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ABSTRACT 

We analyze the circumstances under which the violations of an 

approximate symmetry in a unified gauge theory of weak interactions are 

naturally suppressed; in particular, we investigate approximate muon- 

and electron-type lepton conservation as an example of such a symmetry. 

Extending earlier work, we propose a unified treatment of this symmetry 

together with strangeness conservation by the weak neutral current and 

C P invariance . The rate for the decay p + ey is calculated for a general 

SU(2) x U(i) gauge model. From this and a similar study of the decay 

p - eeE we derive a set of conditions which guarantees that the violation of 

muon- and electron-type lepton number is naturally strongly suppressed. 

As part of this, we compute the nondiagonal electromagnetic vertex to one 

loop order for an arbitrary SU(2) x U(1) gauge theory. We then focus 

on the phenomenological predictions of a particular gauge model with three 

left-handed doublets of leptons and quarks. These include the existence 

of charged and neutral heavy leptons and of small violations of p-e 

universality and the relation Gk set .9 
C = GF”. Other muon- and electron- 

number violating effects include nonvanishing rates for the decays 

Kf + rr*eii and K 
L 

- eji, and for the reactions p + N + e + N and 

Y +N-e +X. 
P 
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I. INTRODUCTION 

There are a number of interesting examples in weak 

interactions of approximate conservation laws which hold to 

a very high degree of accuracy. These include the conservation 

of strangeness by the weak neutral current, separate muon- 

and electron-type lepton number conservation, and finally, 

CP invariance. The conservation of FI- and e-type lepton 

number may well be exact; we shall, however, take the view 

here of regarding it as an approximate symmetry, the validity 

of which has been experimentally demonstrated to a given level 

of precision. 1 

These three cases share an important common feature, which 

we should like to focus upon in this paper, with special 

emphasis on 1-1- and e-type lepton number nonconservation. It is 

not difficult to construct a model in which approximate 

conservation laws hold in lowest order in the weak coupling 

constant, G F' The striking feature of the examples cited 

above is that the violation that, in principle, could occur 

in second order, i.e., in order GFci, is in fact further 

suppressed. We propose, extending earlier work, 2,3 a unified 

approach to these three problems based on the idea of a 

mechanism which "naturally“ suppresses violation of the 

given symmetry, with u- and e-type lepton number nonconservation 

as an example. 



-3- FERMILAB-Pub-77/21-THY 

Historically, the smallness of the KL-KS mass difference, 

of the rate for KL+fllF, and of other strangeness-changing weak 

neutral current processes necessitated the incorporation of 

the Glashow-Iliopoulos-Maiani (GIM) cancellation mechanism 

in gauge theories of weak interactions. 4 This mechanism 

precludes an s-d transition through the 2 coupling in 

lowest order in the weak Lagranqian. But it does more than 

this; as has been discussed elsewhere, 2 it also works at the 

one-loop level to suporess ASfO induced neutral current effects 
Am 1 

to the level GFct -+ Ed, where 
( ) 

Am 2 refers to the difference 
mru 

q 
of certain quark masses squared, and s C = sineCcosOC, in the 

minimal Weinberg-Salam (WS) theory. 5 Similarly, in gauge 

theories of microweak CP violation, 3 the magnitude of CP 

violation in AS=1 processes is not of order GFe, but, instead, 

of order GF(Am q2/iq.T2) E# where ~%10 -3 is the conventional 

measure of CP violation in the neutral K system. Furthermore, 

in this class of theories the electric dipole moment of a 

quark arises only in two-loop order, and is of order 10-30cm. 

It is important to distinguish two aspects of this 

mechanism in a natural theory in which parameters of the theory 

are arbitrary. The first aspect is the appearance of certain 

mixing parameters such as E C and s , whose moduli are 

constrained tobe less thanunity, but whose magnitudes are 

otherwise arbitrary. For the present, these must be regarded 

as empirical quantitites to be taken from experiment. The 

second aspect, which is the crux of the matter, is the 
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occurrence of the mass ratio (am q 2/ for any values of 

the parameters: this depends only on the representation 

content of the model. Since mW is presumably much bigger than 

mq 
is any model so far contemplated, the above mass ratio 

represents a substantial suppression of the violation of the 

given approximate conservation law. This second aspect is 

what we mean by a natural suppression mechanism. 

The suppression factor (Amg2/mW2) reflects the fact that 

two different quark transitions contribute with opposite sign 

and, in the absence of any mass difference, with equal 

magnitude. Because of this, the leading term of varioils 

amplitudes cancels, and the remainder is of the order of the 

above mass ratio, in the absence of infrared singularities 

which might arise in the limit m +O. 
9 

The theoretical basis for the natural suppression 

mechanism has recently been studied systematically in SU(Z)xU(l) 

gauge theories in which quark mass terms are arbitrary (i.e., 

in those models in which there is no zeroth order natural 

relation among masses and mixing parameters; see below). 6 

Glashow and Weinberg have established general necessary and 

sufficient conditions which guarantee that the weak neutral 

current naturally conserves fermion flavors in orders G F and 

GFa . The conditions are: (1.) that quarks of a given charge 

and chirality have the same weak ?2 and T 3, and (2-i that quarks 

of a given charge receive their mass either from a gaugc- 

invariant bare mass term or from their couplings with a 
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single neutral Hiqqs field (but not from both). One of us 

determined in the same framework the conditions which guarantee 

that [ASI = 2 transitions, both CP conserving and violating, 

are naturally suppressed. 3 They are: (1.) the Glashow-Weinberg 

conditions (but without the bare mass option, since the 

possibility of such a coupling is precluded by the next 

condition), and (2.) the requirement that quarks of charge q 

and quarks of charge q*l do not belong to the same isomultiplets 

for at least one chirality. 

Let us now shift our attention to the leptonic sector 

and consider the role of the natural suppression mechanism with 

regard to the conservation laws of separate electron- and 

muon-type lepton number. In unified gauge theories, these 

laws have occupied a rather special position. In contrast 

to the conservation of electric charge. the conservation of 

muon-type and electron-type lepton numbers is not associated 

with the gauge-invariant coupling of a conserved v- or e-type 

lepton current to a massless gauge vector boson. That is, 

these conservation laws, if exact, are not realized in nature 

as gauge symmetries. Indeed, since the weak gauge symmetry 

is spontaneously broken, the eigenstates of the weak gauge 

group are in general not eigenstates of the mass matrix. 

Threfore, there will in general be mixing between fermions of 

the same chirality and charge, which will prevent the 

existence of a conserved quantum number assigned to the 

particles in a particular weak multiplet. 
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As has been remarked upon before, 7. in the minimal 

Weinberg-Salam model with just two left-handed doublets' 

(v,,e), and (V,,,l-I)L, the exact degeneracy of the neutrinos 

(guaranteed by their masslessness) implies separate U- and 

e-type lepton number conservation. More generally, consider 

a model with n left-handed doublets (Nl,e)L, (N2,nJL,. 

(N3L3 I,, . . . (NnLn-jL where the neutral leptons Nl, . . . N n 
are degenerate. Certainly the natural way to guarantee this de- 

generacy is to make these neutral leptons massless, but this 

is not necessary. Now one can define ve Z Nl, v 
!J : N2, 

V i = Ni as both the mass eigenstates and the weak gauge group 

eiqenstates. Assign to the electron multiplet the electron- 

type lepton number 4 and similarly for& 4, . . ..$ 

Then in such a theory these n quantum numbers 4 4 . . . 

Jr will be exactly conserved. 9 For simplicity let us return 

to the minimal Weinberg-Salam model. If one (1.1 allows 

v e and v ~ to be nondegenerate in mass or (2.) adds either 

left or right-handed doublets with neutral or doubly charged 

heavy leptons (called generically Lo, L-- 1 which can communicate 

with muons and electrons or (3.) enlarges the original 

doublets to triplets or higher dimensional representations 

of weak SU(21, then V- and e-type lepton numbers will not be 

separately conserved. The mixing of v e and v 
I-r 

in case (1.) 

is quite analogous to the situation which obtains in the 

hadronic sector of the minimal model, where there is no 

separate conservation of (u,dglL-quark number and (c,s ) - e L 
quark number because of the mixing of d and s , or 
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equivalently u and c. It is the purpose of this paper to 

analyze the conditions which guarantee that the nonconservation 

of e- and u-type lepton number is naturally suppressed and to 

discuss their consequences. 9 In doing this we shall also 

present a compendium of expressions for electromagnetic 

vertices -- both parity conserving and violating, and both 

on-diagonal and off-diagonal -- of fermions in any Su(Z)xU(l) 

gauge theory. We shall briefly comment on special circumstances 

in which the fermion mass matrix is not arbitrary due to the 

representation content of the theory, so that the effects of particle 

mixinq are naturally suppressed. In such models, the model of 

Chenq and Li being a prime example, 10 the general conditions 

need not apply. With our suppression mechanism one obtains 

predictions for such processes as n+ey and u+eee which, for 

a wide range of parameters (heavy lepton masses and mixing 

angles) are in accord with, but not extremely small compared 

to, present experimental limits. 

The remainder of this paper is organized as follows. 

In Sec. II, we review our general matrix formalism and discuss 

the one-loop calculation of the general fermion electromagnetic 

vertex. Section III contains a description of the various 

models to be considered. In Sec. IV we present our calculation 

of the rate for the decays pi-fey and p+eee in these models. 

In Sec. v we focus on the Kobayashi-Maskawa (KM) model11r12 

involving three left-handed doublets of leptons (and quarks). 

Certain interesting phenomenological implicationsof the model 
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are analyzed. Our concluding remarks are given in Sec. VI. 

Appendix A contains a discussion of the self-energy graphs. 

II. THE GENERAL FERMION ELECTROMAGNETIC 
VERTEX TO ONE LOOP ORDER 

In this section we shall compute the general electro- 

magnetic vertex to one loop order for fermions in an SU(~)XU(~) 

gauge theory. For the special case of a diagonal, real-photon 

vertex, in models where our approximations are valid, our 

results can be used to-determine the anomalous magnetic dipole 

moment and electric dipole moment of an arbitrary fermion. 13 

The main applicatiorsof the non-diagonal, real-photon amplitude 

are to radiative hyperon decays, Y+N+Y, where Y = A,E, or 14 S, 

and radiative lepton decays, such as L-W+y (where L- is a 

heavy lepton) and li+e+y. The non-diagonal virtual photon 

amplitude is used in the calculation of rare K decays such as 

KL +uii, K++r+ee, K 
S 

o+7r"eE, and the leptonic decay U+eee. In 

the present paper, as mentioned before, we shall concentrate 

on the application to n- and e-type lepton number nonconservation. 

In all these experimentally interesting hadronic and 

leptonic applications, there are two simplifying features. 

First, the main contribution to the amplitude comes from 

diagrams in which the mass of the internal virtual fermion 

(a charmed quark or heavy lepton) is considerably larger 
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than the masses of the external fermion (d or s quark, or 

ufl e, v lepton). This fact justifies an approximation 

which we shall use in evaluating the Feynman parameter 

integrals; namely, we shall keep only the non-negligible 

fermion masses. Secondly, in the decay amplitude for 

fl+f2+yvirtual , the momentum q of the photon satisfies 

q2<m12 where m 1 is the mass of the initial fermion. 

Consequently, q 2 is also small compared to the charmed quark 

or heavy lepton mass squared and can be neglected in the 

parametric integrals. With these approximations the 

parametric integrals will be of the form 

- 
I 

(where mF is the mass of the relevant virtual fermion) rather 

than some complicated and for our purposes, not very useful, 

expression involving dilogarithms. Moreover, since q 2 is 

small, it is not necessary to compute the full off-shell 

vector and axial vector form factors but rather only the 

V and A parts of the charge radius. This expedites the 

computation. 

We shall perform the calculation using the c-limiting 

procedure as formulated for spontaneously broken nonabelian 

gauge theories by Fujikawa. 15 In this formulation, there is 

no interaction term of the type emW(AUW-n$+ + AnW+n$-1, 

where A 
lJ 

is the photon field, and I$' are unphysical scalar 

fields, in contrast to the regular R gauge, 16 
5 

in which 
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this term is present. Furthermore, the WWA vertex differs 

from the form in 

linear in c(see 

the W propagator 

iAaB (k) 

the RS gauge by the addition of a term 

Eq. (2.22)). Finally, as in the R gauge, 
5 

is 

= -i qclB - 
kak3U-l/5) 1 

k2-m$C k2-mW2+is 
(2.1) 

and similarly, with appropriate changes, for the Z propagator. 

The advantages of using this <-limiting procedure are first, 

that there are no diagrams involving $'W'A vertices. 

Secondly, for the physical quantitites which we calculate at 

the one loop level, the diagrams like those of Figs. (la) and 

(lb), but with W' replaced by $',both vanish in the limit 

<+O. (The limit is taken after all integrations are performed.) 

This is useful because our general matrix formalism (see below) 

is simplest in diagrams which do not involve unphysical scalars. 17 

Before presenting the results of the calculations, we 

must introduce our general notation. 3 The crucial virtue of 

this notation is that it allows one to treat in a unified way 

all SU(~)XU(~) gauge models. Let us denote by 5, and 5, the 

left and right chiral lepton fields. The components of 5, R 

are labeled by T, T3, Y (or equivalently, Q), and a, where ~1 

distinguishes different multiplets with the same T and Y. 

The coupling of the gauge bosons to fermions is given by 

yGF = gJwpW-U + h.c. + m Jz'Zli (2.2) 

where 
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JW ' = ?L~fiTL+5 L f SRVT+ % 

and 

Jz ’ = ?,-tr TzL 5, 
f -iRV TZR 53 . 

(2.3) 

(2.4) 

In Eq. (2.31, TiLfR, i = 1,2,3, are the representations of the 

weak isospin generators for the various left and right fermion 

multiplets and Q = T3 + Y/2 is the electric charge operator. 

The TiLrR satisfy the commutation relation 

C T.=lR 1 r T. L,R 
3 1 = is.. T L,R 

i3k k (2.5) 

For a doublet representation of SU(2), for example, T.L'R=$r. 1 1' 
The weak isospin raising and lowering operators are defined as 

T L,R = T1 
L,R +iT LrR 

- 2 
+ 

47 
so that 

, T LnR = T LtR _ 
I 3 

In Eq. (2.4), 

TZ 
L,R = T L,R - sin2eWQ L,R 

3 

where 

and 

Q = QLL + QRR 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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L 

3 

1 'Y5 =- 
R 

(,) . 

