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1. INTRODUCTION 

The Implications of Two New Fermilab Experiments 

Once upon a time physicists believed that nucleons and pions were 

elementary like electrons and photons, and that Yukawa’s theory of 

nuclear forces was the analog of QED for strong interactions. Then the 

A (3-3 resonance) was discovered, and then the p and other pion res- 

onances, and it became apparent that neither the pion northe nucleon was 

elementary and that both had a composite structure. Today pions and 

nucleons seem to be very similar objects, instead of being very different 

like the electron and photon, and made of the same basic building blocks: 

spin I/ 2 quarks bound by colored gluons. But perhaps history will repeat 

itself. Maybe 25 years from now a lecture at the Banff summer school 

will begin with the statement “Once upon a time physicists believed that 

quarks and gluons were elementary, and that Quantrum Chromodynamics 

(QCD) was the analog of QED for strong interactions. Then 79377” . . . . . . . . . 

But we shall not enter into such speculations, and examine the 

situation as it appears today. We have the new QXD model for every- 

thing, where X=A, B, C, D, E, F, G, etc. So far there are only models 

for X = C, E, F and G, but no doubt the others will eventually be discov- 

ered as well. However, it is amusing that in the great excitement about 

non-Abelian gauge theory, the original non-Abelian gauge model for 

hadron dynamics has faded away. This was the gauge theory of strong 
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interactions mediated by the octet of vector mesons p, W, and K 
::: 

coupled to conserved vector currects. The SU(3) group originally 

introduced by Gell-Mann and Ne’eman is now called flavor and dismissed 

as an irrelevant complication in the QCD description of strong interactions. 

Flavor is now discussed in QFD (Quantum Flavordymanics) the new fancy 

name for the kind of unified theory of weak and electromagnetic interactions 

discussed by Henry Primakoff in his lectures here. In this approach the 

mass differences between quarks of different flavors are assumed to come 

somehow from the weak and electromagnetic interactions and not from the 

strong interactions. The set of quarks with different flavors and masses 

is then given as input for the QCD description of strong interactions, and 

QCD does not attempt to explain flavor or mass differences. But the 

question of how many flavors there really are, and when and whether 

experimentalists will stop findingnew and heavier bound states of new 

heavy quarks is still open. There is no theoretical clue to the answer 

yet. 

I begin a review of the present status of the quark model by quoting 

some of the most recent results. These are motivated by two recent 

experiments at Fermilab. I take a “Galilean approach” which assumes 

that we learn about nature by making experimental observations like 

Galileo and trying to understand them, rather than by reading the words 

that great theorists like Aristotle have written. The quark model has 

grown out of such experimental observations, against the opposition of 
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the Aristotelian establishment who have always found weighty theoretical 

reasons why quarks could not exist and why the regularities predicted 

from the quark model and found in experiment could not be significant. 

The quark model is very ad hoc. It lacks a fundamental theoretical 

basis, yet it provides a very good description of much experimental data. 

Today theorists believe that the fundamental basis will eventually come 

from &CD, and there are may indications that this is indeed true. But 

there are many slips between cup and lip, and a measure of scepticism 

is always in place. We shall make free use of the approach and methods 

of QCD to guide our intuition in discussing the quark model, but we do 

not attempt any rigorous derivation, and are always looking at experi- 

mental data to see what nature is trying to tell us. 

This discussion of quarks uses what might be called a “Newtonian 

approach. ” Newton was able to describe the motion of the earth around 

the sun with great precision without ever having heard of asymptotic 

freedom, while in fact, the gravitational field of the earth is indeed 

asymptotically free. At large distances the earth has a field given by 

Coulomb’s law with a coupling constant proportional to the mass of the 

earth. But at short distances, less than the radius of the earth, the 

effective or “running” coupling constant decreases and goes to zero at 

the center of the earth. But this asymptotic freedom was irrelevant to 

Newton, who described the earth as a point mass with a pure Coulomb- 

like gravitational field. This is a drastic and unwarranted assumption 
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for short distance phenomena. It ignores for example that fact that we 

exist on the earth. But it is certainly adequate for precise calculations 

of the earth’s orbit. 

In the same spirit we assume that the nucleon is made of three 

constituent quarks, which are treated as very simple objects. We know 

that they must in reality be much more complicated things including 

virtual gluons, quark-antiquark pairs, etc. But there seems to be a wide 

variety of phenomena successfully described by these simple constitutent 

quarks. Somewhere in the fundamental theory there must be an explana- 

tion, , just as there is an explanation justifying Newton’s treatment of the 

earth as a simple point mass. But so far we do not have a good funda- 

mental theory and do not have a satisfactory explanation. All we know is 

that the model works. 

One interesting experimental result from Fermilab is the discovery’ 

of the new fifth heavy quark in the bound states now called the $I and 

v, with the surprising equality of the +-I#’ mass splitting to the mass 

splitting in the charmonium system, namely the + - +I splitting. Nature 

seems to be telling us that hadron mass splittings are simpler than 

expected: they do not depend very strongly on the flavor or mass of the 

quarks of which they are composed. This principle was incorporated 

formally in the logarithmic potential model of Quigg and Rosner’ which 

has this mass scaling property. We can use the general philosophy of 

this model, without taking it too seriously in detail, and assume that 
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flavor dependence of many mass splitting effects can be neglected. This 

might be called “Rolling off the Log. ” 

A second interesting result from Fermilab is a new measurement3 

of the magnetic moment of the A to a precision of 1% by a Rutgers- 

Michigan-Wisconsin group. The number agrees with quark model pre- 

dictions4’5 ofthis moment to 1%. This agreement is completely unexpected, 

since the quark model is not expected to be that good. Let us review the 

simple-minded calculations of baryon magnetic moments in the quark 

model6 to show what physics lies behind this surprising agreement. 

The baryon octet is assumed to consist of three-quark states in a 

relative s-wave, with the total spin and magnetic moment given by simple 

vector addition of the quark spins and magnetic moments. The magnetic 

moment of a quark of flavor f is assumed to be the Dirac moment7 which 

is 

k f = q (M im 1 
fP f 

nuclear magnetons , (1.1) 

where q 
f 

and m 
f 

are the charge and mass of the quark of flavor f and 

Mp is the proton mass. 

The magnetic moment of the baryon is then obtained by summing 

these quark moments in the SU(6) wave function which is totally symmetic 

in spin and flavor. For the A, the symmetry requirement means that 

the two nonstrange quarks which are coupled to isospin zero also have 

spin zero and do not contribute to the magnetic moment. The A magnetic 
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moment is therefore given by the moment of the strange quark, 

pA = ps = - (1/3)(Mp/ms) . (1.2) 

The remaining baryons can be described as consisting of two quarks of 

flavor a and one of flavor b, where a and b can be u, d or s. The two 

quarks of flavor a are symmetric in flavor and coupled to spin 1, and 

these are then coupled with the spin of the third quark to give total spin 

112. The general result for the magnetic moment of such a baryon is 

Saab) = (4/3)lra - (l/3)+, , (1.3a) 

where the coefficients come from the expectation values of S z for the 

a and b quarks in this wave function. For the proton, where a = u, b = d, 

q,=+2/3 and qb=-113, 

pP 
= (8/9)Wp/mu)+ (l/9)(Mp/md) = Wpimu), (1.3b) 

where we neglect the difference between m and m 
U d’ Similarly for the 

neutron, where a=d and b =u, 

‘n = - (4/9)(Mp/md) - (2/9)(Mp/mu) = - (2/3)(Mp/mu). (1.3c) 

Combining Eqs. (3b) and (3~) gives the well known successful prediction 

for the neutron magnetic moment, 

‘n = (- 213)~~ = - 1.86 nuclear magnetons , (1.4) 

in excellent agreement with the experimental value of -1.91. 
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The A magnetic moment cannot be related directly to the nucleon 

magnetic moments without some assumption regarding the difference 

between m and m 
S U’ 

Let us make the very drastic assumption that this 

quark mass difference is exactly equal to the hadron mass difference, 

ms - m =M 
U 

*-M. 
P 

(1.5) 

This ia a new ingredient leading to a very interesting prediction. A priori 

there is no reason to choose the A-N mass difference for the right hand 

side of (1.5) rather than Z-N or Z”-& The decuplet mass splitting has 

commonly been used because the equal mass spacing has been interpreted 

as indicating that decuplet mass splittings are simpler octet splittings. 

However, arguments based on QCD show that the decuplet splitting in- 

volves a complicated interplay of both the quark mass differences (1.5) 

and the spin splittings while use of the A-N mass difference eliminates 

effects of spin splittings. 
8 

Comgining Eqs. (2), (3b) and (5) gives the prediction 

(l/~p)+(MA-Mp)/M 1 P 
-1=-0.61n.m. (1.6) 

Another prediction is obtainable by assuming that the ratio of quark 

magnetic moments ~~~~~ is obtainable from hadron spin splittings like 

the ratio (M, - MN)/MC::: - Mz). This ratio which is unity in the SU(3) 

limit is directly related to the ratio of quark magnetic moments under 
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the assumption that the spin splittings come from a “color magnetic” 

interaction 
4 proportional to the color magnetic moments of the quarks 

which are in turn proportional to electromagnetic moments. The result 

obtained is 

P*= - (~~,!3)(M~:,~-M~5?)/(Ma+-M) =-0.61 n.m. (1.7) 

Both predictions (1.6) and (1.7) are in remarkable agreement with the new 

experimental value pA = - 0.6138 *0.0047 n. m. That they are also in 

remarkable agreement with one another suggests a new relation between 

hadron masses and the proton magnetic moment. Eliminating p 
A 

between (1.6) and (1.7) gives 

-Mp)/(Q:+-Mx+) -l=pp(MA-nilN)/MN. 1 (1.8) 

This peculiar relation is in excellent agreement with experiment. 

