let us make a remark about where large and small k lie 

relative to the usual external and internal scales of tur- 

bulence. Novikov (1964) has shown that the net energy 

dissipation due to viscosity, called E, is 

8 = D!gj g i;(o) 
4 

= Dy b’o” c dD1, 
4 (a# 

r, ( ba&) 
= yea g x constwl-l I 

The Kolmogorov turbulent length scale 7 is then 

‘1-’ = (E &3y4 = It.?, J I 

(aas) 

(a301 

Small k clearly means kC< k. so one is in the production 

range of wave number. Large k must mean k?>>l or 

k>>ko.& so one is in the deep dissipation range. The 
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inertial range will lie in k CC kd<T -1 = 
0 ko K as usual 

and to have a sizeable inertial range requires R. large- 

again, as usual. So when I speak of very large k, I am not 

talking about the inertial range. That intermediate range 

of k must be derived from our procedure. 

Now we are ready to begin the renormalization group 

analysis. As in the scalar wave propagation discussion 

before we find the interaction of modes via the CaVvd term 

rescales the ingredients of the effective lagrangian which 

here are vo, 20, ^A, and %j. (k. is resealed, but not in a 

manner essential to our discussion.) We define, as before, 

a scaling of the fields and constants so 

(a3a) 

and 

XRj (Q) = f-‘/a “xj qt,, 

3= tovo) 

Y= r,b3$ 

The renormalized expansion parameter 

cJ.= 2 a,‘;’ = zp 
9=/a -go= % 80 

033) 

will be a function of go and d which we will determine 

shortly. If we are fortunate, this new expansion parameter 

will provide an improved perturbation series. Indeed we will 

show that as g 0 ranges over 05 go<cO, g remains between 
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Of g 5 finite number for Dc4. Even if $O is very large, 

so R o is very large, g remains bounded. 

To determine the scaling factors we need some normal- 

ization conditions on the renormalized correlation functions 

Gt’“’ <X,j,~~~ X,j,, iT,,, b*. ;iTRi,,, 1 at some convenient point 

in 2, cu space. We will choose the following: 

1. On 

a ai’” (k+j’ 
I 

z -I, 
aLo h2=. 

lU= ;&:;UJ, 
and 

= v- zyvo, 

9?'= 0 
W=I&=LWu 

(a381 

This determines 22 and Z3 as a series in once we have 

calculated a""'(&alw) as a series in % These conditions 

are suggested by the value of iI 
(id) -1 when $O=O:-iw+VO!&a 

and imply zf,z+= 1+oq,a). 

2. If we write G ~~~ (~,w~ = Alj (~) ~~'~ ( A', W) 

then ~'~" (ha,~)= z-'M'"'"(%',ti) . Z is determined 

by requiring 

a ,y h?,ud-' 
5-d 

= a hA.: ) 

si== 0 
u, = ;&,a = iw, 

once we know ,%(a'a' &;uJ~ as a series in tr 
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3. Looking at the lowest order contribution to 

fL),ojp (X,w, &rW!)-L,w~l ; namely, 

r ou,‘$p ob/B+Jl, %a w,) = -$$,, ["'d 1, +"', k-j 1 
J. 

we determine d or Z # by observing - 'la 
rRO;.(p = i?z r,;d, 

where rV.*@ is the fusion vertex computed to all orders in 

\d C and requiring 

-~,;&& 
= -q& , 

’ Wraw,=alua:i”k,a=iro, 
This procedure enables us to develop a renormalization 

group equation for the renormalized n-velocity m-anti-velocity 

correlation functions (n,m) 
a? . The procedure is almost 

identical to the steps carried out above. Life is made 

slightly simpler by noting that the way we have chosen the 

conditions for defining Z and Z, namely normalizing at 

k2=0, Z and 2 are each l(Abarbane1 (1978a, 1978b)). So 
: satisfies the renormalization 

group equation 

il ga_ 4 
ag 

A(jd a + Fw) v3 .,. u a 
I-B($@) rg I- [3$T) 3u ao- 

+ cVjm ((J.jffl] p”,‘“@ijw;j 8,0,6, I?:) = 0 

where 

A+J = WN 2 8 
I 

) 
N %,%,A, sixed 

(343) 
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B(J,d = ON a Y 
I 

1 (244) 
7 aw, &,v,, Rpo -Flied 

and 

c,,m(~,a) = (M-n) p-z + y Ol~,Ul ‘-7 , Lwd 

.3 

These express the independence of Gcn'm'(~iIw~,9~~v~, A,) from 

the normalization point qJ= VA; and the chain rule. In 

the present problem w,, ~a; plays the same role as p 2 in 

the scalar propagation problem above. 

Once again we can solve the renormalization group equation 

by the method of characteristics. To this end introduce 

the effective expansion parameter z(t), the effective viscosity 

;i(Ts)> and the effective scale ratio F(t) which obey 

4&p? = - qw~z)) 
dz / 

(I- O(yr),$r))) ) (246) 

d 3 (51 c - I 
/ (I- B(jk,,Zir,)) ) 

(2 43) 

i;kldt 

and dm = - ;im) 
XT- 

Ca4s) 

with the boundary conditions z(o) = g, s(o) = v,%(o) =13-. 

