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ABSTRACT 

We discuss the ambiguities considered by V. N. Gribov in the 

formulation of Coulomb gauge in non-Abelian gauge theories. We review 

the division of gauge field space into a sector with a unique transverse 

gauge, a sector with a two fold ambiguity in transverse gauge, etc. 

We argue in a semi-classical fashion that transitions between these 

sectors readily occur and discuss the connection with ideas of quark 

confinement in Coulomb gauge. Because of these transitions it appears 

that the functional integral formulation of Coulomb gauge will be rather 

more complicated than expected in the past. 

a Operated by Universities Re.search,Association Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

The formulation of non-Abelian gauge theories in Coulomb gauge 

was first carried out many years ago by Schwinger. 1 
He subsequently 

showed that the canonical commutation relations at equal times lead 

to a Lorentz covariant description of the theory. On that foundation the 

Coulomb gauge has proved now2 and then3 to be an appealing physical 

framework into which to cast various questions about Yang-Mills 

fields because it appears to have two degrees of freedom for the field 

for each gauge group and space-time label. 

In a lecture at the 12th Winter School of the Leningrad Nuclear 

Physics Institute, Gribov4 has called attention to the fact that in 

non-Abelian gauge theories there is a non-trivial residual gauge freedom 

in, at least, Coulomb and Landau gauges. This means that in such 

gauges, the connection between physical states and gauge field configuration 

is not unique. Gribov suggested a mechanism5 whereby this ambiguity 

might be connected with the confinement of color in Yang-Mills theories 

via the Coulomb energy term in the Hamiltonian. 

We ‘propose in this note to first review and slightly enlarge on 

Gribov’ s arguments o Then we will examine the question of “large fields” 

and the connection with color confinement. In the latter discussion we 

will consider different sectors of the eigenvalue space of the operator 

Dj(A) V. = v26ab +f 
ab J 

A.‘(;)0 
acb 1 j 

(1) 
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whose determinant gives the usual Faddeev-Papov ghost term’ in 

Coulomb gauge. This same operator enters the Coulomb,energy in 

the gauge field Hamiltonian. ‘We will demonstrate, in a semi-classical 

argument, that the zero eigenvalues of D.V., which give infinite values 
3 3 

to the Coulomb energy, do not present an impenetrable barrier to the 

gauge field and are unlikely, we argue, to have a connection with color 

confinement. 

II. RESUME OF THE COULOMB GAUGE 

The field equations for the Yang-Mills field A pa(x) (where a is 

a group index running a = i , . . . N2 - I for SU(N) which we shall have 

in mind here ) derived from the familiar Lagrangian 

F. a = aAa-aAa+f AbAC ‘, 
lJv P * v P abc p v 

do ‘not determine all components of A a. If we impose the Coulomb 
P 

gauge condition 

V.A.a = 0 , 
J 3 

and eliminate the dependent time component Aoa, the Hamiltonian density 

for the field becomes 

(2) 

(3) 

(4) 
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z= $ Ej Eaj -I- $ Baj.Baj - pa (+$,, V2 ($Jbc p, ’ (5) 

where 

gj =LE a 
a 2 jkiFki 

Dj(Ajab = 6 v. “rf c 
ab J acbAj 9 

'a 
= + bE ’ 

j ’ 

and E.” is the transverse part of the electric field P 
3 

Fa 

V.E.a = 0 0 
J J 

All this is quite familiar from References 1 and 6. 

Now in Reference 4 Gribov poses the question whether there may 

be another vector potential A’ .a which is connected to our original A. 
a 

3 3 

by a gauge transformation g and still satisfies V.A. a* = 0. 
J 3 

Writing 

the vector potential in matrix form 

with , 

(6) 

(7) 

63) 

(9) 

(10) 

(11) 

this is then the question of the existence. of non-trivial g in the gauge 

group so that 
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and V.A.’ + V.A. = 0 . 
J 3 3 J 

This is satisfied for all g such that 

Dj(A’((Vjg’g-‘) = 0 

where Dj(A)$ = Vj4 + [A j’ 41 in matrix language. 