The left hand side is 0.523, the right hand side is 0.528. This unor- 

thodox combination of hadron mass differences and the proton moment 

has a simple physical interpretation. The SU(3)-breaking quark mass -~~ 

parameter (ms -mU)/mu is computed in two ways. The LHS uses the 

quark mass ratio (ms/mu) obtained from hadron spin splittings. The 

~RHS uses the quark mass diffe’rence (ms - mu) obtained from hadron 

strangeness splittings, but needs the proton moment to provide a quark 
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mass scale relating the mass difference to a mass ratio. Thus Eq. (1.8) 

says that the quark mass ratio and the quark mass difference determined 

in two different ways from hadron masses are consistent at the 1% level 

with the quark mass mu determined from the proton mass and magnetic 

moment. 

The success of these relations suggests a review of the underlying 

physics and its implications for hadron models. The prediction (1.7) is 

equivalent to a similar prediction obtained by DGG using explicit expres- 

sions involving quark mass ratios. Our derivation shows that explicit 

reference to quark masses is unnecessary and that all that is needed is 

proportionality between electromagnetic and color magnetic moments. 

The prediction (1.6) and the relation (1.8) require the explicit assumption 

that quark magnetic moments depend upon masses like Dirac moments, 

and that the relevant quark mass difference is given by Eq. (1.5). This is 

a much more serious assumption which is generally not valid in conven- 

tional models. In the DGG model4 Eq. (1.5) does not hold because the 

hadron masses include additional terms like kinetic energies which are 

inversely proportional to quark masses and do not cancel in the difference 

(1.5). The model of Ref. [ 81 avoids these terms by the use of scaling 

properties of the Quigg-Rosner2 logarithmic potential model. In this 

model kinetic energies and mass splittings in the hadron spectrum are 

independent of the quark mass and cancel out of mass differences like 

(1.5). This can be seen explicitly by the use of the virial theorem. 



-ll- FERMILAB-Conf-78/73-THY 

Consider a three-body system with the non-relativistic Hamilton& 

where 

H= c 
C-j 

v(rij) . (1.9a) 

and 
v(rij) = V log(rij/ro) . 

(l.9b) 

(1.9c) 

The virial theorem then states that for any eigenfunction of H, 

(7 ti) =(f/2) & Qij Wrij)/drij) = (3/2)V . (1.10) 

For the particular case of the log potential (1.9~) the right hand side of the 

virial theorem is a c-number, rather than the expectation value of an 

operator in the specific wave function, and is independent of both the 

wave function and the masses of the particles. 

We now consider the flavor dependence of the spin splittings in more 

detail. These were first considered by Federman, Rubinstein and Talmi9 

in a nuclear shell model approach to baryon masses in 1966. In this model 

the low-lying baryon octet and decuplet were considered to all have the 

same “shell-model” wave functions and have their mass degeneracy split 

only by the strange quark mass difference ms -m 
U 

and by a residual two- 

body interaction. If we denote the effective matrix elements for this 
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ab 
interaction between two quarks of flavors a and b by VO 

ab 
and Vf for 

the spin singlet and triplet states respectively, the following baryon mass 

differences are easily expressed in terms of these effective matrix 

elements. 

M 
A -MN = (3/2)(V1 ud- vtd) , 

MC;;: - MA = (V1 ud- Vid) + (1/2)(v;s -g , 

Mz* -Mz= (3/2)(V;’ -$“I . 

Combining these relations gives a relation between hadron masses, 

lVIA - 
MN= (1/2)(2Mz:-+Mz - 3MA) . 

(l.lla) 

(l.lfb) 

(l.llc) 

(1.12) 

This relation was found to be in good agreement with experiment, the LHS 

is 307 MeV; the RHS is 294 MeV, thus providing support for the assumption 

that baryon mass splittings are described by two-body forces. 

The next development in the description of spin splittings was the 

assumption by DeRujula, Georgi and Glashow (DGG) 
4 

that these are due 

to a color-magnetic hyperfine interaction having the form 

V hf 
(1.13) 
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where p; denotes the color magnetic moment of quark i. The particular 

form (1.13) immediately relates the triplet and singlet effective matrix 

elements by the eigenvalues of the operator go * z. . 
1 J 

ab 
v. = 

ab 
-3v1 . (1.14) 

This interaction (1.13) does not contribute to the difference MA- -MN. 

If we assume that meson spin splittings are due to a similar interaction 

but with a different strength, we can construct linear combinations of 

meson masses to which an interaction satisfying the relation (1.14) does 

not contribute. Thus we can obtain the relation’ 

MA-MN=ms-mu=(3/4)(MK:1:-Mp)+(i/4)(MK-Mri). (1.15) 

This relation is also in surprising agreement with experiment, the LHS is 

177 MeV and the RHS is 180 MeV. Thus there seems to be experimental 

justification of the use of the hadron mass difference (1.15) as a quark 

mass difference in deriving the prediction (1.16). 

We have now obtained three independent relations between hadron 

masses and moments which are experimentally confirmed at the 1% level, 

namely relations (1.6), (1.7) and (1.15). We can ask what we have put 

in to get these results. 

1. We have identified hadron mass difference with quark mass 

differences in a very simple way, neglecting flavor dependence of binding 

effects and kinetic energies. 
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2. We have identified the quark masses in (1.15) with the masses 

appearing in the electromagnetic and color magnetic moments of the 

quarks. 

3. We have assumed a hyperfine interaction having the form (1.13). 

However, it is still a big step further to use the quark mass 

difference of Eq. (1.5) as the mass parameter in the magnetic moments and 

to obtain results valid to a few per cent. The success of the relations 

(i-6)-(1.8) at this level indicate that the”quasinuclear colored quark model” 

of Ref. [3] and the three basic assumptions above should be taken more 

seriously than indicated by their crude derivations. The underlying 

physics is that the same quark mass parameter appears in the simplest 

possible way in the electromagnetic moments, the color magnetic 

moments and the hadron mass splittings. That electromagnetic and 

color moments should depend upon the same mass parameter is not 

surprising. But the value of the magnetic moment is not expected to be 

determined to 1% by the mass parameter which enters hadron mass 

splittings and includes binding energies as well as quark masses. 

The magnetic moment of a Dirac particle bound in an external 

potential depends upon a mass parameter which is a function of the 

Lorentz character of the potential [6]. For a Lorentz scalar potential 

this mass parameter is indeed the total energy of the bound state, 

including the binding energy. But for a Lorentz vector potential the 
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magnetic moment is not affected by the binding (the magnetic moment 

of an electron strongly bound in the electrostatic field of a Van-de-Graaf 

accelerator is the same as that of a free electron). The results (1.6)and 

(1.7) suggest that the dominant b&ding potential for quarks in -hadrons is 

Lorentz scalar rather than the Lorentz four-vector of a Coulomb or a 

one-gluon-exchange potential. But such an argument is not expected to 

hold to 1%. Note that Lorentz scalar confinement is implicit in bag 

models [ Illwhich use Lorentz scalar bags as the principal confining 

mechanism and have only weak effects due to gluon exchange. 

All the above leads to a deeper questioning of what indeed is the 

meaning of the quark mass. This mass appears as a parameter in 

many quark model calculations of observable hadron properties, but 

very different values are used in different calculations, varying from 

zero to infinity. There are “current quarks” which have nearly zero 

mass, bound “constituent quarks” whose mass is of the order of hadron 

masses and free quarks, which have a very heavy mass or an infinite 

mass if quarks are permanently confined. 

An intuitive picture of quark masses motivated by QCD shows that 

an isolated quark has a strong color field at large distances and strong 

long range forces if there are no other quarks nearby to cut off the color 

lines of force and confine color. The mass of an isolated quark must 

include all the energy in the associated color field at large distances, 
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since this field must move with the quark and contribute to its inertial 

mass. In models with quark confinement, the energy in the field of an 

isolated quark is infinite and quarks have infinite mass and are unob- 

servable. 

Quarks bound in color singlet hadrons do not have the large color 

field at large distances and therefore do not have a large inertial mass. 

The mass parameter associated with the motion of these bound quarks 

inside hadrons and with their magnetic moments must be simply related 

to the energy in the color field which moves with each quark. This may 

determine the value of the quark mass successfully used in constituent 

quark models and in the relations (1.1)-(1.5) of this paper. In scattering 

processes the mass to be used for the quark should depend upon how 

much of the associated color field recoils with the quark. At very high 

momentum transfers the quark may have received a kick which moves it 

so fast that its color field does not move with it. This would account for 

the small quark masses used for current quarks or quark partons, and 

the necessity to treat the color field separately as a “gluon component” 

in the hadron wave function for deep inelastic processes. 

Within this continuum of quark mass values from zero to infinity 

used for different processes there seems to be an intermediate region 

relevant to hadron spectroscopy where each valence quark has an inertia 

roughly given by its share of the hadron mass and only valence quarks 



FERMILAB-Conf-78/73-THY 

need by considered [i2]. These “constituent quark masses” determine 

the scales of mass splittings in the hadron spectrum and of hadron 

magnetic moments. There is no rigorous derivation as yet of these 

properties of constituent quarks from QCD, but the remarkable success 

and precision of nonrelativistic’ quark model predictions in describing 

the experimental spectrum suggest that a more fundamental derivation 

must exist. 

In the remainder of these lectures we consider a quasinuclear con- 

stituent quark model in which constituent quarks are assumed to be made 

of constitutent quarks interacting with a two-body color-exchange logarithmic 

potential. In Section II we discuss the color degree of freedom in detail. 

In Section III we consider some properties of the logarithmic potential. 

In Section IV we define the quasinuclear model and discuss its validity and 

compare some of its predictions with experiment. 

