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ABSTRACT 

We consider a dual multiperipheral model at and near t = 0, and 

argue that the usual imposition of a Regge-cluster finite-energy sum 

rule is probably redundant. Instead we require that the TTT amplitude 

satisfy the Adler PCAC condition and crossing near s = t = 0. This leads 

to a Reggeon intercept a(O) = 0. 5 for a broad class of models. We then 

set up a specific Pad: approximation to the multiperipheral model. This 

becomes exact for a factorizable model but takes into account transverse 

momentum effects and explicitly incorporates the deferred thresholds 

arising from the production of clusters. We do not make the dual-tree 

approximation for our Reggeon couplings, which we represent instead by 

a more general exponential form. If we then assume a linear Reggeon 

trajectory cu(t),self-consistency gives an intercept a(O) = 0.49 and a triple- 

Regge coupling which is in reasonable agreement with experiment. There 

are no arbitrary parameters in our model. 
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I. INTRODUCTION 

The first step in any strong-interaction dual-unitarization program, 

i,2 such as the Veneziano i/N expansion, is the “planar bootstrap. 113 

This is a self-consistent calculation of exchange-degenerate Reggeon poles 

based on planar-unitarity, and is unaffected by Regge-cut corrections, 

fixed poles, diffraction and absorption. 
4 

One then adds in corrections 

(cylinder, torus, etc. ) which bring in a Pomeron and its interaction with 

the Reggeon and with itself. 2, 5 

Planar bootstrap calculations are generally carried out-within a 

cluster multiperipheral-model framework. In addition, 

(i) Rather simple kinematics is usually assumed. This does not 

take into account threshold and transverse-momentum effects which are 

known to be important in certain problems. 687 

(ii) Clusters are related to Regge-exchange using either explicit.. 

finite-energy sum rules8 or local duality. 
2 

We shall argue that suchni 

procedure may sometimes be redundant. 

(iii) Unless the planar bootstrap is used merely to fix certain para- 

meters for cylinder and torus calculations, the dual-tree approximation 

generally has to be made for Regge couplings. 399 It would be desirablk 

to do a calculation in which as many coupling properties as possible are 

determined by the bootstrap itself. 

In the present paper we set up a model in which the above three 

difficulties do not arise. 
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In previous planar bootstrap calculations crossing was only applied 

in a very limited way. In the present calculation we shall apply it directly 

in the neighborhood of s = t = 0. At the same time we require that the T~TT 

amplitude satisfy the Adler PCAC condition. If we then assume a linear 

Reggeon trajectory and a general exponential form for our Regge couplings 

we find that we can calculate all the parameters of our model. 

In Sec. II we review the dual multiperipheral model. In Sec. III, 

we discuss the Adler PCAC condition 
10 

and show that it leads to a Reggeon 

intercept cu(0) = 0. 5 for a broad class of models; we also discuss crossing 

near s = t = 0. In Sec. IV we discuss a Pad6 approximation to the multiperipher 

model. This involves a box graph, which is evaluated in Sec. V. Ln 

Sec. VI we write down our bootstrap results and compare them with 

the dual-tree approximation. In Sec. VII we include cylinder corrections 

and calculate the parameters of the Pomeron at intermediate energies. 

These are then compared with experiment. Finally, in the Appendices 

we discuss various multiperipheral models in detail, and, in particular, 

the conditions under which a Pad& approximation may be valid. 
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II. DUAL MULTIPERIPHERAL MODEL 

In the multiperipheral cluster-production model, the absorptive 

part for a two-body process is given by a sum of ladder graphs (Fig. 1). 

The vertical lines are narrow-resonance clusters a of mass 5. It was 

argued in ref. 6 that only a single meson cluster, with s = 0.5 GeV2 a 

and corresponding to-the p. w , E, . . . peaks, is expected to be important 

at the sort of intermediate energies where Reggeons play any important 

role and where duality considerations are expected to apply. In a dual 

multiperipheral model the horizontal lines are linear combinations of 

exchange-degenerate pairs of Regge exchanges (1. 

(A) At the planar bootstrap level we only have uncrossed (pw) 

quark-duality diagrams of the type shown in Fig. 2. The exchanges then 

correspond to Regge propagators 

We will assume that SU(3) is exact so that the p - A2, K - K 
:%* 

, w- f 

and 4 - f’ pairs are all degenerate, with a linear trajectory 

au(t) = CT0 + a’t . 

All possible quark diagrams have equal weight. 

If we are interested in generating the Pomeron, we must include 

in the sum of Fig. 1 crossed (cylinder) loops of the type shown in Fig. 3, 

in addition to the uncrossed loops of Fig. 2. In the former case we then 

have a Regge propagator 

(2il) 

(2; 2) 
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ffu(+-) 
R-Is . (2.3) 

(B) In order to obtain an additional constraint on the couplings, the assumption 

is usually made that the clusters are dual in a finite-energy sum-rule 

sense to Regge behavior. (See Fig. 4, where the external lines would 

be either Reggeons or particles). This kind of constraint on sums of 

ladder graphs was first used a number of years ago within a pion-exchange 

model* and has recently been applied extensively in the dual multiperipheral 

approach, 3,4 often in the extreme local-duality limit. 
2 

If Ta represents 

the coupling of the cluster a to the external lines of Fig. 4, we have a 

relation of the form 

‘a = Fagig2 (2.4) 

where Fa is a purely kinematic factor. We shall argue in Appendix A 

that Fa has approximate factorization properties. This in turn means 

that Ta likewise factorizes. 