If we were dealing with an abelian theory, we could of course ask 

the same question, namely whether with any non-trivial g = e 
-iti: two 

transverse fields could be connected. If it were so, then 

v2w = 0 

must be satisfied. Usually we allow only w = 0 as a solution for this 

equation by an appropriate choice of boundary conditions. In any case 

any permissible o is independent of the vector potential A and leads to 

physically uninteresting consequences. 

Another way of putting this last point is to examine the generator 

of gauge transformations in the abelian theory 

GA = 
/ 

d3XEjVjA’x’ . 

(12) 

(13) 

(14) 

(15) 

WI 

For Ej which fall off fast enough, we can ,perform a partial integration 

and formally set GA = 0 since VjEj = 0. That is in Coulomb gauge we 
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have no operator with which to perform a gauge transformation, so the 

gauge specification is complete. 

In the non-Abelian theory we have a more complicated nonlinear 

equation to solve. Gribov has shown for an SU(2) gauge theory that even 

when A. 
J 

= 0, the ambiguity equation (14) 

vj(vjgy4) = 0 , 

has non-trivial solutions which for large 1 z[ give 

The 7j are Pauli matrices, This has been verified and discussed by 

Jackiw, Muzinich and Rebbi. 
7 

Furthermore even for A. = 0, there is 
J 

a four fold infinity of solutions depending on a “location” x” 0 anda 

scale. The case Aj C 0 has been examined by Gribov using the ansatz 

A.” Xk 
3 = ‘jak ;2 II 

f(1Z2[) , 

(17) 

(194 

and he again concludes that non-trivial gr s exist which move one around 

in the space of transverse Aj’s. 

The generator of gauge transformations in the non-Abelian theory 
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GA = I d3x EjaDj (A)abAb(x) 

= >I d3x(EjaVjAa(x) + f E.aA “Ab) , acb J j 

is non-zero even when we may integrate by parts on the first term and 

use V.E. 
a = 0. 

3 J 
So the origin of the gauge ambiguity lies in the fact that 

the gauge bosons carry color, charge, and in a non-Abelian theory we can 

hope to implement gauge transformations within the space of transverse 

fields. 

The connection between these observations on the ambiguity in 

specifying the gauge when VA. 
3 J 

= 0 and the Coulomb energy in (5) goes 

as follows : we imagine that for various sectors of Aj space the 

ambiguity equation (14) has N(A) = 1, 2, o -. solutions, What divides 

N(A) = 1, 2, etc. ? To establish this we note that in the sector N(A) = 1 

the unique solution is g3 = i (the unit matrix is always a solution). 

Inside the sector N(A) = 2, we will have the solutions gi = & and 

g, *!y We suppose, however, that at the boundary between the N(A) = I 

and N(A) = 2 sectors g, *$. So very close to the boundary 

g2 = $+42 , 

(20) 

(21) 

(22) 

and the ambiguity equation becomes 

Dj(A)Dj42 = 0 (23 ) 
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When this equation has a non-zero solution for 42 we are “just mside” 

the sector N(A) = 2. Just at the boundary then, the operator Dj(A)V. 
J 

develops a zero eigenvalue and the coulomb energy 

G3? coul = pj& “&jp . . 

becomes infinite. Similarly, at the boundary between N(A) = 2 and 

N(A) = 3 we might suppose that a solution g3 to the non-linear ambiguity 

equation develops out: of the unit matrix g, s 1 f- $3 and, of course, ‘CI 

Dj(A)Vj$3 = 0. So the zero eigenvalues of the operator Dj(A)Vj seem 

to set the boundaries between sectors between solutions of the gauge 

ambiguity equation (14). 

