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ABSTRACT 

We study vacuum tunneling of non-abelian gauge theory directly 

in Minkowski space. We do this by constructing a family of field 

configurations which connects vacua of different winding numbers and 

which satisfies conditions necessary and sufficient to produce maximum 

tunneling amplitude. Using these explicit configurations we obtain 

explicitly the potential energy barrier in winding number space, through 

which tunneling occurs. We finally discuss the possible connections 

among the tunneling solution, the classical solution and the full quantum 

mechanical solution to the field equations. 
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1. INTRODUCTION 

Recently, much progress has been made in understanding the 

nature of the ground state for a non-abelian gauge theory. The discovery 

of Euclidean solutions, t-5 
the instantons, and their possible interpretation 

as tunnelings among vacua with different winding numbers 6-10 stimulate 

many speculations and excitementi. In our opinion, there are many 

features concerning these pseudoparticle solutions which still need to be 

understood. In particular, the detailed mechanism of the vacuum tunnel- 

ing in Minkowski 10 
space and its relation to the instanton solution 

deserve a thorough investigation. We address ourselves in this paper 

to the following questions: 

1. What field configurations provide the vacuum tunneling, and 

what are the condition for a maximal tunneling amplitude; 

2. In what space does vacuum tunneling take place, and what is the 

potential barrier in this space; and 

3. To what extentcan vacuum tunneling be understood as a 

solution to the field equation. 

Our results provide partial answers to these questions. It is our 

hope that our work will stimulate further research on this topic. 

In Section 2 of this paper, we formulate the vacuum tunneling as 

a quantum mechanical transformation of field configurations from one 

vacuum to another. In Section 3, we work out the necessary and sufficient 

condition for a family of field configurations to achieve the maximal 
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tunneling rate. The proof is simple in Minkowski space, and the physical 

picture is clear. We work out anexplicit example in Section 4 for a Q= 1 

vacuum tunneling which gives rise to the maximal tunneling rate. We 

then explore in Section 5 the mass parameter and the potential barrier 

associated with vacuum tunneling in the winding number space. We work 

out the potential barriers explicitly, and also plot them in graphs. In 

Section 6, we discuss the validity of the method and the possible inter- 

pretation of the vacuum tunneling as a simplified quantum mechanical 

solution to the full field equations. We discuss and speculate on various 

topics in the last sections. We also include, an Appendix to illustrate 

several interesting features of vacuum tunnelings in a simple e4 theory. 

2. FORMULATION OF THE PROBLEM 

We consider a non-abelian (Yang-Mills) gauge theory 11 
described by 

p9= _ 1 f(a) fb)~v 
4 P” 

2 

,(a) = a .(a) 
CLV PV 

- avaF) + g eabc a:‘aF’, 

with a being an sospin index, and p”. v Lorentz indices. In terms of 

matrix notation, , 

F 
Il” 

= gf; ta, 

(2.1) 

(2.2) 

(2.3) 

a 
A (a) T 

1 =aaP z ’ (2.4) 
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we have 

and 

y= - -!- Tr (FpV)‘, 
2g2 

(2.5) 

F 
PV 

= apAV - a,Ap + + [A/J . 

In (2.3), fta’ (a = 1,2,3) are Pauli matrices. It is often more convenient 

to introduce 

Ei = Foi. Bi = 1 E.. F. 
2 iIk Ik ’ (2.7) 

+ -a 
where E and B are generalizations of the electric and magnetic fields. 

In terms of E and g, we have the Lagrange density 

y= -$ Tr (g2 - g2), 
g 

(2.8) 

and the Hamiltonian density 

$y+ Tr(g2+??2)? 0. (2.9) 
g 

One can define the winding number difference between two space-like 

surfaces o 1 
1,o2 as 

o2 
Q=% Tr 

4rr / 
d4x g . g . (2.10) 

al 

If F 
P” 

= 0 on oi,a2; then, Q is an integer. Equation (2.10) also tells 

us that if the vacua at o1 and o 2 give rise to a nonvanishing Q , there 

must exist some regions between o 1 and o 
2 

such that Fllv $ 0. Since 

the energy density p [see Eq. (2.9)] is positive-definite and vanishes 
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only if F = 0, the existence of such a region (region with F 
c”v 

~“y # 0) can 

only occur during a tunneling process. For a sourceless classical theory, 

F 
Ilv 

= 0 on oi (or 02) implies F 
PV 

= 0 everywhere. Thus, it is impossi- 

ble to change the winding number of a classical ground state. However, 

as a quantum system, the winding number of the ground state may change 

due to quantum fluctuations. This phenomena can be understood as a 

tunneling in some collective mode in the field configuration. Recently, 

Gervais and Sakita studied the vacuum tunneling and its quantum correc- 

tions by means of the collective coordinate method. 10 
The readers are 

referred to this paper for details. 

