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ABSTRACT 

An exact duality transformation is applied to the partition function, Z, 

for the x-y model in two and three dimensions. The fields which appear 

in the dual representation of Z are integer valued and represent the topological 

excitations, or vortices of the x-y model. Furthermore, this form of the 

partition function is particularly simple at low temperatures. In two dimensions 

the dual representation of Z at low temperatures describes a two dimensional 

coulomb gas in which the point charges are vortices. In three dimensions, 

the dual form of Z describes a locally invariant gauge theory, analogous 

to QED, and coupled to integer valued, conserved currents which represent 

the line vortices of the three dimensional x-y model. Qualitative comments 

about the low temperature behavior of the theories are made. The meaning 

of vortices on a lattice is also discussed. 

e Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

Topological excitations are certain stable or metastable configurations 

of fields which exist because the system in question has a compact symmetry. 

These excitations which in general represent rather complicated field 

(or spin) configurations can have a profound effect on the behavior of the 

system. Because the relevant field configurations are so complex, 

ordinary perturbation theory (or the high temperature expansion) is not 

useful for describing these excitations. 

Recently, a new method was proposed for dealing with these objects. 1,2,3 

The method is applicable to a class of theories in d-dimensions which 

possess a U(1) symmetry and consists of transforming the usual partition 

function of the theory into a new form using a duality transformation. 

The fields which appear in this new form are integer valued fields which 

directly represent the topological excitations of the theory. Moreover, 

this new form is particularly simple at low temperatures (or, in the 

language of field theory, small coupling constant ). 

The simplest member of the class of theories considered in ref. 1 

is the x-y model. In this paper we will apply our methods to the two and 

three dimensional x-y models. The extension to higher dimensions will 

be clear. ‘I3 4>5 According to the usual homotopy arguments, the globally 

U(1) invariant theory in d dimensions should have topologically stable 

excitations of dimension d-2. In two dimensions, therefore, we expect 

the x-y model to have point vortices, while when d = 3 we expect 
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line vortices. (For d = 1, localized topological singularities are not 

important at low temperatures, although smoothly varying spin configurations 

which go through several revolutions from one end of the lattice to the 

other are. Formally, we can consider this an excitation of dimension -1. ) 

After applying our transformation to these theories we will obtain expressions 

for the partition functions in terms of the vortex degrees of freedom. This 

exercise will also demonstrate in detail the steps involved in the general 

duality transformation described in ref. 1-3. 

For the d = 2 x-y model, we will be able to write the partition function 

in terms of point vortices. The low temperature limit of our expression 

will coincide with the low temperature approximations to Z derived by 

2,3,5b 
other authors, and is just the partition function of a neutral coulomb 

gas in two dimensions. 

In three dimensions, we will show that the x-y model is equivalent 

to a locally invariant gauge theory for which the symmetry group is Zm, 

the additive group of integers. At low temperatures, this partition function 

becomes identical to the generating functional for photons coupled to 

integer valued conserved currents in three euclidean dimensions. These 

conserved currents represent the vortex line filaments (actually, vortex 

rings) which appear in this theory, 

In the next section, we will present the duality transformation for 

the two-dimensional x-y model. We will also discuss in what sense the 

integer valued fields of our dual representation may be regarded as vortices. 
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This point requires some elaboration. 
it) 

The physical degrees of freedom 

of the x-y model are the spins, s 
i 

i =e . Physically, we associate a vortex 

with a spin configuration in which the spins rotate some non-zero number of 

times as we move along a contour which surrounds the vortex. To describe 

this vorticity mathematically, it is common to say that the phase integral 

Yb 
0 (x) (or , on a lattice 

E 
Aei) around the closed path is non-zero, which 

means tint 6. 1 
is multivalued. (Of course, the physical degrees of freedom, 

si, are single valued. 1 But in the usual formulation of the x-y model, (2.11, 

this criterion is difficult to implement since the range of 6 is only -r to ii. 

Moreover, performing the duality transformation, one obtains integer valued 

fields only after integrating over ,a11 spin configurations, and so it is difficult 

to uniquely identify a given configuration of dual integer valued fields with a 

configuration of spins. It is possible, however, to define another model5 

whose low temperature behavior is the same as that of the x-y model. The 

vortex excitations of this model can be simply described in terms of a multi- 

valued angle variable, r , and can be related in a unique way to configurations 

ir 
of the spins, e . Our integer valued, dual fields will be put in a one-to-one 

correspondence with the vortices of this model, and in this sense can be 

regarded as the vortices of the x-y model. In Section III we apply our duality 

transformation to the three dimensional x-y model. We discuss problems of 

gauge invariance and demonstrate that the currents of the gauge theory 

represent the line vortices of the model. Conclusions and a sumna ry are 

presented in Section IV. 
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II. THE TWO DZMENSIONAL X-Y MODEL 

A. The Partition Function at Low Temperatures 

We now present the details of our duality transformation for the two 

dimensional x-y model. This operation will result in an expression for 

the partition function which simple at glow temperatures. Some of the steps 

involved are well known and have been described by others in different 

contexts, but are repeated here for the sake of completeness. In the 

next subsection we will discuss the interpretation of the integer valued 

fields that will appear in our f~inal expression. 
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The usual form of the x-y partition function is 

i 
TTT ‘$e 

p 
z = < lJ> z cos mi - ej) 

-77 !-T 
(2.1) 

where the limits on the 0 -integrations follow from the fact that Z includes 

a sum over all (physical) configurations of the spins, U 
k =exp (itJk). 