After the conventional dimensional analysis we find 
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~;‘m~~J&,~;, j,v,+;1 = 

noting that &=-c-c) = o-e- -c and where 

din,, $.,d = C~-n)(a-Dl+ alhSD , (m-n) 114 6hp7’) + Al& , kso) 

4 r-ec~,d a 3 1 

Once more we have a result which tells us the behavior of our 

various correlation functions in different regions of k 

space once we know how E(-log<) and z(-log g ) behave. 

We certainly expect that e+s c+oo 13[-!$E)-+ 0 as that 

reflects the excellence of perturbation theory in the deep 

dissipation region, 921)m . The g-0 limit, where per- 

turbation theory fell apart, is a central issue. 

To determine A(g,a) and B(g,u) we need x (ka,w) and 

to lowest order in F o the graphs in Fig. 11. With our 

normalization condition Z)%= 1 to O(beo2) as the contribution 

of the O(yO') graph's in Fig. 11 cancels at our normalization 

point, Eq. (241). For B(g,p) we find 

O(cj,,) = - 9= o3-D/d 
s 

dDB G $9 II_ga_(na_D +a) -- - 
nta 3aD GM= %” 

c% b%-a)], ~~~~~ _~ 
cga+ da )” 
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= - ja ( CQ T&p=) 
Dta 3%D zbD j,"(+"+l/# 

f+~~(D'LD+d+ti-D-d]) (gsa) 

= -(j’/D+a) F h-1 . 

For A(g,o-) we have 

A$,a) = -(ml tFb13 . 141.9 $2 

Before studying hg(r) let us find the relation between 

g and go. To do this we need g/g, =% = -312 2, , since 

z r= From the definitions of A and B we find 

22. t,= 
% % Wd /A.C~,o-) I 

With the boundary condition ZU(0,6) = 1, and out values for 

A and B, this leads to 

and 

in which 

$ = SP/(, - !3)/9J-h+a 

9: = (4-D) /F(a) 

1x3) 

(as?) 

is the zero of A(g,a) with positive slope. For illustration 

consider this at D=4. Then 

f= $:/(I+ @&a) * (a 54) 

In this we see that when go, the unrenormalized expansion 
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parameter, is small, so is g. Also we note that as g0 

increases, which means ~O/JO~~' and RO increase, g grows 

from zero but only up to gl. The same behavior is clear 

in (257) for D-3. This means that our mapping of g0 into 

g has taken us from an expansion parameter, g0, which can 

become very large when the external parameters $o/Vo3'2 or 

the external Reynolds number becomes large, over to another 

parameter, g, whose range is finite. This does not at all 

prove the convergence of a series in g. It does, however, 

open the issue and certainly provides a much tamer series 

than a direct expansion in g0 or % 
From (254) we can now study the behavior of g(~). First 

to touch base with our desire to have a dissipation region 
-T 

we look at 5=s 300 , or 't+-00 . Z?CI-c)=ae-T+Oo in 

this limit,and we need the behavior of F(g(-c)) for large 

argument. From (251) we see 

t=(r) - d l-D/a dDg (2601 o-*co SD (anlD 

so for D>2, F(a) goes rapidly to zero as long as the coefficient 

of o-lmDj2 in (260) exists. That integral also exists for 

D>2 when rM(q2) goes to zero rapidly for large q2 and 

rMb) = 1. If fM(S2) - (4 
2 -1 

) for large q2, then for 

2<Dc2(1+1), F(a)+O,~+ti . In this circumstance, the 

equation for j(z) for r-7- 00 becomes 

ddg = + 14-D) A(r) 
-2-s 

b-J60 
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leading to 

(26 a) 

At D=3 this corresponds precisely to the O(l/k2) corrections 

we observed in perturbation theory. So we do find a 2 which 

becomes small in the deep dissipation region. 

For E+o we must examine ^a(r)+o in which limit F(a) 

becomes 

i 

AD4 w - 
a Da Dig') t L (Da-D-d)] 

F(o) = 
36 6s” 

.-.-__ 
p” (4a’ '/al 3 

which is finite for 2CDC6. The equation for z(z) in the 

region 2=- < 300 looks like 

d@ = @I+? ,jh) - F$l (264) 

dt 

As t increases, E(r) increases until it hits jf= @-B)/Flo) J 

the which is the infrared or long distance fixed point of 

theory. 

We can note a connection between the g(g6) relat ion 

discussed before and the ^p(z) behavior here. go is a 

mixture of Y o, VO and our normalization wave number &, 

$= (qv;j (s;G4 

As we vary kN we are probing various parts of wave number 

space. As kN-70, g6-700 and the unrenormalized expansion 

parameter is surely not at all useful. Looking again at 
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(257) we notice that considering kN as a variable, that 

g(kE) is going precisely to (4-D)/F(O) as kE+O. Similarly, 

as kE-300 andwe explore the deep dissipation region, go->0 

as does g(kE). It should be clear by now that discussing the 

g(kE) vs. go(kN) behavior as kN varies is tantamount to 

studying g(z). 