In order to express this coupling in terms of physical 

fermion fields, we must diaqonalize the mass matrix, which 

is of the form 

TLMcR + h.c. 

Here M is a general matrix which is constrained only to 

commute with Q ; 

QLM = MQR . 

(2.10) 

(2.11) 

Since in general M,M+ 
1 I 

# 0, there does not exist a unitary 

matrix U such that UMU+ is diagonal. Consider, however, MM+ 

and M+M; these are hermitian and have the same positive 

semidefinite eiqenvalues, so that there exist unitary matrices 

UL and UR such that 

uMM+u += L L MD2 

URMfMURf = MB2 (2.12) 

where is diagonal. Then 

ULMUR+ = MU . 

From Eq. (2.111, it follows that 

[Q", UL] = [ QR, uR] = o . 

(2.13) 

(2.14) 
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The fermion mass eiqenstates are then defined as 

JIL = UL<, , @R = 'Rs, ' (2.15) 

VJ = L$ + WR - 

In terms of the mass eiqenstates, the fermion-gauge boson 

coupling takes the form of Eq. (2.2) with 

and 

JW ' = ;,Y'T+~$, + GR?T+ RQR 

where 

and 

JZ ' = ~,v'T;$, f $,Y~T~~$~ 

TiLVR = 'L,RTi "3; R , 

TZ 
L,R = 

I3 
L,R - sin2eWQ L,R 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Let us proceed with the calculation. The diagrams 

which can, in general, contribute in one loop order to the 

electromagnetic transition amplitude from an initial fermion 

fl to a final fermion f2 are shown in Fig. 1. In the non- 

diagonal case where fl # f2, there are also the self-energy 

graphs shown (for fl%f2=e) in Fig. 3. For the real photon amplitude, 

these give zero contribution and for the virtual photon 

amplitude, they contribute only to the renormalization of 

the (nondiagonal) vector and axial vector form factors. The 

treatment of these self-energy graphs is discussed in greater 

detail in Appendix A. In the nondiagonal case, the graph 
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involving a Z in Fig. (1~) will only contribute if there are 

appropriate lowest-order nondiagonal Z-fermion coupling terms 

in the Lagrangian. Stating one of our results in advance, it 

will in fact be shown that if this Z graph could contribute 

to the decay u+ey it would give much too large a rate. The 

photon graph (ld) is, of course, present only for the diagonal 

electromagnetic vertex: it gives (c.f. Eq. (2.64)) s " 

(cL/2a) cl26 

2 (Ojab = 

-a ab, where Fy(0)aa- Fy(Olaa/Qa is the anomalous magnetic rmnkent. 

The invariant amplitude for fl+f2 + ycvirtual or real) has 

the general Lorentz and Dirac structure 

.A$ ( fl (P,) + f2(P2) + y(q)) 

= -iu,(p,) I y,,(Fl "(q2) + FlA(s2)v5 

io q " 

+ (mv;m ) (F2"(q2) + F2A(s2)y, 
12 

+ q,(F3v(q2) + F3A(q2)y,) 1 ul(pl 

In Eq. (2.20) ul(pl) is to be regarded as a tensor 

product of a Dirac four-spinor and an n -dimensional vector, 

where n denotes the number of hadronic or leptonic flavors, 

i.e., mass eigenstates. The form factors Fi(q2) are nxn 

matrices in the space of physical quark or lepton fields. 

We have normalized the F2 ",A matrices so that the diagonal 

elements are equal to the anomalous magnetic moment (times 

e) and electric dipole moment of the corresponding fermions. 

(2.20) 
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Electromagnetic current conservation requires that 

q~=o, 
which implies the two relations 

(ml-m2)FlV(q2) + q2F3”(q2) = 0 

- (m2+ml)FlA(q2) + q2F3A(q2) = 0 

For q2 = 0, since F3"lA are analytic at this point, 

F,'(O) = Qf 6f f 
112 

FIA(0) = 0 

where fl and f2 label the initial and final fermions. In 

particular, for the decays ~+ey or (for nondegenerate 

neutrinos) v2+v1y, Fl "(0) = 0. Furthermore, for a real 

photon, the full amplitude is 

.A= EQd4$ , 

and E'q = 0 , so that the F3"IA terms make zero contribution 

to fl-+f2 + v(q2=0). Thus in order to determine the rate 

P(u*ey), we need only calculate the quantitites F2 VfA(o). 

For the related decay Wee;, we shall need the Fl ",A 

terms. Since in this decay q2,mU2c,52<Q$2 it is useful to 

expand the vector and axial vector form factors, keeping 

only the largest terms. From Eqs. (2.22a,b), we obtain the 

following relations linking the vector and axial-vector 

(2.21) 

(2.22a) 

(2.22b) 

(2.23al 

(2.2333) 

(2.24) 
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charge radii dF 1 VrA (0),dq2 with the scalar and pseudoscalar 

form factors: 

dFIV 
- (0) = -l 
dq2 ml-m2 

F3"(0) , 

(for ml # m,) 

dFIA 
- (0) = 1 
dq2 

ml+m 2 
F3A(0) . 

(2.25a) 

(2.25b) 

We shall use Eqs. (2.25a,b) to determine dFlVRA/dq2 , since 

this method is easier than a direct computation of Fl "fA(q2). 

Once having utilized F3 ",A in this manner, we will drop them 

because they make zero contribution to the amplitude for 

p-e; 

Diagram (la) gives a contribution 

eq2Qw d'k yp(TtLL +TPR) 
(&-)C+MD) 

(27114 Cp,-kJ2-MD 
2 y”(T ;L + TRR)x 

A&kUgc(k-q) l-Puc(k,-q,q-k) 
WY 

(2.26) 

where the chiral projection operators L and R are given 

in Eq. (2.10) and a sum over both upper and lower signs is 

understood. The WWy vertex is given by 

ieTal"2"3 

w+w-y 
(kl,k2,k3) = ie 

c 
(kl-k2ja 9, a + (k2-k3) + 

3 12 qga cl 
2 3 

(k3-klla 4, a +ieC (k 1 g I ( 2 31 ' al "2c3 
- (k2 

(with the momenta defined as going into the 

) 9 
a2 Clla3 

(2.27) 

vertex). In 
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2s. (2.25;,2,,, = f 1.,correspcntiinq eo the >L?per anti lower ,, 
3b.oices of sF:,'ns in -he T operators. Similarly, diagram (lb) 

Tives a conrribction 

2 d4k 
e9 -g(T 

(27) 
41 

,~(TFLL+TTRR)A 
3 8 

ik) (2.28) 

The conrritiuticn of diagram (Ic! is given by Eq. (2.28) with 

t:he reDlacements g?.g2*g*2J LJLy, 
I y.pm ;, ind E-~, where 

17 is the gauge parameter for the Z field. 

It is convenient to separate the LL.RR and LR,??L parts 

of rhe form factors arising from %he Vl and 2 graphs (la)-(lc): 

F. ",A _ iFys"; 
I LL.RR + (FY'AjLR,m , i = 1,:,3 (2.29) 

Perfaming some Dirac algebra using the chiral projection 

operators L and R in Eqs. (2.26 and 2.28),we tietermine 

the General structure of the LL,RR and LR,P.L parts 05 t.ie 

form factors CO be as listed below. 12 these eqcations a 
t(t) 

sum over the indiccJa(a‘)= +c-,,dt),7is understood corresponding 

'to the contribntions of W-, WC, and Z graphs, respecsively: 

F A, :, 
2 '(7 'LL,RR 

c ", 2, 
3 SC! 'LL,RR 

LcyR T3L + T aRCy;P.R T3R (2.33a) 

(2.30b) 