The sum in the exponent runs over all nearest neighbor pairs on a two 

dimensional square lattice. Using the character expansion for the interaction, 

B COS(8 - e.) a 
e i J = 

c 
in(ei - ej) 

In(B)e ~’ 
n = --4) 

(2. 2) 

(2. 1) can be rewritten 

In (‘I 

iFOj(h - zj) 
(2. 3) 

wj 

In this expression, we are instructed to sum over a set of integer val~ued 

fields, {n }, one for each link of the lattice. Since the links can be labelled 

by a site, i. and a direction, p, the n. 
1, )I 

can be thought of as a collection 

of two-vectors, n.. 
-1 

The coefficient of ej in the exponent is the discrete 

divergence of 2 at the site j. Specifically, 

4’ n, = n. n - n. n ,+ +n. A - n. A fi 
-2 JIX J-X,X J> Y A-Y1 Y 

(2.4) 

where we recall that the site labels are two dimensional vectors. (We 

will usually omit then vector symbol from site labels, for notational convenience. ) 
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Since the fields, n, are integer valued, integrating over the ej in (2. 3) 

will just give us a set of kronecker b-functions which enforce the condition 

&‘? = O (2. 5) 

at all sites j. This condition is automatically satisfied if we write 

n 
wj 

= E A 6. 
PV " J (2. 6) 

where { $j} is a set of integer valued fields located at the sites of the dual 

lattice. For a d-dimensional hypercubical lattice, the dual lattice can 

be obtained by shifting the original lattice by half a lattice spacing in each 

direction. (see Fig. 1. ) Using (2.6) in (2.3) (and neglecting overall 

~~mtants), we have 

z = 
In 

{Ql jar 

I 
‘+vAvdj 

(P ‘) = zexp ElnI 

I 1 
(P{ 

141 jpp 
‘pv* v’j J I* (2.7) 

Now, for integer n, I,(B) has the representation 

lr 
I,(p) = i do e 

(3 co.50 
cos nw . (2.8 1 

We insert this representation in (2.7) and expand CDS nw in powers of 

n. The partition function can then be written 

Z = &exp/x f y (Apbj)2p’ ( 

j.cl p=i 
(2.9) 
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where we have dropped an overall multiplicative factor of IO 
2N 

(P), ii’ 

being the number of sites of the lattice. Dp(P) is the p 
th 

cumulant of a 

set of functions, Tp (p) defined as 

TI PI 1 
TpW = (-IF (zp.)! 

dw 02P’ePcoS W 
(2.10) 

So, for example, 

D4 = T 
1 

D2 
= T2 - T12 

D3 
= T3 - 3T1T2 + 2T 

i 
3, etc. 

Using the identity 

m m 

1 a(6 _ k) = 1 ei2rrm’ 

k~ = -m m =-a 

we can rewrite (2.9) as 

(2. 11) 

(2.12) 

(2.13) 

where now the 4 j’s are treated as continuum fields, -m < $j< co . 

Now, let us estimate the behavior of the D,(p). For very small p, 

the Tp (p) have the form 
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2P 
Ti 

Tp@) I (-llpP! P (2;+1J, +- 
rie P)! 

dw 02’ cos w f... 
I 

(2.14) 

so that even though the expansion in (2. 13) converges for all real A&, all 

Dp (p) will have contributions which are of low order in p and so cannot be 

neglected. Consider now large p. We want to show that for p >> 1, Z is 

well approximated by keeping only the p = 1 term in the expansion (2.9) 

or (2.13). To do this we first examine the coefficients D,(p) for p >> 1 

and p >> p . In this limit, the behavior of the TplP) can be calculated 

using a saddle point estimate of the integral in (2. 10). or more conveniently, 

we can replace one power of w in the integrand by sin w and do integration 

by parts. This procedure will pick up the leading contribution in p -1 
, 

since for large p the major contribution to the integral comes from small w. 

Repeated use of this trick will let us determine higher order corrections. 

Doing this, we find 

TpW = (-1)’ t2;JI pp 
2 (2 P- i)!! + &p-P-l) .p >> i p 

, . (2.15) 

