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ABSTRACT

We analyze the circumstances under which the violations of an
approximate symmetry in a unified gauge theory of weak interactions are
naturally suppressed; in particular, we investigate approximate muon-
and electron-type lepton conservation as an example of such a symmetry.
Extending earlier work, we propose a unified treatment of this symmetry
together with strangeness conservation by the weak neutral current and
CP invariance. The rate for the decay p —~ ey is calculated for a general
SU(2) x U(1) gauge model. From this and a similar study of the decay
n ~ ee& we derive a set of conditions which guarantees that the violation of
muon- and etectron-type lepton number is naturally strongly suppressed.
As part of this, we compute the nondiagonal electromagnetic vertex to one
loop order for an arbitrary SU(2) x U(1) gauge theory., We then focus
on the phenomenological predictions of a particular gauge model with three
left-handed doublets of leptons and quarks. These include the existence
of charged and neutral heavy leptons and of small violations of u-e
universality and the relation Gg, sec BC = GFl,l. Other muon- and electron-
number violating effects include nonvanishing rates for the decays
Ki - TrieiI and K. - ej, and for the reactions p + N - e + N and

L.
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I. INTRODUCTION

There are a number of interesting examples in weak
interacticons of approximate conservation laws which hold to
a very high degree of accuracy. These include the conservation
of strangeness by the weak neutral current, separate muon-
and electron~type lepton number conservation, and finally,

CP invariance. The conservation of u- and e-type lepton
number may well be exact; we shall, however, take the view
here of regarding it as an approximate symmetry, the validity
of which has been experimentally demonstrated to a given level
of precision.

These three cases share an important common feature, which
we should like to focus upon in this paper, with special
emphasis on u- and e-type lepton number nonconservation. It is
not difficult to construct a model in which approximate
conservation laws hold in lowest order in the weak coupling
constant, GF' The striking feature of the examples cited
above is that the violation that, in principle, could occur
in second order, i.e., in order GFa, is in fact further
suppressed. We propose, extending earlier work,z’3 a unified
approach to these three problems based on the idea of a
mechanism which "naturally" suppresses vioclation of the

given symmetry, with u- and e-type lepton number nonconservation

as an exampile.
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Historically, the smallness of the KL-KS mass difference,
of the rate for KL+uﬁ, and of other strangeness-changing weak
neutral current processes necessitated the incorporation of
the Glashow-Iliopoulos~-Maiani (GIM) cancellation mechanism
in gauge theories of weak interactions.4 This mechanism
precludes an s-d transition through the 2 coupling in
lowest order in the weak Lagrangian. But it does more than
this; as has been discussed elsewhere,2 it also works at the
one-loop level to suppress AS#0 induced neutral current effects
to the level GFa(ET%—)ec, where Amq2 refers to the difference

of certain quark masges squared, and ¢, = sineccosec, in the

C
minimal Weinberg-~Salam (WS) theory.5 Similarly, in gauge
theories of microweak CP violation,3 the magnitude of CP
violation in A4S=1 processes is not of order Gpes but, instead,
of order GF(Aqu/mwz)s, where £110"° is the conventional
measure of CP violation in the neutral K system. Furthermore,
in this class of theories the electric dipole moment of a

quark arises only in two-loop order, and is of order 10_300

m.
It is important to distinguish two aspects of this

mechanism in a natural theory in which parameters of the theory

are arbitrary. The first aspect is the appearance of certain

mixing parameters such as e, and ¢ , whose moduli are

C
constrained tobe less than unity, but whose magnitudes are
otherwise arbitrary. For the present, these must be regarded

as empirical guantitites to be taken from experiment. The

second aspect, which is the crux of the matter, is the
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occurrence of the mass ratio (Aqu/mwz) for any values of

the parameters; this depends only on the representation
content of the model. Since M is presumably much bigger than
mq is any model so far contemplated, the above mass ratio
represents a substantial suppression of the violation of the
given approximate conservation law. This second aspect is
what we mean by a natural suppression mechanism.

The suppression factor (Amq2/mW2) reflects the fact that
two different quark transitions contribute with opposite sign
and, in the absence of any mass difference, with equal
magnitude. Because of this, the leading term of various
amplitudes cancels, and the remainder is of the order of the
above mass ratio, in the absence of infrared singularities
which might arise in the limit mq+0.

The theoretical basis for the natural suppression
mechanism has recently been studied systematically in SU(2)xuU (1)
gauge theories in which guark mass terms are arbitrary (i.e.,
in those models in which there is no zeroth order natural
relation among masses and mixing parameters; see below)-6
Glashow and Weinberg have established general necessary and
sufficient conditicns which guarantee that the weak neutral
current naturally conserves fermion flavors in orders GF and

G The conditions are: (l.) that quarks of a given charge

Fo-

and chirality have the same weak LG and T and (2.} that quarks

3!
of a given charge receive their mass either from a gauge=-

invarient bare mass term or from their couplings with a
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single neutral Higgs field (but not from both). One of us
determined in the same framework the conditions which guarantee
that |AS| = 2 transitions, both CP conserving and violating,
are naturally suppressed.3 They are: (l.) the Glashow-Weinberg
conditions (but without the bare mass option, since the
possibility of such a coupling is precluded by the next
condition), and (2.) the requirement that quarks of charge g
and quarks of charge g+l do not belong to the same isomultiplets
for at least one chirality.

Let us now shift our attention to the leptonic sector
and consider the role of the natural suppression mechanism with
regard to the conservation laws of separate electron- and
muon-type lepton number. In unified gauge theories, these
laws have occupied a rather special position. In contrast
to the conservation of electric charge. the conservation of
muon-type and electron-type lepton numbers is not associated
with the gauge-invariant coupling of a conserved u- or e-type
lepton current to a massless gauge vector boson. That is,
these conservation laws, if exact, are not realized in nature
as gauge symmetries. Indeed, since the weak gauge symmetry
is spontaneously broken, the eigenstates of the weak gauge
group are in general not eigenstates of the mass matrix.
Threfore, there will in general be mixing between fermions of
the same chirality and charge, which will prevent the
existence of a conserved quantum number assigned to the

particles in a particular weak multiplet.
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As has been remarked upon before,7 in the minimal
Weinberg-Salam model with just two left-handed doublets8
(\)e,e)L and (vu,u}L, the exact degeneracy of the neutrinos
(quaranteed by their masslessness) implies separate U~ and
e-type lepton number conservation. More generally, consider
a model with n left-handed doublets (Nl,e)L, (Nz,u)L,-
(N;L,7) 1roeee N

are degenerate. Certainly the natural way to guarantee this de-

L’ (NnLn )L where the neutral leptons N

generacy is to make these neutral leptons massless, but this

is not necessary. Now one can define Vg F Ny vu = Nz,

Ui = Ni as both the mass eigenstates and the weak gauge group
eigenstates. Assign to the electron multiplet the electron-
type lepton number UAZ: and similarly fort/ﬁﬁ./gi ---./ﬁ;
Then in such a theory these n quantum numbersl/gﬁ(/ﬁ; cen
L/ﬁnwill be exactly conserved.9 For simplicity let us return
to the minimal Weinberg-Salam model. If one (1.) allows

ve and vu to be nondegenerate in mass or (2.) adds either

left or right-handed doublets with neutral or doubly charged
heavy leptons (called generically LO, L™ 7) which can communicate
with muwns and electrons or (3.) enlarges the original

doublets to triplets or higher dimensional representations

of weak SU(2), then u- and e-type lepton numbers will not be
separately conserved. The mixing of Vg and vu in case (1.)

is quite analogous to the situation which obtains in the
hadronic sector of the minimal model, where there is no

separate conservation of (u,de)L—quark number and (c,se)L—

quark number because of the mixing of d and s , or
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equivalently u and c¢. It is the purpose of this paper to
analyze the conditions which guarantee that the nonconservation
of e- and p-type lepton number is naturally suppressed and to
discuss their consequences.9 In doing this we shall also

present a compendium of expressions for electromagnetic

vertices -- both parity conserving and violating, and both
on~-diagonal and off-diagonal -- of fermions in any SU(2)xU(1)
gauge theory. We shall briefly comment on special circumstances
in which the fermion mass matrix is not arbitrary due to the
representation content of the theory, so that the effects of particle
mixing are naturally suppressed. In such models, the model of

Cheng and Li being a prime example,lo

the general conditions
need not apply. With our suppression mechanism one obtains
predictions for such processes as u+ey and p+eee which, for
a wide range of parameters (heavy lepton masses and mixing
angles) are in accord with, but not extremely small compared
to, present experimental limits.

The remainder of this paper is organized as follows.
In Sec. II, we review our general matrix formalism and discuss
the one-loop calculation of the general fermion electromagnetic
vertex. Section III contains a description of the various
models to be considered. 1In Sec. IV we present our calculation

of the rate for the decays n+ey and p+eee in these models.

In Sec. V we focus on the Kobayashi-Maskawa (KM) modelll'l2

involving three left-handed doublets of leptons (and quarks).

Certain interesting phenomenological implicationsof the model
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are analyzed. Our concluding remarks are given in Sec. VI.

Appendix A contains a discussion of the self-energy graphs.

IT. THE GENERAL FERMION ELECTROMAGNETIC
VERTEX TO ONE LOOP ORDER

In this section we shall compute the general electro-
magnetic vertex to one lcop order for fermions in an SU(2)*xU (1)
gauge theory. For the special case of a diagonal, real-photon
vertex, in models where our approximations are valid, our
results can be used to determine the anomalous magnetic dipole
moment and electric dipole moment of an arbitrary fermion.13
The main applicatiors of the non-diagonal, real-photon amplitude
are to radiative hyperon decays, ¥Y-N+Y, where Y = A, I, or 5}4
and radiative lepton decays, such as L “e+Y (where L~ is a
heavy lepton) and u-e+y. The non-diagonal virtual photon
amplitude is used in the calculation of rare K decays such as

0+W0e§, and the leptonic decay U%eee. In

K 1k, K +rtes, K

the present paper, as mentioned before, we shall concentrate

on the application to p~ and e-type lepton number nonconservation.
In all these experimentally interesting hadronic and

leptonic applications, there are two simplifying features.

First, the main contribution to the amplitude comes from

diagrams in which the mass of the internal virtual fermion

(a charmed quark or heavy lepton) is considerably larger
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than the masses of the external fermion (d or s quark, or

ur €, v lepton). This fact justifies an approximation

which we shall use in evaluating the Feynman parameter
integrals; namely, we shall keep only the non-negligible
fermion masses. Secondly, in the decay amplitude for
fl+f2+Yvirtual , the momentum g of the photon satisfies
q2<ml2 where my is the mass of the initial fermion.
Consequently, q2 is also small compared to the charmed quark
or heavy lepton mass squared and can be neglected in the
parametric integrals. With these approximations the

parametric integrals will be of the form

2 27\ 2
" N Moy
ao + bo In > + > a1 + bl 1n —
Mg Moy M
{(where mF is the mass of the relevant virtual fermion) rather

than some complicated and for our purposes, not very useful,
expression involving dilogarithms. Moreover, since q2 is
small, it is not necessary to compute the full off-shell
vector and axial vector form factors but rather only the
V and A parts of the charge radius. This expedites the
computation.

We shall perform the calculation using the ¢-limiting
procedure as formulated for spontaneously broken nonabelian

15 In this formulation, there is

gauge theories by Fujikawa.
no interaction term of the type emW(AUW_”¢+ + AUW+“$_),
where Au is the photon field, and ¢i are unphysical scalar

fields, in contrast to the regular Rg gauge,l6 in which
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this term is present. Furthermore, the WWA vertex differs

from the feorm in the RE gauge by the addition of a term

linear in £{(see Eg. (2.22)). Finally, as in the RE gauge,
the W propagator is

k ko (1-1/¢) :

k*oml/e | kP-mPrie

id (k) = -ilg . - (2.1)

and similarly, with appropriate changes, for the Z propagator.
The advantages of using this f-limiting procedure are first,
that there are no diagrams involving ¢IWiA vertices.
Secondly, for the physical quantitites which we calculate at
the one loop level, the diagrams like those of Figs. (la) and
{1b), but with w* replaced by ¢i,both vanish in the limit
£€+0. (The limit is taken after all integrations are performed.)
This is useful because our general matrix formalism (see below)
is simplest in diagrams which do not involve unphysical scalars.17
Before presenting the results of the calculaticns, we
must introduce our general notation.3 The crucial virtue of
this notation is that it allows one to treat in a unified way
all sU{2)xU({(1l) gauge models. Let us denote by EL and ER the
left and right chiral lepton fields. The components of gL,R
are labeled by T, T., Y (or equivalently, Q), and g, where g
distinguishes different multiplets with the same 7 and Y.

The coupling of the gauge bosons to fermions is given by

:ZéF = gJWpW-u + h.c. + \/g2+g'2 J Mz {2.2)

Z Ty

where
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-SRIV (2.3)
and
gt = Eym TN g (2.4)
+ ERY# TZR Er
In Egq. (2.3), T.L'R, i=1,2,3, are the representations of the

1l

weak isospin generators for the wvarious left and right fermion

multiplets and Q = T

3
The TiL'R satisfy the commutation relation

+ Y¥/2 1is the electric charge operator.

L,R L,R] . L,R
[Ti ;T = iey Ty (2.5)

For a doublet representation of SU(2), for example, TiL’R=%Ti.

The weak isospin raising and lowering operators are defined as

L. R T]_L'RiiTzL’R
T+" = (2.6}
- V2
s¢o that
L,R L,R}| _ L,R
[T+ , T_ ] = T, . (2.7)
In Eq- (2.4)!
LJR — L’ - . 2 L'R
TZ = T3 sin er (2.8)
where
0 = o't + ofr (2.9)

and
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; = (lr%) (2.10
= 5 . .10}

R
In order to express this coupling in terms of physical
fermion fields, we must diagonalize the mass matrix, which

is of the form
ELMgR + h.c.

Here M 1is a general matrix which is constrained only to

commute with Q ;

otm = mo®R . (2.11)

ofs
Since in general [g,M'] # 0, there does not exist a unitary
.
matrix U such that UMU' is diagonal. Consider, however, MM*

and M+

M; these are hermitian and have the same positive
semidefinite eigenvalues, so that there exist unitary matrices

U, and UR such that

L
fooF o2
v o= m
umMfmu T = M ? (2.12)
R R D -
2 . .
where MD is diagonal. Then
vl = ) (2.13)
MR D

From Egqg. (2.11), it follows that

L _ R =
[é r UL] = [Q p UR] = 0 . (2.14)
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The fermion mass eigenstates are then defined as

b o= Ly + Ryp .