Along the way we have solved for Z, so we can determine 

how the effective viscosity behaves as a function of wave 

number. We have 

vll?,) = is, c 8 o?,H v, 
Y,+a 

= (, _ cf&,) F (c%J)) ,,I 
4-D 0 (2 66) 

as kE-30, g2(kN)-P(4-D)/F(O) andV(kR) becomes very large. 

As kN--W= , 3(kN)-? Vo. The measure of the importance of 

viscous dissipation is kN 2V(k,). For kR+ 0 this behaves as 

1; v (Ji,) j-j-& (G) ’ - ,:.=, 
(267) 

so that, indeed as one expects, in the production region 

where the fluid is being mixed, viscous dissipation remains 
n 

unimportant. As kN+OO this dissipation behaves as kN%Jo 

and is the dominant feature of the deep dissipation region. 

It is worthwhile emphasizing that the heart of these 

results is independent of the values of the physical par- 

ameters V. and k. which enter the bare lagrangian. 
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The large k behavior is governed essentially by the rapid 

convergence of the integrals encountered in perturbation 

theory. The small k behavior has any g, calculated from 

any go, approaching gl whose value is set by the details of 

the tensor structure of the a WVZ~ vertex and the dimensions 

of space. 

I want to close this section of the lecture by asking 

for more detail about the small wave number limit. For ease, 

I will assume that g is precisely equal to gl and derive 

consequences for the velocity-velocity correlation function 

i5 
(2'o)(k2,w). Since g = g(0) = gl, E(T)=glforallz . 

Similarly 

I dxz) 
.G(.i.) dt 

anol 

Oy‘ 

z - ’ - -‘j,+y&l 
I- BCg,,@) - / 

Din > 

G(r:) = v e- 
(Dar/6 

c (-% 5) ; )I tb+a)Jb * 

(268) 

(a 75) 

(a 4 

The solution to the renormalization group equation becomes 

~~"rss:,,,,,,~,", = kg g;" (x,w,~l,~dq5-J h9 (272) 

with d = (D+2)/6 and p= -(D+2)/2. The dimensions of is 
(2,O) 

are 
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which allows us to write 

$~~‘(~2)w, 8, Y,o-, I$) = ” iB:)-D’=* 

x ycv,?$ q&y 1 %d 

where I$ is a dimensionless function of its arguments. 

scaling rule (272) means @ must be 

with F another dimensionless function. 

The energy spectrum function E(k) is related to 

& (2,w(k2, ) by (191) which means 

E(h) & p dw cgPJO~ ( Eha, w) 
or s 

E (&J oc P-’ (PYdi8 ) 

D-3-f’ 
M I? w,tl, 

e= - 
(4-D)/3 

At D=3 in the case of stationary, isotropic turbulence 

we expect E(k)& k-f, 
e 

z -l/3, for small k. For very 

large k the dissipative term VOvaWj dominates over the 

(234 > 

The 

h??) 

(2?8) 

inertial transfer, so the linearized Navier-Stokes equation 

applies. In that very large k regime 

Pa741 

For the inertial range kg<< k CC '1-1, we must employ more 
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of the renormalization group. 

To interpolate between the known k-70 and k-+b3 limits 

for E(k), we will use the method outlined before for con- 

structing general representations for the factors 2 V' 2 1 

etc. which incorporate the effects of the interaction. We 

follow in our approach the work of Abarbanel, Bartels, 

Bronzan, and Sidhu (1975) and Frazer, Hoffman, Fulco and 

Sugar (1976) as adapted to homogeneous, isotropic, stationary 

turbulence by Abarbanel (1978b). 

The idea is to establish differential equations for the 

dimensionless renormalization factors Z, 
+ 

and 4 which 

respectively rescale the viscosity VG to a renormalized 

viscosity 
v- zp L'o kmd 

the dimensionless expansion parameter g, to 

and the velocity correlation function. Each of these 

functions depends on the dimensionless variables 

and 

a0 = ($o~vy4) (g;)D-4’4b 

x0 = vc $ /Lo,, la831 

la841 

which enter the evaluation of G (nJm)(zi, wi, go> Yo, ko) 

at an arbitrary point '6 
N, WR in wave number,frequency space 
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The differential equations we seek will express Z 9, 3 , and 

4 in terms of g, x=JqR2/iWN, and 6. In these differential 

equations, which taken together contain the same information 

as the renormalization group equation (242), will enter 

renormalization group functions like A and B above. Approxi- 

mations to these functions by a perturbation series in g 

yield non-perturbative expressions for Z$, 2 , ( in g or 

go. Our goal will be to give these expressions for Z,,, 
% ' 

and c as functions of ci, Wi, $,, V,,, and k G in appropriate 

dimensionless combinations. Then GJl(l") and Gj1(2.0) will 

be determined. We will carry through the analysis for 

generalrM with the only approximation being the determination 
2 of the renormalization group functions in lowest order of g . 

