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ABSTRACT 

We give a proof of an exact cancellation of the zero-mode singularities 

in each order of the loop expansion determining the quantum corrections 

to soliton (particle-like) solutions of classical field equations. The 

cancellation restores an underlying symmetry broken by a specific 

classical solution, and owe to stability of soliton with respect to small 

perturbations generated by the symmetry group transformations. 
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I. INTRODUCTION 

In the last few years a great deal of attention has been paid to 

formulation of quantization theory of soliton solutions of nonlinear classical 

field equations. *,2 There exists a belief that soliton solution possessing 

particle-like properties may provide a basis for description of a complex 

structure of elementary particles. 
3 

Furthermore, a number of exact 

topological soliton solutions found recently in the framework of the 

Yang-Mills equations in Euclidean space can shed some light on the 

vacuum structure of the quantum theory of gauge fields and on the problem 

of quark confinement. 
4 

It was revealed however that calculation of the 

quantum corrections to the soliton solutions is a rather nontrivial problem. 

The path integration method as well as perturbation theory failed because 

of the “zero-mode problem. ” 

To deal with this problem different methods were developed. 1,2,5 

Most of them use the description in terms of collective co-ordinates 

introduced by Bogolubov and Tyablikov in 1949 in the formulation of the 

quantum theory of polaron’ and then used in the study of the strong coupling 

problem and extended objects in quantum field theory. 
7 

The zero-mode problem originates from a degeneration of the ground 

(vacuum) state of a system with respect to transformations of some basic 

symmetry (translation and/ or Lorents invariance, etc. ). This results 

in appearance of certain zero frequency solutions of the equations determining 

small variations of a field around the classical soliton solution. Just 
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as the Goldstone excitations in a theory with a spontaneously broken 

symmetry those zero-mode solutions can cause an infrared instability 

and lead to breakdown of the ordinary perturbation theory. 
8 

It has been recently shown by Faddeev and Korepin9 on an example 

of one and two loop calculations that the zero-mode singularities cancel 

exactly and the ordinary Feynman rules with an appropriately defined 

Green function are valid in finding the quantum corrections to the one- 

soliton solutions. We intend to prove here that the cancellation takes 

place in each order of the loop expansion for the quantum transition 

amplitude. An origin of these zero-mode cancellations is closely connected, 

in our view, with stability of classical soliton solutions with respect to 

small perturbations generated by transformations of a symmetry group 

in question. 
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II. ONE-DIMENSIONAL QUANTUM MECHANICS PROBLEM 

As the arguments of the proof have eventually a rather general 

character we consider first as the simplest example the non-relativistic 

quantum mechanical scattering problem given by the action functional 

A[q(t)] = 

Then we shall discuss the cancellation of the zero-mode singularities 

in the perturbation expansion determining the quantum corrections to 

soliton solutions of field equations. 

Assuming the existence of a classical trajectory q,(t) satisfying 

the equation 

‘ci,k) + Y’ s,(t) [ 1 = 0 
(the dots denote the time derivatives) with an appropriate asymptotic 

behavior one can develop via the stationary state method the perturbation 

(quasiclassical) expansion for the transition amplitude in terms of a 

propagator 

G = H-1 d2 , H=- 
dt2 

and vertices 

(2) 

(3) 

v = d \” 
n dq/ v(s) ; n = 3, 4, . . . (4) 

9 = qo(t) 
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As is well known, the formal definition of the propagator (3) faces the 

zero-mode problem because 4 0 = d/dt qO(t) is an eigenfunction of the 

operator H with zero eigenvalue, i. e. HG 0 
= 0. 

It was pointed out by Faddeev et al. 
9 that for non-zero asymptotic 

velocity v = lim go a well-defined Green function of the operator H can be 
t -*m 

constructed. In this case the function Go is non-normalizable and corresponds 

to not a bound but a virtual state of H. 

We shall consider in this note the most singular case of zero asymptotic 

velocity, i. e. the case of classic trajectories with zero energy 

E Z 4 ;Lo2 + v(q,) = 0 . 

For the class of potentials satisfying the requirement 

dq Iv(q) I+ < m 

(5) 

(6) 

s,(t) is a localized eigenfunction corresponding to a bound state of H. 

The resolvent R = (H + i e ) has now a pole at l = 0, so the Green function 

of the problem can be constructed only under the subspace of Hilbert space 

orthogonal to the vector ~,/I1 GoI1 = const . $J~: 

HG(t, t’) = 6 (t - t’) - (7) 
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It is evident that the Green function G defined by this equation is non-unique, 

e.g. the substitution 

G -. G + c+,(tNO(t’) (8) 

gives again an admissible Green function. 9 

This arbitrariness seems to be absent in the functional integration 

language where the quantum corrections to the transition amplitude in 

question are given by 

so = 
Sr 1 

J,x(t) eir[x(t)l 

where 

r[Xit)] = z h-u )-* VnXn(t)dt , 

and 

= lim -’ eig[xl rdx(t). 

T-W 
cT -TCtST ’ 

(9) 

(10) 

(11) 

CT = s ei 8 [X] 
-T ‘t $dXW g[X] = :j-XHXdt , 

so that / [DX(t)] = 1. 