In terms of the mass eigenstates, the fermion-gauge boson

coupling takes the form of Eg. (2.2) with

H_ 7 W, L UM R
and
v_ 5 kL s omuT R
Iy VLY T * VY T5 Vg (2.17)
where
L,R _ L, +
T, = U 2Ty RUL’R (2.18)
and
L,R _ L,R _ _;_ 2 L,R
Ty, = T3 sin GWQ . (2.19)

Let us proceed with the calculation. The diagrams
which can, in general, contribute in one loop order to the
electromagnetic transition amplitude from an initial fermion
fl to a final fermion f2 are shown in Fig. 1. In the non-
diagonal case where fl # f2, there are also the self-energy
graphs shown (for flsuf2=e) in Fig. 3. For the real photon amplitude,
these give zero contribution and for the wvirtual photon
amplitude, they contribute only to the renormalization of
the {(nondiagonal)} vector and axial vector form factors. The
treatment of these self-~energy graphs is discussed in greater

detail in Appendix A. In the nondiagonal case, the graph
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involving a Z in Fig. (lc) will only contribute if there are
appropriate lowest-order nondiagonal Z-fermion coupling terms
in the Lagrangian. Stating one of our results in advance, it
will in fact be shown that if this 2 graph could contribute

to the decay u-+ey it would give much too large a rate. The
photon graph (1d) is, of course, present only for the diagonal

electromagnetic vertex; it gives (c.f. Eq. (2.64)) F (0) =

2 ab
oy 2 iy .V . :
(a/ZW)QaSab, where F,(0)__= FZ(O)aa/Qa is the anomalous magnetic moment.

The invariant amplitude for fl+f2 + y{virtual or real) has

the general Lorentz and Dirac structure

dﬂﬁ(fl(pl) > £5,(py) + Y(q))
. = A
= -1, () [y, (7 (@) + 7 P (a?)vy)

- v
uvd

(ml+m2)

i
+ (sz(qz) + F2A(q2)Y5)

+a (V@) + F3A(q2)v5)}ul(pl) : (2.20)

In Eg. (2.20) uﬁpl) is to be regarded as a tensor
product of a Dirac four-spinor and an n -dimensional vector,
where n denotes the number of hadronic or leptonic flavors,
i.e., mass eigenstates. The form factors Fi(qz) are nxn
matrices in the space of physical quark or lepton fields.
We have normalized the FZV’A matrices so that the diagonal

elements are equal to the anomalous magnetic moment (times

e) and electric dipole moment of the corresponding fermions.
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Electromagnetic current conservation regquires that

q%=0,

which implies the two relations

v, 2 2.V, 2
(my-m,)F, (g™) + g"Fy (@) =0
A, 2 2., A, 2, _
2 . V,A : . .
For g = 0, since Fa are analytic at this point,
v
F."(0) = Q¢ 6
1 fl flf2
A =
F,o(0) =0

where £, and f2 label the initial and final fermions. In

1

particular, for the decays uU»ey or (for nondegenerate
neutrinos) v2+le, FlV(O) = 0. Furthermore, for a real

photon, the full amplitude is

.,/= Eu(q}/%'_1 r

V,A

and €*g = 0 , so that the F3 terms make zero contribution

to fl-*f2 + Y(q2=0). Thus in order to determine the rate

V,A
2 (0)-
V.A

For the related decay u+eee, we shall need the Fl g
2

I'(u+ey), we need only calculate the gquantitites F

terms. Since in this decay qZSmu

expand the vector and axial vector form factors, keeping

only the largest terms. From Egs. (2.22a,b}), we obtain the

following relations linking the vector and axial-vector

2 2 . ,
<< <
mL <mW it is useful to

(2.21)

{2.22a)

(2.22b)

(2.23a)

(2.23b)

(2.24)
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2
charge radii dFlV’A(O)/dq with the scalar and pseudoscalar

form factors:

ar, " -1 v
— {(0) = n—mo Fa (0) , {(2.25a)
dg 172
(for m; # m,)
ar, 1 a
—5— (0) = F, (0) . (2.25b)
dqz m, +m,, 3
. V,A 2 .
We shall use Egs. (2.25a,b) to determine dFl /dg” , since
this method is easier than a direct computation of FIV’A(qz).
Once having utilized F3V'A in this manner, we will drop them

because they make zero contribution to the amplitude for
p-eee

Diagram (l2) gives a contribution

4+ (B=K+M_)

eglo | -LE et Bn 41 By D (1ML o+ 7 Bryx

W P + + 2 2 Y T ¥
(2'”) - (Pl"'k) _MD

- PUO - -
Aap(k)ﬁso(k q)FWWY(k’ q,qg-k) (2.26)

where the chiral projection operators L and R are given
in Eg. (2.10) and a sum over both upper and lower signs is

understood. The WWy vertex is given by

“1%2%3
iel (k,,k.,k,) = ie[}k -k,) g + (k,-k,) g +
W+Wq’\{ 1 pA 3 1 2 0.3 01.10.2 2 3 al aza
(k.=-k.,) g ]+ieg((k ) g -{k )} g )
3 2.27
Lo, PN 1oy 0,0, 270, a oy ( )

{with the momenta defined as going into the vertex). In
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Zg. (2.28%,C,, = +Ll,correspending to the upper and lower
choices of signs in the T operators. Similarly, <diagram (lb)

Tives a contribution

4 (B,=K+M_ . (B, ~K+M )
eng'der”T Ly, Ry o2 DL, gt 2':3 i
o7 * = kyfem 2 v ~k} -
(27) (py—k) o) (py =X My
I R .
T TL+TL R) {k) (2.2
Y T+ T-r ACLB k2 8)
The contribution of diagram (ic) is given by Eg. (2.:8) with
2 L L
the replacements g'wg2+g‘2,T 'RaTﬂ'R, MM, and z.n, where

-

Sl

n is the gauge parameter for the Iz field.
It is convenient to separate the LL,RR and LR,RL parts

of the form factors arising from the W and 7 graphs {la}-i{lc):

a,
"LL,RR

A i} o
)LR,RL s L= 1,2.3 (2.2%9)

VA

(FY + (7Y
1 1

Performing some Dirac algebra using the chiral projection
operators L and R 1in Egs. (2.26 and Z.28}),we determine
the ceneral structure of the LL,RR and LR,RL parts ¢ the
form f£actors to be as listed bfiﬁs. In these eguations a

sum over <the indics a(d) = +¢1,=(¢),71s understood correspending

) . — - + .
toe the contributions cf W, W , and Z graphs, respectively:

v, oz _ _ 2 L.LL,RR_ L R,,LL,P.R,R“\

A, 2 2" L LL,RR._ L R_LL,RR _ 2]

= T - - T, 2.30b

Fl (g }LL,RR q Ta C3,a T3 Ty 13 £ {2.308}

v, 2 - L2 ['..L LL,RR_ L R.LL,RR- R .
Foolapg pr ™ Watmol T T7C0 07 Ty F T ST T ) (2.31a)
A, 2. 2 20+ L.LL,RR +L R .LL,RR+R| .. .
Forlapp pr © By My M TG a G345 Ty ] (2.311)
F v(az)_ (m, —m )E’LCLL’RRT L . 7 R.LL,RR. R

3 LL,RR 1772 La “3,a 's a ©1.a '3 ! {2.32a)
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2D e 4 )[ L, LL RR aL _ TaR gLaRRTaR] (2.32D)

F,'q%) o g = (mptm )[T LeLR, RLM JTo Tach?éRLMDTEL] (2.33a)

@ 5 aL L+ )l:T begR Ry T R - aRclz'I}éRLMDTEL] (2.33b)
FX'A(qZ)LR'RLz 0 (2.34)
Fg’A(qz)LR'RLz 0o . (2.35)

In Egs. (2.30)-(2.33) C2,a and C3,a are real nxn diagonal
matrices, the values of which will be given below. In the
approximation in which the external fermion masses are much
smaller than the internal virtual fermion masses, the C matrices
are independent of the external lepton masses. Thus the
symmetry under the interchange My =M, is manifest in the
above egquations. One can observe that, under a parity
transformation, the vector form factors are symmetric and

the axial vector form factors are antisymmetric, as they

must be.
In E (2.35) FV'A(qz) actually has the form
q. te-220, %5 LR,RL’ '
suppressing TL R matrices,
eG m
V,A, 2 FF [ 1,2 ]
Py @) g v — o |0+ D=5 (2.36)

8w
where g denotes the mass of a virtual fermion in Fig. 1,
and My, = My or m,. In contrast, from Egs. (2.33a,b),

{(2.44-2.47), (2.50,2.54,2.57), it follows that
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2
FV'A( 2) eGFmF(ml * n'12) a + b Mg
2 ‘9uR,RL " g 2 mvz (2.37)
where a is of order unity (and b is either of order unity
or 1ln mwz/sz, depending on the model). Hence the contribution
of Fg'A(qz)qu " (ml + mz)Fg'A(qz) is negligible for both

diagonal and nondiagonal transitions, being smaller than
that of Fg’A(

applies to Eg. (2.34).

q2) by the factor (mi 2/mé). A gimilar remark

With the weak matrix structure of the form factors thus
determined, we next consider the restrictions on the amplitude
for fl > f2 + y arising from the hermiticity of the Lagrangian
and from time reversal invariance. This amplitude constitutes

an effective proper flsz vertex
-~ - — u
_ggff QJPUU)A [2.3?)

(where ¥ is a tensor product of a Dirac field and an
n-dimensional vector of all flavors of quark or lepton
fields).

In momentum space this vertex is
u(pz)ru(pl, Pyi ulpy)
and the hermiticity of the Lagrangian implies that
. = T A
I‘U(Pl: }?2: q) = YOT (pzr Pl: Q)YO {2.39)

Eg. (2.39) requires that the total form factors satisfy the

following relations:
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FX’A(ml, m2) = FX’A(mz, ml)Jr
Fy(my, my) =  Fym,, m)"
Fo(my, m,) = ~Fo(m,, m)T
Fg(mlr m2) = —Fg(mz, ml)f
Fimy, my) =  Fhm,, mp’

One can easily check that these conditions are satisfied

by Egs. (2.25) and (2.30) - (2.35).given that with our

approximations the C matrices are independent of my and m, .
Note that the current conservation equations,k (2.22a, b) are
consistent with these hermiticity relations.

mass case, Eg. (2.42) implies that Fg(ml= m = 0

2)

(also implied by Eg. (2.22b) and furthermore,
V _— —
F3(m1 =m,) =0 .

Finally, time reversal invariance implies that the F, matrices

satisfy the relations17

\%

A Vv
Fj (ml, m2) F.

A ,
j’ (m,, ml)* , 3 =1,2,3 .

The C matrices may be conveniently written in the form

(suppressing non-matrix indices)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

In the diagonal

{2.45)

(2.46)

(2.47)
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(with no sum on i) . For the Wi graphs we use
the relation, in the Weinberg-Salam model,19
2 GF
— = 7 (2.48)
BmW

For the Z graph we make use of the relation

2 2 2

g rg -« 9 (2.49)
sz 8mW

and define cij similarly to Egq. (2.47), with

%2:("1"2 - T32 + T)}\;,T
3

K = . (2.50)

2
Taa
zi 3AT, Ty

In these equations, g and g' are, the coupling constants for

the SU(2) and U(l) subgroups of SU(2) x U(l), respectively;
AT,T3 is the vacuum expectation value of (the neutral member
of) a Higgs multiplet with weak isospin T, and the sums in
Eq. (2.50) are over all Higgs multiplets. For the W¥ terms,

obviously

LL,RR

(Ck i) = {

cﬁli) + (1b)yLL, RR (2.51)

I

for k = 2,3, and similarly for the LR,RL part. From our

present and past calculationghzo'zhe find that the diagram of

Fig. (la) yields
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C(la)) FRER oo
2, /. 1 *F
i
(C(la))LR'RL _ (Q -Q
2,% . 1*F
i
LL,RR
(la) ! _ _
i
+ Ei(~
while diagram (1lb) gives
C(lb)LL'RR 0 “E
2,2/, T O¢FL L3
i i
(C(lb))LR'RL - o |2
2,t FiL
(C(lb))LL,RR . [
3,z . F.
i i
In these equations Ql and QF are
i
and ith virtual fermion, and
2
mFi
M

We recall that these results apply
expected, F3(q2) is a non-abelian
it will be shown that

in Sec. IV,

FERMILAB-Pub-77/21~THY

5 1
.)[g'“ Y Eil (2.52)
1
)[—2 T ] 2.53
: 5 €4 (2.53)
i
)L_ 35 _ 4 1
i 2 ~ 3 né* g3
1,1 ]
-2'4' Ilng,) (2-54)
Ei]

- 5 (2.55)
+oe. (-4 1n 1 4 6)] (2.56)
i £, *

i
2 1 1 3
? In EI + '9— + E El} {2.57)
the charges of the initial
. {2.58)

in the limit £-+0. As is
gauge-dependent quantity;

it has precisely the correct

£ ~dependence to cancel the £-dependence of the 2 and W+W-

exchange contribution to u+eee and
S-matrix element for this process.