This is called the one loop approximation as only the one 

loop diagrams like Figs. 10 and 11 are kept in their evalu- 

ation. The convergence of a series in g2 for these functions 

is unlikely, but techniques now exist to determine the nature 

of the series and to perform a sum of the large order terms 

under some circumstances (Lipatov (1977), Brezin, le Guillou, 

and Zinn-Justin (1977)). We will limit ourselves to the one 

loop expression. 

We want to determine the u) and k dependence of the 

scalar functions M("') and N("'). So we will choose 

their normalizations at the point k2 = qN2 and 1u = iw N in 

order to study both the qN and WR variations. First we ex- 

amine the scale factor Z,,which relates 
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~““‘(Q, %, %,.pp,) = t;k&%4a,ld, 2, v,oy BIJa,qJ . la 85) 

We will choose 
& gd‘-' / = -i bsd 

I?= j: 
w= Lw,, 

which makesl%lR(l'l) "close to" ,@(l'l) for q. = 0 when it is 

-iw+ JOk2. This allows us to determine Zl(g,b,x) by 

i 2 ~i”‘~(&:u,ab,Y~,8~~l~a-p/j = if, ($,6/X), ii? 8?3 

9N 

and j-+1) 

w-lwn, 

1s evaluated in a perturbation series in go or by 

any other method 

With ZI in hand we can find Zy the resealing parameter 

for the viscosity from 

/&y&J ~a=~= = %’ LJ *% 8,: 3,) 
N 

which means 

z, rpj x) = I - &; 2 cwah, P=$, ti,YO) j%‘). kJs9) 

In these formulae 

J= 3 $0 = Z$ p , q/a 

x= i?, XI, = v$ /d+ , 

(as01 

CasJ 

and 

(JQa ) 
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z2 will be determined from the nor lization condition on 

f which we choose to be identical to our previous one. 
n,lJ 

If we desired the ki dependence of r, lj we would have to 

normalize at zi f 0. Since Ti = 0,we know that to lowest 

order in yo2, Z1p= 1. 

Our goal will be to determine the function [ given as 

~~a’o~&&v,,~o~ = rh bT-) p (CJ, 0; xl * (293) 
-lON”+V;f; 

w= iw, 
A==$ 

< (g,d,x) carries all the information on how /p1(2'o)(k2,& 

departs from its lowest order value -i.e., linearized Navier 

Now we wish to derive the differential equations for 

ZVl ?$ , and 4 . (We'll use Z,' = 1 or 2 = ZVm3i2 only after 

the general discussion.) We need the renormalization group 

functions 

n, = 

A, = 

and 

A, = 

LJJlv aa ) 
~0 tio,vo, 139, jixd 

Bz $2 ’ ~o,vo,~ * P -ld 1x-c 

ka &a 1, D D,% *‘d 
/xe 

(294) 

(ass) 

(296) 

To study Z,, we also require 
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(B,,Bs, B,)= iw~i& $;:& “o=ia) % 2, 
3” 0 

ia 9?) 

with the same variables held fixed. 

These functions A and B are to be determined as follows: 

in perturbation theory (or whatever method one prefers) find 

f(f,, vo, kg, UN, qN) and V(d,, vo, kO,wN, qN) using the 

given normalization conditions. After performing the der- 

ivatives indicated, replace 90 and II0 by y and v consistent 

with the order of approximation used. This yields Ao((g,b,x) 

and B4(g,6,x) W=w,s,O). 

We turn to the chain rule to express general conditions 

On going Over from 9 O,)/O,kO to g,d-,x. This yields 

A, = w,, (ass> 
‘9 aG4J %,vo,Bo -r&J 

= A, % !h$fpp) + @/I) x&$~ (jF-+~ I (294) 

Agt $?gi (300) 

3 

and +Q = A* g $($ + B, x & i0fJ-j - o- puJ$ I30r) 

Solving these equations for a>og we find 

"8 
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a $y$qd = [ iiI$,G7x) + 42 (I- fh @v~)~ /)jl&x) J C30d) 
“3 3 

where a$,qx‘, = Cl-B,) tA,tA3\ t (ltI?,tl3~) A, a 

This differential equation is to be solved with the boundary 

condition (O,b,x) = 1. 
a 

This is the explicit expression 

that when the transfer of energy from mode to mode goes to 

zero( that is,the non-linearity is absent) the linear 

theory, which is the "coefficient" of 5 applies. The 

normalization to 1 at g=O is due to our conditions (286) 

(287), and (241). We have then 

% 
C&r, x)= Pap \ 

’ du - (304) 
0 filu,a,x) [ 

2!!) + 42 (I- B,(u,4;x)) # 
aL 1 

In a similar fashion we deduce 

with 
$j = hw)(BetBg) t llt Bo+Bgb, = E&c “$ +Dw co 6) 

We can derive, but will not need, a similar equation for Zl. 