( 2. 3ia) 

~~~~~~~~ 2" - T~~~LLJ=;R: 

.,. TaRcy;i;,~-, 

, (2.31's) 

i2 32al 
I . 
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F~~(~~)~~,RR = (ml+m2) TaLCtt'aRRTSL -TaC3,a a 
R LL,RRT-R 

I (2.3213) 

F2’ (q2 1 LR,RL = hl+m2) Ta C2,a L LR'RLMDTa 4 f Ta 1 (2.33a) 

F2A (q2 )LR,RL = (ml+m2) Ta C2,a 
R LR r RLMDTaL 1 (2.33b) 

F;‘A(q2)LR,RL= 0 

f;‘A(q2)LR,RL= 0 - 

(2.34) 

(2.35) 

In Eqs. (2.30)-(2.33) C2,a and C3,a are real nxn diagonal 

matrices, the values of which will be given below. In the 

approximation in which the external fermion masses are much 

smaller than the internal virtual fermion masses, the C matrices 

are independent of the external lepton masses. Thus the 

symmetry under the interchange m ++m 1 2 is manifest in the 

above equations. One Can observe that, under a parity 

transformation, the vector form factors are SymnIetriC and 

t:le axial vector form factors are antisymmetric, as they 

must be. 

I* Eq. (2.35), F;'A(q2)LR,RL, actually has the form, 

suppressing ~ TLR matrices, 

p;tA(q2)LR,RL 2, F 
2 

1 (2.36) 

where mF denotes the mass of a virtual fermion in Fig. 1, 

and mv = % or mZ. In contrast, from Eqs. (2.33a,b), 

(2.44-2.47), (2.50,2.54,2.57), it follows that 
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F;‘A(q2)LR,RL s 
eGFmF(ml + m2) 

8 n2 (2.37) 

where a is of order unity (and b is either of order unity 

or In mW2/mF2, depending on the model). Hence the contribution 

of F;'A(q2)qu 2r Cm 1 + m2)F3 vpA(q2) is negligible for both 

diagonal and nondiagonal transitions, being smaller than 

that of F:'A (q2) by the factor (m;,2/<). A similar remark 

applies to Eq. (2.34). 

With the weak matrix structure of the form factors thus 

determined, we next consider the restrictions on the amplitude 

for fl + f2 + y arising from the hermiticity of the Lagrangian 

and from time reversal invariance. This amplitude constitutes 

an effective proper flf2y vertex 

Xff = Tr,,$A' (2.33) 

(where @ is a tensor product of a Dirac field and an 

n-dimensional vector of all flavors of quark or lepton 

fields). 

In momentum space this vertex is 

U(P2)ru(Pl' P2i q)u(p1) 

and the hermiticity of the Lagrangian implies that 

rJP1, P2' 9) = vor'(P2, Pl? -q)yo (2.39) 

Eq. (2.39) requires that the total form factors satisfy the 

followina relations: 
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One can eas ily check that these conditions are satisfied 

by Eqs. (2 -25) and (2.30) - (2.35),given that with our 

approximations the C matrices are independent of ml and m2. 

Note that the current conservation equations,(2.22a, b) are 

consistent with these hermiticity relations. In the diagonal 

mass case, Eq. (2.42) implies that Ft(ml= m2) = 0 

(also implied by Eq. (2.2223) and furthermore, 

FI Cm, =m2)=0 . (2.45) 

Finally, time reversal invariance implies that the Fi matrices 

satisfy the relations 17 

FYrA(ml, m2) = FYtA(m2, ml)* , j = 1,2,3 . (2.46) 

The C matrices may be conveniently written in the form 

(suppressing non-matrix indices) 

FV,A 1 Cm,, m2) = FytA(m2, ml)+ 

V V L 
F2(mlr m2) = F2(m2, ml) 

A F2(ml, m2) = -F;(m2, ml) t 

FT(ml, m,) = V -F3(m2, ml)+ 

Ft(ml, m2) = Ft(m2, ml)' . 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

2 
C = eg 

ij 2 Zcisij 321i "rd 
(2.47) 
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(with no sum on i) . For the W' graphs we use 

the relation, in the Weinberg-Salam model, 19 

92 = CF 
7 

For the Z graph we make use of the relation 

2 
y +g' 

2 
=K92 

8mZ2 8mw2 

and define Cij similarly to Eq. (2.47), with 

K = 

In these equations, g and g' are, the coupling constants for 

the SU(2) and U(1) subgroups of SU(2) X U(l), respectively: 

'CT3 
is the vacuum expectation value of (the neutral member 

of) a Higgs multiplet with weak isospin T, and the sums in 

Eq. (2.50) are over all Higgs multiplets. For the Wf terms, 

obviously 

(c, i) LL,RR = (ck,+ (la) + (lb))LL,RR 
, 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

for k = 2,3, and similarly for the LR,RL part. From our 

present and past calculations 2,20F2t~e fi nd that the diagram of 

Fig. (la) yields 
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5 1 = (a,-QFi) c - a ~~ 

= (Q1-QFi) 

= (Q~-QFT) - g - $ lnc + b 

+ E~(-+ + + I*<) I 

while diagram (lb) gives 

=-QFi[; - 21 

LR,RL 
= QF C 

2 
i 

+ ~~(-4 In &- + 6) 
I. 3 

LL,RR 
= 

i QFi I 

In these equations Q, and QF are the charges of the initial 
i 

and i'th virtual fermion. and 

4. E. =1 - 
= mw2 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

We recall that these results apply in the limit 5+0. As is 

expected, F3(q2) is a non-abelian gauge-dependent quantity; 

in Sec. IV, it will be shown that it has precisely the correct 

S-dependence to cancel the S-dependence of the Z and W+W- 

exchange contribution to u+eee and yield a S-independent 

S-matrix element for this process. 

The Z graph (1~) contributions are obtained by simply 
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multiplying those of graph (lb) by K and replacing mW2 by 

mZ 
2. rn Eq. (2.58): 

= -lQFi[; - 21 

LR,RL 
i = "(lFi 2 + Cii(-4 In &- + 6) 1 I 

= "'F. 1 C 1 

where 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

The invariant matrix element for the radiative decay 

fl+f2+y is given by 

F,'(O),, + F2A(0)21~5 

(2.63) 

where for notational convenience we have separated the Dirac 

and weak gauge group matrix structures, defining 

FyfA(q2jba =<fbIF;'A(q2)(fa> . (2.64) 

The rate is then 

r (fl+f2+Y) = 2 (l- $(l- $)[,F2vCO12d 2+IF2?O)211 2] . (2.65) 

From these results we can immediately derive several 

constraints on models of weak interactions. We concentrate 

on the leptonic sector here, since the quark sector has been 
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discussed before. 2,3 First, the existing experimental bound 

on the branching ratio for the decay .,,+eee, *. BR(u+eee) 
-9 ~6x10 , prohibits a direct lowest order zue coupling in 

the Lagrangian. For if there were such a coupling this 

decay would proceed at a rate comparable to that of the 

decay u+e;evu unless the mixing of the muon and electron were 

unnaturally small. L But if TZ and TZ R are to be diagonal in 

the u-e subspace for an arbitrary mass matrix M and hence 

arbitrary UL and UR, they must in fact be multiples of the 

unit matrix in the entire Q.=-1 subspace. That is, all left- 

handed leptons of charge Q=-1 must have the same value of 

weak T3 L and similarly for right-handed leptons of charge 

Q=-1. As a consequence the Z graph (1~) does not contribute 

to nondiagonal electromagnetic leptonic transitions. Par- 

enthetically, it may be mentioned that, in the hadronic case, 

the smallness of the KLKS mass difference and of the rate for 

the decay KL-+flii similarly prohibits a lowest order nondiagonal 

Zsd vertex. By the argument given above, the absence of such 

a vertex can be guaranteed naturally only if all quarks of a 

given charge and chirality have the same value of weak T3 . 

Let us consider next the W graphs (la) and (lb). For 

the P+~Y decay, the LL,RR part of these graphs will, in 

general, V,A give a contribution to F2 (0) of order eG Fmv2/ (8x2), 

while the LR,RI part will give a contribution of order eGFmLmu/(8r2), 
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where, again, m L denotes the mass of a generic internal 

virtual lepton (specifically, the maximum mass in the case 

of widely disparate masses) in Figs. (la), and (lb). Thus 

the LL,RR part will produce a u+ey branching ratio of order 

(cm), while the LR,RL part, if present, will yield an even 

larger rate of the order (a/a) (mL/mu)2. We must therefore 

require that the corresponding matrix elements 

<eITkLC~;RRT7LIu> , <elTkRC~;RRT-RI~>, L LR,RL 

'R LR 
, + <elT, 5,+ MDT&>, 

and <e/T* C2 i 
RL 

, MDTrFLI~> allvanishto leading order. Here, in 

contrast to Eqs.(2.30)-(2.33),there is no implied sum 

over both upper and lower signs, i.e., each matrix element 

must vanish for each sign choice. Now to leading order,the 
LL,RR matrices C2,i are proportional to the identity matrix in 

each charge sector. Therefore,for upper and lower sign 

choices individually, the LL,RR matrix elements can be 

written 

L LL,RR <elTi C2,? 
L 

T, 1~’ oI <el T;TTL/ 1-I> 

= %<e/ (TLJ2 - (T3L)2 t T~~Iu>. 

(2.66) 

In order for this matrix element to vanish, in general, (T~)~ 

and T3 
L must be diagonal in the u-e subspace. Again, if this 

is to be true for an arbitrary beginning mass matrix M, 

(?L)2 and 13L must actually be multiples of the identity in 

the Q=-1 charge sector. The same argument and conclusion 

apply to (?R)2 and T3 
R 

. We thus find from the requirement 



-26- FERMILAB-Pub-77/21-THY 

that the LL,RR W graph contributions do not give too large 

a branching ratio for the decay U-+eY, that leptons of charge 

Q=-1 and a given chirality must have the same value of weak 

T and T3. As mentioned before, this is in fact precisely the 

condition on lepton represention content which guarantees 

natural conservation of Q=-1 leptonic flavors by the weak 

neutral current. 

Proceeding to the analysis of the LR,RL matrix elements 

in the W graph contributions to u+ey, we note that, as 

in the LL,RR case, to leading order, C LR,RL 
2,+ are proportional 

to the identity matrix in each charge subspace. Consequently, 

we require that for each sign choice individually, 

<e/TkMBTf /u> = <e/T?xT LIp> = o . 
5 

This implies by the same reasoning as was given before, that 

= <i2 (Q=-1) ITk%~Tz LI~l(~=-i)> = 0 

where il,2 are arbitrary leptons. 

This is thus a special case of the second condition for 

microweak CP violation discussed elsewhere (for quarks). 3 

In words, this condition, for leptons, is that, for at least 

one chirality, leptons of charge q and q+l do not belong to 

the same weak isomultiplet. In the specific case of the 

pe matrix element it is necessary that leptons of charge 

(2.68) 
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Q=O and Q=-2 do not belong to the same weak isomultiplet as 

electrons and muons, for at least one chirality. 

In passing, we mention that the LR,RL contribution in 

the diagonal case is also larger than that of the LL,RR 

terms, at least in the experimentally interesting case in 

which m12(=m22) 2 
<<mL . For example, in the Georgi-Glashow 

model such an LR,RL contribution is present and yields an 

anomalous magnetic moment proportional to a heavy lepton 

mass, as in Eqs. (2.33a,b): 

F2(OjGG p GFm MOmlJ . 

In contrast, in the WS model, with only LL,RR contributions, 

2 F2(OJWS = GFmFi . 

The large LR contribution in the Georgi-Glashow model 

was in fact used to set a phenomenologically important upper 

bound on the heavy lepton mass m MO' l3 

Finally, consider the C3 matrices,which do not contribute 

to u+ey but do to u+eee. The same conditions which guarantee 

that the p+ey branching ratio is not too large, also ensure 

that graph (la) gives a reasonable contribution. However, 

this is not true of diagram (lb) because of the presence of 

the In & in 
1 

, as given in Eq. (2.57). 22 

Assuming the other conditions are satisfied, in particular 
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the condition that all leptons of charge Q=-1 have the same 

weak T and T 3' this In k will produce a BR(u+eee) % (cr/n)2s x 

ln2 (m 2/m 2, , where Ly:i 
L2 Ll 

are generic doubly charged leptons, and 

E is a product of mixing angles. Unless Td2 and Tl are close to being 

degenerate, and/or the nixing angles(s) is small, such a branching ratio 

would conflict with the present experimental limit. In order to be safe one 

might wish to avoid the possibility of a LL,RR contribution from 

diagram (lb). One way, although not the only way, to do 

this is to avoid doubly negatively charged leptons which 

communicate with e and u in such a way as to yield 

nonzero matrix elements <elT+LCy;RRT-LIU> or celT+Rcy;RRT Rlu,- 
I , - 
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III. GAUGE MODELS 

In order to illustrate how certain features of p- and e-type lepton 

number nonconservation depend on characteristics of the underlying 

gauge theory, we shall apply the general formulas derived in the previous 

section to a variety of SU(2) x U(1) gauge models. Subsequently, we shall 

focus upon the V-A six-quark KM model. The leptonic representation 

content of these models is depicted in Table 1. In this table, 

R2(e) = (-:_, :::,i (3.1) 

and %! 1s a 3 x 3 unitary matrix (which depends on four parameters; 

see below ). 

Model (a) is the original Weinberg-Salam model of leptons, 5 generalized 

to allow for nonzero neutrino mass. Given that the neutrino mass eigenstates 

vi and v2 are nondegenerate, they will mix by an arbitrary rotation R2 

through an angle 0 to form the weak eigenstates ye and Y . The spinors 
P 

(v e’ VP), (v,, ~2) in Table la are used solely for notational convenience 

and do not represent doublets of any group. We include model (a) only to 

illustrate the fact that with the present experimental upper limits on the 

neutri,no~ masses, it cannot account for a branching ratio for p - ey larger 

-24 
than-10 . Henceforth, we shall accordingly restrict two of the neutral 

leptons which couple to eL and pL to be massless by decreeing that they 

have no right -handed components. 
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The rest of the models include heavy leptons. Model (b), the KM 

11 model, 1s obtained by expanding the minimal model with the addition of 

neutral and singly charged heavy leptons Lo and L-, as shown in Table 1. 

The left-handed component of Lo is distributed among the left-handed neutral 

weak eigenstates via the unitary mapping FT. One merit of this model 

is that it would incorporate in a natural way the heavy lepton discussed at 

SPEAR 23 and corroborated by DESY 
23. If m fact this heavy lepton is found 

to decay via a V-A current. Lepton-quark universality and the cancellation 

of anomalies are easily achieved by postulating that the hadronic sector 

also consists of three left-handed doublets, (u,, d)L, (us, s)L, and (ub, b)L 

where 

il 
L 

cL 

I tL 

(3.2) 

with F a unitary matrix. With such a quark sector, however, the KM 

model cannot account for the anomalous y distribution in inclusive antineutrino- 

nucleon scattering reported by the Harvard-Pennsylvania-Wisconsin-Fermilab 

24 
experiment and recently supported by the Caltech-Fermilab experiment. 

25,26 

The fact that % is unitary is equivalent to the fact that the model 

has natural flavor conservation by the neutral current. This is clear since 
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the first condition for flavor conservation by JI is true if and only if the 

matrices IJ L andU 
R 

in Eq. (2. 9) are unitary not just in toto, but also when 

restricted to any (T, T3, Q) subspace. But piis precisely the restriction 

t. of the matrix UL to the Q = 0 subspace, and so the equivalence asserted 

above is proved. (A similar remark applies to the unitarity of y. ) 