The Z graph (lc)

vield a £-independent

contributions are obtained by simply
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multiplying those of graph (lb) by « and replacing mw2 by

mz2 in Eq. (2.58):

LL,RR 5.
(1c) _ [2 _ _J;]
(cz.z ) . = <0 |3 5 (2.59)
1 1
LR, RL
(lc)) ' - _ 1
Q:Z,Z ' = KQF‘[Z +3,(-4 1ln o= + 64 (2.60)
1 i i
LL, RR
(Le)\ " B 2 1 13 ]
6:3,2 ). - KQF.[ Fln 3-+gt+t 595, (2.61)
1 1 1
where 2
mFi
§; = —% (2.62)
m,

The invariant matrix element for the radiative decay
fi+f2+y is given by

ig qﬁ’eu

. N ; - Hv v A
l/(fl(Pl) 2P0 + Y‘q))wz(Pz’(m‘"“‘erml) (Fz 0oy *+ Fp

w’zﬂs)uﬂpl)

(2.63)
where for notational convenience we have separated the Dirac

and weak gauge group matrix structures, defining
V,A, 2 _ V,A, 2
P Mty , =< F; e £ (2.64)

The rate is then

m m m
_ 1 _ 2 _ 2 v 2 A 2
TAE £ 47) = 5= (1 ﬁ) (1 P)D F, (o;zﬂ +|F2 (0)211 ] . {2.65)
From these results we can immediately derive several
constraints on models of weak interactions. We concentrate

on the leptonic sector here, since the quark sector has been
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7

discussed before. First, the existing experimental bound

on the branching ratio for the decay p-eee, viz. BR(j-eee)
<GXl0_9, prohibits a direct lowest order 2Zue coupling in
the Lagrangian. For if there were such a coupling this
decay would proceed at a rate comparable to that of the
decay u+e3evu unless the mixing of the muon and electron were
unnaturally small. But if Tg and TZR are to be diagonal in
the u-e subspace for an arbitrary mass matrix M and hence
arbitrary UL and UR' they must in fact be multiples of the
unit matrix in the entire Q=~1 subspace. That is, all left-
handed leptons of charge Q=-1 must have the same value of
weak T3L and similarly for right-handed leptons of charge
Q=-1. As a consequence the Z graph ({lc) does not contribute
to nendiagonal electromagnetic leptonic transitions. Par-
enthetically, it may be mentioned that, in the hadronic case,
the smallness of the KLKS mass difference and of the rate for
the decay KL+uﬁ similarly prohibits a lowest order nondiagonal
Zsd vertex. By the argument given above, the absence of such
a vertex can be guaranteed naturally only if all quarks of a
given charge and chirality have the same value of weak T3

Let us consider next the W graphs (la) and (1lb). For
the psevy decay, the LL,RR part of these graphs will, in

V,A

general, give a contribution to F,’"(0) of order eGquz/(sz),

while the LR,RL part will give a contribution of order eGFmLmu/ (81r2) ,
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where, again, mr, denotes the mass of a generic internal
virtual lepton (specifically, the maximum mass in the case
of widely disparate masses) in Figs. (la), and (lb). Thus
the LL,RR part will produce a u~ey branching ratio of order
{(0/m), while the LR,RL part, if present, will yield an even
larger rate of the order (u/m) (mL/mu)z. We must therefore

require that the corresponding matrix elements

L.LL,RR+ L R . LL,RR_ R L_LR,RL
<e|Ti Cz’é T; |u> ; <e|Ti szi T. |u>, <e|Ti c2,i MDT:RIU>r
R_LR,RL

and <e|'|"ir Cz,i MDT;L|u> all vanish to leading order. Here, in

contrast to Egs.(2.30)-(2.33),there is no implied sum
over both upper and lower signs, i.e., each matrix element

must vanish for each sign choice. Now to leading order, the

LL,RR
2,%

each charge sector. Therefore, for upper and lower sign

matrices C are proportional to the identity matrix in

choices individually, the LL,RR matrix elements can be
written

<el TP R Plus = <ol Tius (2.66)

= y<el (T2 2 - (T3L)2 + T3L]u>.

L 2

)

In order for this matrix element to vanish, in general, (71

and T3L must be diagonal in the p-e subspace. Again, if this

is to be true for an arbitrary beginning mass matrix M,

(?L)2 and T3L must actually be multiples of the identity in

the Q0=-1 charge sector. The same argument and conclusion

S
apply to (TR)2 and T3R. We thus find from the requirement
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that the LL,RR W graph contributions do not give too large
a branching ratioc for the decay H*eY, that leptons of charge

Q0=-1 and a given chirality must have the same value of weak

T and T,. As mentioned before, this is in fact precisely the

3

condition on lepton represention content which guarantees
natural conservation of Q=-1 leptonic £flavors by the weak
neutral current.

Proceeding to the analysis of the LR,RL matrix elements
in the W graph contributions to u-+ey, we note that, as

in the LL,RR case, to leading order, C?R;RL are proportional
)t

to the identity matrix in each charge subspace. Consequently,

we require that for each sign choice individually,

L R _ L =
<e|TtMDT; fu> = <e|TiRMDT; lu> =0
This implies by the same reasoning as was given before, that

L R
<R, (Q=-1) [T, TMT_ T2, (Q=-1)>

L
= <22(Q=-1)|TiRMDt; |2, (@=-1)> = 0

where are arbitrary leptons.

*1,2
This is thus a special case of the second condition for
microweak CP violation discussed elsewhere {(for quarks).3
In words, this condition, for leptons, is that, for at least
one chirality, leptons of charge g and gl do not belong to

the same weak isomultiplet. In the specific case of the

Le matrix element it is necessary that leptons of charge

(2.67)

(2.68)
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0=0 and O=-2 do not belong to the same weak isomultiplet as
electrons and mucns, for at least one chirality.

In passing, we mention that the LR,RL contribution in
the diagonal case ig also larger than that of the LL,RR
terms, at least in the experimentally interesting case in
which m12(=m22)<< mL2 . For example, in the Georgi-Glashow
model such an LR,RL contribution is present and yields an

anomalous magnetic moment proportional to a heavy lepton

mass, as in Egs. (2.33a,b):

FZ(O)GG o GFmMOmu . (2.69)

In contrast, in the WS model, with only LL,RR contributions,

- 2
F2(0)WS Gqu . (2.70)

The large LR contribution in the Georgi-Glashow model

was in fact used to set a phenomenclogically important upper

bound on the heavy lepton mass m 0.13

M

Finally, consider the Cy matrices, which do not contribute
to p=ey but do to u+eee. The same conditions which guarantee
that the py-»ey branching ratio is not too large, also ensure
that graph (la) gives a reasonabkle contribution. However,

this is not true of diagram (lb) because of the presence of

the 1n %— in (Célf))LL’RR , 48 gilven in Eq. (2.57).22
i !

Assuming the other conditions are satisfied, in particular
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the condition that all leptons of charge Q=-1 have the same

weak T and T3, this 1n %T will produce a BR({u+eece) ~ (a/ﬂ)ze x
1n2(mL27mL2), where LI:; are generic doubly charged leptons, and

€ is a p;;ducé-of mixing angles. Unless mL2 and mtl are close to being

degenerate, and/or the mixing angles(s) is small, such a branching ratio

would conflict with the present experimental limit. In order to be safe cne
might wish to avoid the possibility of a LL,RR contribution from
diagram (lb). One way, although not the only way, to do
this is to avoid doubly negatively charged leptons which

communicate with e and n in such a way as to yield

LL,RR ROLL RRp Ry ..

L
3, T |u> or <e|T, 3.4

. L
nonzero matrix elements <e|T+ C
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III. GAUGE MODELS
In order to illustrate how certain features of u~ and e-type lepton
number nonconservation depend on characteristics of the underlying
gauge theory, we shall apply the general formulas derived in the previous
section to a variety of SU(2) x U(1) gauge models. Subsequently, we shall
focus upon the V-A six-quark KM model. The leptonic representation

content of these models is depicted in Table 1. Inthis table,

cos & sin &
R_ (@) = (3. 1)

=-sin 6 cos 0

and % is a 3 X 3 unitary matrix (which depends on four parameters;
see below).

Model (a) is the original Weinberg-Salam model of leptons, 5 generalized
to allow for nonzero neutrino mass. Given that the neutrino mass eigenstates
vy and v, are nondegenerate, they will mix by an arbitrary rotation R2
through an angle 6 to form the weak eigenstates Ve and VH' The spinors
(ve, v“), {vi’ vz) in Table 1a are used solely for notational convenience
and do not represent doublets of any group. We include model (a) only to
illustrate the fact that with the present experimental upper limits on the
neutrino masses, it cannot account for a branching ratio for p ~ ey larger
than ~ 10-24, Henceforth, we shall accordingly restrict two of the neutral

leptons which couple to e, and M to be massless by decreeing that they

L

have no right-handed components.
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The rest of the models include heavy leptons. Model (b), the KM
model,“ is obtained by expanding the minimal model with the addition of
neutral and singly charged heavy leptons L0 and L_, as shown in Table 1.
The left-handed component of LO is distributed among the left-handed neutral
weak eigenstates via the unitary mapping % One merit of this model
is that it would incorporate in a natural way the heavy lepton discussed at
SPEAR23 and corroborated by DE}SY23 if in fact this heavy lepton is found
to decay via a V-A current. Lepton-quark universality and the cancellation
of anomalies are easily achieved by postulating that the hadronic sector
d)

also consists of three left-handed doublets, (us, s)L, and (ub, b)

b Lt I L’

where

[y /o

(w )y =y~ e (3.2)

\(ub)L) | ‘L)

with 7 a unitary matrix. With such a quark sector, however, the KM
model cannot account for the anomalous y distribution in inclusive antineutrino-
nucleon scattering reported by the Harvard-Pennsylvania-Wisconsin-Fermilab

] 24 . . 25,26
experiment and recently supported by the Caltech-Fermilab experiment.

The fact that 7/ is unitary is equivalent to the fact that the model

has natural flavor conservation by the neutral current. This is clear since
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the first condition for flavor conservation by Jg is true if and only if the

matrices UL andU_ in Eq. (2.9) are unitary not just in toto, but also when

R
restricted to any ('I’,_T3, Q) subspace. But  is precisely the restriction
of the matrix UI:r fo the Q@ = 0 subspace, and so the equivalence asserted
above is proved. (A similar remark applies to the unitarity of % )
Allowing for redefinition of the phases of fermion fields and the extraction
of a single overall unobservable phase, the matrix ?/ depends on four
parameters. Since a 3 x 3 orthogonal matrix only depends on three
parameters this leaves an additional one, which we can choose as a
{CP-violating) phase. For generality we shall denote the elements of /4
by ?43. and avoid using any explicit trigonometric forms,

As in the WS model with massless quarks we shall denote the normalized

linear combination of the zero-mass physical fields vy and v, which couple

to e and p by v, and vu:
L, - v+ %y _

e 2 27 3

IEARIETN
%21;1)1+ % V.

) 22%2
b =

1P 17,

{(3.3a)

(3.3 b)

o[

There are several important features to note here, First, in the WS

3

1
z

model, with either massless or massive neutrinos, the T = £, T

weak gauge group eigenstates,which in that case are Yo and vP-' are
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orthonormal. The analogous T = %, T3 = + weak eigenstates Ne’ N
H-

and N_ in the KM model are similarly orthonormal,

L
- so that 7/ is unitary. However, the zero-mass linear combinations
%ji v o+ % =1, 2, which couple to e and u, respectively, are

neither of un1t norm nor orthogonal. Of course there is no reason why
they should be orthonormal, since they do not constitute complete

: 27 .
wealk gauge group. eigenstates, - With our definitions (3.3a, b) of

Ve and v the deviation from unit norm is rendered explicit; for example
V1

the Weve vertex is (%)J[ %“ [ 2 + [ %12 IZ[EYQLVEW-Q + h.c.] .

The inner product of Vo and vbl is

-% %
| Z P+ 12, 12 [, B 2,1

<ve=‘]v >

(3. 3¢)

where we have used the fact that Z%;; %j = 0. Since the couplings of
e to Ve and u to v}L are not in genexfjal equal, the KM model violates u ~ e
universality. Moreover, in consequence of the fact that Ve and vp. are not
orthogonal, there is neutrino-mixing. However, since the neutrinos are
degenerate this mixing is not time-dependent; i. e. there are no neutrino
oscillations. 28 In section V the phenomenoloégical implications of the KM
model will be examined in greater detail. Here we shall simply observe

that there are three important experimental constraints on the amount of

mixing which can be allowed in the KM model, First, one must respect
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2 2
. . i.e. th 1it f d an
ei universality, i.e. the equality o gWeve 1 B where g, and

ngv are the coupling constants for the We Vo and val-k vertices, The
K

most accurate test of this comes from a comparison of the rates for the

decays m — e'fz’e and T —~ p‘ﬁu. 29 Secondly, there is the requirement that

2 2
sec

2 .
Ewdy .v.BC T.ug;va as determined by measurement of the rate of 8 decay

versus p decay and by the measurement of the Cabibbo angle from hyperon
decay or K~ HFP« versus m -+ pi?p. Finally, the amount of nonorthogonality
between Vo and vH is restricted by the nonobservation of e from an

incident beam of vp scattering off nucleons, 30 As will be shown in section V,

these constraints allow mixings

[?’/13[ o ?/23[ ~ 107t _ 4072

The next model, (c), proposed recently by Wilczek and Zee (WZ)M

—— - -

contains two left-handed triplets in which the T = =1 states LeL and L, L
1

1L and L For the cancellation

are mixtures of the heavy lepton states L 51,

of anomalies (between quark and lepton sectors) it is necessary to postulate
new quarks. However since these quarks are a peripheral issue here we
shall not discuss them in detail, On another matter there is a more
immediate requirement; the experimental fact that to the precision of A~
one percent, the coupling constant for the GdW vertex, multiplied by

sec BC’ is equal to that for the VHHW vertex. DBecause model

(c) places the left-handed leptons in triplets rather than doublets, the

VeeW vertex increases in strength from g to '\J-Z_g. Of course this just
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2,
induces a trivial redefinition of g~ in terms of G_m but it has the

2
Fw”’
nontrivial effect of forcing the up and dL quarks to be placed in a triplet
to retain quark-lepton universality for the weak coupling constant. Furthermore
in order to maintain the naturality of the hadronic sector, this also forces
the ¢ and s quarks to be placed in a triplet.

The ‘WZ model .(dﬁ?[ is similar to model (c) in that it adds two new
L leptons to serve as intermediate states for the p - e transition.

However in contrast with model (c),' it places these in two right-handed
doublets, with their weak hypercharge shifted down by two units in order
to ensure naturalness, This is the leptonic analogue of a model for the
hadron sector discussed recently in connection with CP violation3’ 6 and

. . 26
nonscaling anomalies in (antimeutrino scattering. Model (e) is included

to illustrate the effect of an unsuppressed pu - e transition of the form

by, (Li,Z)L; (Li.'2 )R TEROT by (Li,Z)R; (Li, oh, e We will
find that such a left-right transition gives much too large a rate for the

decay p > ey.
Model (f) is an interesting model proposed recently by Cheng and Li, 10
32
and further discussed by a number of authors, involving two neutral

heavy leptons, The right-handed components are arranged in two doublets

with

(Ne)R (N1 'n

= RZ(B) . (3. 4)

(N g (N,)p,
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The left-handed components of N1 and N2 are distributed among two singlets

N'' and N''" , and the T

= +1 members of two doublets, N ' and N !
L L e i

3 L L’

All of these models except (f) satisfy both conditions for natural
leptonic flavor conservation by the weak neutral current. The fact that models
{a) - {c) meet the first condition is obvious from Table I; to show the
validity of the second requires a description of the Higgs content in each
model. Before doing this, we note that, as is again evident from Table I,
all the models except (e) and (f) satisfy the condition that leptons of charge g
and q + 1 do not belong to the same weak isomultiplet for at least one chirality.