Furthermore, it is just at these boundaries that zcoul becomes 

unbounded. So one might argue, a la Gribov, 
5 

that this provides an 

origin for color confinement- Imagine two color charges close together 

and then moving apart. When they are close, the effective interaction 

is small because of asymptotic freedom and the gauge,potentials are 

small, so 

Dj(A)V. e V2 
J 

(24) 

(25) 

and %oul 
is “normal” and harmless. When the charges move apart 

the effective interaction grows until Dj(A)Vj develops a zero eigenvalue 

and the Coulomb energy absorbs the kinetic energy of the charges and 
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they stop. By examining the operator Dj(A) . for potentials like (19), 
3 

Bender.,, Eguchi and Pagels have argued that indeed 

H = coul / d3x %oul 

grows (as [ T13) as the charges separate. In the next section we will 

conclude that this does not demonstrate confinement because by choosing 

other field configurations the vector potential can easily pass, at finite 

energy, through the barrier raised in x 
coul 

when Dj(A)Vj has a zero 

eigenvalue. 

Before that we wish to discuss one more matter connected with the 

ambiguity equation. In the usual Faddeev-Popov prescription for the 

functional integral formulation of the non-Abelian gauge theory, 6 
one 

introduces the gauge condition V.A. 
3 J 

= 0 into the integral over all field 

configurations Aj by ins ert ing 

(26) 

(27) 

into the integral. Then using the gauge invariance of the Yang-Mills 

action and of A(A), one changes variables from Aj to A.’ = g-‘Ajg + g-‘vjg 
J 

and extracts an infinite factor IT 
I 

dg(x) from the integral. The procedure 
X 

to follow is still the same in the presence of ambiguities, but the 

determination of A(A) is remarkably more conplicated. 9 We need to 

determine all gn n = 1, 2, o s 0 N(A) for which the argument of the 6 
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functional in (27) vanishes. These gn are determined precisely by the 

gauge ambiguity equation (14). Then A(A) is given by 

where 

with 

N(A) 
A(A):’ = 

22 
det M(n)) -’ 

n=i 

Mb) = V26 -tf 
acb Aj 

(n )c 
ab ab v. 9 

J 

A (d -1 

j 
= gn Ajgn + gn-*V-g 

3 n 

and as usual the determinant is in group indices as well as space-time. 

If the unique solution to the ambiguity equation were g, = A, then 

A(A) = det (V26ba + f A ‘V. ) 
acb j J , 

which is the familiar Faddeev-Popov result, In general, however, 

we expect N(A) + 1 and gn f: iwhich rather severely complicates the 

functional integral formulation of Coulomb gauge. Recall that gn 

satisfies (14) and is a functional of A.. 
J 

Much of this apparent additional structure would disappear if the 

“barrier” established by zcoul when Dj (AID. has a zero eigenvalue 
J 

were not penetrable. Then we would naturally assume ourselves to be 

(28 ) 

(29) 

(30 ) 
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in the N(A) = 1 sector where g1 = $ and know we would never leave it. 

The next section concludes that to be untrue, so the complications 

appear to persist. 

III. TRANSITIONS THROUGH THE COULOMB BARRIER 

We want to consider now the possibility that if we prepare the 

gauge field A (1) +- j (x ) at some time t = 0 in the sector N(A) = i, say, then 

at some later time T, it will have tunneled through the zero eigenvalue 

of Dj(A)V., which causes SY 
3 

coul to be unbounded, to another field 

configuration A. (2)(z) which lies in the N(A) = 2 sector. That is, we 
J 

want to know if the transformation function 

<Aj (2 ‘(x”), T 1 Aj (’ )(g)> 0 ’ 

is non-zero. Formally this transition amplitude has the expression 

(32) 

with A(;, 0) = A(‘) and A(;, T) = A(2)m We are unable to evaluate this 

integral exactly, so we will proceed with the following strategy., 
10 

Replace the time dependence of Aja(g, t ) by a function K (t ) which at 

time t = 0 indicates we are in sector N(A) = 1 and at t = T tells us we 
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are in N(A) = 2. { K(t) will turn out to be related to an leigenvalue of 

an integral operator connected to Dj (A)Vj. } Replace the integral over 

fields Aja (2, t) by the path integral over K(t ). Evaluate this integral 

in semi-classical or WKB ap’proximation usi ng the stationary ,phase 

approximation to the one-dimensional quantum <problem in K-space. 