Allowing for redefinition of the phases of fermion fields and the extraction 

of a single overall unobservable phase, the matrix %! depends on four 

parameters. Since a 3 x 3 orthogonal matrix only depends on three 

parameters this leaves an additional one, which we can choose as a 

(CP-violating) phase. For generality we shall denote the elements of p 

by zij and avoid using any explicit trigonometric forms. 

As in the WS model with massless quarks we shall denote the normalized 

linear combination of the zero-mass physical fields v1 and v2 which couple 

to e and p by ve and vII: 

” = e 

“I = 

22 liV1 + ?I25 
T 

[I F/11 I2 + I f&l “1 T 

* %2v2 2iiv1 + 

[ I q11 2 + I &2 Iz]’ * 

(3.3 a) 

(3.3 b) 

There are several important features to note here. First, in the WS 

model, with either massless or massive neutrinos, the T = +, T3 = + 

weak gauge group eigenstates,which in that case are v and v are e P’ 
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orthonormal. The analogous T = $, T3 = f weak eigenstates N N 
e’ P 

and NL in the KM model are similarly orthonormal, 

L_ i so that %iis unitary. However, the zero-mass linear combinations 

z? 
jlyl 

+ P. v 
.l2 2 

, j = 1, 2, which couple to e and TV. respectively, are 

neither of unit norm nor orthogonal. Of course there is no reason why 

they should be orthonormal, since they do, not constitute, complete .,-:. 

27 
w&z&gauge, group_e,igenstates. = With our definitions (3.3~a, b) Of 

ve and vP the deviation from unit norm is rendered explicit; for example 

the Weve vertex is(-$)Jl pi,1 2 + [ gi2 12[Ey Lv W-@ + h.c.] . 
LY e 

The inner product of ye and Ye is 

where we have used the fact that Since the couplings of 

e to ve and p to vP are not in general equal, the KM model violates p - e 

universality. Moreover, in consequence of the fact that pe and vP are not 

Orthogonal, there is neutrino-mixing. However, since the neutrinos are 

degenerate this mixing is not time-dependent; i. e. there are no neutrino 

oscillations. 28 In section V the phenomenolOgica1 implications of the KM 

model will be examined in greater detail. Here we shall simply observe 

that there are three important experimental constraints on the amount of 

mlxmg which can be allowed in the KM model. First, one must respect 
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ep universality, i. e. the equality of gLev and g2 where g and 
e 

wpv ’ 
P 

we Ye 

gWp” 
are the coupling constants for the WeVe and Wpv vertices. The 

P P 

most accurate test of this comes from a comparison of the rates for the 

decays TI + eIJe and 1~ + pi; 29 . 
P 

Secondly, there is the requirement that 

2 
2e 

2 
gWdu sec ~., C :,gWpv as determined by measurement of the rate of p decay 

versus p decay and by the measurement of the Cabibbo angle from hyperon 

decay or K - prP versus TT-- p? . 
CL 

Finally, the amount of nonorthogonality 

between ve and yP is restricted by the nonobservation of e- from an 

incident beam of yP scattering off nucleons. 
30 

AS will be shown in section V, 

these constraints allow mixings 

[ q - 1 g231 - 1o-1 - io-2 . 

The next model, (c), proposed recently by Wilczek and Zee (WZ)31 

contains two left-handed triplets in which the T = -1 states L-- 
eL and L-- 

+ 
are mixtures of the heavy lepton states L,-L and, L2-L: For the cancellation 

of anomalies (between quark and lepton sectors) it is necessary to postulate 

new quarks. However since these quarks are a peripheral issue here we 

shall not discuss them in detail. On another matter there is a more 

immediate requirement; the experimental fact that to the precision of ry 

one percent, the coupling constant for the iidW vertex, multiplied by 

set 0 
C’ 

is equal to that for the rPpW vertex. Because model 

(c) places the left-handed leptons in triplets rather than doublets, the 

FeeW vertex increases in strength from g to fig. Of course this just 
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induces a trivial redefinition of g2 in terms of G m 
2 

F W’ but it has the 

nontrivial effect of forcing the u L and d L quarks to be placed in a triplet 

to retain quark-lepton universality for the weak coupling constant. Furthermore 

in order to maintain the naturality of the hadronic sector, this also forces 

the c and s quarks to be placed in a triplet. 

The WE model cd)” is similar to model (c) in that it adds two new 

_- 
L leptons to serve as intermediate states for the k - e transition. 

However in contrast with model cc), it places these in two right-handed 

doublets, with their weak hypercharge shifted down by two units in order 

to ensure naturalness. This is the leptonic analogue of a model for the 

hadron sector discussed recently in connection with CP violation 3’6 and 

nonscaling anomalies in (anti)neutrino scattering. 
26 

Model (e) is included 

to illustrate the effect of an unsuppressed p - e transition of the form 

% , 
+ (Liw2jL; (L1;; jR + eR, or pR - (L;-2)R; (L;-2)L - eL. We will 

> 

find that such a left-right transition gives much too large a rate for the 

decay p + ey. 

Model (f) is an interesting model proposed recently by Cheng and Li, 
10 

and further discussed by a number of authors, 32 involving two neutral 

heavy leptons. The right-handed components are arranged in two doublets 

with 

[;;;) = R2W’) f;;;;) . (3.4) 
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The left-handed components of Ni and N2 are distributed among two singlets 

N” and N”’ L L ’ 
and the T 

3 
= +j members of two doublets, N ’ and N ‘. 

eL d- 

All of these models except (f) satisfy both conditions for natural 

leptonic flavor conservation by the weak neutral current. The fact that models 

(a) - (c) meet the first condition is obvious from Table I; to show the 

validity of the second requires a description of the Higgs content in each 

model. Before doing this, we note that, as is again evident from Table I, 

all the models except (e) and (f) satisfy the condition that leptons of charge q 

and q l 1 do not belong to the same weak isomultiplet for at least one chirality. 
4-B 

model (a) one complex doublet 
( ) : 

0 suffices toGive mass to e and v. 

This doublet is sufficient in model (b) to give mass to e, p, andL; another, 

i > 
;‘o t , is needed to produce a mass for L?. It is economical, but not I 

necessary, to take this second doublet as the SU(2)-transformed charge 

conjugate of the first: 

i; 
(I:“) = iv2 (3 = (-‘j * (!. 5) 

Model (c) requires two Higgs triplets, 0 i” for the e and p masses, and 

4- 

for the L;- and L2-- masses. In model (d) we need a slightly 

more complicated Higgs structure, for the Lis2 masses and a triplet, 

which can be written as in traceless ($ , $ ) matrix representation, 

H+Ihjz H* 

HO -H+/fi 
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for the e and )I masses. The Higgs content of model (e) consists of a 

triplet and doublet; although there are neutral Higgs fields contained in 

both of these multiplets, they couple to leptons of different charge. 

The Cheng-Li (CL) model (f) fails to satisfy the first condition for 

the neutral (Q = 0) sector, the second condition for the lepton mass term, 

and the last condition: transitions e, k - Ne, N@ can take place through 

both chiralities. Nevertheless, this model, in the form presented, is 

adequate to suppress e- and p-lepton number nonconservation to the desired 

level, thanks to the clever choice of the Higgs system. Specifically, the 

neutral leptons receive their masses both from their couplings to a Higgs 

ml- -0 
~NK(@ > 9') - sin 0 

R 

+siIl e + cos e 

and from the gauge-invariant bare mass term - 

However, the crucial point is that only one Higgs doublet is involved in - 

giving masses to the leptons; as a consequence, there is a natural zeroth-order 

relation among the lepton masses and the mixing of the neutral leptons. 
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This relation guarantees that the neutral current is diagonal in Q = -1 

leptonic flavors down to the level GFo, as in a fully natural model. Note 

that if one started with more than one doublet of Higgs, one could always 

redefine the Higgs doublets so that one and only one picks up a vacuum 

expectation value and hence is involved with giving mass to the leptons. 

If, however, the Higgs representation content were expanded to include 

triplets or higher dimensional multiplets, then the Q = 0 leptons would 

indeed receive their masses from couplings to more than one neutral Higgs 

field, and the zeroth order relation constraining the mixing of neutral 

leptons would no longer be valid. 

In this theory the four left-handed weak eigenstates NkL, N’ 
PL’ 

“L> 

and N’;’ are unitary transforms of the mass eigenstates Y IL’ N y2L’ IL’ 

and N while the two neutral right-handed weak eigenstates N 
eR and N 

2L’ PR 

are unitary transforms of NtR and NZR, as prescribed in Table 1 and 

Eq. (3.1). When one diagonalizes the mass matrix and expresses the 

neutral weak eigenstates in terms of mass eigenstates, one finds that the 

mixing is suppressed by the small factors me/mL or mP/mL and is just 

such that the leading induced LR, RL contribution to FVaA 
2 (0) vanishes. 

The remaining, subdominant LR, RL contribution; which will be given in 

the next section, is of the same order as the LL,RR part. One can easily 

see this without actually having to diagonalize the mass matrix and compute 

the mixing explicitly, by using the original weak eigenbasis and non-diagonal 

matrix M. Writing out the mass terms listed above, we have for the neutral 

lepton mass terms in the CL model: 
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+ h.c. 

where (with s = sin ~3, c = cos 8) 

M = 

m 
e 

0 

0 m 
EL 

Ilr s 2 mc 2 

(3. 6) 

(3.71 

As mentioned before, to leading order, C2 LR’RL is proportional to the 

identity in each charge subspace. Moreover, in Eqs. (2.31a, b) only the 

lower sign choice, a = -, contributes to the ep matrix element of F2 V*A(o). 

corresponding to the fact that the only available intermediate lepton state 

has charge Q = 0, not Q = -2. Accordingly, re-expressing Eqs. (2. 31a, b) 

L, R in terms of T* and M, and using the fact that 

‘L, R, 1 
P> = IPL,R>, P =e, i* , 

we have, for the dominant part of (Fy(0))I$‘RL: 

(F;(0))L$JRL = (F; -(Ol):;‘RL 
> 

= <eLI TYMTFI pR> + <eR /TRM+TtI PL’ 

(3.8) 

(3.9) 

= + <NkL /M INKY> + 4 <N,~ IM+/N;~> . 
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But with M as given in Eq. (3. 71, 

<NkL [M INPR> = <NeR 1 M+ j NGL> (3.10) 

=o . 

The same argument applies to (F;(O))::’ RL, and thus the dominant LR, RL 

contributions to (F;‘A(0))ep vanish, as asserted. If the leading LR, RL 

term in Fz’ * (0) had not vanished it would have given much too large a 

branching ratio for w * ey. In passing, it may berecalled that the 

LR, RL transitions do not give a leading contribution to the nondiagonal 

charge radius which enters into the p - ee-6 amplitude, as is evident from 

Eqs. (2.34) and (2. 351. 

The crucial property of M used in Eq. (3. 10) is the fact that Mi2 = 0. 

Note that even if the bare mass terms had originally included cross terms 

of the form 

a(Pe, Z) + b(m’ p’ P) R 
+ h.c. 

which would lead to nonzero M 12 
and M 

21 (as well as direct ek mixing in 

the Q = -1 sector of the mass matrix) it is always possible to eliminate 

such cross terms by unitary transformations of the two left-handed doublets 

and, separately, of the two right-handed doublets. In contrast, however, 

if there are one or more Higgs triplets then there will in general be mass 

terms arising from Higgs couplings of the form 
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:cfl;. Z), 3. +(y, + Y(yJ 

+ 5 @jli, pjL +. l[yk), + b(hyY)R] + h-c. 

where the Higgs triplet is written as a (traceless) matrix 

(3. ii) 

and 

. 
v 0 

<Q> = 
0 

[ 1. 

(3.121 
0 -” 

m this case it would not be possible to eliminate the cross terms proportional 

to p and y by allowed redefinitions of fields. We have already observed 

that the presence of such Higgs triplet(s) in addition to the Higgs doublet(s) 

violates the second condition for natural flavor conservation by the neutral 

current. We see now that such triplet(s) would also yields a nonzero Mi2 

and thereby lead to much too large a p -ey rate in the CL model. 

For reference, we list below the expressions for the weak eigenstates 

NkL and N’ in terms of the mass eigenstates v 
I.rL 

f, v2, Nl, and N2. The 

coefficients are accurate to lowest order in m 
P 

21mL2:, 
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m m 
NkL = ve + e cos e N +e sin 8 N 

mi i m2 
2 

(3.13) 

m 
Nt zy- 

PL 
ff;sin 0 N +Jcos e N 

P mi 1 m2 
2 

where ve and vP are defined as the linear combinations of (the degenerate) 

vi and y2 which couple to NkL and N’ 
FL’ 

respectively. 

IV: THE DECAYS p -c ey AND p -+ eeZ 

We shall now compare the rates predicted for the decays p - ey 

and p + eec by the various models described in the previous section. We 

begin with the WS theory; as modified to include nondegenerate neutrinos. 

In this model, C2 = (,;a))% RR. The weak isospin raising operator 

is a 4 x 4 matrix which in the mass eigenbasis ordered as (v 1L’ y2L’ 

eL, pL), takes the form 

rL + = u,T+“uL = (” ‘Tee) 
(4.1) 

since U L 
= R;*(e). Thus33 



-42- FERMILAB-Pub-771 Zi-THY 

L LL,RR 
<e I v2,- = - sin e ~0s e 

sin e ~0s e (4.2) 

and hence 

F;(Olelr = F;(O) = sin e cos e 
ep 

2 2 2 
where Am =m -m . 

” v 
1 v2 

Using Eq. (2.651, we obtain the rate 

r(p--f) 5 
3n 

32rr 
er(p +eFv ) 

e )I 

where 

r(p+eVv 1 = 
e P 

(4.3) 

(4.4) 

(4.5) 

2 
The present upper limit on Am , which comes from the nonobservation of 

Y 

neutrino oscillations, is 
34 

Am2 <25ev2 . (4.6) 
v 

Using this limit and the value mTri = 60 GeV, we compute 

2 

BR(p -ey) ws 2 (2.6 x 10 (4.7) 
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which is far smaller than the level which could be detected by any forseeable 

experiment. 

The situation with the other models is quite different since they have 

heavy leptons which can serve as intermediate states for the in - e 

transition. In the KM model again only diagram (la) contributes, and 

we find 

F;(O) +) p F/” 
el* ep 13 23 ’ 

Hence 

BR(w + eyjKM = 2 

(4.8) 

(4.9) 

With m w= 60 GeV and 1 pt3 p2T 1 = 0.5 x 10 -1 -2 
-0.5x10 ) 

- ey jKM = (0.4 x io-9 - 0.4 x lo-ii’ 
4 

BR(p . (4.10’ 

For mLO = 10 GeV the range of branching ratios correspord~ing to the 

above range of 1 pi, p2t 1 is BR(n * eylKM = 0. 4x 10 -9 - 0.4 x 10 -11 . 

These values are safely smaller than the present experimental limit,35 

BR(p + ey’exp < 2.2 x 10 -8 
(4.11) 

but are not so small as to be without experimental interest. 
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The next two models, (c) and (d), give a comparable rate for the 

decay )I - ey. In the first WZ model, (c), 31,36 

BR(p - ey) 
75a 

= - 
\ 

(c’ 32~ 
“/ 

sin’ e cos 

2 e . (4-12) 