Using (2. 15). we see that D,(p) = -i/Zp. Furthermore, in the calculation 

of D (p) for P > 1, there are cancellations among terms of low order in 
P 

-1 
P P so that, for example, D,(p) N fl(1/p3). Now, the expansion in the 

exponent of (2. 9) (that is, the expansion of In I,(p) in powers of n) is certainly 

convergent for all real (A$ j2. Moreover, if p >> 1. and (A$J2 ,$ p, we 

make errors only of order p -i in the exponent of (,2,9 ) by keeping just the 
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p = 1 term. So to show that keeping only the term with p = 1 is in fact 

a good large p approximation to Z, we need to show that configurations 

of { 6 } such that (A$ )2 > p, make a negligible contribution to Z. This 

is not completely obvious since the series in the, exponent (2.9) alternates 

in sign, and so the P = 1 term which becomes large and negative when 

(A$)2 > (3 could be cancelled by terms of higher order in p. That this 

does not happen can easily be shown using a uniform asymptotic form for 

I,(p) valid as n and p both go to infinity. 7 The quadratic term in (2.9 ) 

is therefore a good low temperature approximation to Z. A systematic 

expansion about this approximation is possible by retaining higher and 

higher terms in p (and more and more accurate approximations for the 

Dp(P)). Such an expansion is related to (but is not exactly) a perturbation 

series in powers of T. It will be sufficient for our purposes to keep only 

the term with p = 1, which we shall do in the rest of this paper. It is 

important to remember, however, that each term in the exponent of (2.9) 

(or in the analogous expression in higher dimensions) has the same symmetry 

properties, and so we will never introduce artificial symmetries by retaining 

only the quadratic term. 

For p >> 1, we can therefore write (2.13) as 

z = /6 4 &;xp lFj -$ (Ap$j)2+‘2”mj$j (2. 16) 
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where we have used the approximation of (2. 15) for T1(P). The functional 

integral over 4 can be done by introducing the representations 

il 

d2qe 
-i4,* j 

-u(9_) 

-ll 

51 (q) 
e 

(2.17a) 

(2.17b) 

where the q’s are vectors in the first Brillouin zone. If we have periodic 

boundary conditions, this representation will diagonalize the Hamiltonian. 

Inserting (2. 17) in (2. t6) and summing over the lattice sites, we can write 

6q(q) exp d2q - K(q) Itl(s)l 2 +& myq)Q(q) 
I 

(2.18) 

where 

-Ti(P) 
K(q) = 2 ml) = 

lT 
-‘::“’ [1 -4 7 cos q,. ;] 

(2. 19 ) 

= -&[‘-+ ; toss_. “1 

and where we have dropped an inessential Jacobean and have used the 
“- * 

fact that since bj and mj are real, n(-q) = n (q), and 1(-q) = P (9). 

The Gaussian integrals over n(q) can now be carried out with the result 
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Z = L)exp 1 -~d2q~ln[~] + ,6iCq)$ 1 . (2. 20) 

Inverting the transformation (2.17b), we have 

rng = c 
i miei4’i 

which we insert in (2. 20). Integrating over q, and dropping an overall -. 

constant, we finaily have 

where 

and 

z = z(O) 
1. 

1 
exp 1 

Im} 
16T1(p1 i j mivijmj 

z(o) = exp 

Vij = 
2 eig - (i-j) 

dq I-(q) -TI 

z(o). is the partition function of free, non-interacting spin waves in two 

dimensions and, as we shall see describes the x-y model in the absence 

of vortices. The second factor in (2. 22) is just the partition function of 

a neutral coulomb gas in two dimensions. This can be seen as follows: 

There is a divergence in Vij which can be removed by writing 

(2.21) 

(2.22) 
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Vij = I 
n 

uij = d2q 1 _ eiq * (i-j) . 

-TT r(q) 

(2. 23) 

(2. 24) 

The first term in (2. 23) is divergent. Its coefficient in the Hamiltonian 

is proportional to -(Z mi J2. 
i 

Hence, the total net charge of the system must 

be zeros8 Fori =j, Uij =O. For i + j, Uij is well approximated9 by 

Uij = 8rrk Ii - j 1 ++lng+y] = 8ri[ln Ii -j( +c] , (2. 25) 

y being Euler’s constant. Using (2. 25) and (2.15) we can display the low 

temperature form of (2.221: 

Z = Z(O) ‘exp 16i’Cpl 1 miUijmj 

x I {ml 
i 

i,j I 

= z(“)~‘ie~pl~p z mi In 1 i - i I”, - dc 7 mL2 \ 
I LI ,~~ 4 L ~~~’ 1 1 I 

13 >A\ ,f-. &“I 

where the sum over {m} is understood to include only those configurations 

satisfying ymj = 0. We therefore have the partition function of a neutral 

gas of integer charges interacting through a logarithmic potential. Note 

also that there is a chemical potential which one must overcome to excite 

the m’s. 
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B. Interpretation of the m-Fields 

The expression (2. 26) looks the same as the approximate, low 

temperature, form of the partition function for the two-dimensional x-y 

model derived by Berezinski, Kosterlitz and Thouless, Polyakov, and 

others. 
5,6 In their works, the fields {m) have been interpreted as vortex 

excitations, but strictly speaking, (2. 26) has a somewhat different interpretation. 