4

model (a) one complex doublet (‘,0 )suffices towgive mass to e and .
This doublet is sufficient in model (b) to give mass to e, u, andL; another,
(‘#:9) , is needed to produce a mass for LO It is economical, but not

necessary, to take this second doublet as the SU(2)-transformed charge

conjugate of the first:

0 T -0
) m) - (F)
¢! ¢ -0

+
¢
-0
Model (c) requires two Higgs triplets,| ¢ |for the e and « masses, and
&

+
X
X * for the L;— and LZ-- masses. In model (d) we need a slightly
0
X ¢+ .
more complicated Higgs structure, ( 0 for the L1 , masses and a triplet,
¢ ’

which can be written as in traceless (% ’ % ) matrix representation,

H/NZ g

g° ~H INZ
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for the e and p masses. The Higgs content of model (e} consists of a
triplet and doublet; although there are neutral Higgs fields contained in
both of these multiplets, they couple to leptons of different charge.

The Cheng-Li (CL) model (f) fails to satisfy the first condition for
the neutral (Q = 0) sector, the second condition for the lepton mass term,
and the last condition; transitions e, p += Ne’ N“ can take place through
both chiralities. Nevertheless, this model, in the form presented, is
adequate to suppress e- and p-lepton number nonconservation to the desired
level, thanks to the clever choice of the Higgs system. Specifically, the

neutral leptons receive their masses both from their couplings to a Higgs

0
doublet (db ) R

o
m I N N
-—1"N'u_(50, cp+) cos 8 ( e) - sin 8 ( "L)

v "L - e/ p R
L
m i N N

+—-—ﬁ'”(¢0. ¢+) +sin @ ( ) + cos @ ( "L)

v i R R

and from the gauge-invariant bare mass term

m (N', %) + m (N, i ( “‘)
e e L \e R [TREENT] L n R
However, the crucial point is that only one Higgs doublet is invelved in

giving masses to the leptons; as a consequence, there is a natural zeroth-order

relation among the lepton masses and the mixing of the neutral leptons.
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This relation guarantees that the neutral current is diagonal in Q=-1
leptonic flavors down to the level GFaf, as in a fully natural model. Note
that if one started with more than one doublet of Higgs, one could always
redefine the Higgs doublets so that one and only one picks up a vacuum
expectation value and hence is involved with giving mass to the leptons,
If, however, the Higgs representation content were expanded to include
triplets or higher dimensional multiplets, then the Q = 0 leptons would
indeed receive their masses from couplings to more than one neutral Higgs
field, and the zeroth order relation constraining the mixing of neutral
leptons would no longer be valid.

In this theory the four left-handed weak eigenstates N, NLL' N'I'_‘,
and N'T_'J' are unitary transforms of the mass eigenstates Vi Vaps NiL'

and NZL’ while the two neutral right-handed weak eigenstates Ne and N
T8

R R

are unitary transforms of NiR and NZR’ as prescribed in Table 1 and

Eq. (3.1). When one diagonalizes the mass matrix and expresses the

neutral weak eigenstates in terms of mass eigenstates, one finds that the
mixing is suppressed by the small factors me/mL or mp'/mL and is just

such that the leading induced LR, RL contribution to FX’A(O) vanishes.

The remaining, subdominant LR, RL contribution, which will be given in

the next section, is of the same order as the LL, RR part, One can easily
see this without actually having to diagonalize the mass matrix and compute
the mixing explicitly, by using the original weak eigenbasis and non-diagonal

matrix M. Writing out the mass terms listed above, we have for the neutral

lepton mass terms in the CL model:



-38- FERMILAB-Pub-77/21-THY

CL = (N ' N AL eR
E’M Ny, Mo N M e b, (3.6)
R
where (with s =sin 8, c = cos 8}
m 0o
e
0 m
M = H (3.7)
m,c -m, s
mzs mZC
As mentioned before, to leading order, C;"R’RL is proportional to the

identity in each charge subspace. Moreover, in Eqgs. (2.31a, b) only the

V,A

lower sign choice, a = -, contributes to the ey matrix element of F2

(0),
corresponding to the fact that the only available intermediate lepton state

has charge Q = 0, not Q = -2. Accordingly, re-expressing Eqs. (2. 31a, b)

in terms of Ti" R and M, and using the fact that

U = |£L,R>,

Lrlt” Loce,n (3.8)

V(O))LR,RL:

we have, for the dominant part of (FZ en

(Flo) g - (7 o)

- <eL[ T{"MT?[ pp> <eR [TE{MTT%I ke (3.9)

i
LS

"
<N;L[M[NHR> + 1 <N_p M IN'HL>
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But with M as given in Eq. (3.7),

+

<NeR|M IN' >

<NL M {NHR> L

LR, RL

. A
The same argument applies to (FZ (O))eM

A
contributions fo (FZ’ (0))9H vanish, as asserted. If the leading I.R, RL

term in F;I’A(O) had not vanished it would have given much too large a
branching ratio for p —ey. In passing, it may berecalled that the
LR, RL transitions do not give a leading contribution to the nondiagonal
charge radius which enters into the p —~ ee€ amplitude, as is evident from
Eqs. (2.34)and (2. 35).

The crucial property of M used in Eq. (3. 10} is the fact that M

Note that even if the bare mass terms had coriginally included cross ferms

of the form

N
Nt OB K + ™t e
a(Ne, e)L( " )R b(NH’ “)L(e )R + h.c.

which would lead to nonzero M12 and M21 {as well as direct ep mixing in

the @ = -1 sector of the mass matrix) it is always possible to eliminate

(3.10)

, and thus the dominant LR, RL

12 =0

such cross terms by unitary transformations of the two left-handed doublets

and, separately, of the two right-handed doublets. In contrast, however,

if there are one or more Higgs triplets then there will in general be mass

terms arising from Higgs couplings of the form
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where the Higgs triplet is written as a (traceless) matrix

/N7 Y
T = _ 0 (3.14%)
® -3 /N2
and
v 0
<<1>>0 = (3.12)
0 -y

In this case it would not be possible to eliminate the cross terms proportional
to p and vy by allowed redefinitions of fields. We have already observed

that the presence of such Higgs triplet(s) in addition to the }iiggs doublet(s)
violates the second condition for natural flavor conservation by the neutral
current. We see now that such triplet(s) would also yields a nonzero Mi?_

and thereby lead to much too large a p —~ey rate in the CL model.

For reference, we list below the expressions for the weak eigenstates

v 1 s : 1
NeL and NHL in terms of the mass eigenstates Vysr Vas 1\1, and N,Z‘ The

coefficients are accurate to lowest order in muZImLZ:
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m m
! = + & + ——= 5i
NeL ve — cos 8 N1 in 6 N2
1 2
m m
' = p -—Lsging N +—Pcosg N
L L mi 1 mz 2

where Yo and vp, are defined as the linear combinations of {the degenerate)

v, and v_ which coupte to N'e

" > , respectively.

L

]
and N uL

IV, THE DECAYS p ~ey AND p — eee
We shall now compare the rates predicted for the decays p ey
and p ~ ee€ by the various models described in the previous section. We

begin with the WS theory, as modified to include nondegenerate neutrinos.

(ia))LL, RR.

In this model, C2 = (CZ

The weak isospin raising operator

is a 4 X 4 matrix which in the mass eigenbasis ordered as (v1 v

L* 2L

er HL), takes the form

{(3.13)

(4.1)
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L _LL,RR L ) LL, RR LL,RR
T e s (2 )y - (e52™)
<e T-Cz,- LR sin 8 cos @ [ CZ,- 1" Cz,- 22
-eG Amz
F 1% .
= 3 > 5in @ cos 6 (4.
120N 2 -
and hence
v A -eGsz Ama
Fy(0), = Fol0) = > & ‘2’ sin 6 cos 8 (4.
ek M 327 N2 m o,
2 2 2 . .
where Am =m ~ -m . Using Eq. (2.65), we obtain the rate
Vv v v
1 2
A 2
m
T v .2 2 —
T —~ey) = 327 5 | sin 8 cos 6T (n evevp) (4.
My
where
GFm5
Th—ev v ) = ——f' . (4,

192w

2 .
The present upper limit on Amv , which comes from the nonobservation of

. . . .3
neutring oscillations, is

Ami <25 eV’ . (4.

Using this limit and the value m.; = 60 GeV, we compute

2
Am

< (2,6 x 10 43, -

25 eV

BR(u *ey)ws

6)
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which is far smaller than the level which could be detected by any forseeable
experiment.

The situation with the other models is quite different since they have
heavy leptons which can serve as intermediate states for the p —~e

transition. In the KM model again only diagram (1a) contributes, and

we find
eG m2 mz
o
V) = Foo) = —b wf L V¥ x| 4. 8)
2 ep 27 e 5, 2 \ o 2 137 23
W
Hence
mZ 2 v
_ 3« 1.° T2
BR(b ~evlenm = 324 I 2) [?/13 ?/23 - (4.9)
W/

. B e _ -4 _2
Withm =60 GeVand | %, Z,,] =0.5x 107" - 0.5 x 10

k3

m_o \4
-9 =11 L
BR{p — e = (0.4 x 10 - 0.4 x 10 ( ) 4,10
{p Y)KM ) 10 Gav { )
For m; o = 10 GeV the range of branching ratios correspording to the
* . - -9 -11
above range of [?/13 ?/23 | is BR(u eY)KM 0. 4x 10 0.4 x 10 .
These values are safely smaller than the present experimeuental 1'1m'1t,35
BR(p ~ey) < 2.2 x10° (4. 11
M Yiexp < 2 . 11)

but are not so srmall as to be without experimental interest,
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The next two models, (c}and (d), give a comparable rate for the

decay o =~ ey. In the first WZ model, (c), 31,36

2\ 2
754 AmL\

() = 32w 2
mW/

2
BR(g ~ ey) sin® 8 cos® 6 . (4.12)

The branching ratio is the same in the second WZ model,' {d), in terms of
the mixing angle 8 and heavy lepton masses of that model.

Model (e) provides an instructive illustration of the effect of unsuppressed

left-right-transitions of the form u, = (L, S Ly )

1,2'R ~ep, or

MR -~ (L1 -2-)R; (Li -2-) - eL. When such LR, RL transitions occur, the
chiral projection operators in the vertices do not clear the numerators
of the Feynman integrals of the virtual heavy lepton masses as they do

in the LL, RR case. Consequently, the leptonic GIM mechanism does

not operate effectively. The rate is found to be

2
. e (mLi mLZ) ( + 2
Tle ~evlg) = 37 g °L°r T °R°L
")

Tp—~ev v ) (4, 13)
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where ¢y = cos QL’ SL = sin QL’ etc, Unless to high precision

CLSR = CRSL and m, =m, this rate is in conflict with experiment. Hence,
this theory, although it satisfies both conditions for natural flavor conservation
by the neutral current, fails to satisfy condition (2. 67) and hence is ruled
out.
Finally, we consider the CL model, (f). For the LL, RR contribution
to the p. = ey decay amplitude we find that only the RR part is present.

This is again most easily seen by working with the weak, rather than

mass, eigenstates and the nondiagonal matrix M; to leading order, i.e,

2 2 2
order (eGFmH/w Mam Imy),
L_ LI.,RR -_L _ T
<e | T-CZ,- T |n> = const x <N ;. |MM INpL>
= 0 . {4 14)
From the RR part we obtain
eG_m 2 Amz
(Fg(o))i"L’RR = -(F?(O))E;L’RR = (-:i') FZ L Lz sin 8 cos 8
(4. 15)
2 2 2 . . , .
(where &m =m. -m. ). The LR, RL contribution is given by
L LJ1 LZ
v )LR,RL ) _( A )LR,RL
(FZ(O) ep B FZ(O) en
) R _LR,RL L
= mu<e[ ToC My T e (4.16)
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L LR,RL R ]
The <e T C2 MD T+ u> term is smaller by the factor (m /m )
- s 7 [S] M

and is thus negligible., The right-hand side of Eq. (4. 16) is

eG_m
R LR, RL L F -
m<e| T_CT My Tu> = —F 32 <N RIMTMMTIN' >
b ! 8n"NZ 2m € L
W
eG._.m 2 Am 2
3 Fu :
(z‘) 2( 5 |sinf cos 6+ (4.17)
2
&n mW
Thus the total transition form factors are
2 2
5eG,._m Am
F
(Fy @), - -(Fho), - — L) sine cos 6
a M 325°NZ \m
W
from which it follows that
2y 2
Am
_ 75« L .2 2
BR(p ey)CL = 320 > sin'® cos 8 . (4. 18)
M

As noted in Ref, 10, this branching ratio is, for AmLZ ~ a few GeVZ, in

agreement with experiment. For example, taking m = 60 GeV,

2 2 2
Am_ "~ =1 GeV", and sin "6 cos’ @ = 1/4, we have BR(p~ ey)

1.0 x 10

CL
10

In addition to the total rate there are several interesting and informative
correlation terms which can in principle be measured in the decay u —~ ey.
First, consider an experiment in which a polarized muon decays in the ey

mode. The decay angular distribution in the muon rest frame is given by
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1dI _ 1
Fdﬂ-(e)p—beY = [1 + «Pcos 9] (4. 19)

where f" = PA is the polarization vector of the muon and cos 6 =1 - 1'32,

with 62 being the three-momentum of the electron in the muon rest frame.