‘I& branching ratio is the same in the second WZ model, (d), in terms of 

the mixing angle B and heavy lepton masses of that ziodel. 

Model (e) provides an instructive illustration of the effect of unsuppressed 

left-right-transitions of the form y - (Lie;)L; (L1 -i)R -, eR, or 

When such LR, RL transitions occur, the 

chiral projection operators in the vertices do not clear the numerators 

of the Feynman integrals of the virtual heavy lepton masses as they do 

in the LL, RR case. Consequently, the leptonic GIM mechanism does 

not operate effectively. The rate is found to be 

3@ 
r(P --eyjfe) = ‘i-;; 

r 

mLi - mL2)2 
2 

(c s 
LR + CRSLj2 

m 
P 

mL1 
\2 

fmL2/ 
+ 

2 (CLSR 
m 

- cR~L? rol - evevp) 

II 

(4.13) 
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where c L = cos e L’ sL 
= sin e 

L’ 
etc. Unless to high precision 

‘LSR 
= cRsL and ml = m2 this rate is in conflict with experiment. Hence, 

this theory, although it satisfies both conditions for natural flavor conservation 

by the neutral current, fails to satisfy condition (2. 67) and hence is ruled 

out. 

Finally, we consider the CL model, (f). For the LL, RR contribution 

to the p - ey decay amplitude we find that only the RR part is present. 

This is again most easily seen by working with the weak, rather than 

mass, eigenstates and the nondiagonal matrix M; to leading order, i. e. 

order (eGFmw/T2)( AmL2/mw2) , 

-1 T LCLL,RR .TL 
- 2,- + lP> = const x <N eL IMM + INpL> 

=o . 

From the RR part we obtain 

(4 14) 

(where Am 
2 2 

L =m 
L1 

- mL2). The LR, RL contribution is given by 
2 

LR, RL 
ep 

= mP<e [ ,- RCLR,RLM 
- 2,- D + . (4. 16) 
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The <e 1 T LCLR, RLM 
- 2,- D TF Ip> ter m is smaller by the factor (me/m ) 

P 
and is thus negligible. The right-hand side of Eq. (4. 16) is 

sin 0 cos e . (4.17) 

Thus the total transition form factors are 

sine cos e 

from which it follows that 

75Q 
BR(p -e~)~~ = - 32~ 

’ 
sin26 cos ‘e . (4. 18) 

As noted in Ref. 10, this branching ratio is, for AmL2 - a few GeV’, in 

agreement with experiment. For example, taking m w = 60 GeV, 

AmL2 
= 1 GeV’, and sin’s cos’ e = i/4, we have BR(p’ ey)CL = 

1.0 x io-*O. 

In addition to the total rate there are several interesting and informative 

correlation terms which can in principle be measured in the decay p - ey. 

First, consider an experiment in which a polarized muon decays in the ey 

mode. The decay angular distribution in the muon rest frame is given by 
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g$) = -& 1 + UPCOS 0 
)I ‘eY [ I 

where 6 = PI? is the polarization vector of the muon and cos f3 = 6 . ” 
pz’ 

with G2 being the three-momentum of the electron in the muon rest frame. 

The asymmetry parameter is 

2 Re Fz(0)e 
( 

* F;(O): ) 
(Y = II 

1 “;(0)ep f + I+O)epl 2 

(4. 19) 

(4. 20) 

and serves to measure the amount of parity violation in the decay. For 

theories with purely left-handed charged currents such as WS, KM, and 

(c) models, the decay amplitude is of the formii(p2)i~iipv~~Ru(p1) where 

R = f(l + y5), and hence LY = +1. The opposite is true if the decay p - ey 

arises from an RR transition; accordingly, in model (d) a = -2. In the 

CL model, interestingly, although there are both RR and LR contributions 

to the amplitude the signs in Eqs. (2.33a, b) relative to those in Eqs. 

(2. 31a, b) are such that LY = -1. Thus in the decay angular distribution 

from a polarized muon, the isotropic component determines 

1 “;(Wep 1’ + 1 +Jep 1’ while the component proportional to cos e 

yields the relative phase between F;(O) 
ep 

and F;(O) 
9’ 

One could also consider measuring the polarization of the photon from 

the decaying muon. The expression for the angular distribution, assuming 

that the muon is polarized, and neglecting terms of order (me/mW), is 
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+~(e,t)ir-‘ey = & E 2. ;‘;‘:(i + cy P cos e) 

+ i$ . (2 x $ii)(P cos 0 + a) 1 . (4. 21) 

In this equation, cy, P, and cos 0 = G.0 G2 are as in Eqs. (4. 19, 4. 20) and 

6 = -c2 and E^ are the three-momentum and polarization vector of the photon 

in the muon rest frame. All four correlation terms are time reversal 

invariant: E^ * ;::: and is^ . (2 x 2”);; . c2 are even under parity, while 
.B, 

E^ . 2’“; . c2 and it . (E^ x E^“) are odd (and accordingly, are multiplied 

by a). Observe that even if the decaying muon is unpolarized, one can 

still obtain Re(F~(0)e$~(Ol~p) by measuring the ic * (? x 2;“) term. 

Finally, we note that to obtain information from the measurement 

of the electron spin would be quite difficult since the electron spin correlation 

terms are suppressed by the factor (me/mV) relative to the dominant angular 

correlation terms. For example, the angular distribution in the case 

where one measures the polarization of the muon and the electron, but 

not that of the photon, is 

$$ = & [*+4(q)(p”:;” “j+ -$-k2. si+(2)pi. s2)](4.22) 

where we have dropped terms of higher order in (me/mll) and for symmetry 

reasons have left the expression in terms of the (pseudojscalar products of the 

four-momenta p1 and p2 with s and s2, i 
the spin vectors of the muon and 

electron, respectively. 
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We next proceed to consider the decay t~ - eeg, concentrating on the 

KM model. We exclude theories which give hopelessly small p + ey 

rates (e. g., the WS model) and theories which give p + ey rates so large 

as to be in conflict with experiment (e.g. , the illustrative model (e)). 

There are three classes of graphs, as shown in Fig. 2, which contribute 

to this decay. These include, first, diagrams (2a) - (2d) with a photon 
Y Y 

as the virtual gauge boson which creates the ei5 pair. Graphs (2a)y and 

(2b)y are just the analogues of graphs (la) and (Ib) with a virtual rather 

than real photon. The non-diagonal lepton self-energy insertions in 

graphs (c)~ and (d)y are depicted in Fig. 3 ; actually (see below) 

they do not contribute to p - eeE decay. The second class of diagrams 

consists of Figs. (2a)Z - (2d)Z with Z as the virtual gauge boson which 

creates the eF pair. Here the non-diagonal self-energy graphs do’contribute. 

Finally, the third class consists of the W+W- exchange diagrams shown 

in Figs. (2e) - (Zh). In Figs. (Za), (Zb), and (Ze) - (Zh) the generic 

symbols Lo and L- are used to refer to all neutral and doubly 

negatively charged leptons which can couple in these graphs. Of course 

in theories without doubly charged leptons which couple to both e and )I 

only graphs (Za),(Zc), (Zd) and (Zg) are present. On the other hand in 

models such as (c) and (d) in which the p - e transition proceeds only via 

-- 
L leptons, graphs (2e), (Zf), and (Zg) are absent. Each diagram in 

Fig. 2 is understood to represent the difference of two graphs, the second 

being related to the first by interchange of final electron lines, in accord 

with the requirement of antisymmetry for identical fermions. 
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Let us begin with the class of virtual photon graphs (2a) - (Zd) 
Y Y’ 

As is shown in Appendix A, the self-energy graphs only contribute to the 

renormalization of F yaA(0). Since <e IFy’A (0) 1 p> = 0 they therefore 

do not affect the p + eeF amplitude. Now, taking account of the fact that 

q2 << mL2, V,A we expand F1 2 (q ) in a Taylor series and use Eqs. (2. 23a, b) 

and (2.. 25a, b), the latter of which enables us to calculate the vector and 

axial-vector charge radii dF ~‘“(0)/dq2 in terms of F:‘*(O), as discussed 

in section II. The virtual photon amplitude is thus 

JP( ,, -eeS) = iIie(p2)Ec)(p2, Pl)ut*(P1) (ieG(P 2)y,v(f *)) 

- (P, - 1,) (4. 23) 

where, in analogy with the notation of Ref. 2, iEl(p2, p,) denotes the full 

one-loop effective ype vertex; 

2 
EEjp,. p,) = $Y (-F;(0)er+ <(“)epv5) + 

i0 2 

Ly 2 (F;to) ep 
+ F;(O) Y 

P F )I ep5 * 

(4. 24) 

Since q2 < m ‘, Et’) is of the same order as F V, * 
“IJ @ 2 (0); in the KM model, 

.(Y) ,., FV>A(o) N m FV,*(o), eGFmk 
2 

Ly 2 P 3 8,r2 
(4. 25) 
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Evaluating Eq. (4. 24) for the KM model we find 

J(Y) .(y$j 
(p - eeEIKM = 1 4rr2fi %3 ‘?Y ::: 23 x 

(4. 26) 

Ee(p2) i - $lnC ) + 
i oepqpm 

’ 
q2 

R(-9) 1 u (p 1 X lietP2)ycuv(~ 1) - (P, - 1 )I 1~ 2) * 

For the Z and W’W- exchange graphs, we can simply use, with 

appropriate changes the results of our previous general RE gauge 

37 
calculations, letting 5 + 0 to match the 5 -limiting procedure used for 

the photon graphs. Note that the only W+W- graph is Fig. (2g). In contrast 

+ - 
to the case with the photon graphs, in the Z and W W graphs there is no 

reason why the leading y, and y,y5 terms (the analogues of F1 VaA(O’ ) 
‘eP 

must vanish, and indeed they do not. They dominate over the ioQpqp and 

im08qpy5 terms by a power of (mW m t,2), 2/ since in order to form the latter 

terms one loses one, and hence by symmetric integration, two powers of 

loop momenta in the Feynman integrals. As in the photon graphs, the q 
P 

and q y terms give zero contribution. 
p5 

G) 
Denoting the full one-loop effective 2~ vertex by iEa (p,, p1 ), 

we calculate the Z-exchange amplitude to be 

&?PZ’ (2’ = ize(p2)Ecu (P,, P$uJP*) (im) x 

iie(12) 
1 

-fy 
P 

L + sin28 wYp v,O,) 1 - (P, - 1,) (4. 27) 
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where 

%43 %21[ln$ -$ -$lnjy@L . (4.28) 

Since the leading y, term does not vanish, E(‘) is larger than Et’) (Y by the 

factor (m, ‘/m ’ )* ). However, the actual amplitudes Jy(Y! and @d(” 

are of the same order, (up to logarithms) because the Z propagator is 

smaller than the photon propagator by the &ctor (m k2/m $. Observe also 

that .I” 
* 

armes, to leading order, only from the weak isospin current in 

JZ 
cy 

= J3@ - sin’ BWJema, as is evident from the absence of any term 

proportional to sin’ 0 w in Eq. (4. 28). Indeed, the contribution of the 

(Z’. electromagnetic current to EU IS Just sin 
2 

0 w EC (Y’ , which is negligible 

in comparison. 

The W+W- exchange amplitude arises in the KM model from graph 

eg ). We find that 

2 

iie(p2)~,LuP(p1) 
mW 

- ln 2 

mLo 

Ue( P2)$y@Lve(ml) - (p2 +-+ Pz’. (4. 29) 

The total amplitude is then 
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Ah - ee?T) KM = Jf (Y’ + &y(Z) + &g-w’ 

ue(p2)[yaf - ln 5) f i”“pm’ R(- ~~uJp~~[~et ~~~~~~~~~ lj] 

-(p2eL2) . (4.30) 

This amplitude is independent of the nonabelian gauge parameter 5 , as it 

must be. Observe that the cancellation of the In 5 term occurs between 

the Z and W*W- graphs for the part proportional to g2 and between the 

Z and Y graphs for the part proportional to e2 (= g2 sin’ e w). 

In order to calculate the decay rate from the amplitude (4.301, we 

shall make the approximation of retaining only the logarithm. This gives 

for the p - eeC? rate in the KM model 

BR()I - eee) KM = $@j1n2($) I$?,, %!;;I2 . (4.31) 

For mLo = 10 GeV, mW = 60 GeV, and 1 %!/13 pz3 [ in the range .05 - .005 

this branching ratio is in the range 2 x 10 
-11 A3 

- 2x10 . This is 

safely below the present experimental upper bound 
38 
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BR(p + eeE) -9 <6xlO . 
exp 

It is of interest to form the ratio of the p - eee and k + ey decay rates; 

in the KM model we have 

r(p - eeW KM 
r(p -t eY)KM 

5 

(4. 32) 

(4. 33) 

which is independent of the product of mixing parameters 

For the values of mLO and mW selected above the ratio (4. 33) is equal 

to ~0.06. This ratio, which is formally of order (cu/ TT), is actually somewhat 

enhanced by the In2 Cm, 21 2 mLO ) factor. The origin of this log term can 

be traced to the Z exchange amplitude (4. 27, 4. 28). 

In the WZ models thep-,e+y. virtual transition proceeds by way 

of doubly negatively charged heavy leptons. Thus diagram (2b) contributes, 

and gives an unsuppressed In (m, 2/mL2) term, where j = i.1, in 

k?,? RR)j 

J 
(cf. Eq. (2.47)). This means that the leptonic GIM mechanism 

does not operate as effectively as it would if the leading term were inde- 

pendent of mL,. The V and A charge radius part of the virtual photon 

amplitude J$(‘) is larger than in a fully GIM-suppressed model 

such as the KM model by roughly the factor (m W2/AmL2). 39 The Fz’” 

terms are still adequately suppressed to the level eGFm 
P 

‘(AmL2/mW2 ), 

so that 44”) . IS completely dominated by the charge radius terms. 

Moreover, J#?(‘) and dtww) are not enhanced, and consequently 
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4, -f eeF)= -,.d (y’. We calculate a branching ratio in model (c) 

2 

2 mL2 
BR(p - eez)( 2 2- c) 3,,2 In 

2 0 - sin 
2 

2 0cos2e . (4.34) 

mL1 

In order for this branching ratio to be smaller than the experimental 

limit (4.32), mL and mL must be close to being degenerate and/or the 
1 2 

mixing angle 0 must be ratner small, as was noted by Wilczek and Zee. 31 

Specifically, it is necessary that 

2 

sin’ e ~0s’ e In’ 
mL2 

0 

-3 
2 <3.3x10 , 

mLi 

Equation (4. 34) also applies to model Cd), where L;- and Li- are the 

36 
corresponding heavy leptons and f9 is the mixing angle in that model. 

Because of the fact that the natural suppression mechanism does work 

effectively for the p -. ey decay in the WZ models the ratio of the TV - eeC 

and p - ey decay rates is much larger than the value (Q/T): 

(4.35) 

r(p - ee8) 
(c), (d) 

r(p - ev) 
(c),(d) 

= $& f(s) 21n2(Izl,) . (4.36) 
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For m 
Li 

= 2 GeV, m 
L2 

= 4GeVandmW = 60 GeV the ratio (4.35) is 

= io3. 

The decay p - eeE in the Cheng-Li model has been calculated 

approximately by Treiman et al. 
32 

and we shall not duplicate their work here. 

For reference, they find, using a leading logarithm approximation, that 

for ln(mW/iiiL) = 3, where f?i 
L 

= +(mL + m 1, and sin2 0 
1 L2 

w= 113, 

r (II +eeG) CL 
= (II - eyjCL 

2 0.07. 

V. PHENOMENOLOGY OF THE KM MODEL 

A. Constraints on Mixing Angles 

In this section we shall briefly discuss a number of phenomenological 

aspects of the KM model. 

The representation content of the quark sector in this theory is 

analogous to that of the leptonic sector, shown in Table (Ib) (except for 

the absence of plR and i2R in the leptonic case): 

ML (%), (Y, 1; f,” ;; ’ (5.1) 

In a natural model like this it is a convention whether one takes the 

T3 = $ or T 
3 

= -f fermions to be both mass eigenstates and weak eigenstates. 

(With no loss of generality in a natural model one can always choose one 
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or the other option. ) In order to maintain the formal similarity between 

quark and lepton sectors we have chosen to consider the T 
3 

= f quarks 

as mixtures of mass eigenstates. This mixing is prescribed by Eq. (3. Z), 

where the 3 x 3 unitary matrix -7, is like its leptonic analogue % , is 

in general a function of four angles, one of which violates CP. The CP 

violating phase angle can of course be set equal to zero by decree; in 