To understand the difference, we need to briefly summarize what 

10 
other authors have done. Although the details of the analyses differ from 

author to author, the general approach has been to construct a compact, 

quadratic theory which at low temperatures agrees with the small T behavior 

of the x-y model. The first step is to approximate cos (ei - ej) by its 

quadratic term. Next, the range of integration over 6 is allowed to extend 

from -m to m. One then essentially solves the equation of motion 
8 2 

V 13 = 0, 

but remembers that since Q is really an angle, discontinuities of 2nn are 

allowed in the solution since this discontinuity in 0 will still correspond 

to a mostly smooth configuration of spins. The classical solution is then 

et(r) = qkIm In (r - rkl 
k 

where the {q,} is a set of integers. One then writes 0 = Bc + +, and 

inserts this into the quadratic Lagrangian. The result is a partition 

function which is equal to (2.26). ji , the perturbation about the classical 

solution gives rise to the factor Z (0) and represents a non-interacting 

(2. 27 1 

spin wave, or free boson field (on the lattice). In this approach the integers 
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qk are naturally interpretable as vortices at the positions rk. That is, 

a small contour integral 
$ 

dec about the point rk has the value 2nqk. 

Moreover, in this formulation, the vortices emerge as pieces of the 

original angles, 0, namely the classical parts. 

In our approach, on the contrary, the discrete fields, $i, are a 

complete set of fields replacing the angles which have disappeared from 

the problem. These fields are then represented in terms of the m-fields 

and the continuum @s just as in the approach outlined above e was by 

ec +icI. Furthermore, in our formalism, the m’s cannot be interpreted 

directly as vortices, if by a vortex on the lattice we mean some spin con- 

figuration in which the spin rotates through some multiple of Zrr around a 

closed contour. This difficulty has two sources: First, in performing the 

duality transformation we have summed over all spin configurations, and 

the spin degrees of freedom have been replaced by another complete set 

of variables which include the m-fields. It is therefore difficult to associate 

a configuration of m’s unambiguously with a configuration of spiny. Second, 

since in the expression (2.1) for the x-y model, --TT < I35 TT, the quantity 

2ic 
Aei will be zero around any closed path, and so this phase integral 

cannot be used as a measure of vorticity. One might 
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suppose that if we extend the range of integration --~TL < 0 5 rrL and let 

L’ m, we will be able to identify the m’s as vortices. One way to implement 

this would be to let 8. - 0 
1 i 

+ 2~rp. in the original partition function and 
1 

sum over the { pi } as well as integrating over the { 0 i 1 from -lT to lr. 

of we do this, equation (2.9) will read 

m D(P) 
z = $ 11 exP, c z $ 

{ 41 {VI 

(Ak$j)2P + i2’rVjbj 

j,, p=l 

(2. 28) 

where 

Vj =zAp 
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around the plaquette surrounding the j th site of the dual lattice, and the 

limit L + m should be taken. But this is the same as (2. 9) since 

exp 12n$jVj] = 1, so in this formulation the partition function is independent of 

the “vorticity”, Vj. 

To see this another way, keep the last term in (2. 28) to a later 

stage in the calculation. Then we see that the effect of this term is simply 

to redefine mj +m. + V. in (2. 13), but we still sum over both mj and Vj 
.l .l 

separately, so m. cannot be identified with any particular vortex. 
J 

The problem, of course, is that we have been too careful in retaining 

the periodic structure of the Hamiltonian. Once we have integrated over 

the principal part of the angle in (2. 28) we will have integrated over all 

~JJ& configurations of the system. Summing over the set {V} merely 

repeats the process, but does not give any new contributions to Z. To 

put it another way, the variable, Q which appears in the x-y model (or 

in the paragraph preceding (2.28 )) does not have the same meaning as the 

variable, f3 associated with the compact quadratic theory. 51 ‘The final 

low temperature form of Z derived by both methods is the same, but in 

the compact quadratic approach leading to (2. 27) one is able to associate 

a unique vortex distribution with each distribution of 8’ s (or spins) whereas 

that is not possible in the formalism leading to (2. 28). 

Nevertheless, even though our m-fields cannot, strictly speaking, 

be identified as vortices, it is clear that they do play the role of vortices 

in the partition function. The connection between our m-fields and the 
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bona fide vortices of the compact quadratic theory can be made somewhat -- 

clearer by the following considerations : Look at equation (2. 28) and set 

all the Vj = 0 and for simplicity keep only the p = i term. The discreteness 

of the sum over e is a reflection of the periodicity of the original Hamiltonian. 

If we make the substitution 

1 - + 1 J h 
66 (2. 29) 

then, with Vj = 0 (2.28) will just be a functional gaussian integral which, 

when transformed back to the 0 variables is seen to be just the partition 

function with only the quadratic term of the cosine interaction and with 

-a < 0 <m. This non-periodic gaussian form has no vortices--that is, 

only smoothly varying configurations of Bj have a significant weight in the 

partition function. If we make the substitution (2. 29) in the full expression 

(2. 28), then (2. 28) will be the same as (2. 13) with the m’s replaced by 

V’s. On the other hand, remembering that we must sum over {V}, the 

substitution (2. 29) does not change the numerical value of (2.28 ). All 

it does is reshuffle the configurations of spins among the configurations 

of V’s, so that it is possible to assign a definite distribution of V’s to a 

given spin configuration. The substitution (2. 29) is essential to this 

reshuffling since it ensures that in the absence of vortices there is no 

periodicity, and that only smooth configurations of 8’s are important. 
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To summarize, our understanding of vortices is as follows: To talk 