The equation for <(g,6,x) follows in the same manner. 

By calculating a("') . in perturbation theory in 2 o, we 

can find the functions 

kc@ co1 = cwN& Y ) $ $2, ““$$+j’< ($+o,~o,W~,~,~~ (30 ) b 
Again noting that <(g,6,x) = 1 when g=O, we write 
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) (3 0 s) 

0 

with 

c" = (I-B,)(C,t Ce) + (It B,+ Rs) Cu, (309) 

Our strategy will then be to solve for g = 
% (goT,xko 

and x = Z,,(g,d,x)xO as functions of go and x0 using our 

knowledge of the A and B. Then we will express <(g,o-,x) 

as Jfz (g(g~,x~,o-), x(g()'x()'")' o- ). Since qN2 andw were N 
arbitrary, we'll have determined the w and k2 dependence 

of a(2Jo) by noting 

PO’j&:w, &VO)lJ = cl in;lA:l [ C$ (~o,r,,b),x~*~~~,~),6\) 
uPsv~= ,k4 (3 ib) 

where 

and 
5 = Aa& . C313) 

At this stage all reference to WE and qN will have 

disappeared. (A more elegant presentation would have 

avoided their introduction.) Their role was really an 

auxiliary one, to emphasize the manner in which we probed 

the dependence of correlation functions on the scale of 

wave number or frequency. 
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To proceed we need the expressions for a(l'l) and 

xl 
(2,O) In perturbation theory to lowest non-trivial order 

of PO". 3 CIT1) has been given before, but we repeat it 

here 

1314) 

r = - i$,= 
4ZD 

d”s G CG!!) $tAij(R)t; [k%a - $$$#2] 
axa” 

(315) 

c-iw t vo (8% q-pl,” 1 ) 

For <(k2,w,f O,vO,kO) we must evaluate the graphs in Fig. 12. 

This gives 

f (A~, %, v~, n,) = j -+ 2 (A:$,: -+ :I:;) 
-iru+L$ a 

4 Ta Ilh:w)h (4k%z) 
* * 

with 

P n,;rh-- 8 j rm ($2;1 Gl i@%J y 

i- 

(D-d ha + + 
3-l 

I 1 -+-I- I 

-iw+v~$-~)a+~a) h+u,(tx-~)“-~=~ i i (j$)” ’ iwrv, (*“(@y) -h+v*(*=-@)a 

+ I I (3 16) 

l - & +uo @-g:s” ill) w. Cg”- qm”J 
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From these expressions we can find the A, B, and C 

functions we require. To the order in G2 we have calculated 

we may write 

A~~,x,d= 4 8 - (4-D‘) t diX,d$ 

&$,x,5)= - bh,r' is 

B&j,d = b,kt,LT) $ 
and 

c”(g,x,64 = cir,L+J2 
Integrating the equation for (g,x,b) yields 

where 

j;b) = @-d/q alx,5) 

which is the zero of %(g,x,r) with a )o . In the 

same fashion we learn a3 

z y 'j, x,5) = (I- q,q- b'? 
and 

(317) 

(31d 

C-3191 

13 20-l 

(34 

Isad 

(323) 

c 3241 

With our normalization condition on the fusion vertex we 

found Zf = 1 to the present order of accuracy. This means 

3 = Z,,-3'2 and 

a= 32 t@b, i3a5) 
4 
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If we use the equations like (299)-(301) to study the 

formulae for xz&!!?u$a or 0-2~93 , we see that each is a 

ratio of polynomials in g 2 with r(g,~,x) as denominators. 

From (321), however, we find, for example, 

x,a,~y,,,x)= - ‘$U x~x(bwhd) tog (I-&+ + 
I 

+ 
c 

The pole at g2=g12 here just reflects the zero of x(g,c,x), 

but in the general formula for ,x&J 
3% ' 47% 

there is no logar- 

ithmic factor. We conclude that b,/a must be independent of 

x. Similarly, we would infer that b,/a is independent of 

o-. The same arguments tell us that b/a and c/a are 

constants. 

These rules are, in fact, only approximately obeyed at 

our order (O(g2)) in determining K, 5 and c^. We may use 

this observation, however, to extract values for the ratios 

by conveniently choosing x and r. By taking UN-30 

with 2 
%i and k. 2 fixed; that is, x+&and then k o-'o, 

we find that bU/a = 0, so 

a.= 3b/a (327) 

and the g, go relation is 

$= $“jD” = 9,” (t- “@-’ , 

or I- p/p = (I+ gal/,:)-’ , 

(3281 

It is clear from this that 2 g is bounded between 0 and 
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2 
g1 as go, the unrenormalized dimensionless expansion 

parameter, ranges in 0 S go 2L 00 . In the same limit 

on W N and k. we find by numerical integration 

5 
z L/496 2 817 

The implicit equation for x(go2, xo,b) reads 

c 
‘13 

x= x, I+ 4Roa 0 d o-=2 c(x,a’, 
4-D c 

(336) 

(331) 

where we recall the Reynolds number based on the external 

scale kO 

CT = $o,a (4:) D2 (332) 
0 

From x(Ro2 , %boi"/ , ha/.. ) we have 

which is the answer we are seeking. The difficult step here 

is the numerical evaluation of X CR:, vokah, &k,,=) 

from the implicit formula (331). That work is presently in 

progress. 