The asymmefry parameter is

v A ¥
2 Re(F,(0) + F_(0)
o = V( 2 ep 2 ep.> (4. 20)

2 A 2
[FZ(O)e“[ + [FZ(O)ep[

and serves to measure the amount of parity violation in the decay. For
theories with purely left-handed charged currents such as WS, KM, and
(c) models, the decay amplitude is of the form T(p, Jio d YePR ulp, ) where
R=1(4+ vy}, and hence « = +1. The opposite is true if the decay p — ey
arises from an RR transition; accordingly, in model (d) @ = -1, In the
CL model, interestingly, although there are both RR and LR contributions
to the amplitude the signs in Eqgs. (2.33a, b) relative to those in Egs.
{2.31a, b)are such that @ = -1, Thus in the decay angular distribution

from a polarized muon, the isotropic component determines

2
| FV(O) [2 + | (0) | while the component proportional to cos g
2 'ep 2 ep
. . A% A
yvields the relative phase between Fz (O)ep. and FZ (O)e“,

One could also consider measuring the polarization of the photon from
the decaying muon. The expression for the angular distribution, assuming

that the muon is polarized, and neglecting terms of order (me/mp), is
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"1 + o Pcos §)

[N Bal
o] L
>
mn
n
lv-b
|
Mm>
m

e

+ig - (8 x & )(Pcose+a):| . (4. 21)

In this equation, «, P, and cos @ ﬁ 62 are as in Eqs. (4,19, 4,20) and

g = -62 and & are the three-momentum and polarization vector of the photon
in the muon rest frame. All four correlation terms are time reversal
invariant; € ° ¢" and ia - (€ x 2"-)5 . 132 are even under parity, while

¢- &R p,andid - (€x & )are odd (and accordingly, are multiplied

by «). Observe that even if the decaying muon is unpolarized, one can

v
2

(O)epFA(OfF )by measuring the id - (& x &") term.

still obtain RE(F 2 ep

Finally, we note that to obtain information from the measurement
of the electron spin would be quite difficult since the electron spin correlation
terms are suppressed by the factor (me/mp) relative to the dominant angular
correlation terms. For example, the angular distribution in the case

where one measures the polarization of the muon and the electron, but

not that of the photon, is

Do T DY (Y (i o i S O3 SR (i) PSR | PO
Td 8w m 2 m Py 1 m pi 2 ’
n m, K M

where we have dropped terms of higher order in (me/mp) and for symmetry
reasons have left the expression in terms of the (pseudo)scalar products of the
four-momenta Py and p2 with si and 5, the spin vectors of the muon and

electron, respectively.
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We next proceed to consider the decay p - ee&, concentrating on the
KM model. We exclude theories which give hopelessly small p —~ ey
rates (e.g., the WS model) and theories which give u - ey rates so large
as to be in conflict with experiment (e.g., the illustrative model (e}).
There are three classes of graphs, as shown in Fig. 2, which contribute
to this decay. These include, first, diagrams (Za)Y - (Zd)Y with a photon
as the virtual gauge boson which creates the e€ pair. Graphs {2:3.)Y and
(Zb)\’ are just the analogues of graphs (1a) and (1b) with a virtual rather ‘
than real photon. The non-diagonal lepton self-energy insertions in
graphs (c)Y and (d}Y are depicted in Fig. 3 ; actually (see below)
they do not contribute to p ~ ee€ decay. The second class of diagrams
consists of Figs. {Za)z - (Zd)Z with Z as the virtual gauge boson which
creates the €8 pair. Here the non-diagonal self-energy graphs do contribute,
Finally, the third class consists of the W+W- exchange diagrams shown
in Figs. (2e) - (2h). In Figs. (2a), {(2b), and {2e) - (2h) the generic
symbols L° and L.  are used to refer to all neutral and doubly
negatively charged leptons which can couple in these graphs, Of course
in theories without doubly charged leptons which couple to both e and p
only graphs (2a),(2c), (2d) and (2g) are presenf. On the other hand in
models such as (c) and (d) in which the p - e transition proceeds only via
L leptons, graphs (2e)}, (2f), and (2g) are absent. FEach diagram in
Fig. 2 is understood to represent the difference of two graphs, the second

being related to the first by interchange of final electron lines, in accord

with the requirement of antisymmetry for identical fermions,
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Let us begin with the class of virtual photon graphs (2a) - {2d) .
Y Y
As is shown in Appendix A, the self-energy graphs only contribute to the

A
renormalization of FY’ {(0). Since <e [FY’A(O) | p> = 0 they therefore

do not affect the u — ee€ amplitude. Now, taking account of the fact that

q2 &« m 2, we expand FY’A

L (qz) in a Taylor series and use Egs, (2.23a, b)

and (2. 25a,b), the latter of which enables us to calculate the vector and

V,A v

axial-vector charge radii dFi (0)/ dq2 in terms of F3 : A(O), as discussed

in section II. The virtual photon amplitude is thus

G {v) cigopl . o
M > eeB) = 1ue(p2)Ea (pz, pi)uu(p1)< qz )(wu(ﬂz)vavui))

-(pz*-*zz) (4, 23)

where, in analogy with the notation of Ref. 2, iE;(pz, pi) denotes the full

one-loop effective yue vertex;

; P

2 lg .4
b 4y (Y P ZeB” (pV A

Ea{pZ' pi) Yar( F3 (O)e * (O)epYB) " (FZ (O)ep " F2 (O)epY5>

(4. 24)

. 2 2
Since g < mp , E:;Y) is of the same order as F;f’ A(O); in the KM model,

{y) V,A V,A F

» » |33
E''V ~ F2 (0) ~ mMF3 (0) ~ 3 > . (4, 25)
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Evaluating Eq. (4. 24) for the KM model we find

2 2
e G m re)
AV weerr -\ BT X, W,
(w~eeBlnr = H\ 4 23 m 13 %23 X
(4. 26)
B
_ - Cap? ™y s a
() v, L3 - +1ng ) + qz R{- %) uu(pi_1 XU L,y vie, ) - (b, *—*12)

For the Z and W+W_ exchange graphs, we can simply use, with
appropriate changes the results of our previous general Rg gauge
calculza.tions,37 letting £ — 0 to match the £ -limiting procedure used for
the photon graphs. Note that the only W+W- graph is Fig. (2g). In contrast

+ -
to the case with the photon graphs, in the Z and W W graphs there is no
V,A, |
o)

must vanish, and indeed they do not. They dominate over the icraﬂqﬁ and

reason why the leading Y, and Yo ¥s terms (the analogues of F

icraﬁqﬁy_,__’ terms by a power of (rnvglm HZ), since in order to form the latter
terms one loses one, and hence by symmetric integration, two powers of
loop momenta in the Feynman integrals., As in the photon graphs, the qp.
and quS terms give zero contribution.

Denoting the full one-loop effective Zpe vertex by iEiZ}(pZ, pi),
we calculate the Z-exchange amplifude to be
A - iﬁe(pz)E(Z)(pza pi)up(pi) —’flgiﬁ— (im’ X

o _ 2
q mZ

- 1 .2 _ -
ue(lz)[ 2Y|3L + sin 6 WYB]Veui) (p2 EZJ (4.27)
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where

2 m

(Z) _ g Ng +g Lo * w_ .3 _

By 7 2l N ?/13 ?/23 lnm 2
W L

in & \{QL . (4. 28)

Z) {v)

Since the leading Y, term does not vanish, EL is larger than Ea

)|
factor (mwzlm:). However, the actual amplitudes ./[(Y‘ and /(Z)

are of the same order, (up to logarithms) because the Z propagator is

smaller than the photon propagator by the &ictor (mpn 2/m V%f)‘ Observe also

(Z)

that Ea arises, to leading order, only from the weak isospin current in

by the

o .2 @ . :
JZ = J3 - sin QWJem , a8 is evident from the absence of any term

2
proportional to sin # W in Eq. (4.28). Indeed, the contribution of the

z 2
(Z) EQ(Y), which is negligible

electromagnetic current fo Ea is just sin @ W
in comparison.
+ -
The W W exchange amplitude arises in the KM model from graph

{2g). We find that

6.\ /m. 2
WW F 1.° i
/( ) =1 3 > ?/13 ?/2 x
4 '\/7 m 3
W
2
m 1 1 -

ue(pz)yaLuu(pi) - 1n - 5 —-2-+Zln§ tte( 22)5\{ Lve(fi) - (pz*"' 22). (4,29)

Le

The total amplitude is then
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M~ eel) o, . AN D) g WW)

2 2
(e GF mLO b
- Vs Urs
411_2@ m 2 13 23
W
m 2 ic qﬁm
= - w B W ope.l = @
1,00,)| v, 1{2 - 10 = |+~ R blu o, [T v e )]
m; o q

2 2

2 2
411'\5 m

- (p2 -~ 22)

This amplitude is independent of the nonabelian gauge parameter§ , as it

must be. Observe that the cancellation of the In £ term occurs between

* 0 _ - o
?/13 ?/23 ue(pz)vabue(pi{][ueuz)v Lve(.ei)]

4+ -
the Z and W W graphs for the part proportional to gz and between the

2 2
Z and vy graphs for the part proportional toe (=g

sin2 6

W

In order to calculate the decay rate from the amplitude (4,30}, we

shall make the approximation of retaining only the logarithm. This gives

for the p — ee® rate in the KM model

2 /m 2 : m 2
3a Lo 2 W

B eeé)KM 1611-2 m 2 ’ m 2 [ 13
\4 L.°

For mLO =10 GeV, m

-11
this branching ratio is in the range 2 x 10 -

2

7

-13
2 % 10

safely below the present experimental upper bound.38

This is

(4.30)

(4, 31)

= 60 GeV, and | %13 %23 [ in the range .05 - ., 005
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. -9
- <
BR(p F,-ee)e 6 x 10 . (4.32)

It is of interest to form the ratio of the u -~ ee and u ~ ey decay rates;

in the KM model we have

2
T~ ee‘E)KM 2 1n2 m. w53,
T{p-—~evy) T 2 : :
KM mLO

which is independent of the product of mixing parameters I %13 ?/23 |

For the values of m_ , and m,_ selected above the ratio (4. 33) is equal

L W

to ~0.06. This ratio, which is formally of order (a/ ), is actually somewhat

2

2
/ mLo

enhanced by the ln2 (m ) factor. The origin of this log term can

W
be traced to the Z exchange amplitude (4. 27, 4. 28),

In the WZ models the p~e +vy transition proceeds by way

virtual

of doubly negatively charged heavy leptons. Thus diagram (2b) contributes,
Y

2 2
{m_") term, wherej =1,2, in

w L,
J

)j (cf. Eq. (2.47)). This means that the leptonic GIM mechanism

and gives an unsuppressed ln (m

LL, RR
(€5

does not operate as effectively as it would if the leading term were inde-

pendent of m The V and A charge radius part of the virtual photon

L.°
: v _
amplitude _# is larger than in a fully GIM-suppressed model

terms are still adequately suppressed to the level eGFm 2(/_\mLZ/rnwz),
[¥8

/Am

such as the KM model by roughly the factor (mW L.

so that M/(Y] is completely dominated by the charge radius terms.

Z
Moreover, L/( )and /(WW) are not enhanced, and consequently
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/(P - gel) = V./(Y), We calculate a branching ratio in model (¢}

m 2
- az 2 LZ . 2 2
BR(M—*eee){C) = =3 1In > gin 6 cos @ . (4, 34)
Jr m
L:l

In order for this branching ratioc to be smaller than the experimental

limit (4, 32), m, and rnL must be close to being degenerate and/or the
1 2
31

mixing angle 8 must be rather small, as was noted by Wilczek and Zee.

Specifically, it is necessary that

2
L

2 -
sinz 8 cos2 6 ln < 3,3 % 10 3 . (4.35)

m

Ly

Equation (4. 34) also applies to model (d), where L;— and L;- are the
36

corresponding heavy leptons and 6 is the mixing angle in that model,

Because of the fact that the natural suppression mechanism does work

effectively for the u = ey decay in the WZ models the ratio of the p + eeZ

and p — ey decay rates is much larger than the value {ef m):

T{p —~ ee®) m e\ 2 2

WTeeRN) d) . 32 af Tw 2f Tw

T = 6v) " 225 @ 7| o ) (4.36)
{c), {d)} AmL ’AmL I
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For m ~ 2 GeV, m = 4 GeV and M. = 60 GeV the ratio (4.35)is

The decay p — ee® in the Cheng-Li model has been calculated
32
approximately by Treiman et al.” ~ and we shall not duplicate their work here.

For reference, they find, using a leading logarithm approximation, that

/M )=~ 3, wherem = 1 + 2 _
for 11’1(mW I a{mLi mLZ), and sin” @ - 1/ 3,
I' (i ~eed)
€L . 0,07,
T (p '-"e\‘r)cL

V. PHENOMENCLOGY OF THE KM MODEL
A, Constraints on Mixing Angles

In this section we shall briefly discuss a number of phenomenological

aspects of the KM model.
The representation content of the quark sector in this theory is

analogous to that of the leptonic sector, shown in Table (1b} (except for

the absence of ViR and by in the leptonic case):

R R
d *
L ‘$/p, P/, dg sp b

In a natural model like this it is a convention whether one takes the

T, =7 or T, = -1 fermions to be both mass eigenstates and weak eigenstates.

3 3
(With no loss of generality in a natural model one can always choose one
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or the other option.) In order to maintain the formal similarity between
quark and lepton sectors we have chosen to consider the T3 = 2 quarks

as mixtures of mass eigenstates. This mixing is prescribed by Eq. (3.2),
where the 3 x 3 unitary matrix 7 is like its leptonic analogue /4 , 18
in general a function of four angles, one of which violates CP. The CP
violating phase angle can of course be set equal to zero by decree; in

both the leptonic and hadronic cases we prefer to retain the most general
form of % and ?/, allowing for the possibility of CP violation-

It is useful to consider the experimental constraints on the mixing
angles in this theory. One may observe first that there are really several
ways to define the Fermi constant, all of which coincide in the minimal
WS model, but are in general different in the KM theory. From nuclear

beta decay one can define

B
G 2
F g Z 2 2
5 ©08 4, :;—i——z 711’\/[”1“ +[Z’12[ . (5.2)
W

A symmetrized version of this constant which includes the u~s coupling

as well as the u-d one, is

Go 2
= - S“j“é“/[ 711[2+l°/21l2 Jl?/“[2+[?/12[2.(5.3)
W

Alternatively, the Fermi constant can be determined from a measur ement

of the muon decay rate; in this case what is measured is
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M

e (T

SmW

11[2+[?/12F\/[?/21lz*‘[?/zzlz . (5.4)

Consider the special case in which the u and ¢ quarks mix only among

themselves, and similarly with v 1 and v 5 so that
cos BC -sin BC 0
7 = sin BC cos GC 0 (5.5)
0 0 1

and similarly with % in terms of the corresponding leptonic angle 6.

(1]

In this case, where the "old" quark and old lepton sectors of the KM model

coincide with those of the WS theory, GFﬂ = G; = GI*: = GF’ with GF as

defined in Eq.. (2. 48).

The Cabibbo angle is given by

7

21
tan 9 = .
C %“ (5.6)

Accordingly, a measurement of nuclear beta decay alone only yields the

combination 7" - cos § '\/[ 7 f + [ 7" |2 which is not sufficient

14 C 11 21
by itself to determine 6 o Similar comments apply to semileptonic hyperon
deéays and the meson decays K— z'v-z, Ty ?ﬂ , taken individually.