sensibly about vortices one needs i) criterion for measuring vorticity and 

ii) a method of unambiguously associating a vortex distribution with a given 

spin configuration. A common criterion for measuring vorticity, namely 

the value of a phase integral is not directly applicable to the x-y model 

defined by (2.1). In addition our duality transformation does not allow us 

to uniquely associate a distribution of m-fields with a given configuration 

of x-y spins. On the other hand, these objections do not apply to the compact 

quadratic theory as treated in references 5 and 6. Now, at very low 

temperatures, a configuration of spins in the compact quadratic model 

will have essentially the same energy as the same configuration of spins 

in the x-y model. There is therefore a one to one correspondence between 

the spin configurations in the-two models. Since vortices can be identified 

in the compact quadratic model, the corresponding spin configurations 

of the x-y model can be assigned the same vortex distribution. But the 

partition function of the compact quadratic model written in terms of the 

vortex degrees of freedom is the same as (2. 26), and so our m-fields can 

be thought of as representing the vortices of the x-y model. 

One might wonder what effect the fact that the lattice is spatially 

discrete plays in this discussion. After all, homotopy arguments concern 

continuous maps which are not possible on a lattice. For the purpose of 

this discussion, the continuity can be thought of as a criterion for assocating 

a vortex distribution to a spin configuration. But at low temperatures, 

at least in the compact quadratic model, there is approximate continuity 

for the spin configurations, since only those configurations in which the 
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spins vary smoothly from site to site will be important. Hence, it is 

compactness of the symmetry, and not spatial continuity which is important 

for the existence of vortex like excitations. (Of course, the continuum limit 

in the sense of the renormalization group could apriori have different 

physics, but that is another question. 1 

We have made some effort to explain in what sense our m-fields 

are vortices. But, this nomenclatural discussion notwithstanding, it is 

important to remember that in terms of the original spin variables, the 

low temperature partition function of the x-y model is still dominated by 

vortex-like spin configurations as described by other authors. 5,6 Bearing 

all this in mind, in what follows we shall sometimes gloss over these 

distinctions and simply refer to our integer valued fields as vortex excitations. 

It is worthwhile stressing one other difference between the compact 

quadratic approach and our duality transformation. Some previous discussions 5,6 

of the x-y model involved at some point au explicit sum over an infinite 

number of minima of the Hamiltonian, all of which had the same energy. 

This was accomplished either explicitly in the partition function, or by 

solving the classical equations of motion as described above. Using this 

procedure, one might a priori be concerned with problems of overcounting 

in the partition function when one calculates very high orders in perturbation 

theory about these vacuua. Such a problem does not arise in our approach. 

The duality transformation leading to (2. 13) is exact and so there is no 

possibility of overcounting. We view this as a significant conceptual 
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advantage that might be of real value in more complicated problems. 

Finally, we mention that since our analysis yields a low T partition 

function which is to a first approximation (i. e. keeping only the p = 1 term 

in 2. 13) identical to that derived by other methods, our approach predicts 

the same qualitative features for the low temperature behavior of this 

model as have been previously discussed. This is clearly true when describing 

the theory in terms of its vortex excitations. Furthermore, although the 

formalism is somewhat different, the expressions for the spin-spin 

correlation functions calculated by our method (which involves the duality 

transformation) will be the same as those computed using more traditional 

methods. 

III. THE THREE-DIMENSIONAL X-Y MODEL 

We turn now to a discussion of the three dimensional x-y model. 

In this case application of the duality transformation shows that the d = 3 

x-y model is equivalent to a locally gauge invariant theory which resembles 

QED. In fact, the low T limit of the partition function is the same as the 

generating functional for photons which are coupled to conserved, integer 

valued currents in three euclidean dimensions. These currents are the 

vortex lines of the three dimensional x-y model (in the same sense in which 

the m-fields of the previous section were the vortex points of the d = 2 

x-y model. ) 
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As before, we begin with the usual expression for the d=3 x-y partition 

function 

IT 
z = I i-r 

dek 
p c cos tei - ej) 

k 2rre 
<ij> 

-37 

where now the spins U k 
= exp i Ok [ 1 are associated with the vortices of a 

three-dimensional cubical lattice, and the sum in the exponent runs over 

all nearest neighbor pairs. Proceeding as before, we use (2. 2) to write 

(3. 1) in a form analogous to (2.3). Integrating over the angles, Ok,, 

results in a product of kronecker 6 -function constraints which enforce 

the condition 

at each site j, only now 2 is a three vector (since there are three links 

pointing in positive directions associated with each site) and 6 in (3.2) 

is the three-divergence. To satisfy (3. 2) it is necessary and sufficient 

to write 2 in the form 

n = e AA. . 
w pvx ” XiJ 

The AL,j are a set of integer valued vector fields which are naturally 

associated with the links of the dual lattice. Referring to Fig. 2, we see 

that there is a one to one correspondence between links of the original 

lattice and plaquettes (elementary faces ) of the dual lattice. Four fields, 

(3.1) 

(3. 2) 

(3.3) 
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Ah,j, are coupled together according (3. 3) to yield a value of a given 

n 
p;j’ 

Each of these A 
kJ 

is associated with one of the links of the dual 

lattice which borders the dual lattice plaquette through which the original 

lattice link associated with the given n passes. 