To conclude this introduction we consider the validity of the non- 

relativistic approximation used in constituent quark models and show that 

it cannot be valid for the nucleon. We consider this approximation in the 

spirit of similar approximations used elsewhere in physics. It is an 

expansion in powers of a “small” parameter, v/c, which however is 

manifestly not small. We cannot justify this expansion, but since it gives 

results that agree remarkably well with experiment, we continue to use 

it with the hope that some new idea like “relativistic freedom” or “asymp- 

totic nonrelativity” will eventually come along to explain it. 
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To see that v/c is not small, we note that the velocity of a particle 

in an orbit is the product of the radius r and the angular frequency w . 

Thus 

v/c = wr/c = r/h . (1.16) 

where A is the wave length of a wave with velocity c and angular frequency 

o; i.e. the wave length of a photon with energy hw ~ 

The same result can be obtained more rigorously by use of the 

Heisenberg equation of motion for the quark co-ordinate x whose time 

derivative is the velocity v. 

2 
V 
7 =<x2>/c2 = - ([H.~]~>/h~c~ = ~(Ei-Eo)2<o~x/i><i~x~o>/hZc2, (1.17a) 

i 

where Ei and E 
0 

are the energies of the states i and o. Since the 

operator x changes parity, the minimum value of Ei - E is the excitation 
0 

energy AE- of the lowest lying negative parity state of the three- quark 

system. We thus obtain the inequality 

v2/c2 2 (AE-)’ <x2> /fi2c2 . (1.17b) 

The relation between the rigorous result (1.17) and the handwaving intuitive 

result (1.16) is now clear. The angular frequency w to be used in the 

relation (1.16) is some average excitation energy for orbital excitation, 

and X is just the wave length of a photon emitted in the transition from 
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these excited states to the ground state. Thus Eq. (1.16) shows that the 

condition for the nonrelativistic approximation to be valid (v/c << 1) is 

the same as that for the validity of the multipole expansion for the radiative 

transitions from orbitally excited states to the ground state. (r <i h). 

For the case of the nucleon, where the measurement of the mean 

square radius by electron scattering shows a value of the order of one 

fermi, while the excitation energy of the first odd parity resonances is 

about 600 MeV and corresponds to a wave length of about i/3 fermi, v/c 

is manifestly not small compared to unity. 

Note that for a coulomb-like potential, the excitation energies are 

proportional to g2/r, where g is the coupling constant, AE x is just g2, 

and an expansion in v/c is equivalent to an expansion in powers of the 

coupling constant, or ordinary perturbation theory. 

For charmonium, the upsilon system and heavier quarks, Eq. (1.17) 

show that the nonrelativistic approximation is probably all right. <x2> is 

presumably much smaller, of the order of the Compton wave length of 

heavy quarks having masses of 1.5 GeV, 4.5 GeV and higher, while AE 

for these systems seems to be around 300 MeV. 

Note that the results (1.16) and (1.17) are model independent, as they 

use only the experimentally measured size of the system and excitation 

energies. Thus any model which fits the size of the proton and the 

excitation spectrum of low-lying negative parity states cannot have only 

nonrelativistic velocities. 
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1. COLOR 

We now consider m detail the color degree of freedom and the 

properties of the color exchange force which seems to be present m 

bound states of constituent quarks. Much of this treatment is given in 

Refs. 13 and 14. 

2.1 The Deuteron World 

Some insight into the colored quark models is given by the 

analogy of a world in which all low-lying nuclear states are made of 

deuterons and have isospin zero, free nucleons have not yet been seen 

and experiment has not yet attained energies higher than the deuteron 

binding energy or the symmetry energy required to excite the first 

I = 1 states. In this isoscalsr world where all observed states have 

isospin zero the isovector component of the electromagnetic current 

would not be observed since it has vanishing matrix elements between 

isoscalar states. The deuteron energy level spectrum (something like 

that of a diatomic molecule) would indicate that the deuteron was a two- 

body system, but there would be no way to distinguish between the neutron 

and the proton. The deuteron would thus appear to be composed of two 

identical objects which might be called nucleons. Since the deuteron has 

electric charge +i, the nucleon would be assumed to have electric 

charge +i/ 2. Furthermore, the nucleon would be observed to have spin 

1/2 and be expected to satisfy Fermi statistics. However, the ground 
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state of the deuteron and all other observed states would be found to be 

symmetric in space and spin. Thus, the nucleon would appear to be a 

spin 1/ 2 particle with fractional electric charge and peculiar statistics. 

Some daring theorists might propose the existence of a hidden 

degree of freedom expressed by having nucleons of two different colors. 

There would be a hidden SU(2) symmetry (which might be called isospin) 

to transform between the two nucleon states of different colors. All 

the observed :low-lying states would be singlets in this new color (or 

isospin) W(2). Since the color singlet state of the two-,particle 

system is antisymmetric in the color degree of freedom, the Pauli 

,principle requires the wave function to be symmetric in space and spin, 

thus solving the statistics problem. 

The direct analog of this deuteron problem in hadron quark models 

is the quark model for the Q-. In the conventional quark model, the n- 

consists of three identical strange quarks (called X-quarks by some 

people and s-quarks by others ), with their spins of I/ 2 coupled -- 

symmetrically to spin 3/ 2. Since the electric charge of the R- is -1, 

the strange quark is required to have charge -i/3, and it is also required 

to have peculiar statistics because the system of three identical parti.cSes 

has a symmetric wave function in all known degrees of freedom. Some 

daring theorists have therefore proposed the existence of a hidden degree 

of freedom expressed by having strange quarks of three different colors, 5 



-22- FERMILAB-Conf-78/73-THY 

and a hidden SU(3) symmetry to transform between the three strange quark 

states of different colors. AU the observed lovi-lying states are singlets 

in this SU(3 )color group. Since the color-singlet state of the three- 

particle system is antisymmetric in the color degree of freedom, the 

Pauli principle requires the wave function to be symmetric in the other 

degrees of freedom, in agreement with experiment and ordinary Fermi 

statistics. It is also possible to give these colored strange quarks 

different integral electric charges, one with charge -1 and two neutrals, 

by analogywiththe nucleons in the deuteron. However. as we are concerned 

primarilzye with strong interactions, we need not choose between models 

having different electric charges for colored quarks. 

We have chosen the example of the n- for this discussion to simplify 

the treatment of the flavor degree of freedom by considering only strange 

quarks. \Vhen all flavors are considered, there are three colors for 

each flavor, and 3nf quarks altogether. There are two W(n) grou~ps, 

the flavor SU(n)f and the color SU(3), which are combined into the direct 

product SU(n)f X SU(3)color. 

2.2 The Puzzles of Quark ModelPredictions of the HadronSpectrum 

Let us now consider some puzzles posed by one of the outstanding 

“successes” of the quark model, the prediction of the hadron spectrum. 

The empirical rule that all observed hadron bound states and resonances 

have the quantum numbers found in the three-quark and quark-antiquark 
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systems is in remarkable agreement with experiment. Since no alternative 

explanation or description has been given for this striking regularity in 

the hadron spectrum, this rule may constitute evidence for taking 

quarks seriously. The quark model also predicts the energy level spectrum 

of the states constructed from the three-quark and quark-antiquark 

systems and observed experimentally as hadron resonances. These 

predictions also seem to be in reasonable agreement with experiment, 

but pose additional questions. 

% is the observed baryon spectrum fit only by the symmetric 

quark model4 which restricts the ailowed states of the three-quark 

system to those being totally symmetric under permutations in the 

known degrees of freedom rather than totally antisymmetric, as one 

expects for fermions? This can be explained by assuming that quarks 

obey peculiar statistics, or that there is a hidden degree of freedom 

sometimes called “color. ” But this requires the additional ansatz that 

all observed hadrons are color singlets. -and v&only 3q and q?j? 

mnot other configurations? Why does the low-lying meson spectrum 

show all the states “predicted by the quark model” without any supplementary 

conditions and with no allowed states conspicuously absent? 

There is an inconsistency between the observation of bound states 

in all channels for qq scattering and the absence of bound states with 
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quantum numbers of 2qq and 3qq. If the quark-antiquark interaction 

is attractive in all .possible channels, as indicated by the presence of 

bound states, an antiquark should be attracted by any composite state 

containing only quarks, like a diquark or a baryon, to make a bound 

state with peculiar quantum numbers that have not been observed. 

In our discussion, we assume that free quarks are very heavy, 

and we consider only effects on the mass scale of the quark mass. All 

observed particles have zero mass on this scale. The observed hadron 

spectrum is a “fine structure” which v:e are unable to resolve in this 

approximation. This is a reasonable approach, since as long as we are 

not treating spin in detail, me are unable to distinguish between a pion 

and a p meson, and are neglecting mas s splittings of the order of the 

p - rr mass difference. We therefore are only able to discuss whether a 

.particle has “zero mass” and a~ppears as an observed hadron, or whether 

it has a mass of the order of the quark mass and should not have been 

observed. 

The question why only 3q and qq can be stated more precisely in 

terms of the following three whys: 

1. . The triality why. With attractive interactions between quarks 

and antiquarks, why are three quarks and an antiquark not bound more 

strongly than a baryon or two quarks and an antiquark bound more 

strongly than a meson? Note that we are not asking about four quarks vs. 
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three quarks. Symmetry restrictions such as the Pauli principle with 

colored quarks can ,prevent the construction of a four quark state which 

is totally symmetric in space, spin and unitary spin. But there is no 

Pauli principle which ~prevents an antiquark from being added to a 

system of three quarks in all ,possible states. Thus if each quark in the 

baryon attracts the antiquark, some additional mechanism must be 

found to prevent it from being bound to the quark system. 

2. The exotics why. Even assuming some mysterious symmetry 

principle which prevents fractionally charged states from being seen, 

why are there no strongly bound states of zero triality, like those of 

two quarks and two antiquarks or four quarks and one antiquark? 