both the leptonic and hadronic cases we prefer to retain the most general 

form of 2T and Y, allowing for the possibility of CP violation- 

It is useful to consider the experimental constraints on the mixing 

angles in this theory. One may observe first that there are really several 

ways to define the Fermi constant, all of which coincide in the minimal 

WS model, but are in general different in the KM theory. From nuclear 

beta decay one can define 

CFP 
- cos 8 = 
4-T C -&T G<,Jl qJ2+ rq2r2 . 

w 

A symmetrized version of this constant which includes the u-s coupling 

as well as the u-d one, is 

(5.2) 

u 
GF 
YE = b2Jl y-J2+1 y.,,12 ~I~*,12+lq212.(5. 

W 

3) 

Alternatively, the Fermi constant can be determined from a measurement 

of the muon decay rate: in this case what is measured is 
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GF” n =~~l~~~i2+I~~~~;‘~j~2~12+I~22/2 . (5.4) 

W 

Consider the special case in which the u and c quarks mix only among 

themselves, and similarly with v 1 
and 

v 2’ 
so that 

cos e 

[ 

C -sin e C 
0 

7= sin B 
C 

cos e C 0 

0 0 1 I 

(5.5) 

and similarly with % in terms of the corresponding leptonic angle 0. 

In this case, where the “old” quark and old lepton sectors of the KM model 

coincide with those of the WS theory, -GP =GU F F = Gi = GF, with Gl+ as 

defined in Eq.- (2.,48 1. 

The Cabibbo angle is given by 

tan ec 
y2, 

=-zq. 
(5.6) 

Accordingly, a measurement of nuclear beta decay alone only yields the 

combination yTi = cos ocdI yiif + 1 ??21 f which is not sufficient 

by itself to determine ec. Similar comments apply to semileptonic hyperon 

decays and the meson decays K- IF 
1’ 

lr’1 iJ 
P’ 

taken individually. 

This situation contrasts with that in the minimal model where any of these 

measurements could in principle (module different radiative corrections, 
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etc. ) be used to determine OC, It is convenient to define another weak 

coupling constant GG and another angle, 0 d in analogy with Eqs. (5.3) 

and (5.5) but based on the coupling of the C quark to the d and s quarks: 

g =-&T?I~,,12+ly.2212Jl~,,l~+ I&, I” (5.71 

w 

tan 0; = _ y2/ y- 
.22 . 

With this notation established, we can now state the experimental 

constraints on the leptonic and hadronic mixing matr.ices sz? 7. and 

First, there is the observed3 - e universality, which is best tested by a 

comparison of v - eFe and TI - ~7 decays. The ratio of the 
I-t 

in the KM model is, in the absence of radiative corrections, 

T(rr - eF ! 
e.~ 

rcrr - piy 
Ix2 elir 

2 2. 
urn 

2 
m 

i) 

e i i 

i- +. 
m.. 

r 
2 

m l-l2 2 
p “--“z 

c ) m 
Tr 

decay rates 

(5.8) 

(5.9) 

where 
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<Ne i ve> 

<NV I VP’ 
(5.10) 

4&I”+ liY12l2 
J 1% 21 I 2 + 1% 22 IL 

The radiative corrections 
40 

reduce the theoretical prediction for the ratio 

by *,-3.9%. From the experimentally measured 41 ratio of (1. 247 f 0. 028) x 10-4 

one infers that at the one standard deviation level, 

0.983 < R 
e/k 

c 1.005 . (5.11) 

Note that this constraint, taken alone, is compatible with large mixing 

parameters [ % *3/ and I %‘23 I as long as they are sufficiently close 

to being equal. 

The second experimental constraint delimits the size of (the product 

of) these two parameters. This input is provided by neutrino experiments 

which search for electrons produced from the scattering of an incident 

beam of vP off a nucleon target. Several such searches have recently 

been made, primarily with the motivation of looking for neutrino oscillations. 
28 

These oscillations cause an original beam which is composed purely of 

yW to develop a nonvanishing component of ve if the corresponding mass 

eigenstates are not degenerate and the mixing angles are nonzero. As 

was mentioned before, in the KM model there are no neutrino oscillations 
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since by assumption m =m = 0. 
“1 “2 

However, the neutrino states ye 

and v are nonorthogonal, the matrix element iv Y > 
P eI P 

being proportional 

to $?!i4” %21 + z!12” %22 = - %f3“ g23, as given in Eq. (3.3~). 3o 

The relative cross section for an incident vP beam to produce electrons 

rather than muons is thus given by 

a(v N + e,-X) <N 
x 

e/k = 
P = e I’p’ 2 

abuN - p-x) 
<N 

P 1 L’ 

= RZ/pl <‘e Ivp> I2 (5.12) 

= 1 ‘v,[ “p>l2 

The main experimental background consists of the small ve contamination 

in the yP beam. The Gargamelle bubble chamber experiment finds electron 

events at the level (0.50 + 0. 08 I%, while the estimated background is 

(0.46 + 0. lO)yo, and concludes that at the 90% confidence level, Z < 0.9/o. 
42 

el P 
Se can therefore infer the bound 

v> = 
‘C (5.13) 

The third constraint is that of the “universality” of the weak interaction 

coupling strength among quarks and leptons. Of course at a fundamental 

level this universality is automatically built into a unified gauge theory 
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since weak quark eigenstates and weak lepton eigenstates in multiplets 

of equal dimensionality couple to W* with the same strength. As it is 

conventionally stated, this principle is the equality 

(5.14) 

This equality is realized automatically in the Cabibbo-WS theory; in the EM 

model, it must be explicitly enforced. In terms of 2Y and 7 this Cabibbo 

universality is the condition that 

R 
JI~2,12+ w2z I 

PIP = 
*I12+lGp =I . 

(5.15a) 

Experiment ally, 
43 

RPIP 
= 1.01 (5. 15b) 

where the model-dependent nuclear radiative corrections are of order I%. 

Note that the conventional form of quark-lepton universality in Eq. (5.14) 

leaves much of 27 Y-- and unconstrained. In particular, it is consistent 

with large values of I % f31 and, independently, 1 y,, I. Furthermore, 

one should note that even large values of I %2,;I and 1 ?231 

are allowed, as long as [ %23, I = I y-,, [ so that Eq. (5. 15) remains 

satisfied to the level of accuracy demonstrated by experiment. Parenthetically, 

we mention that one might postulate a more sweeping form of universality 
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such as % = ??44 There is no experimental evidence for this; however, 

it seems not to be inconsistent with present data. 

The fourth constraint is that the relative strength and phase of the 

u-d and u-s couplings agree with the successful Cabibbo theory; i. e. 

that the angle defined by Eq. (5.6) be in fact equal to the experimentally 

measured Cabibbo angle. This angle can be measured from a combination 

of A.5 = 0 and 1 A S 1 = 1 semileptonic baryon decays, such as nuclear beta 

decay and semileptonic hyperon decays, or from the relative rates for 

K’PiJ 
P 

andii- PD P’ Note that this is true in the KM model as well as 

in the minimal model since the factor dl p 1i[ 2 + / % 12 1’ at the 

WeY, vertex (or, in the meson case also d[ % 21 1 ’ + 1 y 221 2 at the 

WpiJ vertex) cancels out in ratios. 
P 

A recent comparison of hyperon 

and nuclear beta decay data yields 
45 

sin 6 
C 

= 0.230 * 0.003 . 

An analogous condition would be that 0 C defined by Eq. (5.8) be 

equal to 0 C’ i.e. ( yzi/ y-14 ) = - ( yKi2/ yz2) . Experiments 

on decays of charmed particles are not nearly accurate enough yet to test 

this seriously. From a comparison of the invariant mass plots for decays 

of the D’(i865) into STOKE channels versus the TT’=- channel one might 

46 
crudely estimate that tan2 0 ’ 50.1. C An even stronger universality 

assumption would be that ?-I1 = y,, which, together with the equation 

ec c 
: fJ’ implies r/24 = - yi2. Again it should be stressed that there 

(5. 16) 
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is no theoretical reason in the context of the KM model for these equalities 

or the 6 ’ = 6 c c relation. In contrast, in the special case (5. 5) for 7“ 

(and similarly for % ), they are all automatically valid. 

Taken together, these four experimental constraints significantly 

limit the amount by which the quark sector can differ from the Cabibbo-WS 

model and the way in which vl, v2, and Lo can mix to form N es NW, ad 

NL. 
For the purpose of our present calculations of I- and e-number 

nonconserving processes, perhaps the most important constraint is the 

one on 1 9 13 yz3” 1, Eq. (5.13), since this factor controls the rate of 

decays such as lo + ey, u + eeE, KL -. @, and K- - -1~ ei5. 

B. Rare K Decays 

Let us recall first that, as was shown by Gaillard and Lee, 2 
the 

GIM mechanism in the WS model works not only at the tree level to ensure 

the absence of direct lowest order nondiagonal Z-quark couplings; it also 

operates adequately at the one-loop level to suppress processes such as 

KL 
--@andKO++? (which gives rise to the KLKS mass difference). 

Indeed it succeeds in doing this while at the same time allowing other, 

+ rr’yy, and K- - nonsuppressed decays such as K 
L, s - YY. KS +T eF 

to proceed at their experimentally observed rates. Since the KM model, 

like the minimal WS theory, satisfies the two conditions for natural flavor 

conservation by the neutral current and also the condition (2.67), it also 

succeeds in accounting for the relative rates of the various K decays. The 

free quark approximation used in Ref. 2 will again be satisfactory for our 

purposes here. 
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We shall compute first the decay rate for K 
L 

+ @S and compare it 

with that for the analogous u- and e-lepton number conserving rare decay 

KL - PF- The graph for the elementary process sz - ejTin the KM model 

is shown in Fig. 4; as in the previous figure the symbol Lo refers to all 

the neutral leptons which can couple, namely, vl, v2 and the particular 

heavy lepton Lo. An interesting aspect of the calculation is that there 

are GIM mechanisms operating on both the quark and lepton sides of the 

graph. However, as will be evident, the graph is not suppressed any 

more than it would be if there were only a GIM cancellation on one side, 

as is the case for K L * t$i, for example. This is quite analogous to the 

situation regarding the K K mass difference 
2 - 

LS (sd -Sd transition), where 

a double GIM mechanism only suppresses the amplitude by a single power 

of (m 2 
C 

- mu2VmW2. The explanation lies in the infrared behavior of 

the relevant Feynman integral, which has a pole rather than just a logarithmic 

divergence for zero fermion mass (see below). 

We calculate the amplitude for sz + ep to be 

d‘N(s;r +efi) = QL ,z 3 ELp&S] [ZY@LP] x 
(5.17) 

X %/13 z23‘b $ qj Tj” I( FL, h.1 
j =I J 

where e L =m 
Lo 2/mW2, E q. = mq2/mW2, 41,2,3 = u, c, t, and 

.l J 
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E lne +4-E 

I(EL, Eq,) = 
1 

( i[ 
( J 9.~ q. 9. J( _ ELl”EL + 1 - CL) 

J eL - eqj l-c 2 
i 1 qj ( i2 

1 - EL I. (5. 18) 

By using Eqs. (5. 3) and (5. 6) - (5.8), and the unitarity of y/, one can 

recast this amplitude in the form 

Jf(sFi-ep:) = +m 
2rr 

Lo2[&aLs][FY~Lp]( ;q:; * ,2) x 

11 12 

[(C$), (00s Bc sin BC”)(I(eL, eu) - IIeL, eta)} (5. 19 1 

- ( c 
GF > ’ (sin 6 ’ case ’ 

C C ?{I(EL’ EC) - I(E L’ et ) 11 
which exhibits more explicitly the GIM cancellation operating among the 

u, c, and t quark contributions. In order to illustrate the statement about 

the double GIM mechanism, it is convenient to consider the special case 

of the KM model where y has th e f orm (5. 5) while % is still arbitrary, 

subject to the various experimental constraints discussed previously. 

In this case, neglecting mu2 relative to 
2 

m 
c ’ we have 

Jf(sFT- ep = 
ig2GF 
8 2fi 

C x 
ll 

2 

X- 
eLeC mL In- . 

eL- ec c 1 2 
m c 

(5.20) 
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Thus the double GIM mechanism has indeed produced the product e e 
L c 

in the numerator; however one power of E is essentially cancelled by the 

infrared pole of the Feynman integral, 1/ (E L - cc). (By infrared pole, 

we mean a pole in A as one scales E L and eC down by the factor X; the 

total expression in Eq. (5.20) is, of course, regular as EL + e 
C’ 

) 

Reverting to the general form of the amplitude again, we use the 

fact that in the free quark approximation, 

< 01 Sykdl K”> = f f&pK) 
(Y 

to obtain the result 

(5. 21) 

M(K -+eF) = 
ig2GFfp ;:; 

L 2 
8rr 

yij yzj I(eL, l ) x 
> 

j =i qj 

X ZRtl (5. 22) 

It is interesting to compare this amplitude for KL - ep with the analogous 
1 Asi = 1 neutral K decay which conserves et and p-lepton number, 

K L - pp. In order to get an estimate of the relative rates, it suffices to 

take the special case of the KM model in which the mixing in the hadronic 

sector is prescribed by Eq. (5. 5). Then the free quark approximation 

to the decay amplitude is (again dropping mu 2, 
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&(KL 4 pT) = 4 GFfKmk.ec sin BC cos Oc [ SYi3 p2; eLI( eL. E c 1 - 21 X 

Ibrr 

X iiYgll . (5. 231 

Making the plausible assumption that I( EL, ec ) is of order unity, we therefore 

have for the ratio of rates in the free quark approximation 

I-WL - ep) 
‘Wt - 1lj3 - (5. 24) 

However, as was discussed in Ref. 2, the main contribution to the 

KL 
- @amplitude comes not from the short distance free quark graphs 

but rather from the conventional long distance KL - yy - @process. 

Indeed, if one calculates the part of the KL -+ pi; rate due to the elementary 

quark contribution in the KM model, neglecting the term proportional to 

F 13 gz3” in Eq. (5. 23), or equivalently, in the WS model, one finds 

(normalizing to a typical K decay) 

I-(KL - pfi) 
? 

(GFmc2)’ cos2 

IYK- - p-i? 2,r4 (5*25) 

from which it follows that 

BR(KL - pF) = 0.7 x 10 
-11 

free quark 
. (5. 26) 
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The unitarity bound on the KL + @rate is determined by computing the 

contribution of the 2y intermediate state to the imaginary part of the 

amplitude. In fact, the 2y contribution dominates this imaginary part; it 

can be calculated from the measured rate for the decay K 
L - yy and 

47 
yields the bound 

UK, - pp) ’ WL - pi9 absorptive 

= (1.2 x 10-5)r(KL - yy) 

= (6 x io-‘)r(KL *all) . 

48 
The actual rate is comparable to this bound: 

(5. 27) 

rwL - Pji) 
exp 

= (1.0 * 0.3)x 1o-8 . (5. 28) 

Thus evidently the short distance free quark processes contribute only 

about a fraction 10 
-3 of the total rate for K 

L - @. 

In view of this fact, if one wishes to estimate the actual decay rate 

for KL + eji. it is of some importance to ascertain whether the short-distance, 

free quark contribution to this decay is similarly only a small part of the 

total rate, and to attempt to compute a unitarit,y bound from whatever is 

the dominant intermediate state contribution. We will see that in fact the 

relative sizesof the direct sa + ep quark process and the phenomenological 

KL 
- yy + eji process are reversed, compared to the order of importance 
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of sa - 1~11 and KL - YY + pp in the decay KL - pp. Consequently, module 