In this paper, we concentrate on the vacuum tunneling by considering 

only a single collective mode. We shall write down the rules for obtaining 

the maximal tunneling amplitude, In Section 6 and the Appendix, we dem- 

onstrate in a simple example that the vacuum tunneling is consistent with 

finding a first quantized solution to the field equations. 

For sirnplicitly, we choose ot and o2 as surfaces at equal-time 

PI and t2). We work in the Coulomb gauge, A0 = 0. We denote the 

vector potentials on ai and o --(I’ as A -+a 
2 and A . We require that A (1’ 

lr 

and A;’ are associated with pure gauge transformations such that 

F . 
P” 

= 0 on both ai and o 
2 The winding number difference Q can be 

written as the difference of two surface integrals’ 
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= i ( Jt,, - Jt,l d3x) eijk Tr (AiAjAk) . 
12lT 

(2.11) 

Thus, Q is independent of the intermediate field configurations as long 

as A 
CI 

is regular inside the region. 

The procedures for obtaining the maximal single mode tunneling 

amplitudes are : 

1) We introduce a family of intermediate field configurations as 

A0 = 0, (2.12) 

x(&t,) = f’[x,X(t)l > (2.13) 

where A is a parameter describing the field configuration within the 

family. We require that 

f’ = $1) at x= A 
1 ’ 

(2.14) 

F = $2) A= A 2 ’ (2.15) 

and that f varies continuously from A -‘(I’ to A -42) as A varies from 

x1 to x2. Given (2.12) and (2.13), we obtain 

afi . 
Ei= x A, (2.16) 

Bi= + E ijk wj fk - Bkfj + + [fj I fkl) . (2.17) 
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The field variables g and B’ for intermediate values of A usually do not 

vanish. 

2) From g and g, we construct a single-parameter Lagrangian 

and Hamiltonian as 

L = + m(x) ‘x2 - V(x), (2.18) 

and 

H = & + V(x) , (2.19) 

where 

m(x) = -$ 
g 

/ d3x Tr (EC) 2, 

V(X) = $ / d3x Tr g2 , 
g 

jYx’ % = Id(X) i , 

(2.20) 

(2.21) 

(2.22) 

A typical potential V(A) is shown in Fig. 1. 

To obtain the tunneling amplitude, we treat (2.19) as a quanturn- 

mechanical Hamiltonian. With appropriate orderings of the operators, 

we can make H Hermitian. We can now obtain the tunneling amplitude 

by solving an ordinary Schrodinger equation. At the weak coupling limit 

in which the tunneling amplitude is small, we can compute the tunneling 

amplitude by the WEB method as e -R with > 

R= J x2 dh 4 2m (X) V(r). 

X1 

(2.23) 
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3) By varying the field configurations f(x). X(t)). we can find the 

conditions for obtaining the maximal tunneling amplitude. In Section 3, 

we shall obtain the necessary and sufficient conditions for the maximal 

amplitude. 

3. VACUUM TUNNELING IN MINKOWSKI SPACE 

NOW, let us compute the WKB vacuum tunneling amplitude due to a 

particular family of field configurations ( A0 = 0, A’ = 7(x, X(t ))) . The 

total Hamiltonian H associated with {F} is 

P,; 
Hz - 

ZmJ(X) + VP.), (3.1) 

with m(x). V(h) being given in Eqs. (2.20-21). The first term of H 

denotes the kinetic energy with a A- dependent mass m(A), and the 

second term denotes the potential energy. It is easy to see that 

and 

V(hl) = V(X,) = 0, 

V(A)>0 whenever ?$=+O. 

(3.2) 

(3.3) 

The WKB tunneling amplitude is P = e -R with 

(3.4) 
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We can interprete 

Tr 
I 

d3x z(x) * c(x) = a * b , 

as a scalar product with a prositive norm, i.e. 

/a21 E a* a>O, 

for every a * 0. This implies that Schwartz inequality holds for every 

a and b, 

+Jii~z la:~bi . 