The question of whether or not such bound four-quark states exist can 

be posed as follows: There are two analogs for the bound quark-antiquark 

meson state, the deuteron and positronium. If the meson is like the 

dcuteron, then two mesons should form a bound four-quark system just 

as two deuterons bind together to form a much more strongly bound a 

particle. If the deuteron is like positronium, the forces saturate and the 

residual force between the two neutral systems is very small and does 

not produce a state more strongly bound than the original two particle 

states. From the experimental observation that there is no strongly bound 

doubly charged state of two ~positive pions, we conclude that the pion is 

more like ,positronium than like the deuteron. .- 
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However the positronium analo,7 is misleading because there is no 

bound state’of three electrons while three quarks bind to make a baryon. 

The force between two positronium atoms is nearly zero because the 

repulsion between the electron ,pairs exactly cancels the attraction 

of the electron-positron ~pairs in the two positronium atoms. But in two 

positive pions the quark-quark force cannot be completely repulsive 

because the same quarks must have attractive forces to make baryons. 

If the quarks and antiquarks in two pions attract one another, why is there 

no net attraction between two positive pions to produce an I = 2 dipion 

resonance or bound state with a mass near the mass of two pions? 

3. The diquark or meson-baryon whx. Why is the quark-quark 

interaction’just enough weaker than the quark-antiquark interaction so 

that diquarks near the meson mass are not observed, but three-quark 

systems have masses comparable to those of mesons? Vector gluons 

which are popular these days would bind the quark-antiquark system, 

but the force they .provide between identical quarks is repulsive. Scalar 

or other gluons which are even under charge conjugation bind both the 

quark-antiquark and diquark systems equally. If the quark mass is 

very heavy, the single quark-antiquark interaction in a meson must 

cancel two quark masses, while the three quark-quark interactions in the 

baryon must cancel three quark masses. This suggests that the quark- 

quark interaction is exactly half the strength of the quark-antiquark 
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interaction. 
17 Such a result can be achieved by a suitable mixture of 

vector and scalar interactions, but it is not very satisfying to obtain 

such a simple fundamental property of hadrons by a model which fits it 

with an adjustable parameter. 

In all of this discussion, we are considering one-particle states, with 

the assumption that multiparticle states exist which contain separated 

particles each having the ,properties we are trying to explain. ~‘Multiparticle 

states pose additional problems. The allowed spectrum for multiparticle 

states is not specified by a set of allowed quantum numbers, but by the 

condition that their constituent particles individually have allowed 

quantum numbers. Thus the whys cannot be answered by general 

symmetry principles which apply to all states. The triality why is not 

answered by’s symmetry,principle forbidding all states which do not 

have zero triality, because multiparticle states of zero triality must 

also be forbidden if they are made of particles which individually have 

nonzero triality. Similarly, the exotics why is not answered by a 

symmetry ,principle forbidding all states with exotic quantum numbers 

because multiparticle exotic states made from nonexotic particles are 

allowed. Thus any treatment which attempts to answer these whys must 

discuss both single-particle and multiparticle states, and must consider 

the space-time properties which distinguish between them. Algebraic 

arguments involving only internal symmetry groups cannot be sufficient. 
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Our three whys involve only the strong interactions which do not 

depend upon the couplings of quarks to the electromagnetic and weak 

currents. The following discussion thus applies to both fractionally 

charged and integrally charged models. 

2.3 The Colored Gluon IvIodel 

We now examine the three whys. In the colored quark description 

of hadrons the restriction that only color singlet states are observed 

immediately solves the triality why since only states of zero triality 

can be color singlets. But requiring all low-lying states to be color 

singlets is thus equivalent to requiring all low-lying states to have zero 

triality; it merely replaces one ad hoc assumption with another. What 

is needed is some dynamical description in which the color singlets 

turns out to be the low-lying states in a natural way. To attack this 

problem we return to the fictitious deuteron world where all low-lying 

states are isoscalar and which is the analog of the colored quark des- 

cription of hadrons. We follow the treatment of ref. 44. 

At first this isoscalar deuteron world seems very artificial. 

Why should all states with I = 0 be pushed down and all states with I P 0 

be pushed up out of sight? But there turns out to be a very natural 

nuclear interaction which creates exactly this isoscalar deuteron world; 

nameSy nuclear two-body forces dominated by a very strong Yukawa 
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interaction provided by p exchange. This interaction is attractive for 

isoscalar states and repulsive for isovector states, in both nucleon-nucleon 

and nucleon-antinucleon systems. It thus binds only isoscalar states. 

The p-exchange interaction between particles i and j can be expressed 

in the form 

v.. 
Yl 

= VT..; , 
1 

where Ti is the isospin of particle i and V contains the dependence on 

all other degrees of freedom except isospin. If we neglect these other 

degrees of freedom we can write for any n-particle system containing 

antinucleons and nucleons, 

V(n) = $x vij = 2 

i +j C 
-+ 1 ti.yx <.; 
all i 
ij 

. 
I = ;[I(* + 1) - nt(t f 1)](2.: 

where I is the total isospin of the system and t is the isospin of one 

particle; i. e., 112 for a nucleon. 

The interaction (2.lb) is seen to be repulsive for the two-body 

system with I = 1 and attractive for all isoscalar states. A pair of 

particles bound in the I=0 state is thus seen to behave like a neutral atom; 

it does not attract additional particles. Since the pair is “spherically 

symmetric” in isospace, a third particle brought near the pair sees 
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each of the other ,particles with random isospin orientation, and its 

interaction v;ith any member of the pair is described by the average of 

(2. la) over a statistical mixture which is 3/4 isovector and 1/ 2 isoscalar. 

This average is exactly zero. 

The neutral atom analogy is very appropriate for the description 

of the observed properties of hadrons. The forces between neutral atoms 

are not exactly zero, hut are much weaker than the forces which bind the 

atom itself. These interatomic forces produce molecules which are 

much more weakly bound than atoms. Similarly the forces between 

hadrons do not vanish but are much weaker than the forces which bind 

the hadron itself. These interhadronic forces produce complex nuclei 
I 

which are much more weakly bound than hadrons. In the approximation 

where we neglect energies much smaller than the quark mass these 

“molecular” effects are safely neglected. 

We now generalize this .picture for the colored quark description 

of hadrons.< If there are n colors,. the interaction (2.1) must be 

generaSized from SU(2) to SU(n). The quark-antiquark system then 

still saturates at one ,pair, but the multiquark system can be seen to 

saturate at n quarks. A quark-antiquark system which is a singlet in 

SU(n) exists for all values of n. However, the existence of a singlet in 

the two-quark system is an accident which occurs only in SU(2) and is 

not generalizable to SU(n). However the I = 0 two-quark state is also 
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characterized as antisymmetric under permutation of the two particles. 

This antisymmetry is generalized easily to SU(n) where totally antisymmetric 

states exist for a maximum of n particles, and the n particle antisymmetric 

state is a singlet in N(n). 

We now construct the analog of the interaction (2. Ib) for a model 

with three triplets of different colors. Then the Yukawa interaction 

produced by the exchange of an octet of “colored gluons” has the form 

analogous to (2.1). For an n-particle system containing both quarks and 

antiquarks, 

U(n) = $1 'ijx ‘iG)G 
i +j (5 

(2.2) 

where uij depends on all the noncolor variables of particles i and j and 

Lab-i, . . . . 8) denote the eight generators of SU(3)color acting on a 

single quark or antiquark i. 

If the dependence of uij on the individual particles i and j is 
,__ 

neglected, the interaction energy of an n-particle system can be calculated 

by the same trick used in Eq. (2. Ib) to give 

V(n) = t(C -nc) (2.3a) 

where u is the expectation value of u.., integrated over the noncolor 
1J 

variables, C is the eigenvalue of the Casimir operator for SU(3)color 
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for the n-particle system and c = 413 is the eigenvalue for a single quark 

or antiquark. These eigenvslues are directly analogous to the SU(Z) 

Casimir operator eigenvalues I(1 + 1) and t(t + 1) in Eq. (2. Ib).~ 

In the approximation where all energies small compared to the quark 

mass ‘N 
9 

are neglected, the interaction (5.3a) gives the mass formula 

M(n) = nkIq +V(n) = n(M - y)+ Cu/2 
9 

. (2.3b) 

The interaction (2.2 ) and the mass formula (2. 3b) were first .proposed 

by c:amhu , 
17 and the saturation properties of the interaction were 

considered by Greenberg and Zwanziger. 
ia 

However, the remarkable 

properties of this interaction as demonstrated above in the simplified 

example of the analogous deuteron world have received little attention. 

2.4 Answers to the Triality and Meson-Baryon Whys 

The formula (2. 3b) can test the triality why or the meson-baryon 

why by showing whether observable “zero mass” hadron states exist for 

a given number of quarks and antiquarks. However, it cannot test the 

exotics why, since it gives no information about the spatial ,properties 

of the states, It cannot distinguish between one-particle states and 

multiparticle scattering states and all zero-triality exotic states are 

allowed as multiparticle states. 

Since C is .positive definite and has the eigenvalue zero only for 

a singlet 45 in SU(3 )color, and u 2 0 as is evident from the two-body 
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system, the state of the n-particle system with the strongest attractive 

interaction is a color singlet. Since the interaction is a linear function 

of n all such singlet states have zero mass if cu/Z = M 
9’ 

For this case 

M(n) = (C/c)Mq if cu/2 = M 
9 - 

(2.3~) 

The model thus gives observable hadron states for all quark and antiquark 

configurations for which C = 0 states exist. Since C = 0 states exist only 

for co;lfigurations of triality zero, this answers the triality why. 

The meson-bsryon why is also answered by this interaction, 

since zero mass is attained both in two-body and three-body systems. 

