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ABSTRACT 

The new gauge formulation of the electromagnetic interaction theory, containing the 

“fundamental length” II as a universal scale like h and c, is worked out. A key part belongs to 

the 4-dimensional de Sitter p-space, with the curvature radius w/at. In the new approach the 

electromagnetic potential becomes a 5-vector associated with de Sitter group O(4.1). The extra 

fifth component, called the r-photon, similar to scalar and longitudinal photons, does not 

correspond to an independent dynamical degree of freedom. Respectively, the new lo& gauge 

group is larger than the ordinary one and depends intrinsically on the fundamental lengtha.. 

The gauge invariant equations of motion, replacing the Dirac-Maxwell equations, are set 

up. The new formulation is minimal with respect to the 5-potential but is not so in terms of the 

usual &potential. As a result, the underlying physics looks much richer than the ordinary 

electromagnetic phenomena. The new scheme predicts the existence of the electric dipole 

moments~for charged particles, leading to a direct violation of P- and CP-symmetries, and the 

new universal correction to the (g-2)anomaly. Further, some new group of internal symmetry, 

SUr(i’), arises that can be used to describe the ue-symmetry of the electromagnetic 

interactions. It turns out that SU,r(2)-symmetry is violated by the 4-fermion type interaction, 

induced by T-photons, with associated coupling constant pall 2. This novel interaction might 

give rise to the we-mass difference and processes like u + 3e, u + ey, etc. 

In the limit !2 + 0, the new field equations turn into the Dirac-Maxwell equations for the 

electron, muon and electromagnetic fields. So, one may consider this approach as a 

generalization in a profound way of the standard theory of electromagnetic interactions at 

small distances ,< 9. (high energies >_ l/k). 

The upper bound for the fundamental length II is discussed taking into account the various 

experimental data. 

1. FUNDAMENTAL LENGTH AND DE SITTER MOMENTUM SPACE 

In the present talk we shall discuss a new gauge formulation of the electromagnetic 

interaction theory which is based on a concept of fundamental length. This new hypothetical 

constant we denote as R. Together with ]n and c it is expected to regulate ail microscopic 

phenomena. The quantity 

is called the fundamental mass. 

M = tv9.c (1.1) 
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The idea of an existence of a new universal length, and therefore mass, that would fix a 

scaIe in 4-dimensional space-time, and therefore 4-dimensional momentum-energy space, was 

discussed in literature of the last four decades in different contexts.‘-f4 

Most of the people who tried to introduce a fundamental length into field theory, pursued 

a quite clear and practical god: to cure the theory from the ultraviolet divergences. But it 

turned out that a theory can survive with this chronic disease, and work as a quantitative 

scheme, if it possesses genetically a renormalizability property. Nowadays, the principle of 

renormalizability has imperceptibly become one of the corner stones of the quantum field 

theory. As a result, interest in a fundamental length has almost died out (see, however, refs. 

15-18). 

The greatest triumph of the renormalization approach to the formulation of the quantum 

field theory is certainly quantum electrodynamics (QED). The predictions of QED agree with a 

number of highly precise experiments. The upper bound for the magnitude of the fundamental 

length, established in experiments in the test~of QED at high energies, now is given-by 

The harmony and elegance of QED make an impression which cannot be darkened even by 

the obv~jously algorithmic character of the renormalization procedure. It should be clear that 

the fundamental length hypothesis is first of all a challenge to contemporary QED. In other 

words, this hypothesis can survive only if it will lead naturally to modifying QED in a profound 

way. 