The Schwartz inequality implies in the present case 

R?s Tr 
I I 

d4x g * g 

g 
= 5 /Qj. (3.5) 

Thus, for a given winding number difference Q , R is bounded from below 

by 5 I&I; and hence, the WKB tunneling amplitude is bounded 

from above by 

PEemRsexp[-F jQ 11 - (3.6) 

In addition, R reaches its minimal value R = 5 I&I (or P re ache s 

its maximal value) if and only if 2 is proportional to g for all 2 and t 

with an x-independent proportionality constant. The problem of finding 

the fastest WKB tunneling rate is equivalent to finding a set of field con- 

figurations whfch gives rise to parallel E and g. Note that even though 

2 and 5 are gauge dependent quantities, the relevant quantities such as 

L, Q , and the condition g // g are all gauge independent. Hence, the 

WKB tunneling amplitude is gauge invariant. In the following section, 
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we shall present field configurations which give rise to the maximal 

tunneling rate for Q = 1. 

4. AN EXAMPLE 

An explicit family of field configurations which gives rise to the 

maximal vacuum tunneling amplitude for Q = 1 is 

A0 = -2 x ‘2T x > 
x +X +a2 

A* = h;++x; 
-2 
x + ~x2 + az 

(4.1) 

(4.2) 

The vector potential Ap given in (4.1) - (4.2) is not in the Coulomb gauge. 

We can transform it into the Coulomb gauge AL = (0,x’) by a gauge 

transformation U, 

Al = U-‘[(8k - i Ap) U] , 

with 

U = exp [ .H t=-)JT] . (4.4) 

The Coulomb gauge vector potential is quite complicated. Since both the 

Lagrangian L and the winding number Q are gauge invariant, we can 

compute them in the original gauge specified by (4.1)-(4.2). We can 

evaluate the vacuum tunneling amplitude once L and Q are known. 

Using (4.1)-(4.2), we find 
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2. 
g=- +,“a,” T, 

(X +A +a2) 
(4.5) 

Es=- 2a2 + 

(g2+k2+a2)2 ” 
(4.6) 

which are indeed parallel to each other. The effective one-parameter 

Lagrangian L and the Hamiltonian H are 

L = -$ Tr/ d3x (g2 - g2) 
g 

3rr2 a4 = ‘x2 _ 3 rr2 a4 

g2(X2+a2)5’2 g2(X2 + a2)5r2 

and 

= $n(A) ‘x2 - V(X) , 

P”, 
Hz- 

2atv 
+ V(A) , 

respectively, with 

iTi(A) = 6~’ a4 

g2(A2+a ) 
2 512 a 

V(X) = 3rr2 a4 

g2(A2+a2)5’2 ’ 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

pA = m(x) X . (4.11) 
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For an intermediate value of X(t ), we define a winding number variable 

q(A) as 
t 

q(A) =_ -!- Tr 
i I 

3 + 

4n2 ma 
dt dx E. zi. 

For 5 and g given in (4.5)- (4.6), we have 

(4.i2) 

q(A) = Fa $ lat dt j” d3x (z2+ A’+a’, 

= 91; dA J d3x (;2+*:+a2p 

= s + i --J+ ( h2;2a2 + 2). 

According to the definition (4.12), we have 

,A?, q(A) = 0 3 

;?a q(x) = Q (= 1 here). 

(4.13) 

(4.14) 

(4.15) 

We can use q(X) as a dynamical variable to describe the vacuum tunneling 

in the winding number space. 

We can obtain the vacuum tunneling amplitude by solving the one 

dimensional quantum mechanical system described by (4.7)-(4.11). The 

WKB tunneling amplitude is P = e -R with 
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J 
m 

R= dX d2 m(X) V(h) 
-m 

3 rr2 a4 8 n? 

(A2+a2,512 
z- 

gz’ ’ 

which is indeed the maximal tunneling amplitude associated with a Q = 1 

transition. Our result agrees with the action integral over a &=I 

Euclidean instanton solution, and provides a justification for the usual 

interpretations of instantons as vacuum tunnelings. By working out the 

vacuum tunneling amplitude in the Minkowski space, we also obtain an 

explicit expression for the potential barrier V. 

5. WINDING NUMBER SPACE 

In Eq. (4.10), the potential barrier is described as a function of A. 

Note that the winding number q(A) is also a function of A. Combining 

Eqs. (4.10) and (4.131, we have a parametric definition of the potential 

energy V as a function of q. In Fig. 2, we plot the scaled potential, 

(5.1) 

as a function of q. We can also express the kinetic energy term (K. E. ) 

into the standard form 

K.E. = +(q) q2 , (5.2) 

with 

(5.3) 
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Eqs. (5.3) and (4.13) define ml as a function of q. In Fig. 3, we plot 

3 g2m ‘/32rr2a as a function of q. We can view the vacuum tunneling 

process as a particle of q-dependent mass going through the potential 

barrier V(q). 