Using (3. 3), (3. 1) can be written”j 

’ = ;f; ln[I~pvA~v~X;j(P)l . (3.4) 

The sum in the exponent runs over sites and directions of the dual lattice. 

The sum over {II> is understood to be a sum over all distinct configurations 

of nP,j which can be obtained from a set of Ah,j via (3.3). Putting it another 

way, one chooses a set of A 
kJ 

then forms from them the set nFj and 

calculates a contribution to (3.4). Moving on to another set A one 
kJ 

repeats the process, but one must be careful to avoid counting distinct 

sets of A which give rise to the same set of integers, n 
p;j’ 

Sets of 
kJ 

A’s related by 

A .+A 
kJ X;j 

+a p. 
AJ 

where pj is an integer valued field will give through (3. 3) the same set of 

n 
p;j’ 

This problem is just the usual problem associated with defining 

a functional integral (in our case, a functional sum) in a theory with a 

local gauge symmetry, expressed here through (3.5). On the dual lattice, 

the symmetry (3. 5) can be visualized as follows: associate a number with 

(3.5) 
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each dual lattice site, j. Add that number to each A A and subtract it 
X;J-A 

from each A (A = 1, 2, 3). This operation leaves the n 
kJ 6j 

invariant. 

Since this transformation can be carried out at each dual lattice site 

independently, the symmetry is local. 

The symmetry (3. 5) is quite similar to the symmetry of the photon 

field in QED, only in our case the vector potentials and gauge functions 

take on only integer values. (Actually, an overall, non-integral constant 

can also be added, but this is trivial. ) In fact, (3. 3) shows that the nll,j 

can actually be thought of as F 
v X;j’ 

or integer valued E and B fields in 

three space-time dimensions. 

We will return later to a discussion of this gauge symmetry and how 

one can define the functional sum in Z, but first we wish to extract the 

leading low T piece of (3.4). This is easily done in a manner analogous 

to the treatment of the two-dimensional x-y model. We use (2.8) to 

expand the exponent of (3.4) in a power series in n .1 
WJ 

Doing this we have 

Z = xexp z i y k PvXA,,Ah:j)2P 

{nl j,p p=1 I 

with Dp(P) given by (2.11) and (2. lo). The analysis of the coefficients 

proceeds as in the last section, and so it is a good low T approximation 

to keep only the term with p = 1. Doing this we can write 

Z $ 7 I$ 2 (ApAv;j - AvAll;j)2 ; p>> 1 

P” 
j,p, v 

(3. 61 

(3.7) 
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where 

F 
VA ;j 

z A A 
lJ kJ 

- AxAVj = nP.j (3.8) 

according to (3. 3). (Note that the indices on n refer to sites and directions 

on the original lattice while the indices on F and A refer to sites and 

directions of the dual lattice. ) 

(3. 7) looks exactly like the generating functional for free photons in 

three space-time dimensions except that the fields A 
A;j 

are restricted to 

take on only integer values. It is interesting to compare (3.6) or (3. 7) 

with the corresponding expression in the d = 2 case, (2.9). Keeping only 

the p = 1 term in (2.9), we see that we have a discrete two-dimensional 

gaussian model which would describe a free massless spin zero boson if 

the field, $J , took on continuous values. In both cases it is the discreteness 

of the fields that give rise to non-trivial topological structures. 

To understand (3.7) (or (3. b), since the symmetry properties are 

the same) we need to rewrite Z as we did in the last section by using the 

identity (2. 12). Here, however, we must be somewhat more careful 

because of the local gauge symmetry. First we present a heuristic derivation 

of the final form for Z. This will be followed by a more careful discussion 

in which Z will be defined by choosing a gauge. 

The heuristic argument proceeds as follows: In (3. 6) or (3. 7) we 

need to sum over a set of variables {nP.j >. Each nP, j can take on integer 

values from --co to m. We use (2.12) to write 
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. 
(3.9 ) 

Using (3.9) in (3. 7), and making use of (3. 3), we have 
-- .- 

z = 6(E 2 ($)( ‘p~~AvA~;j’ +i2fip;j~,,VXA$~;j * (3.10) 

j*P I 
- 

We sum the last term in the exponent by parts and rewrite (3.10) (dropping 

Jacobeans) 

2 = 6 
-1 

zir 
Y 

+ 

where 

JVj = - l 
p vAAvKX; j * 

(3.12) 

(3.11) 

The prime on the functional integral indicates that as usual, a gauge 

condition must be imposed in order to define the functional integral. The 

prime on the sum over J indicates that not any arbitrary set of integers, 

{J) is allowed; in particular, only those J’s satisfying the representation 

(3.12) will appear. This immediately implies that 

APJwj = 0 (3.13) 

so the currents are conserved. This is heartening since it assures us 

that every allowed configuration of J’s will give a gauge invariant contribution 

to z. Finally, choosing a gauge and performing the functional integral we have 
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z = z(O) 3 .D p;j pv;jkJv;k 
I 

(3. 14) 

where D 
pvjk 

is the three dimensional photon propagator (on a lattice ), 

and Z(O) represents the contribution to Z from the sourceless, J = 0, 

sector. The currents, JVj, which are associated with the links of the 

dual lattice represent the vortex lines of the three dimensional x-y model. 