The crucial advantage of QED is that the form of the interaction in this theory is dictated 

by gauge symmetry arguments. It is called the minimal interaction principle and is symbolized 

by the following substitution law (H = c = 1) 

pP + P,, - e,Au(x) . (1.3) 

This substitution leads one to the inhomogeneous Dirac-Maxwell equations for ‘bare” fieids 

IV- e,eXx) - m,)$(x) = 0 (L4a) 

aF”(x) 

av 
= e,T(xly FL$(x) 

where the field strengths are defined as F ‘“(xl = aA?x) 
ax,- 

a A’ (x) 
ax* - 

Let us mention, to be complete, that local gauge transformations of the fields Q(X), T(x) 

and A(x), leaving Eqs. (1.4a)-(1.4b) invariant, are given by*: 

~$!x) + e 
ieoX (x) 

+(X) 
-ieo k(x)- 

, T(x) + e JI (xl (1.5a) 

* 

a 1~~) A,&) + A@) - - 
ax+ 

; x+(x, = X(x) . (1.5b) 

In p-representation the, hermiticity condition of J.-function, evidently, becomes 

X?P) = h&p) (1.6) 



- 

The rule (1.3) does not contain any scale like 9. or M and for this reason is universally 

applied to &I space-time intervaIs and to all values of &momenta. - Therefore, if one adopts 

the fundamental length hypothesis it means that the substitution law (1.3) and its consequences 

are probably invalid or incomplete in the domains 

1x1 <i (1.7a) 

IPI ,M (1.7b) 

Let us consider just one consequence of (1.3). Choosing eoA ,,= const = k P we obtain 

obviously, zero field strengths: Fpv(x) = 0. But corresponding substitution (1.3) is not yet an 

identity transformation, namely 

. (1.8) ~_ 
.- 

This is a pseudoeuclidean parallel shift transformation of the 4-dimensional p-space, testifying 

that a geometry of this space is a Minkowskian one. 

SO we may conclude that our fundamental length hypothesis challenges the Minkowskian 

structure of the momentum 4-space in the region (1.7b). But if the momentum B-space is not 

everywhere pseudoeudidean then what is a reasonable alternative? According to a general 

geometrical classification, the (pseudo)euclidean spaces are those with zero curvature. Their -. 
closest neighbors are spaces with non-zero constant curvature. In the present 4aimensional 

case, these curved spaces are so-called “de Sitter spaces.” 

Let us try to impose on 4-momentum space the de Sitter geometry realized on the one- 

sheeted 5-hyperboloid ~. 

PO 2-P12-P22-P32 - M2pli2 = - M* . (1.9) 

The curvature radius M we identify with the fundamental mass (l.l), assuming that this quantity 

is large enough (cf. (1.2)). Note that Eq. (1.9) places no constraint on timeiike 4-momenta, and 

it is therefore not in conflict with the construction of Fock space and Poincar’e invariance of 

the S-matrix. Besides (1.91, there exists only one more de Sitter space satisfying the 

correspondence principle at M + m, namely 

pO 
2 2 2 2 22 

- PL - p2 - p3 + M ~4 = M2 

But in this geometry we are faced with the universal upper bound for time-like momenta 

p,‘i;’ ( M2, which is inconsistent with the implementation of a unitary representation of the 

Poincarg group on Fock space. 
2 2 Since the mass shell hyperboloids p2 = ml , p = m22,... can be equally well embedded into 

de Sitter p-space (1.9) or in flat Minkowskian p-space free physical particles cannot distinguish 

between these two geometries. Actually, only virtual (interacting) particles can .probe the 

geometrical structure of 4-momentum space. 

In the “flat limit,” i.e. in the region of small virtual momenta 

IPI << M 



one can neglect the curvature of de Sitter p-space, and therefore the new formalism reduces to 

the ordinary theory. 

For virtual momenta belonging to the region (1.7b), the curvature of de Sitter p-space 

becomes a crucial factor. It means that the old (Minkowskian) and new (de Sitterian) 

formalisms should lead to quite different descriptions of particle interactions at small space- 

time intervals. 

.- 

A general approach to the construction of quantum field theory on a base of de Sitter p- 

space has been put forward and investigated in Refs. 19-29.* The concept of local gauge 

transformations and gauge vector field was transferred to the new geometrical arena in Ref. 30. 