Effectively we are noting that the transition of interest takes place in 

the parameter space and the other (infinite) degrees of freedom play 

an inessential role. 

To begin, let us look at the condition that the operator DjVj have 

a zero eigenvalue 

(V2bab +f acbAjCf’j)$,(:) = 0 . (33) 

Going over to momentum space we have the eigenvalue equation 

x-1 
n 

d3pKab $, p’)X,‘” ‘(p’) , 

where 

Ka$-, ‘p’, = 
if acbp.A.c(T - ,p’) 

’ 

(34) 

(35) 

and (33) corresponds to X = I. 
n 

In terms of the eigenvalues Xn of the kernel K we can state the 

determination of the sectors N(A) = 1, 2, D o 0 as follows. In N(A) = 1 
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all Xn -1 > I . As we cross over the boundary from N(A) = 1 to N(A) = 2, 

1d passes through 1. As we cross from N(A) = 2 into N(A) = 3, h2 

‘passes through 1, etc. 

We also have here a more precise statement of what a”large gauge 

field” means : when the norm of the kernel is less than I, all Xn -1 > 1 . 

When this norm increases the Xn one by one march through:one taking 

us from sector to sector. 

Now we imagine parametrizing the vector potential by K(t) 

Aja(:; t) = A.av x”, K(t)) 
J ( 

o 

The eigenvalue of K as a function of time is 

/ 
$p) = 

d3qd3,pXa - (“)(;Kab(: &$,t;) 

d3p~a’n)(;)Xa’“)(;) ’ 

showing that a(t) is proportional to >(t), As K ,proceeds from K(O) to 

K(T), Xl(t) should go from X1(O) < 1 to X1(T) > 1. Somewhere in that 

interval, say at K(tS) = ~~ the eigenvalue becomes equal to 1 and the 

Coulomb energy has a (K - Ks ) 
-2 

singularity. C. 

Return now to the functional integral (32) for the transition 

amplitude of interest * Using 

(361 

(37) 

i 2 

6(x) = lim 
-2ax 

CY*O 
$Te 
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to place 6 (V jAja) and 6 (V jEja) in the exponential, we can perform the 

gaussian E.” 
J 

integration to find 

< A(‘+:), T 1 A(“(;), O> = limlim dA.” x 
a-0 p-+0 I 

J 

exp ( i [ dt [$ Jd3xAy(g)?jVkAka(g) 

+L 
4 J 

d3xd3ylija(;, t) 
( 

N;;(;, y’) 
) 

-1 
Bkb(y’, t) 

with 

. 
+$ d3x tr log <x (N Ix> - $ ld3xB;B;] j 

(38) 

, 

and 

1 1 v2 1 a = D.V ’ D.v 
J j J j 

(40) 

Using the parametrization in terms of K (t) and truncating the functional 

integral by exhibiting only dK (t) we write the transition amplitude as 10 
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- V(K) 
3 

dt 
2 

where m(.K) vanishes as (K - K~) 
2 near ~~ because of the N 

-1 
in (38), 

while V(K) is at most logarithmically singular there. 

The semi-classical approximation follows the variable along the 

classical path which is given by the Euler-Lagrange equation for 

2 
L(;, K) = i$- m(K) - V(K) 

These equations have the constant of motion (energy) 

E = W2m(K) + V(K) 
2 

(41) 

(42) 

(43) 

and the WKB approximation to the transition amplitude in question is 

essentially 

0) 
dK m 2 (E - V(K))- 

E 
expi 

I dZ(E - V(K)) ’ (44) 

where we are to take c into *tic “under the barrier” (V(K) > E) 

to have a damped exponential as usual. The transition rate (44) is 

finite even as we integrate through ~~ where XI (or Xn in general) goes 

through unity. If we include quark sources as well, then, in essence, 

the only change is that the quantity V(K) above develops a term which is 

-2 
This comes from a term Jo A 

-1 0 
singular as (K - KS) 0 J in the 
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Hamiltonian where Jo is the color charge density of the quarks. With 

this addition the integral in (44) is still quite finite as we go through K~., 

WhatIs happening here is that the potential is momentum dependent 

and at the point K 
S 

where the potential becomes infinite the momentum 

is integrable D Consider, for instance, the example (which is really just 

the Hamiltonian for Equation 42) 