To obtain C = 0, the two-body system must be a quark-antiquark pair, 

while the three-body system must be 2 three quark state, totally 

antisymmetric in color space. The approximation of neglecting the 

dependence of uij on i and j is justified in these two cases since there 

is only one pair in the two-body system, and a totally antisymmetric 

function has the same wave function for all pairs. The values 
18 

of the 

interaction ~parameter C-nc and the mass ~parameter C/c are listed in 

Table 2.1 for all states of the two-body system. These show that the ~- 

quark-quark interaction in the baryon is exactly half of the quark-antiquark 

interaction in the meson, as required for the meson-baryon puzzle. 

The diquark mass is thus equal to one quark mass, since its interaction 

only cancels the mass of one of the two quarks. 
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Table 2.1 Values of the Interaction and Mass Parameters C-nc and C/c 

System s”(3)color Representation C C-nc C/c 

quark-quark triplet (antisymmetric) 4/ 3 -413 1 

quark-quark sextet (symmetric) 1013 +213 512 

quark-antiquark singlet 0 -8/3 0 

quark-antiquark octet 3 +1/ 3 914 

The interaction averaged over all quark-quark states is seen to be 

zero and similarly for all quark-antiquark states. An antiquark or quark 

added to a meson or baryon thus has a zero net interaction, as there can 

be no color correlations between particles in a singlet state and an 

external particle, and each pair feels the average interaction over all 

color states. This suggests that the exotics puzzle is also answered, 

and that the states of zero mass obtained from the interaction (2.2) for 

exotic qukntum numbers are multiparticle continuum states rather than 

bound states or resonances. 

2.5 The Exotics Why--Spatial Properties of Wave Functions 

To examine the exotics why in more detail we consider the spatial 

dependence of the interaction (2.2) for the specific case of the two-quark- 

two-antiquark system, with an interaction uij depending only on the 

pqsitions ok the .particles and not on momenta, spin and unitary spin. 
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We first note that the color exchange force of the form (2.1) or (2.2) 

gives no bound a-particle-like states of two quarks and two antiquarks. 

We consider a wave function which is totally symmetric in space for the 

four particles and is a color singlet, 

4 =4(r1,r22r3ar4)xo I (2.4a) 

where x0 depends upon the color variables of the four particles and couples 

them to an overall color singlet. Spin is disregarded. The expectation 

value of the interaction (2.2) with this wave function is given by Eq. (2.3a) 

with C=O, n=4 and 

u=+l121~> * (2.4b) 

We can use uf2 in Eq. (2.4b) since the wave function (2.4a) is symmetric 

in all pairs. Thus 

<$ IV(n) I+> = -2uc. (2.4c) 

Let us now consider a wave function 

$1 = 6 (r l,r2.r3+ X,r4+X)xO(12)xO(34) , (2.5) 

where X is a very large distance like 1 kilometer, and x0(12) and x,(34) 

couple the pairs (12) and (34) separately to a color singlet. The expectation 

value of the interaction (2.2) with this wave function involves only two terms 

in the interaction, those for i, j = 1,2 and 3,4 since all other pairs are 
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separated by the large distance x. For each pair the interaction is given 

by Eq. (2.3a) with C =O and n=2, and with u still given by Eq. (2.4b) 

because the dependence of the wave functions (2.4a) and (2.5) on ri2 and 

r34 
are identical. Thus 

< 4’ / U(n) ( $0 = - uc + (- UC) = - 2uc = < + 1 U(n) I+> ~ (2.6) 

Thus any “cu-particle-like” wave function can be broken up into two color 

singlet quark-antiquark pairs separated by a large distance for which the 

interaction energy is the same. There is always a gain in kinetic energy 

by allowing such a breakup, namely the kinetic energy required by the 

uncertainty principle to keep the separation of the pairs very small. Thus 

any “a-particle-like” state will be unstable against immediate breakup 

into two pairs. Since the results (2.5) and (2.6) hold for any value of X, 

the breakup can occur continuously with no change in potential energy, 

and there can be no barrier hindering the breakup. 

Let us now consider the case of two separated pairs and possible 

long range “Van-der-Waals” type forces. For simplicity we consider the 

deuteron world model (2.la). The generalization to SU(3) is straight- 

forward. Let d be the distance between the centers of mass of pairs (12) 

and (34) and choose the x axis in the direction of d. Lt is then convenient 

to write the interaction operator (2.1) for the four particle system in the 

following form: 
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c v.. = (t i#j ‘.l -;* 5) v12+(T3. q”34 

+(T1+C2)* (t-3+t-4)(“13+“14+“23+“24)/4 

I4 + ct- 1-c2). (~3+~)(“13+v14-” 
23 - “24’ 

+(cl+T2) - (T3-~4)(“13-“14+“23 -“24) I4 

+ (Cl - 5) * (< - T4)(V13 - VI4 - vz3 +“24)/4 . (2.7) 

We consider color singlet wave functions for the four particle system. 

There are two independent couplings to an overall color singlet. We 

choose the basis in which the colors of the pairs (12) and (34) are diagonal. 

Both pairs can either be singlets or triplets (octets in SU(3)). For the 

wave function in which both pairs are singlets, the first two terms on the 

right hand side of Eq. (2.7) give the binding energies of the two pairs, the 

next three terms give zero, since either 74 +t’ + 2 or t3+t4 * annihilate the 

wave function with 12 and 34 individually coupled to singlets. The last 

term gives an off-diagonal matrix element which can produce a “polari- 

zation force. ” We rewrite this term by expanding the potentials around 

r = d, 

V pol = (< - t2) - (< - 5) xl2 x34(d2v/dr2)r=d - (2.8) 
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This interaction is seen to connect the ground state configurations 

of the two bound pairs with excited states which are color octets and are 

p-wave excitations in configuration space. This interaction can produce 

an energy shift in second order perturbation theory which depends upon 

the distance d and could give a long range Van-der Waals force. The 

magnitude of this energy shift is given by the square of the matrix element 

of the interaction (2.8) divided by an energy denominator. Since the inter- 

mediate state has pairs (12) and (34) in color triplets, the excitation 

energy of this state and the corresponding energy denominator is dominated 

by the third term on the right hand side of Eq. (2.7) which does not vanish 

for color triplet states and depends upon V(d). Thus the energy shift is 

given approximately by 

AE = r=d-,2 * (x;.$(x;4) /8V(d) . (2.9a) 

It is amising that for a linear potential, the expression (2.9a) 

vanishes because the second derivative of the potential is zero. For a 

logarithmic potential, or for a harmonic oscillator potential, 

E = vo(X~2)(x~4) /8 d4(lWd/r12;) for V = V. log(r) 

E = k +;2)($4) /8d2 forV=kr2 . 

Thus we see that even for confining potentials which increase to 

infinity at large distances, the residual force between two color singlet 
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hadrons decreases rapily at large distances. Note that these estimates 

are large overestimates of the force because effects of retardation have 

been neglected and should add additional damping factors. The interaction 

(2.8) involves instantaneous color correlations between the two pairs, with 

each jumping simultaneously from color singlet to color triplet. The 

color-correlated triplet-triplet state involves instantaneous correlations 

which certainly cannot be maintained over large distances. 

We have seen that exotic four quark states cannot be bound either in 

cr-particle-like symmetric wave functions or in molecular type separated 

pairs. We now investigate a third possibility, a correlated four-particle 

state, which is neither an (Y particle nor a molecule. We consider in 

more detail the potential for any given spatial configuration which a 

2 X 2 matrix in color space is explicitly constructed in Ref. 19 by evaluation 

of the A-matrices in Eq. (2.2) and then diagonalized. The color degree of 

freedom was eliminated by use of a static approximation, analogous to the 

static Coulomb approximation in QED, which assumes that particle motion 

is slow in comparison with photon or colored gluon exchanges. This approx- 

imation is implied in all charmonium potential calculations, where a static 

potential is assumed to hold for a color singlet state of the two-body system, 

even though the colors of the individual constituents must be changing rapidly 

in time to make a color singlet state. The condition for validity of this 

approximation; namely that the time scale of color changes is much more 



-4o- FERMILAB-Conf-78/73-THY 

rapid than the time scale of quark motion, is equivalent to the requirement 

that excitation of the color degree of freedom requires a much greater 

energy than excitations in space-time. 14,20 

Diagonalization of the potential matrix in color space gives the following 

“eigenpotentials” in the static approximation forthe two color couplings. 14.19 

U’ = (7/16)(u~+up)+(l/8)uq*(3/16) 8(ua - upj2+ (ua+u 
P 

- 2uq)2 , (2.iOa) 

where 

ua = U13 +u24; up = U14 +u2y uq = U12 + u34 . (2.10b) 

To test the exotics puzzle we look for coordinate configurations 

where four-particle correlations may give stronger binding than in two 

noninteracting clusters. Since Us and u p appear symmetrically in (5.8) 

we need onPyconsider values of u 
P 

5 Us. For any value of u the value 
(Y 

ofu su 
P a 

which minimizes the interaction (2.10) is u =u 
P Q 

with the 

negative sign for the square root. This gives 

U’ = -(8/3)ua - (2/3)(ua - uq) . (2.11) 

This expression is minimized by choosing the minimum values of u 
9 

consistent with a given value of u 
(Ye For monotonically decreasing 

potentials this is achieved by placing the four particles at the corners of 

a square with the like particles at opposite diagonals. 

For a square well potential the particles can be arranged in a 

square with the diagonal greater than the range of the forces and the 
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sides less than the range. This configuration has u 
9 

= 0 and forms a 

stable four-particle state with a binding 25% greater than that of two 

quark-antiquark pairs. However, the sharp edge of the square well is 

essential for this binding and does not seem reasonable physically. For 

smooth potentials without sharp edges such as Coulomb, linear, Gaussian, 

Yukawa or harmonic oscillator potentials Eq. (2.11) shows that such a 

four-particle cluster is less strongly bound than two noninteracting quark- 

antiquark pairs, and the system simply breaks up into two clusters. This 

leads to a description in which all states having exotic quantum numbers 

are just scattering states of particles which individually have nonexotic 

quantum numbers, and answers the exotics puzzle. 