This situation contrasts with that in the minimal model where any of these

measurements could in principle (module different radiative corrections,
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etc. ) be used to determine ec, It is convenient to define another weak

C

coupling constant GF

and another angle, 4 C' in analogy with Eqgs. (5.3)

and (5. 5) but based on the coupling of the C quark to the d and s quarks:

GE

2
T =—&—8 N T T PN Y P, B )
Bw
T A .
tan o = - P07, : (5. 8)

With this notation established, we can now state the experimental
constraints on the leptonic and hadronic mixing matrices Z/ and 7
First, there is the observed T. - e universality, which is best tested by a
comparison of » — e'ﬁe and T —~ pVH decays. The ratio of the decay rates

in the KM model is, in the absence of radiative corrections,

2\2
m
_ 2\ \1- 2.
I'{r —~ev ) m m.. .
2 - " = . (5.9)
T(m = uv ) el 2 2\ 2 :
I m mn
K 1 -
Z
m
™

where
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e/p <N lv>

(5.10)

2 W 7,0
Vg 0417, 1

The radiative corrections40 reduce the theoretical prediction for the ratio

4

by ~~3.9%. From the experimentally measured ratio 1 of (1.247 + 0,028} % 10_4

one infers that at the one standard deviation level,
0.983 < R < 4.005 .
9 el {5.41)

Note that this constraint, taken alone, is compatible with large mixing
parameters [ Z/ 13[ and [ %23I as long as they are sufficiently close
to being equal.

The second experimental constraint delimits the size of {the product
of) these two parameters. This input is provided by neutrino experiments
which search for electrons produced from the scattering of an incident
beam of vH off a nucleon target, Several such searches have recently
been made, primarily with the motivation of looking for neutrino osci.llations.28
These oscillations cause an original beam which is composed purely of
vH to develop a nonvanishing component of Ve if the corresponding mass

eigenstates are not degenerate and the mixing angles are nonzero. As

was mentioned before, in the KM mo'del there are no neutrino oscillations
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since by assumption m =m = 0. However, the neutrino states Ve
1 2

and v are nonorthogonal, the matrix element <ve[ v > being proportional
K

v
K / 30
to %11 %21+ 7

! 12'" %22 = - %13“‘ %23, as given in Eq. (3. 3c).

The relative cross section for an incident vp beam to produce electrons

rather than muons is thus given by

olv N = e™X) <N_[v > 2
Z/ = H- = e
e - <N >
K o{v N—pu X) p.[vp
n
_ 2 < 2
= Re/p[ velvH>l {5.12)

= l<veI vl-'->l2

The main experimental background consists of the small Ve contamination

in the vy beam. The Gargamelie bubble chamber experiment finds electron
events at the level (0,50 + 0, 08 %, while the estimated background is

(0,46 + 0,10)%, and concludes that at the 90% confidence level, Ze/ u < 0.3, 42

We can therefore infer the bound

] %y 7,5

<ve' v'> = EJ_—_F=5 0.058 .
N N Y P o

The third constraint is that of the "universality" of the weak interaction
coupling strength among quarks and leptons. Of course at a fundamental

level this universality is automatically built into a unified gauge theory
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since weak quark eigenstates and weak lepton eigenstates in muitiplets
+
of equal dimensionality couple to W with the same strength., As it is

conventionally stated, this principle is the equality

=t - . (5.14)

This equality is realized automatically in the Cabibbo-WS theory; in the KM
model, it must be explicitly enforced. In terms of #Z and 7 this Cabibbo

universality is the condition that

YU
Rp/ﬁ = J[%Zi [§+ I%ZZ Fr = 1 . (5. 15a)

43
Exp eriment 8.1157,
R ~ 1,041
/[3 (5. 15b)

where the model-dependent nuclear radiative corrections are of order 1%.
Note that the conventional form of quark-lepton universality in Eq. (5. 14)
leaves much of ?/ and %unconstrained. In particular, it is consistent
with large values of [ %13[ and, independently, [ 713 ] . Furthermore,
one should note that even large values of [ %?3,[ and [ %23[
~ L
[ e
are allowed, as long as [ /23[ = [ ?’ 23[ so that Eq. (5.45%) remains

satisfied to the level of accuracy demonstrated by experiment. Parenthetically,

we mention that one might postulate a more sweeping form of universality
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such as ?/ = yﬂ.g There is no experimental evidence for this; however,
it seems not to be inconsistent with present data.

The fourth constraint is that the relative strength and phase of the
u-d and u-s couplings agree with the successful Cabibbo theory; i.e.
that the angle defined by Eq. {5.6) be in fact equal to the experimentally
measured Cabibbo angle. This angle can be measured from a combination
of AS=0and [ A S[ = 1 semileptonic baryon decays, such as nuclear beta
decay and semileptonic hyperon decays, or from the relative rates for

K—=+1 VI and m—~ 'WE' Note that this is true in the KM model as well as

in the minimal model since the factor '\/[ /4 “[ 2 + f /4 12 ]2 at the

WeVe vertex (or, in the meson case also 'JI 74 24 l 2, I% 23[ z at the
Wp.VH vertex) cancels out in ratios. A recent comparison of hyperon

45
and nuclear beta decay data yields

sin GC = 0,230 + 0,003 . (5. 16)

An analogous condition would be that 6 d defined by Eg. (5.8) be

. o ° - _ e = .
equal to 6., i.e. (721/ %11) (; 12/ /22) - Fxperiments
on decays of charmed particles are not nearly accurate enough yet to test

this seriously. From a comparison of the invariant mass plots for decays

+ + -
of the Do(1865) into m K channels versus the v « channel one might

46 2
crudely estimate that tan BC‘ £0.1. An even stronger universality

-

-7 which, together with the equation

assumption would be that 7 11 22

BC = BC' implies %21 = - %;2. Again it should be stressed that there
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is no theoretical reason in the context of the KM model for these equalities
or the BC' = BC relation. In contrast, in the special case (5.5) for 7
(and similarly for 74 ), they are all automatically valid,

Taken together, these four experimental constraints significantly
limit the amount by which the quark sector can differ from the Cabibbo-WS
model and the way in which Vi Voo and L.° can mix to form Ne' NH’ and
NL' For the purpose of our present calculations of u- and e-number
nonconserving processes, perhaps the most important constraint is the
one on [ ?/13 ?/23* ] , Eq. (5.13), since this factor controls the rate of
decays such as p ~ ey, p —* €e€¥€, KL - weé, and K ~ n eB.

B. Rare K Decays

Let us recall first that, as was shown by Gaillard and Lee, 2 the
GIM mechanism in the WS model works not only at the tree level to ensure
the absence of direct lowest order nondiagonal Z-quark couplings; it also

operates adequately at the one-loop level to suppress processes such as

K_ — pp and K® « K° (which gives rise to the K

. KS mass difference).

L
Indeed it succeeds in doing this while at the same time allowing other,
nonsuppressed decays such as KL, 3 -~ vy, KS - woyy, and K -1 8

to proceed at their experimentally observed rates. Since the KM model,
like the minimal WS theory, satisfies the two conditions for natural flavor
conservation by the neutral current and also the condition (2.67), it also
succeeds in accounting for the relative rates of the various K decays. The

free quark approximation used in Ref. 2 will again be satisfactory for our

purposes here,
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We shall compute first the decay rate for KL — p€ and compare it
with that for the analogous p- and e-lepton number conserving rare decay
KL - ufi. The graph for the elementary process sd — el in the KM model
is shown in Fig. 4; as in the previous figure the symbol L’ refers to all

v, and the particular

the neutral leptons which can couple, namely, Vi v,

heavy lepton Lo. An interesting aspect of the calculation is that there
are GIM mechanisms operating on both the quark and lepton sides of the
graph, However, as will be evident, the graph is not suppressed any
more than it would be if there were only a GIM cancellation on one side,

as is the case for K. — ufi, for example. This is quite analogous to the

L

2 -
situation regarding the KLKS mass difference  (sd — Sd transition), where

a double GIM mechanism only suppresses the amplitude by a single power

2 2

of (mc -m )/ m The explanation lies in the infrared behavior of

2
W
the relevant Feynman integral, which has a pole rather than just a logarithmic

divergence for zero fermion mass (see below).

We calculate the amplitude for sd — eff to be

. 2 G
.//(Sd—-*e'ﬁ) = % '\7% ELFYQLSJ [EYQL}.L] X
(5.17)

% ?/13 ?/23-‘: Z %j 723 e, <)

2 2 2

h = zjm =
where EL mLO W s € qJ qJ
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(Eq ,lneq + 4 - Eq ) <€L1ne +1 - ¢ )
1 . . ,
e ) = - 1/ L L2 (5,18

L "q. €. ~ € 2 2
L %q. 1 - 1 -
: J ( qu> ( GL)

By using Egs. (5.3) and (5.6) - (5.8), and the unitarity of 7/‘, one can

recast this amplitude in the form

v, %

13 23

%11124- '%12,2

2w

M sT ~ em) = —LZ— mLOZ[HyaLs] [ﬁyaLp]( I

2
[(G;) (cos 0, sin ec"'){l(eL, €, - He,, et,)} (5.19)

_ (G;f (sin BC' cos@é *){I(EL, ec) - I(EL, €, )}]
which exhibits more explicifly the GIM cancellation operating among the
u, ¢, and t quark contributions, In order to illustrate the statement about
the double GIM mechanism, it is convenient to consider the special case
of the KM model where # has the form (5.5) while % is still arbitrary,
subject to the various experimental constraints discussed previously.

2 2
In this case, neglecting m relative to m_ ., we have

2
ig GF * = a
/(s&-a- ef) = —3—— %13 %23 sin GC cos BC[dYaLS:I[EY Lp.] X
8w a2
€_€ m 2
% E | —E (5.20)
€, — € 2
L c m
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Thus the double GIM mechanism has indeed produced the product ELEC
in the numerator; however one power of ¢ is essentially cancelled.by the
infrared pole of the Feynman integral, 1/ (EL - €_.). (By infrared pole,
we mean a pole in : as one scales €1 and €, down by the factor N the
total expression in Eq, (5.20) is, of course, vegular as €y, - €. )

Reverting to the general form of the amplitude again, we use the

fact that in the free quark approximation,
o]
K = 1
<0 gyaLd > > lepE )a (5.21)

to obtain the result

8w ]

2 3
ig GFflqtﬂ s B
v — re = ————-—-.—..-——-_.& ) A
/(&L efr) > €L ?/13 ?/23 z Re {%u %‘Zj}I(EL: €4 ) %
j =1

J =

X €Ru . (5.22)

It is interesting to compare this amplitude for KL =~ e with the analogous
[A_S[ = 1 neutral K decay which conserves e+ and p-lepton number,
KL—' . In order to get an estimate of the relative rates, it suffices to
take the special case of the KM model in which the mixing in the hadronic
sector is prescribed by Eq. (5.5). Then the free quark approximation

to the decay amplitude is (again dropping muz)
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2
M(KL - ) = A Gplym € sin 0
167

cos 8 [%’ /4

C 23L€L’Ec)']>‘

X fiygm . (5.23)

Making the plausible assumption that I( €5, ec) is of order unity, we therefore

have for the ratio of rates in the free quark approximation

I“(KL ~ ef)
TK, =~ el

I?/B ?/23* IZ : (5. 24)

However, as was discussed in Ref, 2, the main contribution to the
KL - ug amplitude comes not from the short distance free quark graphs
but rather from the conventional long distance KL " YY ™ Ul process.
Indeed, if one calculates the part of the KL ~ il rate due to the elementary
guark contribution in the KM model, neglecting the term proportional to

?/13 ?/23"‘ in Eq. (5.23), or equivalently, in the WS model, one finds

(normalizing to a typical K decay)

2\ 2, 232
T{K,. = pp) (G m ) ('1 -4m “/m )
—-——/— = T — cos ec 5 {(5.25)
K ~n ) 2w 2 2
(1 -m /m )
K
from which it follows that
BR(K. ~ uff) « 0.7 x 10~ (5. 26)
L free quark ) :
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The unitarity bound on the KL ~ pi rate is determined by computing the
contribution of the 2y intermediate state to the imaginary part of the
amplitude. In fact, the 2y contribution dominates this imaginary part; it
can be calculated from the measured rate for the decay KL —~ yy and

47
vields the bound

— T = - 17
IG(KL KE) 1ﬂ(K‘L ML):a.bsorptive

[

(1.2 x1o'5)r(KL—»W) (5.27)

-9
{6 x 10 )T(KL all)

1

48
The actual rate is comparable to this bound:

_ ) -8
T(K = W), = (1.0%0.3)x 10 . (5.28)

Thus evidently the short distance free quark processes contribute only
about a fraction 10-3 of the total rate for KL gl TV
In view of this fact, if one wishes to estimate the actual decay rate
for KL - ef1, it is of some importance to ascertain whether the short-distance,
free quark contribution to this decay is similarly only a small part of the
total rate, and to attempt to compute a unitarity bound from whatever is
the dominant intermediate state contribution. We will see that in fact the
relative sizesof the direct sd — ef quark process and the phenomenological

KL = ¥Y el process are reversed, compared to the order of importance



-70- FERMILAB-Pub-77/21-THY

of sd = pgand K. —~ yy = pfl in the decay K. — pfi. Consequently, modulo

L L

short distance strong interaction corrections, the elementary reaction
sd ~ eff probably provides a lower bound not too far below the actual rate
for KL - efi. Thus for the total rates we estimate (f.q. denotes free

quark contribution)

TRy ~emyy  TE ~em), o

3
0 - uil
i T(KL up)f‘ q

S T

-3 B3
=10\ Y T (5.29)
o Yy Y 1t -2 -4
from which it follows that, for [ 13 23[ ~ 10 = - 10 ,
- -13 -15
BR(KL ep.L)tOt = 10 10 . (5.30)

Unfortunately, if these estimates are reliable, the KL —> efl decay is beyond
experimental reach at present.

