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ABSTRACT 

An estimate as well as upper and lower bounds are presented 

for the ground state energy density per spin of the two dimensional 

spin f/2 X-Y model on a square lattice. The energy density is 

estimated to be E = 
0 -1.099 * 0.004 and is bounded by -1.12498 5 eO 5 

-1.09440. 

e Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

The X-Y model was introduced in 1956 as a limiting form of the 

Cl 
quantum lattice fluid by Matsubara and Matsuda. The one dimensional 

model was solved by Lieb Schultz and Mattis 2 
and does not give rise to 

any critical behaviour. The three dimensional model, although it cannot 

be solved exactly, gives consistant evidence3 for a ferromagnetic phase 

transition with order parameter 1 eI / . The two dimensional model 

remains enigmatic. In spite of theorems forbidding the existance of 

long range order at finite temperatures4 the analysis of high temperature 

series expansions 3. indicate the existance of critical behaviour, on the 

other hand analysis by renormalization group methods5 gives contra- 

dictory results. Stanley and Kaplan6 have proposed an alternative kind 

of phase transition in which no long range order developes but the sus- 

ceptability diverges below the critical temperature. 

The X-Y model and other two dimensional spin systems have come 

to be of interest to elementary particle theorists because of the close 

relationship between these systems and lattice gauge theories in four 

dimensions. 
7 

The existance of a phase transition for the X-Y model 

would imply the possbility of a phase transition for QED at sufficiently 

strong coupling constant. 
8 

One large impediment to a complete understanding of the X-Y 

model is the absence of any low temperature series expansions and a 

general lack of understanding of the ground state. We do not offer any 
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solution to this dilema but rather constraints which the ground state 

must satisfy. The estimate and bounds to be presented may be of use 

in constructing global fits to the free energy together with information 

from high temperature series expansions and other methods. 

In the second section of this paper we discuss those bounds which 

may be derived from analysis of finite systems. The methods are 

entirely standard. The upper bounds are from mean field theory and 

the lower bounds are from the diagonalization of finite Hamiltonians. 

In the third section we present an analysis of a perturbative expansion 

of the ground state energy from the limiting case of the pure Ising 

model, and demonstrate upper and lower bounds as well as a direct 

estimate of the energy density. 

II. BOUNDS FROM FINITE SYSTEMS 

The Hamiltonian we will study is 

(2.1) 

=-J c (&J+&J), 
< ij> 

where < ij> runs over all nearest neighbor pairs of a square lattice, 

and the u’s are the usual Pauli spin matrices. J only provides an 

overall scale and will always be set to one in the following. There are 

several ways in which information about a finite system can provide 

bounds on the behaviour of the infinite volume limit. 
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First, if / a> is an arbitrary normalized state then 

Em = < Q IH / @ > ? E. the ground state eigenvalue of H. The mean 

field or Hartree approximation results if we choose IQ> = 63 /4i> 
i 

where each I$> is an identical normalized state of a finite number, 

say M, of the total number of degrees of freedom of the system which 

we denote N. The terms in the Hamiltonian seperate into those which 

act only on one ]e> and those which couple two adjacent Io>ls. The 

resulting bound has the generic form 

+ 22” <‘~(o:IQ~“~(o:Ip>+h.c. . 
< ij> I 

(2.2) 

The first sum counts those bonds which lie in I$> , and the second sum 

those bonds from one lo> to its closest neighbors, and to obtain the 

best bound one varys over all normalized states so as to minimize the 

energy. 

If we modify the Hamiltonian of Eq. 2.1 by arbitrarily moving 

bounds around, then under quite general conditions the resulting 

Hamiltonian has a lower spectrum than the translationally invariant 

one from which we began. Futhermore if all of the bonds connecting 

blocks are moved into the interior of those blocks then the Hamiltonian 

is split into a sum of independent operators which may be diagonalized 

- 
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seperately. We consider the simplest case where H is written as a 

sum of rectangular blocks with periodic boundary conditions within 

each block. 9 The resulting bound is 

(n 
EO 2 $- E,, 

x’ “y) , 
XY 

(n 
where E 

x-y) 
0 1s the lowest eigenvalue of 

nn 
(nx,n ) XY 

H y = _ z (oi J + uJ oj) . 
< ij> 

+ - + 

(2.3) 

(2.4) 

The bounds of Eqs. 2.2 and 2.3 have been computed for a variety 

of different blocks and in some cases for different arrangements of the 

blocks in the plane. The results are given in Table 1. The numbers 

represent the energy density per spin in the ground state. The upper 

bounds marked (a, b, c) refer to packing as a square array, a staggered 

array, and as a doubly staggered array. The best bounds we obtain 

are 

- 1.124797 2 co 5 -1.043751 . (2.5) 
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III. BOUNDS FROM PERTURBATION THEORY 

There is a simple way to split the X-Y model Hamiltonian into 

a free and interaction term which we can treat perturbatively. This 

is most natural if we write it rather as the “Z-X model” i. e. 