We would like to point out that the expression q defined in (4.13) 

is not the only possible definition of the winding number. - In fact, any 

function q’(X) which agrees with q on integer values is an equally 

acceptable definition of the winding numbers. We may write 

9’ = smcs, 

with 

q+(n) = 1 for n = integer. 

A simple example of 4(n) is cos2nrr. Even though q and q’ agree on 

integer values, their behaviors for non-integer values are entirely 

different. We can use this degree of freedom to define a new q’ which 

gives rise to a q’-independent mass. Indeed, if we require 

K.E. = 
3 7~’ a4 

g2(A2+a2)5’2 

with in” being a constant, and 

(5.4) 

q’(-m) = 0, q’(m) = 1; 

we. obtain 

(5.5) 
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where 

q’ : r(5/2) dt 
I(i/2) I-(3/4) 

(P2+4) 
512 

1 =-+ sign A 
2 2B(1/2,3/4) B[ 

(5.6) 

(5.7) 

(5.8) 

and B 
5 

(a, b) is the incomplete beta function. In terms of the new winding 

number q’, the potential barrier U(q’) z g2a V(q’)/3 rr2 is a smoother 

function of q’ near q’ = 0, and 1. We have plotted V(q’) as a function 

of q’ in Fig. 4. 

6. FURTHER INTERPRETATIONS 

In this section, we shall explore further the meaning of the vacuum 

tunneling. For notational simplicity, we denote the field variables as 

A(x, t ), and the initial and final field variables associated with the 

different vacuum modes are A (1) and A(2’. We can express the transition 

amplitude from A (1) to A(‘) in the path integral form as 

A(2) 

<At2) jAtl), = 
J Aw 

gA ei/L(A.i)dt. 
(6.1) 
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where L is the Lagrangian. We have also suppressed agauge-fixing h-function 

term for notational simplicity. 

For all the paths connecting from A (1’ to A(2’, we can parametrize 

A(x,t)byasetofvariables {f(x,X,(t)), al,a2, . ..} where f(x,X(t)) 

denotes a family of field configurations connecting A (1) to At2’, and 

ai(i=i,Z,... ) represents the remaining variables describing the fluctu- 

ations around the path f(x , X(t )). We can express the transition amplitude 

as 

<A(2) 1 Acl)> = 
J 

GUT) Bai J(X,ai) e / 
(iL1 + iL2)dt 

’ 2) 

where J is the Jacobian describing the transformation of A to {f(x, X), ai}, 

and 

LIL’x) - UA,i) A = f.(x X(t))’ 
I 

(6.3) 
> 

L2(X,C,ai) = L-L1. (6.4) 

Now, we integrate out the variables ails, and obtain an effective action 

AS. J gai J(X,ai) e 
i fL2dt 

= eiAS(A) 
(6.5) 

We can write the transition amplitude as 

<A(” j A(l)> = gX(t ) e J i (LI(X,‘X))dt+iAS(X) 
/ . 

(6.6) 

Note that our result (6.6) is still general. The result does not depend on - 

the particular choice of the field configuration (collective coardinate) 

f(x, ut )). On the other hand, we can see easily that L1 obtained here 
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depends crucially on the choice of f(x, X(t )). The difference in Lf 

due to two choices of f(x, A) is compensated by the difference in the 

correction term AS. For some choices of f, AS may be small. We 

conjecture that the particular choice of f(x, X(t)) which maximizes the 

transition amplitude 

<A(2), A(1)>(o) T J gA(t ) e 
i b,(k, ‘X)dt 2 (6.7) 

gives rise to a small correction term AS . For this choice of 

f( x, A (t )), we can ignore AS and write 

<A(2)(A(1)> ~ J gx(t) ei L1(xsx)dt. I 
(6.8) 

The,integration over the one-parameter function (path) A(t) leads to a 

one-dimensional quantum mechanical transition amplitude. This result 

is equivalent to our calculation given in the previous section. We wish 

to emphasize that the smallness of AS is at the moment a conjecture. 

The above assumption is equivalent to the dominance of the “most 

probable escape path” (MPEP) in the function space. 12 
We believe that 

this conjecture is a reasonable one. 