The statement that F(KL-_- e“)tot = F{KL —- ep)f.q. is demonstrated
by estimating the contribution of the dominant conventional decay chain
K. — 2y - efto the imaginary part of the decay amplitude. Since the

L

photons are on mass shell, the hadronic side of the graph is then calculable,

just as it was for K. — uii, in terms of the rate for KL -+ vy. However,

L

the amplitude for yy — e is far smaller than the one for yy — uji. The

Feynman diagrams for the equivalent process p& — yy are shown in Fig, 5,



-71- FERMILAB-Pub-77/21-THY

There are three general classes of graphs; the first consists of graphs

(5a) and (5b) in which one photon is emitted via the transition magnetic

and electric dipole moment coupling (2. 63) and the other is emitted directly.
The second set is comprised of the graphs (5¢), (5d), and {5e) in which

both photons are emitted directly and the p-e transition proceeds by way

of a nondiagonal self-energy insertion. Finally, there are irreducible

graphs symbolized by Fig. 5f and depicted explicitly in Fig. 6. For the
reaction pe = yy, each of the graphs in Figs. 5 and 6é represents a sum of

two separate graphs related to each other by interchange of final photon
momenta. The quark analogues of these graphs have been analyzed previously
in order to determine an effective Lagrangian for the process sd ~ yy,

of relevance to KL - vy decay. It was pointed out that the quark counterpart
of graph (6a) (with L replaced by u and ¢) dominates over all the other
graphs and yields an amplitude of order ""(Q’/TT)GFmeKSin 7, c ©°os GC.
In the present case, however, graphs (6a) and (6b) are absent, and hence
the amplitude is more severely suppressed by the leptonic GIM mechanism.,
A detailed calculation of the graphs of Figs. (5) and (6c, d) would be rather
involved; from considerations of (electromagnetic) gauge invariance, we
estimate that the total amplitude is of order (a/w)GFmeK(mLzlmW.z_) ?/13 ?/23*
In contrast, the ug — vy amplitude is simply of order ez. Accordingly,

we estimate that the ratio of the squares of the imaginary parts of the

K. —efiand K. — uji amplitudes arising from the two photon intermediate

L L

state is
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2\2
T(K.L -+ en) . 1 2 mLo * 2
vy, absorptive 1
TK, =@ . R 2 I?/u ?/23 |7 5031
KL b vy, absorptive T m

-1
= - 7 * =~ .
Using (mLo/mW) = 1/6, | /4 13 %23 | =10 °, and Eq. (5.27), we find that

]/I"(KL - a11)~10-30. Indeed, even without the GIM

[T(KL ep')yy, absorptive

suppression factor (ng/mWZ)[ %13 %23*' 2 this ratio would be of the
order 10-21. These are admittedly very rough estimates, but they show
that because of the p- and e-type lepton number violating nature of the decay
KL — el the elementary free quark process sd —~ el probably dominates

the total amplitude, as was claimed.

We next turn to K decays of the form K — weff and compare them with
the corresponding muon- and electron-number conserving decays K - me€,
Since our primary interest is in p- and e-number nonconservation effects,
we again choose 7" to have the form given in Eq. (5.5), The fundamental
quark transitions involved are respectively s - defiand s - deg&., The
graph for the former process is just Fig. 4 with the d quark line crossed,
and the resulting amplitude in the KM model is given by the crossed version
of Eq. (5.20) for /(sa — ef1). The diagrams contributing to s — de®
are the counterparts of Figs. (2a) - (2d) and (2g), with appropriate replacements
of leptons by quarks. The calculation is similar to the one performed
previously. 2 The dominant contribution to the amplitude comes from the

unsuppressed logarithm in the vector and axial vector charge radius

arising from the quark analogue of diagram (Zb)Y. This can be calculated
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via a Fierz transform in terms of the quantum electrodynamics vacuum
polarization integral; the result is the same as in the WS model and yields

an amplitude

G
@ E | == sin 6 9
e > in cos >

2i
_- FE) . e
./f(s d+e +&) = 3 Q C C

% [a-YQ,LS] [é'yae} {5.32)

where Qc =2/3.

Using Eqgs. (5,.20) and (5. 32), we find

[} [ 8]
- - T(K P T
(K - ep) Ky~ = ef)

- - e} 0 .
K - e K -~ 7 ee
( med)  TIK S ~woee) (5.33)
_e € m 2 I
L ¢ L
2 ALY
3 csc @ €, — € In 2) )
- 2 W L c mMe % ?/ w2
= 5Q > |7 3 % 55 |
c mL
In -—----2-
m
e K -

_ .2
—_— 60 GeV, sin BWm 1/3 and

* .2 -2 . . -4
[ ?/13 ?/23 [ =10  the ratio (5.33)is ~410 ~, The free quark approximation

Form =1.5GeV, m =40 GeV, m
¢ 10

for BR(K- -*v_eé) (:.';a.lcula'ced2 from Eq. (5.32)is

BR(K —>'rr-e§)f 0 ° 5% 107 ) (5. 34)
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In contrast to the case with the short distance, free quark contribution

to KL ~ ufi, this is comparable to the measured value,
BR(K -1 e8) 2 (2.6 %0.5) % 10 " (5.35)
™ exp = & .5) % . .

Therefore, from Egs. (5.33)and (5.34) we estimate using the same values

of parameters, that

BH(K —n efl) = 10”1 (5.36)

which again is too small to be of much experimental interest. A similar
comment applies to the decay KS - woe"}I.

In the case of the decay KL - woeé', CP conservation forbids the
occurrence of the quark analogues of the y and Z exchange diagrams,

- (Zd)z. (This decay is CP conserving even if % contains

(2a, b)Y and (Za)z

a CP violating phase, as long as 7 itself is CP conserving.) Thus, only
the W+W- exchange diagram contributes, and in contrast to {the charge
radius term in) graph (Zb)y, it is fully suppressed by the GIM mechanism.
Indeed, the local form of the interaction (i.e. the form in which external

+ -
momenta are neglected relative to m__) due to W W exchange is also of

W

the current X current type, and consequently CP invariance implies that
its hadronic matrix element vanishes. This is true for both of the decays

KL ~+ 1 e® and KL - Troe';f {or KL - -rroEp.). Nonlocal effects are present

2
at the level {m zlm ) and they do in principle allow these processes,

K W
o _ w2 o
We expect that I"(KL T ep) = ] /4 13 7/23 [ T(KL T e&); both rates
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however, are extremely small, For the larger one, normalizing to a

dominant semileptonic decay mode, we have, for the free quark approximation,

2
2 2 2 2 2 2 -20,

'K "'woeé)/l"(KL "wOeTfe) ~ (afm) (mC /mw ) (mK /mW y ~ 10

L

Even if the estimated branching ratio were nonnegligible, the ™ in the
final state would render it experimentally difficult to set a very stringent
upper bound on the decay KL - woeﬁ.

Thus, the effects of p- and e-type lepton number nonconservation in
K meson decays may well be too small to measure, We shall proceed to
consider certain lepton-hadron reactions and decays of heavy leptons,
where such effects are probably more easily observable.

C. Production and Decay of L.’ and L.~

If the decay p —~ ey is indeed detected at the 10_9 - 10-10 level in

branching ratio it would be reasonable to consider the heavy lepton L.°

in the KM model to have a mass.mLo ~ 10 GeV. For example, if
9 ,2

- S -2
—_ = = = 4
BR(u ~ey) =40 ', m_ =60 GeV, and |Z ¥ . 0.3 x 10 ", then

mLo = 12 GeV. Moreover, as was mentioned earlier, it is plausible,

although not necessary, to entertain the possibility that L is the heavy

lepton observed at SPEAR and DESY.23 If one chooses to make this identification

then m, - = 1.95 GeV, substantially lighter than the L°. A crucial test

of this hypothesis regarding L. is to determine whether the experimentally
observed heavy lepton decays via a V-A coupling. Of course it is entirely
possible that (a) the decay p —~ ey, if it exists at all, proceeds with a

branching ratio much smaller than 10-9 - 10-10 and/or (b) the KM model
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represents only a part of the presumed complete gauge model, and L~

is not the SPEAR-DESY heavy lepton. Accordingly, there is no strong

theoretical or experimental reason why the L.~ cannot have a greater mass
than the L°. Indeed some of the trimuon events recently observed in
the Caltech-]:"*."errn‘1lab49 and Harvard-Pennsylvania-Wisconsin-Fermilabso
neutrino experiments may be due to the sequential production and decay

chain

v +N—+L +X

V8
l——— 0 - v
L+ +v.'~l {5.37)

| - +
ot T

M

If one identifies the two heavy leptons in this process with the 1. and L°

of the KM model, then of course it is necessary that mL_ > m In a

Lo

phenomenological spirit we shall consider both orderings of L and 1.°
masses,

. . . . - o 51

Let us first consider production mechanisms for the I. and L.°,

- + - 4+ -
The L. can be produced in the reaction e e —~ L L with a well-known

cross section. The ey events seen at SPEAR would arise from the process

+ - +_ -
e e L L

L—*e'vev (5. 38)
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where we define vL to be the unit-normalized linear combination of v

and Vs which couples to L—,

% v, + %321’2

31 1

Ve 7 (5.39)
YUY,

in analogy with Egs, (3.2a,b) for Ve and vp. The L* can also be produced

in the high energy neutrino neutrino reactions:

v N=-L +X
N
(5.40)

29 + hadrons: -

and the corresponding reaction with incident TH. The cross section is
suppressed by small mixing parameters;well above threshold for L~ production

the relative rate is given by

- +
olv N~ L +X) o(7 N~ L +X)
B

" +
olv N=pu +X) cr('FpN-* p +X)
B

s * 2
U sy U™ ¥y %y

= (5.41)

Y, P Y,

1

| # 551"
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Thus the L production cross section is of order 10_2 of the corresponding
ordinary charged current cross section. Furthermore, the leptonic

decay modes are expected to comprise only about 20% of the total, so that
the signal will be present only at the 10-3 level. Reaction (5.40) will be
difficult to observe in counter experiments because the p- decay mode
simulates an ordinary charged current reaction, the e is not detectable
with present counter a.pparatus,' and the semileptonic decay simulates a
neutral current event. The same statements apply to the reaction

TN L+ + X, Because both the leptonic and hadronic charged currents

in the KM model are purely V-A, in the valence quarks model, which serves
as a reasonable approximation, cr(va ~1, +X) = 30 'DPN —»I...+ +X). In
heavy liquid bubble chamber experiments it is feasible to search for the
electron decay mode of the L produced in reaction (5.40). Indeed if the

L is sufficiently light and/or the time dilation factor is sufficiently large
its tracks may be visible in the bubble chamber (see below). Characteristic
kinematic features of heavy lepton production via reaction (5.40) include,
first, a threshold behavior as a function of incident neutrino energy E and,
for a fixed E, as a function of W, the invariant mass of the hadrons produced
by the W boson-nucleon interaction at the 'lower ' vertex. Secondly one
would measure large values of Vetr = 1 - (EMJE) since a considerable
portion of the incident energy is carried off by unobserved neutrinos.

Moreover, the semileptonic decay of the outgoing L will yield hadrons
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with significant fractions of the initial beam energy. I m, - >m g the
sequential decay scheme of Eq. (5.37) will yield trimuon events, as was
mentioned. TFinally, note that since the neutral current is diagonal in
flavors in the KM model, it is not possible to produce the L. in a reaction
such as p.-+ N —~ L. + X at a non-negligible rate,

The neutral heavy lepton 1.° is more difficult to produce than the L.
Among e+e- reactions the one with the lowest threshold is e+e- - Love
which proceeds via W exchange in the t channel. Unfortunately, in addition
to being a weak process, its cross section is further suppressed by the
factor l %13 IZ ~ 10-2. There is also the neutral current reaction
e+e- - LQI-:3 which is not suppressed by any small mixing angles., Of
course until the energy is reasonably far above the respective thresholds
these reactions will be suppressed by small phase space factors. Since the
cross sections in both cases are of the order G;s, in order for them to
be significant one needs center of mass energies equal at least to the
value NS ~ 36 GeV to be attained at PEP and PETRA., The L° cannot be
produced via the neutrino reaction VHN ~1.° + X for the reason given
previously. It can be produced in the charged current reaction w +N - L+ X,

however the electromagnetic background from p_.' + N - |.1- + X is severe,

and again the cross section is proportional to the small mixing parameter

2

2
Z3l'

The branching ratios for the various decay modes of the 1. and L°

depend on their relative masses and on the mixing parameters in the
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matrix Z. We consider first the leptonic decays of L~ and assume that

it is lighter than the L°. Then for the decay mode L. —~ev vy we have
e

- 5 - P - 2
(L eVevL) i (mL' (‘ ?1/31 ' + ! 4 32 I )
=3 = (5.42)

) (1" 1% 5,17

For small mixing this ratio is approximately equal to (mL-/mH}S *
2 2 \ 2 2
([ %BI +[?/23[ ) i.e. (l%m[ + [%22 [ ): 1. The same
formula applies for the decay modes L~ pb‘“vL with the replacement of
2 2 2 2
([?/zi[ | )by ([%11[ * [%uf)' fmy - >m

the decay L -~ eFeLO occurs, at a rate given by

Lo then

-

r(L” ~ev L°) m,_ - > 7, " m o
= ( ) f( ) (5. 43)
i )

T(p""e‘ﬁevp) m (lg/21{2+[?/22[2

mL_
where
4 4 2
fx) = (4 -x )x~ - 8x" + 1)+ 24x In(4/x) | (5. 44)

with x = (mLO/m ). The rate for L= — e'ﬁeL0 is in one way enhanced relative

L-
- 2 2 pA -2
to that for L ev vy because | ?/33 B! whereas(l ?/13‘ + | %2_5[ )«iO )
However, in another way it is suppressed by the phase space factor
f(mLo/mL_.); for example, f(4) = 0.16. Equation (5.43) also applies to the

decay mode L - p‘ﬁpLO with the replacement given above. In order to

estimate the semileptonic modes we shall use the free quark model or,
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equivalently to our order of approximation, the SPEAR results on

R = 0(e® ~ hadrons)/ o(e® - upi). I m, - £ 2 GeV then the decay channels

which involve the t or b quarks are not open, and the T(s, d) channels are

either below or only slightly above threshold. Consequently,

3 Z T(L- ~ VL_‘;Q)
q=4d,s
I‘(p."‘evevp) I"(p-"evevp)

I‘(L# - vL + hadrons)

I

(5.45)

3<mL' > ([%1 IZ+ | 7 54 IZ)U Z [2+ % 5, |
" ([?/11 IZJ’ %, ]Z)([%u [Z+ % 2 I

where the factor of three comes from the sum over quark colors. The

. ‘ ) 5 2 2
ratio (5.45) is approximately equal to 3(mL-/mp) (I ?/31| + | 74 32| )

>m , m,. Then the L. —~ v Ea, thq,

Next, consider the case of m ¢

L-
decay channels are open, {(where q =d, s, b). In the simple case where

all quark masses are small compared to m_ - the dependence upon 7"

L

disappears and we find

z T - v ) m -\ (!?/31 5+ 1%, F)

guarks _ 9| L

Tl =~ evev) P (lcf/ul “e| 12[2)(' ?/21[2 1 g Ia)'

(5. 46)

If also mL- > m; o the dependence upon 7 in the numerator of the ratio

. 5
(5. 46) disappears and this ratio becomes approximately 9(m -/mp) .