H(g) = -; z (+r,J +g+;, 
<ij> 

(3.1) 

=HO+gV . 

H,, is trivially diagonalized, and we can take the ground state to have 

all spins pointing down. Vis a sum of terms each of which flips two 

adjacent spins. When g= 1 we recover the X-Y model. It of course is 

impossible to say anything rigorous on the basis of a few terms in per- 

turbation theory unless one knows something about the asymptotic 

behhviour of the series, but we believe that we can make a strong case 

for the validity of bounds derived from the perturbation series of Eq. 3.1. 

To prepare for this we must consider the one dimensional model which 

is exactly solvable. 

The ground state energy density per spin in the one dimensional 

anisotropic X-Y model corresponding to the Hamiltonian of Eq. 3.1 has 

a series expansion 10 
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c(g) = z Ekgk 
k=O 

EO = - 112 

(3.2) 

‘2n = - [(2n - 3)! ! /(2n)! !I212 

‘Zn+l 
= 0. 

We note in particular that all of the terms are negative, and that the 

series converges for lg/5 1. When g= 1 the terms in the series fall 

off as i/k3 so that e(g) and E’(g) exist at g = 1 but e”(g) diverges. 

We may also write H in a slightly different form as 

H=-$ z [(l-y)2 j i c+y 0 DJ] , 
< ij> x. x. Y Y 

where y measures the asymetry, and the corresponding ground state 

eigenvalue as 

E(Y) = f E 14y(l -v)l 

= i E(i)- E(,z) , 

(3.3) 

(3.4) 

where E is the complete elliptic integral of the second kind. In terms 

of the variable z, E has the series expansion 
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(3.5) 

ek = [(Zk- I)!! /(2k)!! 12/(2k- 1) . 

This time all of the terms past the first are positive and the convergence 

at z=l is -1/k2. In conclusion if we only know a few terms of the 

series for e(g) for the one dimensional model then Eq. 3.2 and 3.5 

would provide upper and lower bounds on the ground state eigenvalue. 

For the two dimensional case we have worked out the terms in 

the perturbation expansion of e(g) through order g2 which allows us 

7 to compute the series E(Z) through order z . They are 

c(g) = -1 -g2/12 -37g4/4320 -389*7g6/15552000 - . . . 

c(z) = -2 +2/2 +11z2/96 +7z3/128 +18323z4/552960 

(3.6) 

+50141z5/2211840 +531843083~~/31850496000 

+1647011113z7/127401984000 + . . . 

We notice that the signs in these series are the same as in the one 

dimensional case. Analysis of the coefficients show that they are 

consistant with power behaviour. The coefficients in the series c(g) 

fall of roughly as i/k3, and for E(Z) roughly as l/k 312 . They are 

both almost certainly convergent. If we take as bounds the series 

as they stand with g = z = 1 we obtain 
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-1.2452978 5 co c -1.0944005 (3.7) 

The upper bound represents a substantial improvement over the mean 

field result. The lower bound due to its rather slow convergence does 

not do too ,well. 

From the coefficients of the two series we may also attempt to 

directly compute eO by extrapolating the series. In each case the 

coefficients were fit to the form (quite well in fact) 

c n = a(n-h)C , 

with the results 

Eo- E(Z) 

a= -0.0125 0.257 
h= o.io9 0.332 
C’ -2.762 -1.575 

(3.8) 

(3.9) 

The fitted form was then used to sum the remainder of the series 

analytically with the results 

EO 
= -1.09728 and -1.10151 , (3.10) 

for e(g) and E(Z) respectively in agreement with each other and con- 

sistant with the other bounds. Taking their average as our estimate 

and their difference as an estimate of the error in the extrapolation 

procedure we obtain 

EO = -1.099 f 0.004 . (3.11) 
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Note Added 

We have recently learned that J. Oitmaa, and D. D. Betts 
II 

have also investigated the problem of the ground state energy density 

for the X-Y model by an analysis of finite blocks of spins and obtain 

a result which agrees fairly closely with our result. 
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TABLE I. 

Lower Bound 

-2 

-1.6666 

e-e_ 

-1.7071 

- 1.6472 

-1.6366 

-1. 4142 

-1. 1496658 

-1.1279159 

- 1.124927 

Upper Bound 

-1 

- 1. 0279(a) 
- 1. 0333(b) 

- 1.0333 

- 1.0314(a) 
- 1.0312(b) 
-1.0312(c) 

--we 

-w-m 

- 1.0435 

- 1.0335 

- 1.0432 

-1.043751 

---_ 