Operationally, what we have done is to replace A by 13(x ,t ) = f(x, X(t )), 

and supress all other variables. We would like to point out that the inte- 

gration over A(t ) for a given A = f(x, A( t )) still includes many paths in 

the original (x,t ) space. Namely, to each function A( t ), it corresponds 

to a path in the (x, t) space. It is the integration over these paths which 

makes the quantum tunneling possible. 
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For transition between vaccua with different winding number, 

there is no classical path which minimizes the action. However, it is 

possible that there exists a two dimensional surface (or more generally, 

a N dimensional hypersurface) such that a path outside the surface gives 

rise to a larger action than that obtained from its projection in the surface. 

If such a surface does exist,the path integral will be dominated by the paths 

lying within the surface. If {ai} measures the variations of a path per- 

pendicular to the surface; then, the action is dominated by the surface 

A = f(x, A(t)), {ai} = 0. Thus, we obtain naturally a semi-classical 

approximation by setting all ai = 0 (classical limit), but keeping the 

integration over A(t ) exactly. This semi-classical approximation is 

precisely the method used in the previous section. 

The above interpretation also suggests that, with a proper choice 

of f(x, A(t.)), A(x, t ) = f(x, A(t)) should obey the field equation F = 0. 
PCV 

Now, the relation among our tunneling solution, a classical solution, and 

a fully quantum mechanical solution are transparent. 
13 

All three solutions 

obey the field equation F 
pv;v 

= 0. In a classical solution, the field variables 

are c-numbers. In a fully quantum mechanical solution,all field variables 

are q-numbers and they obey the canonical quantization relations. In the 

tunneling solution, one pair of dynamical variables (A, A) are treated as 

quantum operators, and the remaining variables (the ails) are treated as 

c-numbers. At the moment, we have not yet found the proper parametr- 

ization which makes this interpretation manifest in the Yang-Mills theory. 
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However, we are able to provide such a picture in a simple 44 theory. 

See Appendix for detailed discussion of this model. 

We can generalize this physical picture to multi-instanton solutions. 

In a N-instanton solution, the field equation F 
pv;v 

= 0 are still satisfied, 

but there are N-pairs of dynamical variables being treated as quantum 

mechanical operators. 

7. DISCUSSION 

a. Relation to the instanton solutions 

We have shown in Sec. 5 that the weak coupling tunneling amplitude 

obtained from our solution agrees with the Euclidean action integral over 

an instanton solution. Thus, our solution provides a direct verification 

that the instanton describes the vacuum tunneling. The Euclidean 

description is valid if the tunneling is weak such that the WEB approxi- 

mation is reliable. In the strong coupling case, the WEB approximation 

is no longer reliable. We expect that the Euclidean version is not 

reliable either, and one has to solve the tunneling amplitude in the 

Minkowski space exactly. In the following, we shall examine the con- 

nection of the WKB and the Euclidean solution closely. 

In the Minkowski solution, we do not have the self-dual condition 

g = is as given in the Euclidean solutions. We have instead a weaker 

condition g 11 g for all x and t . Combining the condition E 11 s with 

Eqs. (2.16). (2.20) - (2.20), we have 
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z=B’ - J 
n-S-4 i 
2 V(A) 

=g 
Px 

4 2m(A) V(X) ’ (7.1) 

which should be viewed as an operator equation. We can recover the 

self-dual condition and the Euclidean solution from (7.1) by noting that, 

in the WEB approximation, we may interprete formally the momentum 

p x during the tunneling to be imaginary, 

PA= im. (7.2) 

Note that this is only a formal, operationally convenient identification. 

The true quantum mechanical operator p h is self-adjoint, and does not 

have any imaginary eigenvalue. Accepting this formal identification, 

and substituting (7.2) into (7.1), we obtain the self-dual condition 

G = iB. (7.3) 

Lndeed, if we apply this formal identification to our solution in Sec. 4, we 

obtain 

and 

. 
A =i, (7.4) 

g=ig= - i2a 2 

(z2+Xi!+a2)2 
-r 1 (7.5) 

which is precisely the analytic continuation of the instanton solution to 

the Minkowski space. 
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b. Non-optimal solution 

In. Sections 4 and 5, we concentrate on the vacuum tunneling 

through an optimal path, (i.e. the most probable escape path. 12) In 

reality, tunneling through non-optimal paths are also possible, but they 

give rise to slower rates. In the following, we shall provide an example 

for such a path. 