2. NEW CONCEPT OF LOCAL GAUGE TRANSFORMATION AND GAUGE VECTOR FIELD 

It is clear, independently of arguments connected with p-space geometry, that in a3heory 

based on the fundamental length hypothesis, the notion of a !o& gauge group should be’ievised 

or generalized in some nontrivial manner. However, geometrical or group.. theoretical 

arguments allow it to be done in an essentially unique way. 

Indeed, one can realize that in de Sitter p-space (l.Y), X-functions parametrizing the 

gauge transformation iti question may be written as follows: 

X(PO’ ;, P4) = 6(Po2 -;* - M2p42 + M2) up,, ;, p,) 

with the hermiticity condition inherited from (1.7) 

x+cp, P,) = X(-P, P4) 

The next step is connected with the following observation: if 

0.2) 

xlp, p,) = 
-ipx-ip4T 

I e X(x, -r)d4xd T (2.3) 

then 
(04*a’- 

aT* 
M2)X(x, T) = 0 

X(x, d+ = X(x, - T) . (2.4) 

So in the new scheme, the gauge functions X may be treated as local functions of five variables - 
(x ‘, .c), with the obligatory constraints (2.4). The extra space-like variable T can be 

*The use of such a momentum space in a field theory was pioneered in Refs. 4 and 8. The Iisf 

of other papers on this subject can be found in Ref. 20. In Ref. 10, the field theory with the 

momentum space of variable curvature was discussed. We should point out that in all previous 

attempts to employ a non-euclidean p-space, Poincarg invariance of the theory was not 

maintained. The concept of nonlocal electromagnetic field based on ideas which were close to a 

non-eudidean momentum space hypothesis, hold% g Poincarc invariance, was developed many 

years ago in Ref. 3. 



interpreted, due to its commutativity with the Poincarg group generators, as some internal 

parameter of the theory. All X-functions which parametrize the conventional gauge 

transformations (l.Ga)-(1.6b) can be found among functions J.(x, 0). 

Since the localization of the new gauge group happened to be connected with the 

configurational 5-space, the relevant gauge vector field, i.e. the electromagnetic potential, has 

to be a 5-vector. Let us denote it as 

AM(x, ~1 = A&x, T), A4(x, T) u=O,1,2,3 . (2.5) 

The extra component A4(x, .c) we call the T-photon. The neutrality of the electromagnetic field 

gives rise to the relation 

AM(x, -T) = 
(’ 

Au +(x, r ), -A,’ (x, r) 
1 

. (2.6) 

.?-30 
The equations of motion for all five components (2.5) are of the form (we put kc=$:M=l) 

A&x, T) +~i 
.aAJx, d 

-i 
aA4(X’ T 1 

aT 
!J 

= 0 

aA&x, T 1 
A4(x,r)-i 8r 

aA.yx, T) 
+i ax = 0 

V 

A,,(x, .c) = 0 

It is readily verified that Eqs. (2.7) are invariant under the following gauge transformation: 

A&x, d * A&x, “c) - axb, T) 

a2 

a?,(~, -d A4(x,r) + A4(x,‘)+i x(x,r)- a= (2.8) 

where X(x, T) satisfies the relations (2.4). Further, due to (2.6), Eqs. (2.7) remain unaltered 

after the transformation T*-T combined with hermitian conjugation. We shall refer to this 

property as the -r-invariance. 

As was shown in Ref. 30 the T-photon does not correspond to an ind,ependent dynamical 

degree of freedom and can be excluded~ by an appropriate gauge transformation (2.8). But, 

similar to scalar and longitudinal photons, it plays the important mediating role in an 

interaction.3l 

Putting 

BMk, T) = 6” A&, ~c) (2.9) 

one can rewrite (2.8) as follows 

BM(x, T) + BM(x, T) - -?- (e-iTx (x, T 1) 
axM 

M = 0,1,2,3,4 . (2.10) 

The 5-potential Bk,l(x, T) has a clear geometrical meaning in the fiber bundle theory context.* 