Before elaborating this point, let us examine the steps from (3.7) to 

(3.14) more carefully. 

This sequence of steps constitutes a good example of proof by notation. 

The sleight of hand happens in the substitution (3.9). The point is that the 

variables n 
wj 

are not all independent, so it is not precisely clear what 

is being done in (3. 9 ). To. properly carry through the derivation of (3. 14), 

one should identify a complete set of independent variables which will be 

summed over and then perform the substitution (3.9) on those variables. 

This can be done by choosing a gauge in the sum (3.6) or (3. 7). 

The gauge we will consider is an axial gauge defined as follows: 

First we choose pj in (3. 5) so that all the A 
A;j 

= 0 for A = 1. Referring 

to Fig. 3, which is a picture of the dual lattice, this corresponds to setting 

all the A 
A:j 

associated with vertical links of the dual lattice to zero. This 

does not yet completely specify the gauge, however. We can still add a 

piece to ‘j’ 
Fj which satisfies A p. - = 0 without affecting the condition that 

1 J 

Al.j = 0. We do this by choosing Fj such that A 
2;j 

= 0 for all j which lie 

on the bottom plane of the lattice. Finally, we have one last gauge choice 
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to make since we are free to add to pj + Tjj another piece Fj such that 

4; 
1 j 

=4; :o, 
2 j 

This piece we choose by requiring that A 
3;j 

= 0 for all j 

which lie along the bottom front edge of the lattice as indicated in Fig. 3. 

We therefore have 

Ai,j = 0 all j 

A2,j = 0 j = C-m, j,, j,) 

A3,j = 0 j = t-m, -m, j,) . 

(3.15a 

(3. 15b 

(3.15c 

Up to a trivial overall constant, this completely specifies a gauge: 

the remaining AP,j are a complete set of variables which independently 

take on integer values from - m to m. We can now write (3. 7) (or (3. 6)) 

in the form 

(3. 16) 

where the set [Al includes all those variables not fixed by the gauge (3.15). 

Now, for each member of the set [Al, we can use the identity (2.12) 

to write (3.16) in the form 

6[AI exp 

I 

2 (APAVj - 4yAP.j)2 + i2rrHP.jAP.j 
, 9 

j.p, v 

(3.17) 

where there is one H 
t-r;j 

for each of the fields All,j not fixed by the conditions 

(3. 15). The functional integral over A is understood to be carried out in 
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the gauge specified by (3.151. Note that condition (3. 15a) is sufficient to 

define the inverse of the quadratic form in (3. i7), but all conditions (3. 15) 

are necessary to completely specify the gauge. 

Carrying out the integral over the A’S, (3. 17 1 can be written in the 

form 

Z = Z(O) exp c 

\ 
H .D 

1;~ pY;jkHY;k (3. 18 1 
[ HI Ps v 

j,k I 

D is the three dimensional photon propagator in the gauge (3. i5), and Z (0) 

is the partition function with all Hp,j = O-that is, the partition function for 

the free photon field. 

How are we to interpret the fields, H? To answer this, note that 

there is a one to one correspondence between the terms in the sum over 

H in (3.18) and the terms in the sum over J in (3.14). To each configuration 

of H’s (which in general do not satisfy the condition $$ . 5 = 0) we can - 

construct a configuration of J’S satisfying 4’ ,J such that the contributions 

to (3. 18) and (3. 14) match. This is done as follows: Consider a set of 

fields [ hl complementary to the set [ HI . The set [ hl consists of 

integer valued fields, hl,,j, which are associated with the dual lattice 

links along which A 
t4 

= 0 according to the gauge choice (3. 15). For any 

configuration of fields H, we can construct in a unique way a configuration 

of closed contours by filling in the configuration of H-fields with h-fields. 

In other words, any line segment corresponding to an allowed configuration 
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of H-fields can be closed by tracing lines along the links defined in (3.15). 

A simple example of this is indicated in Fig. 4. By choosing the h-fields 

to have the correct strength, this closed contour will represent a divergenceless 

configuration of a current, Gp,j = Hp,j + hp,jO In the gauge (3. 15) 

t Hu:iD 
P, !J 

(3.19) 

j,k j,k 

for any configuration of H-fields and its attendant configuration of G-fields. 

Since f? . g = 0 a configuration of G’s will give a gauge invariant contribution 

to 2. These G’s can be identified with the J’s of (3.14), so that the H’s 

are just a representation of the J’s in a particular gauge. Note that in order 

to construct the divergenceless current from an arbitrary configuration 

of H-fields, one must recognize that all the conditions (3.15) are necessary - 

to completely Specify a gauge. Only by fixing all the conditions (3. 15) 

will the set of fields [ hl be large enough to uniquely construct closed loops 

from any configuration of H-fields. 