Consider the tunneling through the field configuration 

A0 = 0, (7.6) 

- -+ 
xi= XTtXXf 

-2 +k2+a 2 * 
X 

(7.7) 

The field configuration A” in (7.7) is identical to that of (4.2). It is easy 

to see that the winding number changes by 1 (Q = 1) as A varies from 

--Lo to a. The g and g fields obtained from (7.6), (7.7) are 

E= _ [(-X2tZ2ta2) ;-2AGxT)]; 

(g2+k2+a2)2 

and 

g=- 2a2 - 

(g2tk2+a2)2 T ' 

(7.8) 

(7.9) 

respectively. Note that E and 5 are no longer parallel to each other. 

Indeed, when we compute the WKB tunneling amplitude, we find P = e -R 

with 

R = 15.8831 r2/g2 > 8 n2/g2. (7.10) 
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At the small g limit, P represents a much smaller tunneling amplitude 

than the maximal tunneling amplitude e -8rr2/g2 

c. The instanton density 

In this paper, we consider the vacuum tunneling describing the 

change of field configurations around the origin (x!= 0). Evidently, 

vacuum tunneling can also appear at different space time locations, and 

the tunnelings at large separations (distances >> a) are dynamically 

independent. Also, tunneling processes involving small space-time 

regions can take place within the tunneling processes involving large 

space-time regions. Using simple scaling arguments,we expect that 

the total tunneling rate due to a single instanton (i. e. Q = 1 transition) 

over the entire space time region and sizes is 

r a VT da -16rr2/g2 
77 * 

If the contribution due to different instantons are independent as in the 

dilute gas approximation, we expect that the average density of the 

instanton and of the anti-instanton are the same, and are given by 

dne da 
2 2 

a5 

e-i6r If2 

(7.11) 

(7.12) 

(without quantum correction). 



-23- FERMILAB-Pub-77/67-THY 

The vacuum is thus filled with randomly distributed instantons and 

anti-instantons as in a dilute gas. For a fixed g, the density of small 

size instantons varies as the fifth power of i/a. Presumably, the 

quantum corrections will modify the tunneling amplitude. It is reason- 

able to assume that the higher order correction will change the coupling 

constant g in (7.12) to the running coupling constant 2, giving 

dn=% e -8r’/g(a)’ 

a 
(7.13) 

(with quantum correction). 

According to the perturbative calculation, 
14 

one finds 

8rr 2 
8~’ -=- +21in 2 

Z(a)’ g2 3 a ’ 

e-8rr2/g” 2213 , 

(7.14) 

(7.15) 

where a 
0 

is the length associated with the renormalization point. This 

correction is sufficient to render the instanton density finite at small a 

region, 

2213 e-i6rr2/g2 

= const. a 7’3 da. (7.16) 
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It is generally believed that at large 2, g(a) becomes large too. 

Hence, the WKB tunneling rate is no longer reliable. If we take the 

formula (7.13) literally and study its large a behavior, we find at large 

as 

which gives rise to a finite density. This indicates that the total density 

of instantons over all sizes is finite. 
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APPENDIX. VACUUM TUNNELING IN A SIMPLE $4 THEORY 

Consider a two-dimensional $4 theory described by the Lagrange 

function 

cy= $ 42 - t(2)” - + g($Z_c2)2 

+B c’$-$$~ 
i 

+$ Bc 3 
, B>O. 

The field equation obtained from (A.l) is 

+ g(G2-c2) c#, - B(c’-$~) = 0. 

(A.1) 

L4.2) 

It is easy to see that for a classical field both 4 = c and 4 = - c are 

stable minima. Quantum mechnaically, the 4 = -c state represents an 

unstable vacuum, and the tunneling to the stable vacuum state $ = c will 

take place. 
15,16 

We shall consider the case of a small and possible B 

in which the vacuum tunneling is weak. The Hamiltonian of our system 

is 

- $ B’c3. (A.3) 

The energy density associated with the unstable vacuum state, 4 = - c, is 

chosentobe zero.The energy density associated with the true stable state, 

I$= c, is -E with 

.z$ Bc3>0. (A.4) 
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To understand the tunneling process, we note that there are kink- 

antikink states, which are degenerate with the 6 = - c state. The exact 

form of the kink-antikink states were worked out by Katz in Ref. (16). 

For our purpose, we only need to consider an approximate form. The 

kink-antikink state centered at the origin is described approximately by 

4 = c [tanh $(x + Xc) - tanh $ (x - xc) - i] , 

with 

(A.6) 

xC 
= M/E , (A.7) 

M = q g112 c3. (A.8) 

In (A.6) - (A.8), b denotes the mass (or frequency) associated with small 

oscillations around 4 = f c, 2~~ is the separation of the kink and the 

antikink, and M is the mass of the kink. The total energy associated 

with the field e(x) given in (A.5) is 

E=2M-2eX =O, 
C 

as desired. 