2 
H(p, K) = +- W(K) + V(K) , (45) 

where both W(K) and V(K) are singular in the same way at the same 

point K~. This is a mock up of the case of gauge fields plus quarks. For- 

a transition at fixed energy E the momentum is 

p = dZ(E - V(K))/W(K) (46) 

and the essence of the WKB transition amplitude is 

which is finite. 

This exercise tellssus that transitions across the Coulomb barrier 

are easy even though the barrier is infinite. The essential difference 

(47) 

between this situation and that where we have an ordinary potential 

problem 
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2 
H = F + V(K) (48) 

with V(K) = (K - K~) 
-2 

which is a barrier that cannot be crossed> is that - 

the potential for the Yang-Mills coulomb interaction is momentum dependent. 

Clearly this is a quantum mechanical effect. Classically the field is 

“stopped” by the Coulomb barrier, In quantum theory when the field 

Aja(g, t) gets “big enough” so the kernel (35) develops an eigenvalue 

unity (equivalently, Dj 1 has a zero eigenvalue), it sails right through 

the barrier. Our discussion of separating color charges must, therefore, 

be significantly modified since there appears to be no impenetrable wall 

to stop the quantum system from tunneling right through. 

IV. CONCLUSIONS 

This paper has primarily aimed at clarifying and perhaps making 

more precise various points raised in Reference-4. The ambiguities in 

Coulomb gauge for non-Abelian theories are connected with the possibility 

of multiple solutions of the ambiguity equation 

Dj (A ) ( vj gngn -‘) = 0 n = i,Z,...N(A) (49) 

Indeed, Gribov showed that even for A. = 0, N(A = 0) is infinite. A 
J 

heuristic argument indicates that N(A) may be infinite for any A . . 
J 

Namely, 

if one constructs Vj(z) so it is traceless and anti-hermitean, then 
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where P indicates path ordering, is an acceptable element of the gauge 

group, V  . ( ; I  = V  jg,gn 

-1 

can be made co-variant divergence free by 
J 

taking any operator fl 
j 

and any vector Wj and writing 

V. = w. - 0 cl DW 
J 3 jDkflk i j 

(50) 

(51) 

Natural choices for 0 
j 

are V ., 
J 

Dj, and even a transverse potential B.. 
J 

This large number of solutions seriously complicates the functional integral 

formulation of non-Abel&n theories in Coulomb (and Landau) gauges, 

since for each solution gn of (49) the Faddeev-Papov determinant receives 

a contribution. These contributions are in general unequal. Since it is 

only the sum which is gauge invariant, all terms must be retained. This 

seems to be a strong hint that the use of Coulomb or Landau g-auges in 

non-Abelian theories may be, in any calculational scheme, restricted 

to the non-covariant appearing Hamiltonian form. 

We have also examined the question of the nature of barrier that 

the vanishing eigenvalues of the operator Dj(A)V . appear to’raise in the 
J 

Yang-Mills Coulomb energy 

H = 
3 1 24 

coul dxpDeV DqP ’ (52) 

If this barrier could not be penetrated by a field configuration at finite 

energy, we might then have the qualitative picture of confinement outlined 
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in Section II. However, because the potential in the Yang-Mills theory is 

momentum dependent, the field is not stopped at the singularity in H coul’ 

but in semi-classical approximation sails right through. It appears 

doubtful then, that the infinities of Hcoul are connected with the confine- 

ment of color. The work of Reference 8 is then to be interpreted as a 

particular set of field configurations which do not permit color charges 

to separate indefinitely. However, the field may 

avoid such configurations and take a path through 

milder* 
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