We can, with no numerical work, verify that our con- 

struction does have the desired k +cQ and k JO limits. 

As k2 becomes very large, < -=Y 1 or x-7 Jok2/,. A conser- 

vative estimate of "1arge"arises when we suppose a(x,a) is 

order unity (which is actually very conservative). Then 

when 
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R, \13h 
a /-rcq J <-:J- 1 1334) 

we surely have large k . This means k >>R04k02 which is 

enormous, when R 0 is sizeable. The decrease of a(x,k2/k02) 

for large k will give a less outlandish estimate for 

"large" k. 

When k2-P 0, a(x,k2/k02) is finite and from the 

implicit equation for x we see that x is a function of 

only the combination (,G -' (ia) 
I t&J-4)/6 

in this limit. Since 

for small k2, G(2'o)(k2,&) is essentially 

(uatv;h4)-’ [ (a CX,O)~ xl , 

we have for E(k) 

r\. p-3-e I 4wd y = -(4-D)/3) 

as before. With the proper k2+o0 and k2+ 0 limits, 

we can expect a sensible approximation to the intermediate 

range of k. For this the implicit equation for 

XIR~,~o&w~ k%$,‘) must be analyzed numer- 

ically. 
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APPENDIX A 

Scattering From a Rough Surface 

In this appendix we will cast the problem of scattering 

of scalar waves from a rough surface into a form similar to 

that of scalar wave propagation in a random medium. Our 

particular example will be that of an acoustic source 

located near a random surface, and we will consider the 

case where the wave amplitude is required to vanish on the 

surface. The physical situation for which this is important 

is that of an acoustic source near the ocean-atmosphere 

interface. Because the density of sea water and the speed 

of sound in sea water are both much greater than their values 

in the air, the ocean surface is essentially perfectly 

reflecting for acoustic waves. 

We will consider, then, a sound source located above 

a surface Z =<(x,y,t) in a medium with constant sound 

speed. The medium will be taken to extend to Z+ +m. 

We are interested in the signal (sound pressure) p(Z,&t) 

received at Z,~=(x,y) at time t from a source at Zo, 

-x0; Zo~,'/S(~J). If the source has time dependence s(t), 

the save equation for p reads 

c ~a-L aa 
caza > +( ' 

t z,t)= s~t~~k-2!,~ ~a~~-,o~ , b> 

and we wish to find the solution such that p vanishes on 

the surface 
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@ gCx,t), x,0 ‘0, 
@a) 

and at Z 2 + ."-,m . 

We will treat only the problem where s(t) is mono- 

chromatic, s(t) = e -iwt , and assume that the motions in 

e, (x_,t) are slow compared to emirut. This leads us to the 

Helmholtz equation (k=U/c) 

with the boundary conditions 

w c Cw), 2) = 0 
and 

(r,x)+o ) tatp+m * 

The complication in this problem lies in the boundary 

condition (A4) on the random surface Z= p(z). We propose 

to make a change of variables which will allow us to always 

satisfy the boundary conditions at the expense of complicating 

the wave equation (A3). 

We go over to the coordinates 

and 

c = z- < Cr_) (14 6) 

,f=" (47.) 

This maps the random surface to the planeE=O. In these 

coordinates the boundary conditions on the pressure field 

P(g 
>,e 

) = p(Z,x_) become 



and 

P(O) *‘i= 0 
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( As) 

P &,$+o pi @ --5 cdJ 

The wave equation is transformed using the chain rule 

and 
3 pcG!,f?) = G,PIgltl - @A 32 (E,p). j=l,a (A/I) 
axj .I afj a!Z 

This transforms (A3) into 

t vjwy - F k$] I’&,@ = 

s ( E¶ - 6% c ($9 54 -$ ) @I Id 

with 

the gradient operator in the$ plane, and the fluctuation -- 

operator 

F&,$ = - @J)a j$ + Q”< g.. 

t a (a,p). ?L a 8 
J y&i 2% 

(A 14) 

To solve the wave equation (A12) subject to the 

boundary conditions, we seek a Green function Go(g 

satisfying 
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(vf+ a$ +P) Go ($; g',$l) = % (E-. 5') "a+-~f) Geld 

and vanishing on the surface g =0 and @7+aa-3a . This 

Go comes from putting an image source at (-5',$", to match 

the source at (g>q') in (A15). We find 
, 

GJg+;~:& p3 ;;z;z;',i, [pJQ3(C eLQ3(E+s)l Gqlb) 