The eigenpotentials (2.10) can also be used to examine configurations 

described to a good approximation as a diquark and an antidiquark sepa- 

rated by a distance large compared with the diquark size. The quark- 

antiquark interaction should then be the same for all four quark-antiquark 

pairs; i. e. we neglect correlations between the motion of one particular 

quark in the diquark and one particular antiquark in the antidiquark. Then 

u =u 
m P 

and Eq. (2.10a) simplifies to give the two solutions 

ur=L. +L, 
2 (12 q’ 

(2.12a) 

(2.12b) Ul=Tu -1 
4 (Y 4”q. 
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The eigenfunction corresponding to Eq. (2.12a) has both diquarks in 

the color triplet state. For Eq. (2.12b) both are in color sextet states. 

Another case of interest is that of two separated quark-antiquark 

pairs. Here the neglect of correlations between particles gives u = u 
P 9* 

and Eq. (2.12a) simplifies to 

U’ = u 
cy ’ (2.13a) 

ut=-+ +2u Iy 8 9’ 
The corresponding eigenfunctions have separated color singlet pairs 

for Eq. (2.13a) and separated octet paris for Eq. (2.13b). 

Equation (2.13a) shows that the lowest state for two separated quark- 

antiquark pairs has an interaction which depends only on the spatial sepa- 

rations within each pair and is independent of the distance between pairs. 

There is no long range residual force between two separated color singlet 

states, as expected from the saturation property of the color charge 

force. f4’ f9 
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3. THE LOG POTENTIAL 

We now consider some of the properties of the log potential and 

argue that it is a reasonable one to use for a quasinuclear model for had- 

tons. We first note the characteristic scaling property 
5,21 

which moti- 

vated its introduction by Quigg and Rosner. Consider the Hamiltonian 

for a particle in a log potential, 

H = (p2/2m) + V log(r/ro) 

= Cp2 /2mo)(mo/m) + V log(r/ro) , (3.1) 

where m is the mass of the particle and m 0 is some standard mass. 

Let us now introduce the scale transformation, 

p’ = p(mo/m)1’2 , 

112 r’ = r(m/mo) . 

(3.2a) 

(3.2b) 

Then 

H = (pi2/2mo) + V log(r’/ro) + $ V log(mo/m) . (3.3) 

The scale transformation thus reduces the Hamiltonian (3.1) for any mass 

m to the Hamiltonian (3.3) which has the standard mass m. and the same 

potential and only an added constant term. Thus the energy spectrum of 

the Hamiltonian H depends upon the mass m only by the additive constant 

i/2 V log(mo/m); all energy aplittings are independent of the mass m. 
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However, there is no theoretical justification from first principles 

or QCD for this log potential. It was only introduced because it is the 

potential which gives equality for the y - y’ and $ - $I’ splittings. The 

potential previously used with at least hand waving support from QCD 

was a combination of a Coulomb and a linear potential, 7.1 givmg Coulomb 

behavious at short distances and linear confinement at large distances. 

The relation between this potential and the log potential is seen by con- 

sidering the potential 

V = (V,/X) sinh Xlog(r/ro) 1 . (3.4a) 

For x = 0, this is just the simple log potential. For X = 1 it is the 

Coulomb + linear potential. For intermediate values of X, it is conven- 

ient to rewrite the potential in the form 

V = WO/2X)[(r/rolX - (rO/rlx] ~ (3.4b) 

Equation (3.4) defines a family of potentials characterized by a 

parameter X ~ which are all singular at the origin and confining at large 

distances. Both the singularity at the origin and the strength of the con- 

finement at large distances become weaker when X decreases, and at 

x = 0 these become the singularities at the origin and infinity of the log 

potential. In the vicinity of r = ro, which defines the transition region 

between Coulomb and log for X = 1, the hyperbolic sine can be expanded 
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to give the log potential. Thus the log potential is a good approximation 

to the potential (3.4) for all values of X in the vicinity of r = ro. 

As long as the properties of the system being considered do not 

depend on the exact form of the potential at very small or at very large 

distances, the log potential may give a good approximation for any po- 

tential of the type (3.4) which is singular at short distances and confining 

at large distances. Thus the log may be very useful for calculations, 

even though it has no deep fundamental significance. We accept its use 

on this basis and do not attempt to justify it on any more serious grounds. 

The log potential can also be placed in a hierarchy of power law 

potentials. Potentials which vary as a positive power of r, like the linear 

or harmonic oscillator potentials, are always confining at large distances 

and approach a constant at the origin which can be chosen as zero energy. 

The spectrum is discrete and there is no continuum. The splittings of 

the energy levels decreases with increasing mass of the particle. Poten- 

tials which vary as a negative power of r, like the Coulomb potential, are 

singular at the origin and go to zero at infinity. They are not confining 

and have a continuous spectrum, with the possibility of a discrete spec- 

trum as well if the potential is attractive. The splittings of the energy 

levels increases with increasing particle mass. 

The log potential, which is in some sense the limiting case of a 

power law potential with the power zero is intermediate between the two 
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cases. It is singular both at the origin and at infinity, has a discrete 

spectrum and no continuum, and the splittings of energy levels remains 

constant with changing particle mass. 

It is also instructive to note that the characteristics of the energy 

spectrum of the log potential are nearly midway between the Coulomb and 

harmonic oscillator cases. The harmonic oscillator has an equally 

spaced set of energy levels. The Coulomb potential has energy levels 

with a spacing that decreases very rapidly with increasing energy. The 

log potential has a spectrum of energy levels with a spacing that decreases 

with increasing energy but not as rapidly as the Coulomb case. A con- 

venient quantitative measure of this feature of the spectrum is the ratio 

(D-P)/(P-S) of the spacing between the lowest D state and the lowest P 

state to the spacing between the lowest P state and the ground state. 
8 

For the harmonic oscillator this is 1.0. For the Coulomb potential it is 

0.2. For the log it is 0.6, just midway between the two. 

We also recall the result from Eq. (1.10) that the expectation value 

of the kinetic energy in a multiquark system with two-body logarithmic 

potentials is given by a c-number rather than the expectation value of an 

operator. It depends only upon the strength parameter of the logarithmic 

potential and is independent of particle masses or the degree of excitation 

of the wave function. Here again it is in between the negative and positive 

power law potentials. In positive power potentials like the harmonic 

oscillator, the kinetic energy decreases with increasing mass of the 
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particle and increases with the degree of radial excitation. In negative 

power law potentials, like the Coulomb potential the kinetic energy 

increases with increasing particle mass and decreases with higher radial 

excitation. In the log potential the kinetic energy is constant with both 

particle mass and radial excitation. 

4. THE QUASINUCLEAR COLORED QUARK MODEL 

The discovery of the first pion-nucleon and pion-pion resonances as 

low-lying p-wave resonances with equal widths suggested that mesons and 

baryons were composite objects with very similar structures, rather than 

elementary objects as different from one another as photons and electrons. 

The non-relativistic quark model described these first resonances and 

their photoexcitation as magnetic dipole excitations of quark spin flip for 

both mesons and baryons. The quark model also succeeded in describing 

other similar properties of mesons and baryons, including high energy 

scattering and reaction processes and strong, electromagnetic and weak 

decay processes. The introduction of the color degree of freedom 19 

explained the difference between quark-antiquark interactions which made 

the low-lying states of the multiquark system appear as three-body states 

while the lowest states containing both quarks and antiquarks were two- 

body states. 

Although meson and baryon spectra were seen to be qualitatively 

similar, quantitative relations between the mass splittings were difficult 
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to obtain. Two basic physical assumptions are necessary to relate meson 

and baryon spectra: (1) a relation between the quark-antiquark forces 

binding mesons and the quark-quark forces binding baryons; (2) radial 

scaling properties of these interactions and of the baryon and meson wave 

functions. The assumption of color exchange forces has successfully 

related the gross features of meson and baryon spectra, but has been 

inadequate to describe the finer details. Quantitative estimates of mass 

splittings are sensitive to the difference in sizes of meson and baryon 

wave functions, and to flavor-dependent size effects arising from mass 

differences between quarks of different flavors. Since these size effects 

are model-dependent, it has been difficult to obtain significant predictions 

without introducing too many free parameters. 

The successful description of the charmonium spectrum using the 

nonrelativistic quark model 
23,24 

suggests that it is reasonable to describe 

heavy quark systems by a Schroedinger equation for colored quarks inter- 

acting with a confining two-body color-exchange potential and no additional 

bag. We extend this model to the three-quark system and assume that 

baryons are described by the same Schroedinger equation with the same 

two-body forces, and that the effective matrix elements of the two-body 

interaction in the three-body system are related to those for the two-body 

system by simple scaling laws obtained by analysis of heavy quarkonium 

spectroscopy, In this way we construct a “Quasinuclear Colored Quark 

Model” for hadrons with the same spproach as that of nuclear physics, 
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to determine the properties of the n-body system from the known prop- 

erties of the two-body system. In the hadron case, where free quark 

scattering is not observed, the only input comes from effective matrix 

elements of the two-body interaction in bound quark-antiquark states, 

and we must use this information for the quark-quark interactions in 

three-body systems. We also use a nonrelativistic formulation for light 

quarks which are certainly relativistic in light hadrons. However, the 

results for the magnetic moments shown in the introduction above indicate 

that this approach works, even though we do not yet understand why. We 

therefore continue to use it wherever we can, to see where it continues 

to work and where it might break down. 