We now will demonstrate that the J’s represent vortex lines in three 

dimensions in the same senses in which the m-fields of the last section 

represent vortex points in two dimensions. The simplest way to proceed 

is to first construct an approximate, periodic form of the model, valid at 

low temperatures, in terms of the spin degrees of freedom. The representation 

for the case d = 2 used by Berestnski Villain and others 5. 
1s applicable here to0 

and we approximate (3.1) as 
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z = 
~ d2eP<c>cos (ei - ej) 

(3.20) 

where we have dropped overall constants. The sum over (1 } is a sum 

over a set of integers, one for each link of the lattice,and ensures that the 

effective Hamiltonian is periodic; i. e. invariant under the operation 

‘k -ok + 2rrqk, for qk an integer. The range of the 0 -integration has 

been extended from -m to m. For large p this makes a negligibly small 

effect in Z. This form for Z demonstrates how one may view the periodicity 

as arising from a sum over an infinite set of inequivalent minima of the 

Hamiltonian in f3 -space. 

The argument of (3.20) may be written in terms of its Fourier components. 

The partition function then becomes 

=u m~dtp;jaiA~p~j,e~j Stfi + i2rr’ 6jtwj {el -m 
where the Dirac b -functions come from the 0 integrals, and where we 

have again neglected overall constants. As before, we can enforce the 
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6 -function constraints by writing 

tv;j = ’ P*vA 
4A 

v A;] (3. 22) 

where the A 
kj 

are associated with the links of the dual lattice and take 

on continuous values from -m to m. Inserting (3. 22) into (3. 21), we obtain 

an expression of the form (3. 11) where the J 
d 

are now 

Jwj=-E Ap )Ivx v X;j (3.23) 

But from (3. 21), P 
h;j 

just tells us, loosely speaking, how many revolutions 

0 has gone through as we move from the site j to the site j - ^x. d JP,j 

therefore, tells us how many revolutions 0 goes through as we move around 

an elementary plaquette of the original lattice, and so represents the 

vorticity. 

In accordance with the discussion in section II, this demonstration 

is, in a sense, heuristic. In equation (3. 20) we have surreptitiously 

changed the meaning of the variable, B . As in the two dimensional case 

we cannot associate a configuration of J’s uniquely with spin configurations 

of the theory defined by (3.1). Nevertheless, 

the J’s which exist because of the periodicity of (3. 1) faithfully embody 

all the physics associated with the vortices of the compact quadratic theory. 

A determination of the detailed low T behavior of this system requires 

more work, but from the form of (3.14) we can make some qualitative 
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statements. At large distances, D kv;jk* /j y k( ’ 
so to produce a vortex 

ring of linear dimensions er requires an energy cr. At very low temperatures, 

Z should be dominated by spin configuration without vortices. As T 

increases vortex excitation becomes more likely with increasingly more 

vortices of increasingly larger size being produced. Finally, it is possible 

that some sort of phase transition occurs signalled by the appearance of 

states which are dense with vortices of arbitrarily large size. That there 

is some simple relationship (not necessarily an equivalence) between such 

a transition and the standard Wilson-Fisher fixed point is an intriguing 

possibility, but it is far from obvious. These questions require further 

study for which the representation (3. 14) provides a useful starting point. 

IV. COMMENTS 

The duality transformation which we have used to recast the x-y 

model has yielded some very interesting insights. First, we recall that 

the transformation itself is exact: the low T approximations which result in 

the simple forms (2.16) and (3. 7) were made on the dual theory after the 

transformation. Because the transformation was exact, we did not encounter 

the conceptual difficulties which exist when using the approach of some previous 

work which involves summing over inequivalent minima of the Hamiltonian 

to enforce periodicity. Cur transformation involved replacing the complete 

set of angle variables by a complete set of conjugate variables which 

are the discrete 4 or A-fields and can be represented by the smooth spin 
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waves plus the vortices. Moreover, since the low T approximations were 

made on the dual form of 2, corrections to (2.16) and (3. 7) are well defined. 

A very interesting feature of the three dimensional x-y model is that 

it is equivalent to an abelian gauge theory with the structure of QED. 

Since the x-y model is thought to describe superfluid helium, the vortices 

in the superfluid should be described by the currents in (3.11). This is 

therefore an example of a system with “extended” excitations which obeys 

a gauge principle--and a very familiar and important one at that. In any 

case, this theory is a good one to study further the intriguing equivalence 

12 
between the locally and globally invariant formulations of the same system. 

Finally, we mention that since the dual forms of Z are fairly simple 

at low temperatures, the vortex fields .should provide a good basis for 

investigating low T properties of these systems. In particular, one might 

try using (2. 16) and (3. 7) as the basis for a renormalization group calculation. 

Such an exercise should reveal if there is a phase transition associated 

with the topological excitations and may help answer the question of its 

relation (if any) to the usual Wilson-Fisher critical point. 
13 
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FIGURE CAPTIONS 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Original square lattice and its dual in two dimensions. 

Simple cubic lattice in three dimensions and its dual lattice. 

Representation of the gauge choice (3.15) on the dual lattice. 

The dashed lines indicate those links along which the field 

Ap,j = 0. 

Fig. 4: Construction of a conserved current from the gauge dependent 

sources, H. The solid line segment in the space on the 

left represents a configuration of currents, HP.j associated 

with the links of the dual lattice in the gauge (3.15). The 

dash-dotted lines in the lattice on the right represent the 

complementary currents, h 
wj 

which lie along the dashed 

links of Fig. 3 and uniquely complete a closed path. 
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