3 

' ( 

;iR+ ,!&R.. 
= -- e 

4z Rt - 
e 
-z-- 1 

1 iii 17) 

with 
Ra, = ( Cs T El)“+ ‘p@) CAJd 

Since Go vanishes on the surface enclosing the source at 

g- q,- P(@, and e and the receiver at E = 

t- gcg, and 4 ' Green's theorem tells us that 

‘? @.,e; = Go C&e; to- ti’(ph $ 

The formal solution to this is 

P= Go5 + G,FP 
or 

P= (G;‘- F )-' s, 

with Go -' the operator (aa/~~~+C$a+B'L) , F as above, and 

s = SC%-C%- 

The task then is to invert the operator Go -l - F 

with the definition (A16) or (A17) of Go. If we call 
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G-1 = GO-l _ F, then 

j&d =. GNW,xj zf,- <(x0\+,‘, &ax) 

is the answer to the problem posed. If we expand, as usual, 

in the fluctuation operator F and use the Green function Go, 

then every term in the series or any approximation to the 

series will satisfy the boundary conditions. 

Consider the term with F=O which will be a good 

approximation when the gradients of < are small. Then 

~(~1 = G, Ct-<ml ii; to- {(x,,\, E,) 
/pew- rol 

I 

e~Q,(~-zo~ -~Q,(<(Xb&.>) 
: d3Q e e 

s g-9” Q;tiE, 

LQ~k+tcJ -lPs (<Ix)+ &J) 
-e c I 

If I: is a gaussian random surface with zero mean and 

correlation function 

then the average pressure received at x, 2, is 

<Go (z- < Id, z; q,- ( (xb\j xo) > = 
I d3Q e 9 &X0) 

t&ii3 ka.. Qa- @+&’ 
e 
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1Q3(t-~) - Q,” (l--(o) - r (r-!J) iQ3(zttD) - 03” (Pfd-(‘-‘(u-b)) 
e -e 

1 

jAd 

Introducing the parameter 'x via 

1 

ca 
(p.f$Q;+k)-' = -i dx e,q~ i'h ha-@-Q: 4 id 

0 
CA a?) 

we can perform the required gaussian integrals to arrive 

at 

<G,(z-<CL), r; to- ~~x_,~,~,~~ = 

63 

1 
~~,pti(Y-xJa/4~ 

d2 e - t&J o x4 

- (t-toJa/q 2- 
e 

- ( z+tLJa/4 Y+ 
Jr 

? 

in28) 
-e 1 

J-r 

with $* = i-(O) L r(&) + i 2 1 h 29) 

For k large, this integral is dominated by 1 h 

so we may neglect 1 in ‘$t to write 

<Gob<(E),Z; -C&o~,%~> = 
- !z+~,J2/4~+ 

- e 
I 

iA 
-7T- 

with j; = ~~O)~t(~-~,) ; Ra = (s-x,)"+ 

Now to study more then the leading term in F, we must 
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turn to our machinery developed for studying operators like 

GO 
-1 - F when F fluctuates. This is just the problem of a 

scalar wave in a random medium characterized by F. The 

only new twists here over and above the scalar wave pro- 

pagation considered before arethe facts that (1) the Go 

reflects the boundary condition at %=O and (2) the source 

and receiver also fluctuation. This last feature is more 

or less harmless since going over to wave number space 

puts the source and receiver factors into the exponential 

at the outset, so averages over the fluctuations of c(x) 

can be done as in going from (A24) to (A26). 



-104- FERMILAB-Conf-78/74-THY 

APPENDIX B 

Using the Fluctuation-Dissipation Theorem 

in Turbulence 

In the paper by Forster, Nelson and Stephen (1977) 

an application is made of the "fluctuation-dissipation" 

theorem (see Orzag (1974), Sec. 5.3 and Ma (1976), Sec. 

X1.2) to the theory of turbulent flow. Here I want to review 

and comment on their results. 

The discussion follows Ma (1976). We begin with a 

conservative system of variables Qj(t) which develop in 

time according to some law 

a Qj(t;) = QJj ( Qj "~) 
at 

given by hamilton's equations. Q.(t) includes the co- 
J 

ordinates and their conjugate momenta, so the hamiltonian 

will be written H(Qj). Dissipation is a result of placing 

the original system into contact with a thermal reservoir 

or of averaging over some subset of variables of the whole 

system and considering the dynamics of the remaining 

variables with a parametrization of the averaged subset in 

terms of temperature, etc. 

If we imagine, then, that the variables Qj(t) are the 

remaining variables after an average over some others, then 

we may write a Langevin equation for the motion of the Q; 

2 Qj = WJ (Qi) - 7 '$, -k 4; It' 

at s 

“ma) 
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where r. is a damping coefficient which drives the system 
J 

of Qj's to an equilibrium state and cj(t) describes the 

spontaneous thermal fluctuations associated with this 

dissipative process. It is essential to keep in mind 

that the dissipation coefficients f. and the random 
J 

forcing come from the same source: the averaged coordinates 

representing "the rest of the system"-the part whose 

dynamics we do not explore. This formulation allows a 

possible microscopic discussion of the origin and pro- 

perties of the viscous term in the Navier-Stokes equation 

and will allow a connection between the damping coefficient, 

proportional to Qo, and the molecular fluctuation forces. 