The recent discovery that the J, - 4’ and + - +’ mass splittings are 

equal has motivated the introduction of a model with a flavor-independent 

logarithmic potential’ whose mass splittings depend only on the strength 

of the potential and are independent of reduced mass. We extend this 

model to the conventional hadron spectrum and compare its predictions 

for orbital, spin and strangeness mass splittings with experiment. This 

model makes possible quantitative predictions relating meson and baryon 

spectra in which baryon mass splittings are predicted with only meson 

mass splittings used as inputs. The log potential provides a unique 

prescription without free parameters. The success of this prescription 

should be considered as further evidence for the common structure and 
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interactions of mesons and baryons, rather than as a test for the details 

of the potential. Any potential with similar scaling properties in the 

relevant radial domain would presumably make similar predictions. 

We first consider orbital excitations. Since clearly defined radially 

excited states are not easily seen experimentally, in contrast with the 

heavy quarkonium systems, we choose for comparison of theory and 

experiment the S, P and D states with “stretched” angular momenta; 

namely those with the highest values of spin and J for a given configuration. 

These are the 1-, 2+ and 3- mesons and the 3/2+, 5/2- and 7/2+ baryons. 

The results are shown in Table 4.1. The masses of the isovector mesons 

p, A2 and g are taken as input along with the lowest states in the K”:, 4 

and nonstrange baryon families. The masses of the remaining excited 

states are then predicted with no free parameters. Predictions from 

harmonic oscillator and Coulomb potentials are presented for comparison. 

Three types of predictions were considered. 

1. The ratio of the P-D and S-P splittings predicted to be 0.6 by 

the log potential model, 1.0 by a harmonic oscillator potential and 0.2 

by a Coulomb potential. The values 0.68, 0.65 and 0.58 obtained for the 

:x 
p, K and baryon systems respectively support the log potential model. 

2. Flavor-independent mass splittings predicted for the p, K;” and 

$I systems. The results in Table 4.1 show reasonable agreement. 

3. Extension to baryons. This requires relating quark-quark and 

quark-antiquark interactions and treating the three-body problem. A 
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straightforward analysis discussed in detail below leads to the prediction 

that baryon splittings are reduced by a factor 314 relative to meson 

splittings. The results in Table 4.1 show surprising agreement. 

For the spin splittings we assume that the scaling property of the 

spin dependent part of the two-body interaction is that suggested by simple 

arguments based on the logarithmic potential. This leads immediately to 

predictions for baryon spin splittings with meson spin splittings used as 

input and no parameters, listed in Table 4.2. 

For the strangeness splittings we assume two sources of SU(3) 

symmetry breaking: (1) a constant mass difference between strange and 

nonstrange quarks over the whole spectrum; (2) the dependence upon quark 

masses of the spin dependent interaction already used for spin splittings. 

This again gives predictions for baryon spin splittings with meson spin 

splittings used as input and no parameters, also listed in Table 4.2. 

The details of the model which lead to these predictions are dis- 

cussed below. The essential numerical factors which appear in rela- 

tions between meson and baryon spectra are: (1) a factor 112 between 

strengths of quark-quark and quark-antiquark potentials which comes 

from color couplings and (2) a factor 3/4 which comes from scaling of 

baryon and meson wave functions. It is the factor 314 which is new and 

which is responsible for the success of the predictions listed in Tables 4.1 

and 4.2. It is clear from Table 4.2 that reducing this factor 3/4 would 
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lead to better agreement for spin splittings, but this is parameter juggling, 

which obscures the physics if it has no strong theoretical motivations. 

Table 4.1 Orbital Splittings from Logarithmic Potential Model 
Theoretical and Experimental Values of Masses in MeV 

I=l Kaon Family Family Baryon Family Harmonic 
Me sons Oscillator 
Expt Theory Expt Theory Extp Theory Expt Model 

L=O 770::; il: 892::: it 10201: iii 1232::: ;:: 

L=l 1310::; 1432 1421 1560 1516 1637 1670 1700 

L = 2 1680::: 1802 1765 1930 1914 1925 2020 

Ratio of P-D and S-P Splittings (Coulomb Potential Gives 0.2) 

0.68 0.6 0.65 0.6 0.6 0.58 1.0 

::: Denotes Input 

Table 4.2 Spin and Strangeness Splittings from Logarithmic Potential Model 
Theoretical and Experimental Mass Differences in MeV 

Spin Splittings 

Mass 
Difference Theory 

M(P) -Wd i;: 

M( K:::) -M(K) :;i 

M(A) -M(N) 354 

M(Z%)-M(Z) 223 

M(E:;::)-M(s) 223 

Expt 

630 

396 

292 

192 

216 

Strangeness Splittings 

Mass 
Difference Theory Expt 

M(K”)-M(p) ::( 122 

M( z:*) -M(A) 137 153 

M(z”)-M(z+) 149 148 

ME) -M(Z) 149 125 

M(n) -M(s:::) 160 139 

M(z) -M(A) 88 77 WN -M(N) 180 177 

:: Denotes Input 
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The overall agreement with predictions of the quasinuclear colored 

model with the logarithmic potential is impressive and suggests further 

investigation, both theoretical and experimental. 

We now consider multiquark systems in detail: The origin of the 

baryon factor 3/4 will be seen explicitly, and the formulation will be 

sufficiently general to be applicable to systems with more than three 

quarks. Our phenomenological “quasinuclear nonrelativistic colored 

quark model” is motivated by ideas similar to QCD but not justified by 

any rigorous argument. The two basic assumptions of the model are: 

(1) the quasinuclear approximation of n constituents interacting with two- 

body forces without any additional parton-antiparton pairs, gluons or bag; 

(2) a color-exchange force with a color dependence given by Eq. (2.2), and 

no additional Wigner force. 

The quasinuclear assumption is implicit in all conventional spec- 

troscopy as well as in the successful charmonium calculations, where all 

the confinement effects are in the two-body potential and there is no bag. 

The pure color exchange assumption is required to obtain a long range 

force which confines quarks within hadrons, but leaves no residual long 

range forces between physical hadrons. Any other long range force at 

the quark level gives long range hadron-hadron forces. Arguments from 

QCD which base this color exchange force on the color properties of the 

one gluon exchange contribution are misleading because the experimental 

evidence supporting color exchange is in the long range (infra red) part 
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of the force which is definitely not one gluon exchange. We accept color 

exchange on phenomenological grounds as necessary to fit the experimental 

spectrum with no rigorous justification at this stage. We do not need to 

choose between models with quark confinement and those with heavy 

liberated quarks, but can include both cases by appropriate choices of 

the radial dependence of the interaction. 

The model hamiltonian for a system of n particles which can be 

any combination of quarks and antiquarks is (3,4): 

H= (4.1) 

where AT and A; are the A-matrices for the color SU(3) group for 

particles i and j, u.. depends on all the noncolor variables of particles 
‘J 

i and j, and the normalization factor (-3/16) is chosen so that the poten- 

tial is exactly equal to uij for the case of a quark-antiquark pair in the 

color singlet state. Thus for the physical mesons 

H = mes (4.2) 

The interaction (4.1) was first introduced by Nambu 
17 

who obtained 

it from one gluon exchange and considered only the color degree of freedom 

to show that it gave a spectrum where all low-lying states were color 
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singlets. The dynamics of a similar phenomenological interaction were 

considered in a series of previous papers 
25,19,14 

which introduced the 

spatial dependence and analyzed the simplest non-trivial case where 

color and space do not factorize, namely the two-quark-two-antiquark 

system. Calculations showed that the interaction (4.1) did not bind four- 

particle states and gave only two-meson scattering states if a reasonable 

radial dependence was assumed for the interaction and spin dependence 

was neglected. Spin dependence was later introduced by De Rujula et a1,4 

who showed that the sign of one gluon exchange predicted the right sign 

for the N-A and %A mass splittings. Jaffe 26 has shown that the spin- 

dependent interaction responsible for these mass splittings can also lead 

to the binding of exotic multiquark configurations. 

For a system of quarks which is totally antisymmetric in color, as 

in the baryon case, the summation of the X-matrices can be evaluated 

explicitly in Eq. (4.1) and space and color factorize to give the result 

Hbar= izf 2 +S .Z. uij * 
“J 

(4.2b) 

For the three particle system it is convenient to express the 

hamiltonian (2) in terms of the center-of-mass momentum P and two 

independent relative co-ordinates and their canonically conjugate momenta, 
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-+ + 
x=r -T 1 2 ’ 

++.+ 
y=(rl+r 2 - 2~3)/G , 

C = (Cl -Z2)/2 , 

(4.3a) 

(4.3b) 

(4.4a) 

(4.4b) 

. (4.5) 

Two special cases of interest are the harmonic oscillator and 

logarithmic potentials, 

U 
osc 

=kr, 

ulog 
= V log r . 

For these potentials the Hamiltonian (4.5) becomes 

H 
p2 2 P2 

=- +L+L+l k[x2+y2] , 
osc 6m m m 4 

(4.6a) 

(4.6b) 

H 
p2 P2 P2 

=- +x+s++v logx+log 2 +- 
log 6m m m [ (’ $‘) + log@- $)I. (4.7b) 

Equation (4.7a) shows the factor (3/4) relating the strengths of the 

potentials in the baryon and meson cases. However, the harmonic 
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oscillator model does not have the desired scaling property, as shown 

in Table 4.1. Its level splittings change with mass and are proportional 

to the square root of the potential strength for constant mass. 

For the logarithmic potential (4.7b) the two internal degrees of 

freedom are not separable. The factor 3/4 does not appear explicitly in 

the Hamiltonian but can be seen from application of the virial theorem 

and simple sum rules. The “scale” of the energy spectrum can be defined 

by the quantity 

T: 
Z(x) = 1 

<O/xli><i/x10>(Ei-Eo)2 

f <O~x/i><i~xlO>(Ei-EO) * 
(4.8) 

This is the ratio of the mean square energy to the mean energy of 

the states excited from the ground state by the operator x, with a weight- 

ing factor proportional to the square of the transition matrix element. 