- Introducing the 5-dimensional field strengths 

* 
A generalization of (2.10) to the non-aheli>” r>cn :r r+-,:-C+c--...-c-l 3o 



FrVIN(x, T) = 
aB&, -c) afqx, T) 

aP axM 

we can conclude from this definition and Eqs. (i.7) that 

aFP”(x, T) 
FJx,T)=O , aT = 0 

(2.11) 

, (2.12) 

aFP”(x, 0) 

axv 
= 0 (2.13) 

Eq. (2.13) coincides with the standard Maxwell equation. This prompts that B&X, 0) can 

be identified with the ordinary electromagnetic 4-potential A&x): 

E&(x, 0) z Au(x) . (2.14) .- 

A formulation of the free Dirac theory in the 5-dimensional (x, r )-space is de&bed in 

Ref. 31. The important feature of that scheme is a use of the S-component de Sitter spinors 

Y(X, T) = (2.15) 

where .I)~(x, T) (a = 1, 2) are the conventionaJ 4-component spinors. This is connected with the 

requirement of the r-invariance. 

3. GENERALIZED PRINCIPLE OF MINIMAL FLECTROMAGkETIC 
INTERACTION AND NEW FIELD EQUATIONS 

1 

The next natural step is to assume that the new theory of electromagnetic interaction has 

to be invariant under the following group of the local gauge transformations: 

YCx, T) + e 
ie,e -’ ‘ik, T) Yk, T) 

Q(x, T) * BM(x, T) - -?- (eeiT x(x,T)) 
a# 

M = 0,1,2,3,4 (3.1) 

where 1(x, T) satisfies, as before, the relations (2.4) and eo is the electric charge. The 

appropriate generalization of the minimal principle of electromagnetic interaction can be given 

by the substitution Jaw 

i a a 

axM 
-f i - -eoB,(x,T) 

axM 
M = 0,1,2,3,4 . (3.2) 

In the new approach we obtain the following field equations, substituting the Dirac-Maxwell 

equations (1.4a)-(1.4b) (the units are 6= c = J13’ 

(LX- eofi- mo)$,(x) = 
ieok cos 9 

4 ’ y%” Fpv(xJ$l(x) - 

eollsin 8 e 2!L2 
o 4 o~vF,,V(x)Ql(~) - + (T,(x)yp$(x) +V2(x)Yp+l(x)h’$,(x) , (3.3a) 

- 



(i2 - e,fi - mo)G2(x) = 
ieo9,cos 0, 

4 y50 ” “F,, v (xl $2W - 

e,i sin 0 e 2L2 

4 ‘a” F,JxN2(x) + + (lii$X) Y p’i’2(4 + ~2(X)y,,‘4(x))yu~2(x) , (3.3b) 

aFpv - =e 
ax’ 0 a=i2 [TaW~(x) -q cos a0 -$@a(x$JUv (J,(x)) + 

+$ sine0 > (3.3c) 

where ouv z-2 ( yuyv- vvuu) and 

sin e A-T71 

0= mo!Z , cos $ = L-Z . KG 

Eqs. (3.3) contain as the conventional minimal electromagnetic interaction as the non- 

minimal terms: 

i) electric dipole moment (EDM) interaction ~QCOS 8,; 

ii) magnetic dipole moment (MDM) interaction s Rsin 0 o, called aIso the Pauli interaction; 

-iii) r-photon interaction se o2 !L2. Such a name is chosen because this interaction survives 

even if there are no ‘ordinary” photons (A p(x) E 0) and, therefore, it could be induced only by 

the ‘c-photons. 

Neglecting the T-photon interaction in Eqs. (3.3a)-(3.3b), we obtain that the resulting set of 

equations, together with Eq. (3.3c), becomes invariant under some SW(Z)-group operating in 

(4, J, 2)-spate. This group will be denoted as %-J,(2). 

We would like to stress that all interaction terms in Eqs. (3.3),minimaJ and non-minimal, - 
are originated by the minimal interaction in terms of the 5-potential BM(x, -r ). 

. 