In fluid dynamics the averaging is clearly that whl=h takes 

place in the definition of macroscopic fluid flow (see 

Batchelor (1970), Section 1.2). 

The properties of the fluctuating forces are taken 

to be those of a gaussian with mean zero and 

The system of Qj's now satisfies a Fokker-Planck equation 

for the probability distribution P[Qj,t]. This is 

$4 z g$e =* 
with the probability current 

d 
x= WgP - r 31-1 - Da '3p 

' ~QL 3Qa. 

@4) 
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The derivation of such Fokker-Planck Equations is dis- 

cussed by Wang and Uhlenbeck (1945). 

The Qj will relax to an equilibrium state where 

3P-, 
33 - 

and in this state 

Namely the Boltzmann distribution determines the distri- 

bution of the variables Qj in equilibrium. For (B.7) to 

436) 

occur it is necessary that 

This is the "fluctuation-dissipation" connection. It 

relates the dissipation rate rj to the scale of fluctuations. 

It is also called the Einstein relation since a similar 

connection was made by him in the theory of Brownian motion. 

An early derivation is given by Kirkwood (1945). 

To make contact with the Navier-Stokes equation we 

need to add spatial dependence to (B.2), so we write 

2 Qj&,d= wj IQ&t) - 7 ($‘) ;w’ -c $ ($ ,+) 
at J 1 

where the fluctuation force satisfies 

< !$ (ii)) ) - 0 

and Dj(Q = ‘; m kJ 

039) 

is4 

(Bill 
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to insure that the Boltzmann law holds in equilibrium. 

If we interpret Qj(?,t) as the microscopic velocity 

vj($,t), we can ask when (B.9) gives us the Navier-Stokes 

equations. The viscous term in the Navier-Stokes equation 

v~vaVj (2, t) I will come from the y(z) alJ/&lvj[$,$," . 

For H it is natural to choose 

l-l = dDA 1 + p i$O?,t)?+- 
s 

--j ) a 12) 

and this is implicitly done by Forster, Nelson, and Stephen. 

Then we have 

and 

v, ha = p rot9 

D (~$1 = VA kB -I- 
f 

(B/4) 

for the correlation function of the random molecular forces 

associated with the dissipation process. 

With an appropriate choice of other terms in H and 

in the w, we can construct 
3 

a?@,,t, t $1 vz"J = Ilo Pu. c & (@j -# yj k J 03 15) 
at 

which is familiar. It is very important to note at this 

point that the fluctuation-dissipation connection (B.14) 

or (B.ll) is only able to relate aspects of the thermal 

motion which lies at the origin of the dissipation process. 

That, of course, is physically sensible since the molecular 

fluctuations and viscous dissipation in the fluid are parts 

of the same process. 



-108- FERMILAB-Conf-78/74-THY 

What has all this to do with turbulent flow? If one 

attributes turbulence to the thermal fluctuations of the 

molecular motion of a fluid emersed in a heat bath, then 

I suppose (B.15) with the fluctuation-dissipation connection 

given in (B.14) is the equation one wishes to study. It 

seems to me very unlikely that turbulence is due solely to 

the thermal fluctuations of molecules. Just some thought 

about grid turbulence, or turbulent motion in the atmosphere, 

or internal waves in the ocean ought to make that clear. 

In the Langevin type of equation (B.2) or (B.9) we are trying 

to describe a system in which the slowing down of motion 

(think of Brownian motion) is due to precisely the same 

physical process which is stimulating the motion-in 

Brownian motion, the molecular fluctuations stimulate the 

motion of the "slow" or "big" system and collisions transfer 

the motion back to the molecules. Turbulent flow is quite 

different. The turbulent motion is stimulated by some 

agent "external" to the flow: a grid, a rough surface, 

wind interacting with the ocean surface, etc. The damping 

by viscosity is quite independent of the stimulating force. 

So no relation such as (B.8) or (B.14) should hold between 

90 and the correlation function of the external force 

fj(x,t) which mixes the fluid and stimulates the motion 

of the many instabilities of the fluid which gives a fluid 

motion we call turbulence. 

Nonetheless, there is a kind of balance equation for 

stationary turbulence which was given by Novikov (1964) 
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and expresses the idea that the net dissipated energy/unit 

volume, 8 , is related to the net input through the external 

forces. In the notation used in the text above, Novikov 

shows 

E= g a< PJ ~,WJt~~ 
4 1 bL)" 

for a gaussian random force. This only restricts rM to be 

such that the integral in (B.16) exists, but certainly does 

not require it to vanish at k2 -3 0 as a glance at (B.14) 

might imply. 

So when we force the fluid in a manner physically 

independent of the dissipation mechanism in the fluid, we 

conclude there is no requirement that r,(0) = 0. Indeed, 

it seems somewhat unnatural. Combining these observations 

with those in the text about rR(O) f 0, we can feel confident 

in that conclusion. 