As the functional space volume element [DX(t)] is locally invariant 

under the substitutions 
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xtt ) - X(t) + w,(t) (12) 

it is obvious that the whole functional integral is not changed by the 

redefinition of the functional variable X(t) given by eq. (12). 

Now we shall prove that the quasi-classical perturbation expansion 

generated by 

i 

sC 
z 

= e 
s 

(G + GIL, . $0) & - e 
r [xl 

x=0 ’ 

is independent of an arbitrary constant C. 

Indeed, using the operator identity 

eg[i40&]2 J;d& ;k2 . : J %% , lr 

where the last exponential acts as the functional shifting operator, one 

gets 

SC = 
dX 

+.FTzr 
ig2 . I [DX(t;]eir[X+h*O] . 

Due to the above arguments the functional integral in the eq. does not 

depend on k and hence SC is independent of C, i.e. SC = So’ We have 

only suggested here that the both definitions of the quantum transition 

amplitude given by eqs. (9) and (13) are equivalent at least at one value 

of C, say C = 0. Thus, the exact transition amplitude, if it exists at 

(13) 

(14) 

(15) 
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all, is independent of a particular definition of the Green function. One 

can argue, however, that this proof says nothing about an applicability 

of perturbation theory because the apparent divergences connected with 

the zero-mode singularities, the more severe at the higher orders, do 

not allow to make the shift of the functional variable (12). This seems 

to invalidate the proof on the perturbation theory level. 

We shall show here that the zero-mode singularities as well as the 

A-dependent terms cancel exactly in each order of the loop-expansion. 

The cancellation restores the underlying symmetry of the problem broken 

by the particular classical solution of dynamic equation. Writing the 

dynamic variable as a sum of the classical and the quantum parts, i. e. 

q(t) = qO(t-a, . ..)+X(t) 

where we have omitted all but the time mark parameter a, one can see 

that the infinitesimal shift of a and the corresponding transformation of 

the X(t) given by eq. (12) lead to an equivalent change of the q(t) itself. 

Owing to this relationship, the following identities are true 

s + 6eir[xl = fi ,irCxl 
0 6x a 

, 

(16) 

(17a) 

(tiaz +J Go (2 + iI13$)eirCx1, (17b) 

etc., where 
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ei gcxl = 8 +.i 
a 2 

vlll + X2dt 
0 (18 1 

is the time translation generator in the Dirac ” interaction” representation. 

The following terms of the sequence can be obtained by the induction 

from the relation 

T” = Tn-‘. ,pfa = Jda. Tn-i+(n-l)+.Tn-2 , 

where 

and G = -[$a, T] . 

(19) 

(20) 

. 
The operator T can be represented in two equivalent forms 

+ = e-ikfCXl ;o~ei8CXl = 
i JGo(& +im) , (21a) 

or 

G = IGo& +ilv”’ +tXdt , 

which both commute with T since v”’ J103dt = 0 for a self-conjugated H. 

All the operators on the r. h. s. of those identities allow integration 

by the parts. Really, it is easy to see that for an arbitrary functional 

E[x] after functional averaging according to eqs. (9) and (11) one has 

(21b) 

(@aFCX1) = a,(F[X], , 

and 

(22) 
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i,/ II 4, II2 X dt - 
c=fm 

c = 0. g = --m (23 1 

The last result is related to the fact that the + is orthogonal in the 

functional space to the dangerous direction given by the zero-mode 

eigenfunction ,+, and hence 

[ 1 
. 

DX(t) - 0, as $Xdt-+*m . (24) 

It has to be noticed here that the functional averaging of a functional whose 

dependence on the parameter a comes through the classical solution qo, 

leads in accordance with the time translation invariance to a result independent 

of a. 

Consider now the loop expansion given by 

+rr[gX] m 

eg = 1 gyJX1 . (25) 

n=O 

Substituting this into eqs. (17) we obtain after the functional averaging the 

following net result 

q = JdaLnwl = 0 

T2Ln = p,2Ln _ 2 + +Ln _ ,I = 0 (26b) 

(26a) 

. . . . 
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TkLn = p,Tk -1 
L, _ 1 + o( - 1) +Tk - ‘Ln _ 1 (2.6~) 

The successive terms in this sequence of formulas give variations of the 

n-loop approximation for the quantum transition amplitude (g) when X(t) 

undergoes the transformation (12). This completes together with eqs. 

(22) and (23) the proof of the cancellation of the zero-mode singularities 

in each order of the loop expansion. 

III. THE ZERO-MODE PROBLEM IN 
TWO-DIMENSIONAL SCALAR FIELD THEORY 

Now we shall briefly discuss the zero-mode problem in the soliton 

quantization theory. We consider for simplicity the two-dimensional 

model of a scalar self-interacting field u(x, t) with the action functional 

A[u] = j- dxdt[$(ut2-ux2) - ~(u,] . 