L
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. . . _ e , .
Thus if mp 2 GeV, with my mLO’ mt’ b the ratios of leptonic to

semileptonic decays are

(L~ ~e +leptond _ TI(L -y +leptons) 2 (5. 47)
T(L- -~ vy + hadrons) T(L  ~ v + hadrons) ~ 5 :

whereas if m, - > m;o, mq, this ratio is approximately 2/11.

For the low mass case,‘ summing the leptonic and semileptonic decay

modes, we find

- 5
oL ~an)  _(PL- ( 2 2.)
T(n —~ev v ) = > m |%31[ + [ %32 [ (5.48)
e pn "
where we have used the approximation that ([ %ji [ I /4 i2 ! ) ~

for j = 1,2, At the other extreme of very large Lu mass we have with the

same approximation that

- A5
T(L~ —~all) 1 My (5. 49)
T(p —=e¥ v ) ~ m ’ '

e p "

2
This relative decay rate is larger by at least a factor of 10 than the rate
for small L. mass, Eq. (5.48). The interesting thing to observe is that
in the case of small my - the rate is substantially suppressed by small

mixing angles and consequently the L is longer lived by a factor of
(‘ 4 31I + [ 4 32 [ ) ~ 10 than a naive scaling from m}L to m, =

would indicate. Numerically, Eq. (5.48) gives a lifetime for the small

mass {sm) case of
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5 -2
-10/1 GeV 10
Tffn) ~ 6% 10 (me ) - s ) sec . (5.50)
L 25,0 "+ %5 7
The lifetime in the large mass case is
(Im) -12 /1 GeV >
ro o = 2,7 xX 10 ( ) . (5.51)
L my -

The major factor in determining the lifetime is whether the L —-1°+ ..
transitions can occur, and if so, how much they are suppressed by phase
space.

The analysis of the L.° decay modes is quite similar and for brevity
the details will be omitted. Note that if m; o is sufficiently large the decay
modes LO - L—L+vL can occur, However, since the sum of the rates for

these modes is proportional to ([ %31 [ 2 +[ ?/ 32 lz) they will not make

a very large contribution to the decay rate even if m_o > 2 m The

L |

lifetimes in the low and high mass cases are thus given by Egs., (5. 50)
and (5. 51) with the replacement L™ - 1%

In addition to these dominant decay modes there will be other, rarer
decay modes. We shall not consider these here since they will be extremely
difficult to observe. Yet another way in which the heavy lepton L~ may
make its existence manifest is in the leptonic decays of charmed pseudoscalar

+ + + + . ) )
mesons D — L v. and F — L v_. Asis evident from the ratio

L L
T{m —~ eFe)/ T{r —~ pT»’H) in Eq. (5.9), which is generally applicable to any
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two leptonic decays via a purely V-A charged current of a pseudoscalar

meson (D, say) into two zv! pairs, with the replacements me **-mf1 5
s K s

m_ - mp, the importance of a given leptonic mode depends on two opposing
2
D << 1, heavier lepton masses are favored

. 2
factors. First, form kK /m

£

by a quadratic dependence on m , arising from the disfavored helicity

4

of the massive lepton, However if mi (m_ - in the present case) approaches

L

mg, then the phase space factor overwhelms this preference for higher

m, and eventually cuts the rate to zero. Assuming that the ratios

+
) are smaller than, and not too close to, unity, the (D, F+)—- L+v

52
decays may have branching ratios of a few percent.

(mL_/m

D,F L

D. Other Processes

We shall mention here two other interesting processes involving
and e~-type lepton number nonconservation. The first is the reaction
p+N—-e + N, in which a slow muon is absorbed in matter and decays to
an electron in the Coulomb field of a nucleus, This reaction was proposed
and studied long ago as a means of testing for muon and elecron number
violation.s3 The signal is a high energy electron emitted with ['ﬁ'e [Lab v m .
The rate can be calculated from the general formulas of Ref. 53 together

with our expression for the u > e + vy | amplitude. A recent analysis

virtual

yvields an interestingly large ratio of rates in the KM model,54

R({uN —~ eN)/R(p —~ ey) ~ 26,

Secondly, there is the precise analogue of K - Kk mixing (sd <= 5d)

which gives rise to the K. - KS mass difference for the u€ bound state,

L
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‘s 55 . .
muonium, namely the transition u& - je. We find that in contrast to

the case with K° - K’ mixing, a ué bound state will decay long before it
has a significant probability to make a transition to We. This is easily
seen as follows. The diagonal elements of the mass matrix M - iT"/2

are dominated by the contribution to il" arising from ordinary p decay;

T ~ GFZmHS/ (1921‘r3). The main contribution to the off diagonal matrix
elements arises from the W+WH exchange diagram shown in Fig. 7, which
is the leptonic counterpart of the graph for sd ¥ 8d, Other contributions

to the off diagonal matrix elements such as y& —~ {(yy) -+ He are

virtual

negligible in comparison. Diagram (7) gives a mass difference between the

CP eigenstates (p8@ = fe)/N7Z of

2 2

m

Y L° 1 eyl 2 (5.52)

Am ~ —Gn 5 ,%13 %23f [ 4(0) ]
Ty

where {(0) is the muonium wavefunction in the ground state. Using

|7, 7 ) "~ 107 myofm

L W
-18
find that Am/T" ~ 10

I2 3

~1/6, and |u(0) [ = « me3/'rr, we

Vi, CONCLUSIONS
In this work we have analyzed p- and e-type lepton number conservation,
viewed an approximate symmetry like strangeness conservation by neutral
currentg, or CP invariance, We have pointed out the special set of

circumstances which guarantees exact p- and e-lepton number conservation
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in the minimal Weinberg-5alam model and have investigated the ways in
which this invariance is violated, as it usually is, when one generalizes

the minimal model. It has been stressed that although, a priori, one would
expect violations of the three symmetries mentioned above to cccur in order
GFcz, in fact experimentally such violations are further suppressed.
Extending earlier work, 2,3 we have proposed a unified approach to these
three approximate symmetries based on a mechanism which naturally
suppresses the violation of a particular symmetry.

By calculating the p = ey and p —~ ee® decay rates in a general formalism
applicable to any SU(2) x U(1) gauge theory, we have derived a set of
conditions which ensures tha‘c,- for arbitrary values of the parameters of
the theory and thus a completely general mass matrix M, the nonconservation
of u- and e-type lepton number is naturally suppressed. These conditions
are that {1) leptons of a given charge and chirality have the same weak
?2 and T3; (2} leptons of a given charge receive their masses from their
couplings with a single neutral Higgs field; and (3) leptons of charge q and
leptons of charge q =1 do not belong to the same weak isomultiplet for at

least one chirality. The first two conditions are essentially the Glashow-

6
Weinberg criteria for natural leptonic flavor conservation by the neutral

current. The last condition is the leptonic analogue of the criterion for
microweak CP violation derived previously. 3 Furthermeore, in order for

a model9 to have a branching ratio for p = ey of order 10-10 or larger,

it must include at least one neutral or doubly negatively charged heavy lepton

which is coupled to both e and p.
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We have considered several models which meet these conditions,
foc.ussing on the V-A three-doublet model of Kobayashi and Maskawa.“
In the KM model, for a wide range of parameters {mixing angles and heavy
lepton masses) the branching ratio for the decay p - ey is in accord with,

but not extremely small compared to, the present experimental limit;

-3

specifically, assuming that | ?/ %23 I ,

BR{u ~ey) = 1.7 X 10-10(mLO/ 10 GeV) . In addition to measuring the
total decay rate, it will be very useful to determine the angular distribution
when the muon is polarized and also the photon polarization, the latter
even if the muon is unpolarized. These will give information on the -
relative sizes and signs of F;}'(O)E}.l and FIZX(O}
The decay p -+ eef is estimated to proceed with a rate
T(p —~ eeE‘)KM: 0.06T(p —~ ey)KM. In contrast, in models with doubly
negatively charged heavy leptons which couple to both e and p, such as
the Wilczek-Zee models, 3 while the decay p = ey is still fully suppressed
by the leptonic GIM mechanism, the decay p —~ ee€ is not. Consequently
in such models IT'(p -~ ee®) is considerably larger than T(y —~ ey) (see,
e.g. Eq. 4.36), In order to keep the yu — ee® decay rate below the experimental
upper limit, it is necessary that the heavy lepton masses be very close
to each other and/or their mixing angles be small. Our analysis also
shows that in models such as that of Cheng and Li,10 in which the mass
matrix M is not completely arbitrary, due to restrictions on the representation

content of the Higgs bosons, the general conditions for naturally suppressed

p- and e-lepton number violation can be weakened.
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The mixing of mass eigenstates to form weak eigenstates in the KM
model will in general cause not just muon- and electron-lepton number

violation but also small violations of p-e universality, the hadron-lepton

P sec 6. =GP and the Cabibbo theory of

H : . n *
weak "universality equality GF C B

weak decays of baryons. It is thus of continuing interest to improve the
experimental limits on such violations. Furthermore, in this model
ve and v are not orthogonal, so that one may expect to observe, at some
level, the reaction v*l +N—e + X, where the eleciron comes from the
leptonic vertex. The heavy leptons in the KM model could be produced
in e+e_ reactions such as e+e- - L+L- and e+e e LO'VE, or in neutrino
reactions such as vH +N~L + X, in the last case the cascade decay
L - Lop;-Fp. —- p.+|u.-p,- vHvP- would produce trimuon events,

Thus the present experimental limits on decays such as u ~= ey,
p = eeé and other p- and e-type lepton number violating processes can
already be used to constrain models of weak interactions. Further experimental
searches with improved sensitivity, whether they yield null or positive

results, promise to contribute substantially to the understanding of the

structure of weak interactions,
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APPENDIX A

We shall give here a proof that the self-energy terms in Figs. 2 and 3

’

1 {0) and therefore have no

contribute only to the renormalization of F
i Y4 .
effect on the ;. =~ ey amplitude or on (n = ee¥®), the virtual photon

contribution to the p — ee€ amplitude. We start with the electromagnetic

Ward-Takahashi identity

V,A L 8.D,, , _ +S,P
NV A, by ) —Q[z ARE: gxz)] (1)

where iV}\ is the proper (single particle irreducible) photon-fermion
vertex between an initial and a final fermion of momentum Py and Py
respectively, and g = P, - pz,' as in the text; Eq. (1) holds separately
for the parity-conserving parts, Vz and ES, and for the parity-violating
parts, V;ix and Ep.

The effective vertex, including off-diagonal fermion self-energy
insertions, is

i -2 o
)\yi—mz iz (}di)

+ iES’p(pZ)Fz—l_—El—i iQY)\

We shall concentrate on the parity~-conserving part iEX; the same argument

applies for the parity-violating part. We note that
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=T, (P, V, (@) = Qyy, ———— m, u,(p,) (2)
where
% I Y _
o,V {Qu, = ,V,(p,, pyial,l 5 5 2 AL
Py "myr P2 "

Note first that the contribution of off-diagonal self -energy insertions is

qz-independent. The form of V:j(q) is

2
q"'v (q)+qV(q2) . (4)

v
= + i
Vi@ = vV e+, @', A3

By taking the matrix element of Eq. (1) between the spinors ﬁz(pz) and

ui(pi), and making use of Egs. (3,4) we find that

z%(m,) - =°(m,)
V(0) = Q - . (5)
1 m1 m2

Combining now Egs. (2, 4, and 5}, we obtain

p,)

— oV
uZ(thEp.ui 1

. 2 | 2
- uz(pz)liY“[Vi(q )= v, ] +io a" V@ ve Vi@ e ) L 6)
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Equations (5) and (6) prove our assertions at the beginning of this Appendix;
vV )
note further that Vi(qz) - Vi(O) is finite whether or not V?\ and £~ have

been renormalized.
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TABLE CAPTION
Lepton multiplets in the models considered. See the text

for an explanation of the RZ and 7/ matrices. The mixing

R

- -

of LiR and LZR to form LeR and Lp

determined by RZ(G ), Similarly, in model {e) the mixings

in model (d) is

to form LeL

are determined respectively by

of LiL and LZL
. y
to form L. eR and L. SR

RZ(BL) and Rz( BR}. These mixing formulas are omitted

and Lp.L and of LiR and LZR

for brevity. See the text for the mixing in model (f).
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FIGURE CAPTIONS
Fig. 1: Diagrams contributing in a general (i.e., any SU(2) x U(1))
gauge model to the process f1 -’fz + vy, where fi, , are
(identical or different) fermions. The symbol Fi denotes
any fermion which can couple in these graphs. For the

decay p —ey, f, =y, fz = e, and in graphs (1a) and (1b),

1
Fi =L or Lo, in accord with the upper or lower sign
choices for Wi It is shown in the text that graph (ic)
can only occur for the diagonal amplitude; hence in this
graph fi = F‘,1 = fz.
Fig, 2: Diagrams contributing in a general gauge model to the

decay p =~ ee€. In graph (Zb)\{ the virtual lepton can only

be L . In graphs (2c) and (2d) the rectangular box denotes

a nondiagonal lepton self-energy insertion; for the graphs

contributing to this, see Fig., 3. Each graph represents

a difference of two graphs, related to each other by interchange

of identical electron momenta.

Fig. 3: Diagrams contributing in a general gauge :r.odel to the

nondiagonal p-e self-energy. The cross represents a

counterterm.
Fig. 4: Graph for the transition sd —~ efl in the KM model.
Fig. 5: Graphs contributing in a general gauge model to the pg¢ - vy

amplitude. The heavy dots in Figs. {5a)and (5b) represent



Fig. 6:

Fig, 7:
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insertions of the u ~ e + vy one loop amplitude. The rectangular
boxes in Figs. (5c) - (5e) denote nondiagonal u-e self-energy
insertions (see Fig. 3). The heavy dot in Fig. (5f) is the

sum of graphs in Fig. 6,

Graphs contributing in a general gauge model to the irreducible
part of the pé - yy amplitude,

Diagrams contributing in a general gauge model to the

transition p& — He.
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