For the case where all the transition strength is dominated by a single 

excited state (as is exactly true for the harmonic oscillator) the quantity 

E is just the excitation energy of this state. For the case of the Hamiltonian 

(4.5) and the operators x and y, E can be evaluated exactly by using com- 

mutators with H and closure to give 

1 CO I[x,H] Ii> <i I[H.x] IO> 

E(x) = 
i 

$ 4 <Ol[x,H](i><i&(O>-iO/xli><i/[x,H]/O> = = h2/2m 

2<,;> 
Rh\ = .- > (4.--, 

m 
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and similarly for E(y). 

The virial theorem gives for the general Hamiltonian (4.1) 

<T> = (-3/32) 2 1 <rij(duij/drij)Aq A;> . (4.9a) 
cr=l i>j 

For the case where the space and color factorize in this expression, 

the summation over color can be evaluated explicitly using the trick of 

Eq.(2.3a) to give 

CT> = (-3/16)(C-nc)<rij duij/drij> = t <rij duij/drij> , (4.9b) 

where C = 0 for a color singlet state and c = 4/3. Note that space and 

color factorize trivially for the case of a logarithmic potential, where 

rij du. ./drij is a c-number and is independent of i and j. 
1.l 

For this case 

Eq. (4.9b) shows that the kinetic energy of any color singlet state is 

proportional to the number of particles n and is the same for all color 

singlet states with the same value of n. This tells us immediately that 

the mean kinetic energy of a baryon is 3/2 the mean kinetic energy of a 

meson. This can be seen explicitly for the case of the logarithmic baryon 

Hamiltonian (4.7b). 

lo 
=2 lv 

42 ’ 

Thus 

(4.9c) 

(4.9d) f [ax, + E(y)] = ; v , 
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For the meson case, with only one relative co-ordinate g and the 

log potential, E’(r) = V. Thus Eqs. (4.9~) and (4.9d) show that the mean 

kinetic energy and the mean excitation energy for each degree of freedom 

is 314 of the value in the corresponding meson case. 

Encouraged by the success of the scaling potential shown in Table 4.1, 

we attempt to extend this approach to the spin dependent part of the inter- 

action u(r). We assume that uij contains a term u’sj proportional to 

-a -+ 
oi * 0. which can be treated as a perturbation. 

J 
The spin splittings are 

therefore given by the expectation values of the spin dependent interaction 

in the eigenfunctions of the log potential. To determine the scaling prop- 

erties of the interaction, we make the standard assumption 
4,26 

that it is 

a “color-magnetic” interaction between two quarks and is therefore 

inversely proportional to the product of the quark masses. 

+ + 
u. * 0. 

UT. = Vs *. f(r) , 
u 

1 J 

(4.10.a) 

where V s 
is the strength of the spin-dependent potential and includes the 

color dependent factors in Eq. (4.1), and f(r) is some function of the radial 

distance between the quarks. If we are only interested in the scaling 

property, and assume that the spin-independent color charge force is 

scale invariant; i.e. a log, then dimensional considerations force f(r) to 

have the form (i/r2) to compensate for the additional mass factors. For 
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2 
scaling properties this is equivalent to a factor p , where p is the 

relative momentum of the pair. The scaling properties of the spin- 

dependent interaction are therefore given by the expectation value of the 

modified interaction 

+ -+ 

Wij = vs 
ai’ “j p2 = vs 

2 ;;, * :. 

(mi+mj) m r m.+m. 
1 J 

tij I 

where mr =mi * m. (mi+m.) is the reduced mass of the pair and t. is 
J’ J ‘J 

the kinetic energy of the relative motion. 

From the Hamiltonian(4.Qthe ansatz. (4.10b) for the spin-dependent 

part of the potential, and the assumption that hadrons containing strange 

quarks have an additional contribution to the mass proportional to the 

number of strange quarks, we obtain a simple unified formula for the 

description of meson and baryon masses, 

M-A(n)+Bn + zi* <<vij>/2(mi+mj) 
11 

, f4.11a) 

where the color coupling factor 

qj = (s/32) z A;A; , 
c! 

(4.11b) 

n is the total number of quarks and antiquarks in the system, ns is the 

total number of strange quarks and antiquarks, A: are the A-matrices 

for the color SU(3) group for particle i, cu..> and <v..> are reduced 
iJ ‘J 
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matrix elements for the two-body spin independent and spin dependent 

interactions respectively, mi is the mass of quark i, and A and B are 

parameters. The n-dependence of A is unknown. Thus we only relate 

mass splittings and not absolute mass values. The parameter B and the 

reduced matrix elements cu..> and <v..> are universal for all n. They 
u ‘J 

may depend upon the angular momentum quantum numbers of particles i 

and j but not on spin, flavor or radial wave functions. 

The spin dependent term is reduced to the form (4.11a) by noting that 

<l/r’> scales like <p2> and using the virial theorem, 

<tij> = <pi> (mi+ mj)/2mimj = nKij U/2 , (4.11c) 

where t.. and p.. are the relative kinetic energy and the relative momentum 
‘J iJ 

of particles i and j and U is the strength of the log potential. The n- 

dependence of the overall scaling factor is needed to relate meson and 

baryon spin splittings, but specific flavor dependence of the quark-mass 

factors has no significant effect on our results. 

For the meson and baryon cases, the color factors can be evaluated 

explicitly to give the relations 

M(meson) = A(mes) +Bns+<uij> + gi* 5 <vij> /(mi+m.) 
J 

, (4.12a) 

M(baryons) = A(bar) + Bns + (i/4)<uij> +(3/8) gi. gjsvij> /(mi+mj) 1 . 
(4.12b) 
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These differ from similar formulas in Ref. (4) by one essential new 

ingredient, the scaling factors (i/4) and (3/8) obtained from the log model 

which removes ambiguities of wave functions and matrix elements. These 

enable the quantitative predictions of baryon mass splittings from meson 

mass splittings (with no free parameters) displayed in Tables 4.1 and 4.2. 

The remarkable agreement shows that mesons and baryons do have a 

similar structure and should have a unified description, even though the 

simple nonrelativistic quark model may not be valid. 

The most interesting prediction is the A-N mass difference which 

follows from very general grounds independent of the log potential and 

scaling factors. It holds in any model where all the flavor dependence 

appears in linear quark mass and spin-spin interaction terms proportional 

to ns and gi* gj respectively. A zi* gj term does not contribute to the 

A-N mass difference because the interactions of the two strange-nonstrange 

pairs in the A cancel exactly, 

-+ -b * 
"u * usto d * zs = (;; + gd) . ;;, = 0 . 

U 
(4.13a) 

We construct a linear combination of meson masses in which the contribu- 

+ + 
tion of the cr. i. oj term vanishes and obtain 

iii 
M(A) -M(N) = (3/4)[M(K ) -M(p)] +(1/4)[M(K) -M(n)] =180 MeV. (4.13b) 

The result (4.13b) is in remarkable agreement with the experimental value 

of 177 MeV. 
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The remaining strangeness splitting predictions are dominated by 

this 180 MeV splitting due to the strange quark mass difference. Other 

model-dependent terms are down in the noise. Predictions for all baryons 

with strangeness 0 and -1 are given by combining Eq. (4.13) and spin 

splitting predictions listed in Table 4.2 and discussed below. The 

remaining three baryon masses must satisfy two general constraints 

from Ref. (9) and would be determined completely by the additional 

assumption of the equal-spacing rule for the decuplet. The specific 

model (4.1) used for Table 4.2 predicts insignificantly small deviations 

::: 
from the equal-spacing rule. 

The remaining predictions in Tables 4.1 and 4.2 depend upon the 

scaling factors (f/4) and (3/8) in Eq. (4.12b). The results for orbital 

excitations in Table 4.1 show reasonable agreement for the flavor- 

independent mass splittings predicted for the p, k and $ systems. 

Surprising agreement is shown for the predicted baryon splittings which 

depend upon the scaling factor (t/4) in Eq. (4.12b) but not on the spin 

dependent term. 

;,c 

Rubinstein“ calculated strangeness splittings with the ad hoc assumption 
neglecting SU(3) breaking in the spin triplet state. This is now seen as a 
rough approximation for the Zi + Zj force whose triplet interaction is 
weaker than the singlet by a factor of three. 
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For the spin splittings the results in Table 4.2 arise from the 

scaling factor (3/8) in Eq. (4.12b) which gives the following new predictions: 

[M(A)-M(N)l/[M(p)-M(a)l= W(z ) -M(Z)]/[M(K”) -M(K)] = 9/16, (4.14a) 

M(C) - M(n) = (3/8){[M(p) -M(n)] - [M(K”) -M(K)]} = 88 MeV . (4.14b) 

:* 
The equality of the t: - Z and 2” - Z splittings predicted in Ref. (9) holds 

for the most general two-body interaction. The 24 MeV discrepancy 

indicates the inherent error in the baryon sector in any model with only 

two-body interactions. Thus the 15-200/o agreement of the new predictions 

(4.14) with experiment is as good as can be expected. 

The same approach applied to charmed particles predicts the mass 

values 2305, 2435 and 2570 for the charmed baryons C 
::; 

o, C1 and C from 

the masses of the charmed mesons by the analogs of Eqs. (4.14) and (4.14). 

::: 
The spin splitting of the charmed-strange mesons M(F ) -M(F) is 

predicted by Eq. (4.12b) to be 122 MeV with the D:” and D masses used 

as input in addition to the p, ?r, K and K”. This prediction is sensitive 

to the flavor dependent quark mass factor. If the sum of the quark masses 

is replaced by the product as in Ref. (4) the corresponding prediction is 

87 MeV. 
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