short distance strong interaction corrections, the elementary reaction 

sa - ep probably provides a lower bound not too far below the actual rate 

for KL + eF. Thus for the total rates we estimate (f. q. denotes free 

quark contribution) 

WL - eF),,, WL - eplf 
. . 

ML - %ot = i03r(K 
L 

- @) 
f.q. 

= io-3 [ ivi3 z!23* [ 

from which it follows that, for [ PI3 p23 1 ’ - 10 -2 - io-4 ) 

BR(KL -+ ep)tot - lOWi - iOmi5 . 

(5. 29) 

(5.30) 

Unfortunately, if these estimates are reliable, the KL - ep decay is beyond 

experimental reach at present. 

The statement that T(KL= epJtot = r(K, - eii) f. q. 
is demonstrated 

by estimating the contribution of the dominant conventional decay cham 

KL - 2~ - ep to the imaginary part of the decay amplitude. Since the 

photons are on mass shell, the hadronic side of the graph is then calculable, 

just as it was for KL - @, in terms of the rate for KL + yy. However, 

the amplitude for yy + eF is far smaller than the one for yy - pp. The 

Feynman diagrams for the equivalent process @ cf yy are shown in Fig. 5. 
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There are three general classes of graphs; the first consists of graphs 

(5a) and (5b) in which one photon is emitted via the transition magnetic 

and electric dipole moment coupling (2.63) and the other is emitted directly. 

The second set is comprised of the graphs (5c), (5d), and (5e) in which 

both photons are emitted directly and the p-e transition proceeds by way 

of a nondiagonal self-energy insertion. Finally, there are irreducible 

graphs symbolized by Fig. 5f and depicted explicitly in Fig. 6. For the 

reaction we + yy. each of the graphs in Figs. 5 and 6 represents a sum of 

two separate graphs related to each other by interchange of final photon 

momenta. The quark analogues of these graphs have been analyzed previously’ 

in order to determine an effective Lagrangian for the process s.3 -t yy, 

of relevance to K 
L 

+ yy decay. It was pointed out that the quark counterpart 

of graph (6a) (with L-- replaced by u and c) dominates over all the other 

graphs and yields an amplitude of order rr(a/rr)GFmKfKsine c cos ec. 

In the present case, however, graphs (6a) and (6b) are absent, and hence 

the amplitude is more severely suppressed by the leptonic GIM mechanism. 

A detailed calculation of the graphs of Figs. (5) and (bc, d) would be rather 

involved; from considerations of (electromagnetic) gauge invariance, we 

estimate that the total amplitude is of order (~/x)GFmKfK(mL2/mWf) Pi3 ?/,3” 

In contrast, the pr + yy amplitude is simply of order e2. Accordingly, 

we estimate that the ratio of the squares of the imaginary parts of the 

KL + eji and KL + VT; amplitudes arising from the two photon intermediate 

state is 
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=(KL - epl yy, absorptive 

=(I% * @),,; absorptive 
- L GFy&)’ 

v4 
(5.31) 

Using (mL,/mW) = 1/6, 1 % 13 pz3* 1 = iO’*, and Eq. (5.27 1, we find that 

[ 
ML + eii) yy, 1 absorptive /r(KL + all)*10-30. Indeed, even without the GIM 

suppression factor (m ‘/m LO W 2)1 q3 2Yz3*/ 2 this ratio would be of the 

-21 
order 10 . These are admittedly very rough estimates, but they show 

that because of the p- and e-type lepton number violating nature of the decay 

KL 
- ep the elementary free quark process s3 + ei.i probably dominates 

the total amplitude, as was claimed. 

We next turn to K decays of the form K + aeF and compare them with 

the corresponding muon- and electron-number conserving decays K - IreZ. 

Since our primary interest is in k- and e-number nonconservation effects, 

we again choose y to have the form given in Eq. (5. 5). The fundamental 

quark transitions involved are respectively s - deFand s - deE. The 

graph for the former process is just Fig. 4 with the d quark line crossed, 

and the resulting amplitude in the KM model is given by the crossed version 

of Eq. (5.20) for ~@Csz -t ep). The diagrams contributing to s - deP 

are the counterparts of Figs. (2a) - (2d) and (Zg), with appropriate replacements 

of leptons by quarks. The calculation is similar to the one performed 

previously. 
2 

The dominant contribution to the amplitude comes from the 

unsuppressed logarithm in the vector and axial vector charge radius 

arising from the quark analogue of diagram (2b) . This can be calculated 
Y 
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via a Fierz transform in terms of the quantum electrodynamics vacuum 

polarization integral; the result is the same as in the WS model and yields 

an amplitude 

Jdcs -d +e +G) = GF $-Qcfnln sin 9 
C cos 8 

c x 

x [;iYGLsj [&] (5. 32) 

where Qc = Z/3. 

Using Eqs. (5.20) and (5. 32), we find 

T(K- -- 
_ rr-e-) = IYKso - noeP 

r(K- - -TI es) T(KsO - rr’e?) 
(5.33) 

For mc = 1. 5 GeV, mLo = 10 GeV, mW = 60 GeV, sin’ 8 
w 

z 113 and 

/ ~~3 pz3’* j2 = 10-’ the ratio (5. 33) is *10d4. The free quark approximation 

for BR(K- +rr-eE) calculated’ from Eq. (5.32) is 

BR(K- - -71 ee) 
-7 

f. q. 
= 5x10 . (5.34) 
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In contrast to the case with the short distance, free quark contribution 

to K 
L 

- p& this is comparable to the measured value, 

BR(K- - -77 et?) z (2.6 * 0. 5) x iO-7 . (5.35) 
exp 

Therefore, from Eqs. (5.33) and (5.34) we estimate using the same values 

of parameters, that 

BH(K- - a-ep) = 10 -11 
(5. 36) 

which again is too small to be of much experimental interest. A similar 

comment applies to the decay KS -C v”eJi. 

In the case of the decay KL + *‘es., CP conservation forbids the 

occurrence of the quark analogues of the y and 2 exchange diagrams, 

(Za, b)v and (2a)Z - (2d)Z. (This decay is CP conserving even if % contains 

a CP violating phase, as long as FT. itself is CP conserving. ) Thus, only 

the W’W- exchange diagram contributes, and in contrast to (the charge 

radius term in) graph (2b) 
Y’ 

it is fully suppressed by the GIM mechanism. 

Indeed, the local form of the interaction (i.e. the form in which external 

momenta are neglected relative to mW ) due to W+W- exchange is also of 

the current x current type, and consequently CP invariance implies that 

its hadronic matrix element vanishes. This is true for both of the decays 

KL 
+ rr’ee and K 

L 
- T”eF (or K Nonlocal effects are present 

L 
- 2q.L). 

at the level (mK 2/mW2 ) and they do in principle allow these processes. 

We expect that F(KL + a”eF) = 1 y i3 p23” 1 21’(KL - IroeS); both rates 
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however, are extremely Small. For the larger one, normalizing to a 

dominant semileptonic decay mode, we have, for the free quark approximation, 

I(KL + Toe??)/ I(KL + rr”eFe) Q (c/rr)‘(mc 2/mw2)2(mK21mw2)2 1. 10-“’ 

Even if the estimated branching ratio were nonnegligible, the v” in the 

final state would render it experimentally difficult to set a very stringent 

upper bound on the decay K 
L 

- nOe)i. 

Thus, the effects of p- and e-type lepton number nonconservation in 

K meson decays may well be too small to measure. We shall proceed to 

consider certain lepton-hadron reactions and decays of heavy leptons, 

where such effects are probably more easily observable. 

C. Production and Decay of Lo and L- 

If the decay p - ey is indeed detected at the 10 -9 - 10-10 level in 

branching ratio it would be reasonable to consider the heavy lepton Lo 

in the KM model to have a massmLo - 10 GeV. For example, if 

BR(p - ey) = 10m9, mW = 60 GeV, and 1% 13 %23“ I2 = 0. 3 x ?O-‘, then 

mLo = 12 GeV. Moreover, as was mentioned earlier, it is plausible, 

although not necessary, to entertain the possibility that L- is the heavy 

Iepton observed at SPEAR and DESY. 23 If one chooses to make this identification 

then mL- = 1.95 GeV, substantially lighter than the Lo. A crucial test 

of this hypothesis regarding L- is to determine whether the experimentally 

observed heavy lepton decays via a V-A coupling. Of course it is entirely 

possible that (a) the decay p - ey, if it exists at all, proceeds with a 

branching ratio much smaller than 10 -9 - 10-10 and/or (b) the KM model 
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represents only a part of the presumed complete gauge model, and L- 

is not the SPEAR-DESY heavy lepton. Accordingly, there is no strong 

theoretical or experimental reason why the L- cannot have a greater mass 

than the Lo. Indeed some of the trimuon events recently observed in 

the Caltech-Fermilab 
49 and Harvard-Pennsylvania-Wisconsin-Fermilab 50 

neutrino experiments may be due to the sequential production and decay 

chain 

(5.37) 

If one identifies the two heavy leptons in this process with the L- and Lo 

of the KM model, then of course it is necessary that mL- > m L~. ha 

phenomenological spirit we shall consider both orderings of L- and Lo 

masses. 

Let us first consider production mechanisms for the L- and L 0 51 . 

The L- can be produced in the reaction e+e’- L+L- with a well-known 

cross section. The ek events seen at SPEAR would arise from the process 

f- 
e e - L+L 

Le-v Y 
eL (5. 38 ) 
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where we define yL to be the unit-normalized linear combination of Y 
1 

and y2 which couples to L-, 

ii? 
3iyi 

+Z! 
32’2 

yL= “/ip3i12+/g32 1’ 

in analogy with Eqs. (3. Za, b) for ve and Y . 
P 

The L* can also be produced 

in the high energy neutrino neutrino reactions: 

(5.39) 

“N-L-+X 
P 

p-ii Y 
I.rL 

e-7 Y 
e L 

yL + hadrons: 

(5.40) 

and the corresponding reaction with incident 7 . The cross section is 
P 

suppressed by small mixing parameters;well above threshold for L production 

the relative rate is given by 

c(v N+L-+X) ,,(v N - L+ +X1 
-= P 

dv N-P + X) “‘y - P + + Xl 
P 

I%(31 
:* 

p/i + P32” P22i2 = 

I g/21 I2 + I F 22 I 
(5.4i) 
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Thus the L- production cross section is of order 10 
-2 

of the corresponding 

ordinary charged current cross section. Furthermore, the leptonic 

decay modes are expected to comprise only about 20% of the total, so that 

the signal will be present only at the 10 
-3 

level. Reaction (5.40) will be 

difficult to observe in counter experiments because the )I- decay mode 

simulates an ordinary charged current reaction, the e is not detectable 

with present counter apparatus, and the semileptonic decay simulates a 

neutral current event. The same statements apply to the reaction 

7 N f L+ t X. 
P 

Because both the leptonic and hadronic charged currents 

in the KM model are purely V-A, in the valence quarks model, which serves 

t 
as a reasonable approximation, U(Y N -L- + X) = 3u(vPN +L + X). In 

P 

heavy liquid bubble chamber experiments it is feasible to search for the 

electron decay mode of the L- produced in reaction (5.40). Indeed if the 

L- is sufficiently light and/or the time dilation factor is sufficiently large 

its tracks may be visible in the bubble chamber (see below). Characteristic 

kinematic features of heavy lepton production via reaction (5.40) include, 

first, a threshold behavior as a function of incident neutrino energy E and, 

for a fixed E, as a function of W, the invariant mass of the hadrons produced 

by the W boson-nucleon interaction at the “lower ” vertex. Secondly one 

would measure large values of yeff = 1 - (EP-/E) since a considerable 

portion of the incident energy is carried off by unobserved neutrinos. 

Moreover, the semileptonic decay of the outgoing L will yield hadrons 
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with significant fractions of the initial beam energy. If mL- > mLO the 

sequential decay scheme of Eq. (5.37) will yield trimuon events, as was 

mentioned. Finally, note that since the neutral current is diagonal in 

flavors in the KM model, it is not possible to produce the L- in a reaction 

such as ;+ N - L- + X at a non-negligible rate. 

The neutral heavy lepton Lo is more difficult to produce than the L-. 

Among e+e- reactions the one with the lowest threshold is e+e- - LOi? 
e 

which proceeds via W exchange in the t channel. Unfortunately, in addition 

to being a weak process, its cross section is further suppressed by the 

factor [ pi3 j2 -v 10 -2. There is also the neutral current reaction 

+- - 
e e + LoLo which is not suppressed by any small mixing angles. Of 

course until the energy is reasonably far above the respective thresholds 

these reactions will be suppressed by small phase space factors. Since the 

cross sections in both cases are of the order G$s, in order for them to 

be significant one needs center of mass energies equal at least to the 

value & u 36 GeV to be attained at PEP and PETRA. The Lo cannot be 

produced via the neutrino reaction uaN - Lo + X for the reason given 

previously. It can be produced in the charged current reaction y-+N - Lo + x; 

however the electromagnetic background from p-1+ No- a- + X is severe, 

and again the cross section is proportional to the small mixing parameter 

The branching ratios for the various decay modes of the L- and Lo 

depend on their relative masses and on the mixing parameters in the 
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matrix % We consider first the leptonic decays of L- and assume that 

it is lighter than the Lo. Then for the decay mode L- -ev v 
eL 

we have 

I-CL- -erv) 5 eL = mL- 

i ) 

(I P3i I2 + ( y%’ 32 1’) 

r(~-c eC v ) 
ep x (i~~J”+r~~,,l”) 

For small mixing this ratio is approximately equal to (n~~-/rn~)~ x 

(1 y13/2+1%23 I’), i.e. (1g2,/2+ lZ?22 I’)= i. Thesame 

formula applies for the decay modes L- - - KvavL 
with the replacement of 

(I 22 2. I2 + 1 p/Z2 I”) by (1 pii i 2 + 1 22 i2 I”), If mL- > mLO then 
the decay L- - eFeLo occurs, at a rate given by 

rw- - eFeLo) 

J-(lJ *eTevp) = (qf;; (,*2,,L:3;;22 r”> f(Z) 

(5.42) 

(5.43) 

where 

f(x) = (1 - x4)(x4 - 8x2 + i) + 24x41n(l/x) , (5.44) 

with x = (m Lo/ mL-1. The rate for L- - eCeLo 1s in one way enhanced relative 

to that for L- - evevL because 1 %33 I2 rv i whe=as(l%i3 [ 2 + 1 2Y2? 1 2)efo-2. 

However, in another way it is suppressed by the phase space factor 

flmLo/mL-1; for example, f( $1 = 0.16. Equation (5.43) also appltes to the 

decay mode L- - pTPLo with the replacement given above. In order to 

estimate the semileptonic modes we shall use the free quark model or, 
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equivalently to our order of approximation, the SPEAR results on 

R = o(eg - hadrons )/ c(eE + @I. If mL- $2 GeV then the decay channels 

which involve the t or b quarks are not open, and the F(s, d) channels are 

either below or only slightly above threshold. Consequently, 

F(L- + vL + hadrons) 3 r(L- - YLW) 

rlp-ei7 Y ) 
^I q =d,s 

e CI 
rxv-ei; Y 1 

e P 
(5.451 

mL- t ,) 5 (ITi 12+ Iz;rZd ?)(I p31 I’+ IF32 I’ = 3- 

mp (I%* i”+ I%2 12(W2f t2+ lFY221i 

where the factor of three comes from the sum over quark colors. The 

ratio (5.45) is approximately e_qual to 3(mL-/ma)5( 1 p311 2 + 1 p 32 1”). 

Next, consider the case of mL- > mc, mt. Then the L- - v,Fq, vLTq, 