We shall work out the tunneling amplitude between the $ = - c 

unstable vacuum state and the state given by (A.5). Once the field 

reaches the field configuration (A.5), a real kink and antikink pair is 
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produced. The kink and the antikink will move away with an acceleration 

= o(B), and they leave behind them an increasing region of true ground 

state C$ = c. Thus, the tunneling between the $= -c state and the (A.5) 

state represents the vacuum tunneling that we are looking for. 

The intermediate field configuration describing the vacuum tunnel- 

ing is the kink-antikink configuration located at A and -A, and moving 

with velocity f ‘x , 

t$=c tanh ; fi - tanh $ (A.9) 

The I/ F 1 - A factor denotes the Lorentz contraction of the moving kinks. 

(In the tunneling process, ‘x is imaginary and the factor 2/ 1 - A is F 

smaller than one. It actually describes a Lorentz expansion! See 

Ref. (16)). 

After ignoring terms O(B2) or higher, we obtain the effective 

Lagrangian as 

L ;jdx[; $2-+(z)2 - ~(c$~-c’)~ +B(c2,++#,3+~ c3)] 

= - 2M &--? + 2cA. (A.lO) 

The first term in (A.10) denotes the Lagrangian of the kink and antikink 

moving with velocity *‘XI and the second term 2eX describes the volume 
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energy of the 4 = c region between the kink and the antikink. The 

Hamiltonian associated with our system is 

H= $ ‘X-L 

,,$=&i. 

(A.ll) 

(A.12) 

We can identify the kinetic energy K and the potential energy V as 

K= m-2M (A.13) 

V= ZM-2eX. (A.14) 

In Fig. (5), we plot V as a function of A. As we vary A from 0 to Xc, 

V(A) first increases rapidly to 2M indicating the creation of a kink- 

antikink pair. V(A) decreases graduately to zero as X increases such 

that the volume energy -2eX becomes important. 

We now treat L and H as those of a one-dimensional quantum 

system, and obtain the WKB transition amplitude as P = e 
-R with 

R= 4M2-(2eA)’ dX 

= irMXJ2 = nM2/2s . (A.15) 
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As a quantum mechanical system, X and p obey the Heisenberg’s 

equations: 

‘x= i[H,A]= 
pfz7p 

(A.16) 

and 

i, = i[H,p] = 2~. (A.17) 

Equation (A.16) is identical to the definition of p appearing in (A.12). 

We may express (A.17) as the equation of motion for a relativistic 

particle moving under the influence of constant force E, 

&[&I =e/M (=+$ (A.18) 

The region X< X 
C 

is forbidden classically by the energy conservation. 

However, vacuum tunneling can occur quantum-mechnaically, and it 

takes place precisely in the forbidden region A < X 
C’ 

Heisenberg 

equations of motion (A.16), (A.17) apply equally well to the tunneling 

process as well as to the real motions of the kink and antikink after 

tunneling. 

We would like to show that,with a slight modification, @given in 

(A.9) obeys the full field equation (A.2) if A and ‘x obey (A.16) and (A.17). 

For simplicity, we shall treat A and ‘x as c-numbers. We expect that 

one can generalize the above result to accommodate the operator nature 

of A and ‘x . 
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To verify that the $J given in (A.9) obeys the field equation, we 

note that the kink and the antikink solution in $ do not interfere with 

each other once they are separated by a distance h >> i/p.. Fortunately, 

the region Xc> X >> i/p is exactly what we need to know for understanding 

the tunneling process. In this region, we can treat the kink and the anti- 

kink solution separately. We shall demonstrate in the following that both 

the kink and the antikink solution obey the full field equation (A.2). 

Consider the kink solution, 

4k = c tanh : * . 

We have 

+ * sech2 
2 

(A.19) 

(A.20) 

The first term in (A.20) describes the c.m. motion of the kink. The 

second term in (A-20) describes the change of shape of the kink-as we 

accelerate it. We can remove the second term readily by including a 

small (- 0 (B)) shape correction term in the argument of tanh in (A.49). 