It is assumed that the classical field equation 

c”cl + v’(ucl) = 0 

admits solutions of the type 

ucl(x, t) = +(r - ro) ; r = x - “t 
d-r-7’ 

(27) 

(28) 

(29) 
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where e(r) reaches its constant asymptotic values rapidly enough as 

Ii-1 -m, i.e. 

b(r)+ $* , r-*m . (301 

The quantum corrections to the one-soliton solution can be described via 

Feynman diagrams in terms of a propagator 
1,2 

G = H-* ; H = 8 2+; ;~ 7 z t-vx 
T 

where ^h = -8 
2 

r + v”(u) u = $(r - ro) , and of vertices 

vn = g 
n 

0 I 
du ) ;nz3 . 

u = b(r - ro) 

(31) 

(32) 

Since $. = 8 $I = -4’ is a localizable eigenfunction of h with zero eigenvalue 
‘0 

and a norm 

s 

+CC 

dr +02 = < m 
-m 

(33) 

one faces the zero-mode problem in constructing the Green function 

G = H-* = (OT2 +“h)-i. As was pointed out by Faddeev et al. 
9 due to the 

fact that + is not square integrable function over space-time, the 

well-defined Green function can be found 

HG = 6(x -x’)6(t -t’) ; G = Go + GC (34) 
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(hereafter we assume the normalization II $. II 2 = 1) where 

GO = $ [ T - 7’1 +o(r)$ok’) , 

+m 
i 

GC = z se 
kr ’ 

( ) 

Wk -CD 

are respectively the contributions of the discrete state Go and of the 

continuous spectrum of ^h, i. e. Qk = a:$, q, = m. p is a mass 

of the field U(x, t). The usual completeness requirement is assumed here 

(35a) 

(35b) 

::: 
dk$ (r’ )$(r) + +o(r’l+o(r) = 6 (r’ -r) . 

The only reminiscence of the zero-mode problem is a nonuniqueness of 

the propagator. So the substitution 

G *G +C$,(r)$,k’) 

(36) 

(37) 

gives again the solution of the eq. (341. 

We shall prove here the statement of the paper that this ambiguity (37) 

does not affect the result in each n-loop approximation. 

The quantum corrections to an arbitrary transition matrix element 

are given by the functional integral 

DX(x, t)leirCX(xJ t )I q “[xI~. [xl 
f (38) J 1 
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which is a direct generalization of the corresponding formulas 9-11 m 

quantum mechanics, with X(x, t 1 as the quantum supplement to the one- 

soliton solution of the field equations and with appropriate initial (final) 

state functionals Y, L(f ,[XJ One can choose for example 

fJi, f [X] = lim IT 6(X(x. t) - xi, ,(x, 0) , 
t-7m x 

where X. 
1, f 

are some eigenfunctions of H, i. e. 

xi f: 4~~; u(x. t) = $ic(r) (EFz Et> . 

One can see that the expression (38) is invariant under the substitutions 

X - X + 6 X with the variations d X satisfying the equation H . 6X = 0 

and assuming zero limit when t - +m to preserve the definition of the 

initial (final) state functional. 

There are at least two such solutions, namely 

J?o(x* t) f aro$ = +oh-) , 

+J,(x, t) E a,4 = -TGo(r) , 

2-s 
where ch 0 = (1 - v ) . It is worth noting here that the zero asymptotic 

limit of the both functions IL ,. ,(x, t)at t - *m and x fixed is closely 

related to the requirement of stability of the soliton solution of classical 

(39) 

(40) 

(41a) 

(41b) 



-15- FERMILAB-Pub-76/95-THY 

10 
field equations . Thus, the general form of variations of X leaving the 

functional integral (38 1 invariant is given by 

6X = 1 A& (x, t) 
i=O, 1 

(42) 

with arbitrary constants A.. 
1 

By a straightforward generalization of the quantum mechanics case 

one can easily to prove now that the results of calculations of the quantum 

corrections to the one-soliton solution are independent of the ambiguity 

of the Green function of the general type 

G-G+ 
1 

cij”ik wjw, t ‘1 

i, j = 0,~ 1 

with arbitrary non-generated matrices Cij. 

Introducing the operators 

Ti = =O,l , 

$i = ai+; J v~~l+ix2 , ai = (ap,q 
3 

T. 
l/J 

= [Ti, ,~3~] = - / $, j& + i I yf” ‘i’j x ’ 

one can show that the cancellation of the zero-mode singularities in each 

order of the loop approximation for the transition amplitude is a direct 

(43 ) 

(44a) 

(44b) 

(44c) 
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consequence of the translation (r. -r. + a) and the Lorentz (e - tl + a) 

invariance owing to the identities 

(Ti - pi) eirrxl = 0 , 

~~~~ - $i$j - Ti,j) eir [xJ = 0 

etc. In obtaining the following terms of this sequence by an analogy with 

the quantum mechanics case the commutativity of the operators Ti and 

T. 
J/k 

has to be taken into account, i. e. 

v”‘4Ji+j”k = 0 . 

That follows from the requirement H to be a self-conjugated operator 

and equation 

H $J~, j +v”’ $i+j = aj(H$) = 0 . 

(Gal 

(45b) 

(46 ) 

(47) 

And finally, we have to emphasize that the stability of the initial (final) 

state functionals under the variations eq. (4.2.) is .essential for the proof. 
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