decay channels are open, (where q = d, s, b). In the simple case where 

all quark masses are small compared to mL- the dependence upon Y- 

disappears and we find 

F(L- -v qs.1 
quarks L i J 

I-(P -eTJ v ) 
e P 

(5.46) 

If a1so mL- ‘m 
Lo the dependence upon % in the numerator of the ratio 

(5.46) disappears and this ratio becomes approximately 9(mL-/ma)5. 
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Thus if mL- = 2 GeV, with mL- < mLO, mt b the ratios of leptonic to 

semileptonic decays are 

l?(L- de- + lepton$ = r(L- + p- + leptons) 2 
r(L- - vL + hadrons) r(L- - vL + hadrons) = 5 (5.47) 

whereas if m - >> m 
L o, m 

L 9’ 
this ratio is approximately 2111. 

For the low mass case, summing the leptonic and semileptonic decay 

modes, we find 

r(L- - all) 
5 -eirv) 

E (1 %341 2 + 1 %32 I”) 
e )I 

where we have used the approximation that 

forj =1,2. At the other extreme of very large L- mass we have with the 

same approximation that 

r(L- -all) 
m -5 

L 
r(p*- W$VJ 

SC 11 - 

(4 . r- 

This relative decay rate is larger by at least a factor of i02 than the rate 

for small L- mass, Eq. (5.48). The interesting thing to observe is that 

in the case of small mL- the rate is substantially suppressed by small 

mixing angles and consequently the L- is longer lived by a factor of 

(I p 311 2 + t p 32 [2)-’ N IO2 than a naive scaling from m 5 
)I 

to mLz 

would indicate. Numerically, Eq. (5.48) gives a lifetime for the small 

mass (sm) case of 

(5.48) 

(5.49) 
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(sm) -2 
=6x 10 

-10 
r L- set . (5.50) 

The lifetime in the large mass case is 

Urn) T 
L- 

= 2.7 x lo-l2 ye; 5 
i i 

. 
L 

(5.51) 

The major factor in determining the lifetime is whether the L- + Lo + . . . 

transitions can occur, and if so, how much they are suppressed by phase 

space. 

The analysis of the Lo decay modes is quite similar and for brevity 

the details will be omitted. Note that if mLo is sufficiently large the decay 

modes Lo - L-L+” 
L 

can occur. However, since the sum of the rates for 

these modes is proportional to (I %31 1 2 +I g 32 1’) they will not make 

a very large contribution to the decay rate even if m Lo >> 2 mL-. The 

lifetimes in the low and high mass cases are thus given by Eqs. (5. 50) 

and (5. 51) with the replacement L- -+ Lo. 

In addition to these dominant decay modes there will be other, rarer 

decay modes. We shall not consider these here since they will be extremely 

difficult to observe. Yet another way in which the heavy lepton L- may 

make its existence manifest is in the leptonic decays of charmed pseudoscalar 

+ + + 
mesons D + L Y LandF -tL+v L. As is evident from the ratio 

rh - ere))I r(rr - ~3~) in Eq. (5. 9), which is generally applicable to any 
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two leptonic decays via a purely V-A charged current of a pseudoscalar 

meson (D, say) into two Pv L pairs, with the replacements m 
e, or *ml, 2’ 

m +m 
lT 

D, the importance of a given leptonic mode depends on two opposing 

factors. First, for mp 21mD2 4 1, heavier lepton masses are favored 

by a quadratic dependence on mp L arising from the disfavored helicity 

of the massive lepton. However if m 
P( 

mL- in the present case) approaches 

mD, then the phase space factor overwhelms this preference for higher 

ml 
and eventually cuts the rate to zero. Assuming that the ratios 

(m Jm 
L I 

D F) are smaller than, and not too close to, unity, the (D+, F+)- L+vL 

decays may have branching ratios of a few percent. 
52 

D. Other Processes 

We shall mention here two other interesting processes involving k 

and e-type lepton number nonconservation. The first is the reaction 

p+N+e+N, in which a slow muon is absorbed in matter and decays to 

an electron in the Coulomb field of a nucleus. This reaction was proposed 

and studied long ago as a means of testing for muon and elecron number 

53 violation. The signal is a high energy electron emitted with Ii’, ILab N mp. 

The rate can be calculated from the general formulas of Ref. 53 together 

with our expression for the p - e + y 
virtual 

amplitude. A recent analysis 

yields an interestingly large ratio of rates in the KM mode1,54 

R(pN * eN)/R(p + ey) N 26. 

Secondly, there is the precise analogue of K” - z mixing (ST - Zd) 

which gives rise to the K L - KS mass difference for the pE bound state, 
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muonium, namely the transition @ - iie. 
55 

We find that in contrast to 

the case with K” -K” mixing, a ug bound state will decay long before it 

has a significant probability to make a transition to Jie. This is easily 

seen as follows. The diagonal elements of the mass matrix M - iI?/ 

are dominated by the contribution to iT arising from ordinary p decay; 

Tn/G 
2 5 

F 
rnp / (192~~). The main contribution to the off diagonal matrix 

elements arises from the W+W exchange diagram shown in Fig. 7, which 

is the leptonic counterpart of the graph for ~3 H’Sd. Other contributions 

to the off diagonal matrix elements such as tie +- (yyjvirtual + jie are 

negligible in comparison. Diagram (7) gives a mass difference between the 

CP eigenstates ($ * pee)/hiz of 

AlTl*EG 
TT F 

(5. 52) 

where 4(O) is the muonium wavefunction in the ground state. Using 

1 p/18 g2J 2N IO-~, mLo/mW N J/6, and I+(o) I2 = 03me3/.. we 

find that Am/r N 10 
-18 

. 

VI. CONCLUSIONS 

In this work we have analyzed p- and e-type lepton number conservation, 

viewed an approximate symmetry like strangeness conservation by neutral 

currents, or CP invariance. We have pointed out the special set of 

circumstances which guarantees exact k- and e-lepton number conservation 
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in the minimal Weinberg-Salam model and have investigated the ways in 

which this invariance is violated, as it usually is, when one generalizes 

the minimal model. It has been stressed that although, a priori, one would 

expect violations of the three symmetries mentioned above to occur in order 

GF@, in fact experimentally such violations are further suppressed. 

Extending earlier work, “ ’ we have proposed a unified approach to these 

three approximate symmetries based on a mechanism which naturally 

suppresses the violation of a particular symmetry. 

By calculating the p - ey and p + ee8 decay rates in a general formalism 

applicable to any SU(2) x U(1) gauge theory, we have derived a set of 

conditions which ensures that, for arbitrary values of the parameters of 

the theory and thus a completely general mass matrix M, the nonconservation 

of p- and e-type lepton number is naturally suppressed. These conditions 

are that (1) leptons of a given charge and chirality have the same weak 

22 T and T3; (2) leptons of a given charge receive their masses from their 

couplings with a single neutral Higgs field; and (3) leptons of charge cl and 

leptons of charge cl *i do not belong to the same weak isomultiplet for at 

least one chirality. The first two conditions are essentially the Glashow- 

Weinberg criteria6 for natural leptonic flavor conservation by the neutral 

current. The last condition is the leptonic analogue of the criterion for 

microweak C P violation derived previously. 
3 

Furthermore, in order for 

a model 9 to have a branching ratio for )I * ey of order 10 
-10 

or larger, 

it must include at least one neutral or doubly negatively charged heavy lepton 

which is coupled to both e and p. 
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We have considered several models which meet these conditions, 

focussing on the V-A three-doublet model of Kobayashi and Maskawa. 11 

In the KM model, for a wide range of parameters (mixing angles and heavy 

lepton masses) the branching ratio for the decay p + ey is in accord with, 

but not extremely small compared to, the present experimental limit; 

specifically, assuming that [ % 13 %23”1 2 = iOS3, 

BR(@ + eu) = 1.7 x 10 
-10 

(mLO/ 10 GeV)4. In addition to measuring the 

total decay rate, it will be very useful to determine the angular distribution 

when the muon is polarized and also the photon polarization, the latter 

even if the muon is unpolarized. These will give information on the 

relative sizes and signs of F:(O) eCI and e(O) 
v’ 

The decay w -c ee5 is estimated to proceed with a rate 

r(p - eeW KM z 0.06IYp - eylKM. In contrast, in models with doubly 

negatively charged heavy leptons which couple to both e and p. such as 

the Wilczek-Zee models, 
31 

while the decay p + ey is still fully suppressed 

by the leptonic GIM mechanism, the decay p + ee’S is not. Consequently 

in such models l?(p - eel?) is considerably larger than r(p + ey) (see, 

e.g. Eq. 4. 36). In order to keep the p + eee decay rate below the experimental 

upper limit, it is necessary that the heavy lepton masses be very close 

to each other and/or their mixing angles be small. Our analysis also 

shows that in models such as that of Cheng and Li, i” in which the mass 

matrix M is not completely arbitrary, due to restrictions on the representation 

content of the Higgs bosons, the general conditions for naturally suppressed 

p- and e-lepton number violation can be weakened. 
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The mixing of mass eigenstates to form weak eigenstates in the KM 

model will in general cause not just muon- and electron-lepton number 

violation but also small violations of p-e universality, the hadron-lepton 

weak “universality” equality Gi set 9 
C 

= GF”, and the Cabibbo theory of 

weak decays of baryons. It is thus of continuing interest to improve the 

experimental limits on such violations. Furthermore, in this model 

ve and vP are not orthogonal, so that one may expect to observe, at some 

level, the reaction vP + N - e- + X, where the electron comes from the 

leptonic vertex. The heavy leptons in the KM model could be produced 

+- 
in e’e- reactions such as e e 

+ - 
-L L 

t- 
and e e - LO?? 

e’ or in neutrino 

reactions such as v + N + L- 
P 

t X; in the last case the cascade decay 

L- f Lop-i; t-- 

P 
+ )I p. p v 2; would produce trimuon events. 

PP 

Thus the present experimental limits on decays such as p - ey, 

p - eeg and other p- and e-type lepton number violating processes can 

already be used to constrain models of weak interactions. Further experimental 

searches with improved sensitivity, whether they yield null or positive 

results, promise to contribute substantially to the understanding of the 

structure of weak interactions. 
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APPENDIX A 

We shall give here a proof that the self-energy terms in Figs. 2 and 3 

contribute only to the renormalization of F y40) and therefore have no 

effect on the p + ey amplitude or on A($ + eee), the virtual photon 

contribution to the p - eeF amplitude. We start with the electromagnetic 

Ward-Takahashi identity 

qy” (p,, p2; q) = Q 

where iVx is the proper (single particle irreducible) photon-fermion 

vertex between an initial and a final fermion of momentum pi, and p2, 

respectively, and q = pi - p2, as in the text; Eq. (1) holds separately 

V 
for the parity-conserving parts, Vx and Zs, and for the parity-violating 

parts, and Cp. 

The effective vertex, including off-diagonal fermion self -energy 

insertions, is 

iEV.A = iV V,A 
A A + l&v 

i 

Ap’l - 9 
iCs’p(j4i I 

t iCs’p($ 1 i 
2 $2 - ml 

iQv, . 

(1) 

V 
We shall concentrate on the parity-conserving part iEX; the same argument 

applies for the parity-violating part. We note that 
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E2b2hE~uibi) 2 2 2 2 
p2 =m 2J pi = ml 

= E2(p2)i VI(q) - Qy, 
cS(rnl) - ZS(m2) 

mi - m2 1 ul(pl) 

where 

U,V~kl)U, = n2v;(Pi> p2; q)u1 2 2 2 
Pi =m is P2 =mz 

Note first that the contribution of off-diagonal self-energy insertions is 

q2-independent. The form of VT(q) is 

V:(q) = y,V,(q) + io q’V,(q’) + q,V3(q2) 
AP 

. 

By taking the matrix element of Eq. (1) between the spinors r2(p2) and 

ul(pl), and making use of Eqs. (3,4) we find that 

Vi(O) = Q 
9(m,) - ZS(m2) 

mi - m2 

Combining now Eqs. (2, 4, and 5), we obtain 

- V1(0) 1 + i0 f ul(pl) . 

(2) 

(3) 

(4) 

(5) 

(6) 
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Equations (5) and (6) prove our assertions at the beginning of this Appendix; 

note further that V,(q’) - VI(O) is finite whether or not V 
V 
A and Cs have 

been renormalized. 
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TABLE CAPTION 

Table 1: Lepton multiplets in the models considered. See the text 

for an explanation of the R2 and % matrices. The mixing 

-- -- 

Of LIR and L2R to form L-- and L-- 
eR 

OR in model (d) is 

determined by R2tQ 1. Similarly, in model (e) the mixings 

of L-- 
-- 

1L and Lii to form LeL and 
-- -- -- 

L 
FL 

and of LIR and LZR 
-- 

to form LleR and L’ T’ are determined respectively by 
PR 

R2(BL) and R2( 0,). These mixing formulas are omitted 

for brevity. See the text for the mixing in model (f). 
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TABLE 1 

where v 
e 

i i 
” = R2(8) 

bJ L 

(b) (?), (N{)L (?)L eR 

where 

@) = $;) . 
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LR” 

‘R LR 

+L 
L 

2R 

where (;;:;;) = R2(8) G.‘;;) . 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

FIGURE CAPTIONS 

Diagrams contributing in a general (i.e., any SU(2) x U(l)) 

gauge model to the process ff +f2 + y, where fl 2 are 

(identical or different) fermions. The symbol Fi denotes 

any fermion which can couple in these graphs. For the 

decay p - ey, f4 = p, f2 = e, and in graphs (la) and (lb), 

Fi = L-- or Lo, in accord with the upper or lower sign 

choices for d. It is shown in the text that graph (Ic) 

can only occur for the diagonal amplitude; hence in this 

graphfi = Fi =f2. 

Diagrams contributing in a general gauge model to the 

decay p - eeO. In graph (2b)Y the virtual lepton can only 

be L--. In graphs (2~) and (2d) the rectangular box denotes 

a nondiagonal lepton self-energy insertion; for the graphs 

contributing to this, see Fig. 3. Each graph represents 

a difference of two graphs, related to each other by interchange 

of identical electron momenta. 

Diagrams contributing in a general gauge :t,odel to the 

nondiagonal p-e self-energy. The cross represents a 

counterterm. 

Graph for the transition s?i + eii in the KM model. 

Graphs contributing in a general gauge model to the uZ - yy 

amplitude. The heavy dots in Figs. (5a) and (5b) represent 
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Fig. 6: 

Fig. 7: 

insertions of the )I * e + y one loop amplitude. The rectangular 

boxes in Figs. (5~) - (5e) denote nondiagonal p-e self-energy 

insertions (see Fig. 3). The heavy dot in Fig. (5f) is the 

sum of graphs in Fig. 6. 

Graphs contributing in a general gauge model to the irreducible 

part of the tiiS - yy amplitude. 

Diagrams contributing in a general gauge model to the 

transition PC + jie. 
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