In the following, we shall ignore this term because its presence does not 

affect our final conclusion, but only complicates our discussion. With 

this simplification, we have 
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ik = y sech’(: s) d& 

+ terms which can be ignored, 
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(A.21) 

;dk = y sech 

- + sq: *)- jf fi) ,,y2K2)2 

+ terms which can be ignored, (A.22) 

where we have ignored shape-correction terms, and terms of O(B2) or 

higher. Hence, we have for a single kink solution 

;dk - 
a24k 
2 + g($;-c2) $k - B(c’-$;) 
ax 

= y sech 

= 0 . (A.23) 

The last relation follows from the equation of motion (A.18). Of course, 

the result applies equally well to the antikink solution. We can now work 

out the field equation of 4 associated with a kink and an antikink solution 
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given in (A.9) in a similar way, obtaining 

+ g($‘-c’) +B(c’-4’) 

= y [ sech’c: *) + sech’ jf &I] 

X 

[ 

-- 
&&2 ““, 1 

= 0 , (A.24) 

provided that the Heisenberg’s equations of motion are satisfied. Since 

the Heisenberg’s equations of motion are satisfied for tunneling processes 

as well, we expect that the full field equation (A.24) (or (A.2)) is satisfied 

for the vacuum tunneling solution. 



-33- FERMILAB-Pub-77/67-THY 

REFERENCES 

1 
A.A. Belavin, A.M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, 

Phys. Lett. SB, 85 (1975). 

‘3. Witten, Phys. Rev. Letters 2, 121 (1977). 

3 
G. ‘t Hooft (unpublished). 

4 
R. Jackiw, C. Nohl, and C. Rebbi, Phys. Rev. D 15, 1642 (1977). 

5K. Bitar, FERMILAB Preprint 77/15-THY. 

6 
A.M. Polyakov, Phys. Lett. 59 B, 82 (1975). - 

7 
G. ItHooft, Phys. Rev. Letters 37, 8 (1976), and Harvard University 

Preprint. 

8 R. Jackiw and C. Rebbi, Phys. Rev. Letters 31, 172 (1976). 

9 C.G. Callan, R.F. Dashen, and D. J. Gross, Phys. Letters GB, 334 

(1976), and Princeton Preprint, “Structure of the Gauge Theory Vacuum. ” 

10 
J. L. Gervais and B. Sakita, “Collective Coordinates in SU(2) Yang- 

Mills Theory” CCNY -HEP-76/11. These authors studied the vacuum 

tunneling in the Minkowski space by means of the collective coordinate 

method. 

11 C.N. Yang and R. Mills, Phys. Rev. 96, l9l (1954); E.S. Abers and 

B. W. Lee, Phys. Report SC, 1 (1973). 



-34- FERMILAB-Pub-77/67-THY 

12 
The idea of most probable escape paths (MPEP’s) was first introduced 

into the miltidimensional WKB method by T. Banks, C. M. Bender, and 

T.T. Wu, Phys. Rev. DE, 3346 (1973). We extend this concept into the 

function space. Each of the field configurations f(x, A(t)) denotes a 

point in the function space. The family of field configurations represents 

a “path” in the function space. 

13 This interpretation is suggested to us by C.N. Yang. 

14 
D. J. Gross and F. Wilczek, Phys. Rev. Letters 30, 1343 (1973); 

D. Politzer, Phys. Rev. Letters, 2, 1346 (1973). 

15 
Many authors have studied the vacuum tunneling problem in scalar field 

theory. See, e.g. M. B. Voloshin, I. Yu. Kobzacev, and L.B. Okun, 

SOV. J. Nucl. Phys. 2, 644 (1975); S. Coleman, Harvard Preprint 

HUTP-77/A004 (1977); P.H. Frampton, Phys. Rev. Letters 31, 1378 

(1976); M. Stone, Phys. Rev. DE, 3568 (1976). 

16H J . . Katz , “Lifetime of Metastable Vacuum States, ” Univ. of Illinois 

Preprint ILL-(TH)-77-15 (1977). 



-35- FERMILAB-Pub-77/67-THY 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

FIGURE CAPTIONS 

A typical potential barrier associated with the 

vacuum tunneling. The parameter A denotes the 

change of field configurations. Note that the 

potential V(A) vanishes at A = X1 and X2, and that 

it is positive semi-definite, V(X) 2 0, for Ai< A< X2. 

The potential barrier as a function of the winding 

number q for a Q= 1 vacuum tunneling. The 

winding number q is defined in Eqs. (4.12), (4.13). 

The effective mass parameter as a function of the 

winding number q for a Q = 1 vacuum transition. 

F(q) is defined by F(q) Z 3 g’m’(q) . 

321~‘. a 

The potential barrier as a function of a modified 

winding number q’ . The variable q1 is defined in 

Eq. (5.7). 

The potential barrier as a function of the kink- 

antikink separation in a two-dimensional $4 theory. 

The variable A denotes one half the kink-antikink 

separation. 
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