4. INTERPRETATION AND DISCUSSION 

We suggest to consider the SU,(2)-symmetry, deeply ingrained in our scheme, as a 

manifestation of the ue-symmetry of the electromagnetic interactions. So; for instance, 
* 

JI, = e 

Q 2=v . (4.1) 

The T -photon interaction, violating SUr(2)-symmetry, presumably gives rise to the muon- 

electron mass difference and the processes u +3e, p + ey, etc. Analyzing the experimental 

data, concerning these decays, one obtains the following upper bound for the fundamentaJ length 

I.: 
II < 3*10-18cm (4.2) 

Next, let us consider Eqs. (3.3a)-(3.3b) in the Par&i approximation. Assuming that 

A”(x) = G(r) = arbitrary , A(x) = ,;[Gx :] ; ii = const. , (4.3) 



and expanding Eqs. (3.3a)-(3.3b) in powers of I/c, one finds the following generalized Pauli 

equation: 

(a = J,2) 

where 

The quantity 

.- .‘,. 
(43) :“. 

defines the intrinsic anomalous magnetic moment of the Dirac partide in our-approach. Writing 

the EDM-interaction in the canonical form UEDM = (2-z) one obtains the expression for the 

intrinsic electric dipole moment of the same particle I 

d: -eocs5+= -,a?; . 
Thus, one can conclude: 

i) the Dirac partide in this scheme is an extended object from the very beginning; 

ii) the theory developed predicts P- and CP-violations in the electromagnetic interaction, 

since charged particles possess the EDM. 

Eq. (4.4) holds in the general case of arbitrary ratio between the particle mass m. and the 

fundamental mass M. For Jeptons, evidently, ma/M CC 1 and therefore 

131 
e II 

Jepton = ?? 

(4.7) 

(4.8) 

Comparing (4.7) with the current theoreticat and experimental uncertaintiesin this quantity we 

obtain one more upper bound~for the fundamental length*: 

9. 52.6*JO-J7 cm (4.9) 

that is not very far from (4.2). 

Using (4.2), (4.8) and (4.9) we can conclude that the upper bound for Jeptonic EDM, in 

order of magnitude, is at least 

G( lepton 5 e. (lo 
-17 5 JO-‘8) cm (4.10) 

* 
To our knowledge, it is the first time a highly precise experiment, designed for a test of a 

validity of QED, is used to estimate the fundamental length. 



This is consistent with the old experimental data on a direct measurement of the electron and 

muon EDIv\~~ . with observed shifts of atomic levels, 32 with parity violation effects in atoms, 33 

with the recent search for the parity violation in the polarized electron scattering. 34 

On the other hand, a number of experiments were performed on indirect estimation of the 

electron EDM through the measurements of EDti that it induces in atoms. From the result 

obtained35-38 and (4.8) one might conclude that 

E < 10-24 f 10-23 cm . (4.11) 

.- Let us emphasize once more that the existence of non-zero EDM for elementary particles 

should lead to the violation of the CP-symmetry. 3g Thus, according to our approach, the 

mechanism of the CP-violation may be purely electromagnetic if the theory of the 

electromagnetic interactions is based on the fundamental length hypothesis. .: : 

It does not need any comment that the experimental discovery of the particle EDcviwould 

be of great importance for the present theory. Concerning leptons, which have not undergone 

strong interactions, one should realize that, due to (4.81, the measurement of their EDM is the 

straight measurement of the fundamental length. 

Coming back to the particle MDM we can rewrite this quantity as follows 

i;= cog + 2m,c s = 2 m2:ZM2 2 
/--- 

. (4.12) 

So eoW2MC = e,R/2 plays the role of a minimal magneton attainable only when m,>> M. 

Hence, superheavy Dirac particles, if such objects somewhere exist,* should serve not only as 

sources of the static Coulomb field but also as sources of the static magnetic field, produced by 

the magnetic dipole moment (eofi~/(2Mc). 

I am sincerely grateful to Professor Arno Bohm for his kind invitation extended to me to 

attend this conference. 
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