Explicit expression for Fa can be obtained from finite-energy sum 

rules (FESR ). There are two difficulties which then arise, however. 

(i) An explicit FESR involves a separation point between low and high 

energies which is only known approximately. 

(ii) Since Fig. 1 itself has the correct analyticity properties and gives 

Kegge behavior for high S, our multiperipheral model already relates the 

cluster of Fig. l(a) to Regge behavior. Thus any further application of an 
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explicit FESR to the overall amplitude A of Fig. 1 is redundant and may even 

lead to difficulties. At best it may be a crude and indirect way of imposing 

crossing, since crossing-symmetric ~dual .amplitudes are known to satisfy 

simple FESRs. However, a better procedure would be to avoid an explicit 

FESR altogether in this case and impose crossing directly instead, This 

will be discussed in the next Section. 

III. ADLER ZERO AND CROSSING 

Suppose we consider TP~ scattering for simplicity, with m 
2 

= 0. ll 

Adler’s self-consistency condition 
10 

then requires that the amplitude 

T(s=O;t=O) = 0 . 

Now the planar amplitude satisfies a fixed-t dispersion relation 

T(s, t) = ; ds, A(v’, t) 

2 v’-v ’ 

Ti 

where Y = $s - u) = s + it is the usual crossing-symmetric variable 

used in finite-energy sum rules. If we expand in Y, 

m 

rrT(s, t) = 
c 

VIAL(t) . 

(3. i) 

(3.2) 

(3.41 

P =o 

where 
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/ 

m 

Al(t) = ds’ v’-‘-~A(v’, t) . (3.4) 

4m 
2 

TI 
At t = 0 this coincides with the usual Mellin transform. We shall see 

10 
in Sec. IV that it also arises naturally for t ? 0. If we follow Lovelace 

and apply Eq. (3. i) to Eq. (3. 3) we obtain 

AO(0) = 0 . (3.5) 

Further constraints can be obtained by combining Eq. (3.4) with the planar 

crossing condition 

T(s, t) = T(t, s) . 

In particular the relation 

T(O, t) = TN, 0) > 

(3.6) 

(3.7) 

which relates the amplitude along the lines s = 0 and t = 0 in Fig. 5, 

gives the relations 

A,‘(O) = *A&O), . . . (3.8) 

We shall now consider two different applications of the above results. 

(A) A broad class of simple multiperipheral models gives the form 

Al(t) = n,(t)/[j - K1(t)] (3.9) 

where n 
P 

is nonsingular in 1, and 
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Kf (3.10) 

for P in the neighborhood of QC(t) = 2cr($t) - 1. Thus, when P +(Y~, 

K 
P 

- m and so A - 0. 
P 

If we identify this zero with that of Eq. (3. 5) 

we see that we must have ~~(0) = 240) - 1 = 0, so that a(O) = 0.5. 

A nonsingular np would arise in a completely factorizable model 

(see Sec. IV). In a more realistic model we might also expect a singularity 

in n 
P 

at P = LY c’ 
Since a factorizable model appears to be a good approximation, 

however (see Appendix A), we would expect such a singularity to be weak, 

so that (Y(O) should at least remain close to 40) = 0. 5. 

(B) From Fig. 4(a) we have a contribution to the absorptive part 

W(S, t) = r(t)&@ -sa) 

Figs. l(b), (c), . . ., on the other hand, give rise to approximate Regge 

behavior. We can therefore make the usual FESR assumption that 

A(s, t) = WCs, t) , s < No 

= b(t)v 
d) 

, s>N 
0 

where No is midway between s a 
and the next cluster above it. If we take 

both of these to lie on the trajectory (2.2) we then have 

(3.11) 

(3.12) 

(3.13) 

N CY’ 
0 

=1.5-a0 ) (3.14) 
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where 

LY’ = (1 - ao)/s (3. ii a 

If we now insert Eqs. (3.12) and (3. 13) into Eq. (3.2) and impose the 

conditions (3.1) and (3.7) we obtain 

r(t) = F(t)b(t) , (3. Ii 

where, for small t, 

F(t) = No 
a0 ‘a 

r 
0 

a’ 
0 i i 

InNo+q+-q --q-~-(yo; +... 
1 I 

. (3.i 

IV. PA& APPROXIMATION 

Let us consider the usual Froissart-Gribov projection of Eq. (3.2) 

J 

m 

Tg(t) = + 

2rrqt 4m 2 

ds’A(s’, t)Q, 

li 

(4. i 

2 2 
where qt = $tmm and A is normalized so that -3 

1 2 A(s, 0) = X ‘(s, miT j m 2)0tot(s) . (4.2 TT 

with&, y, z)=x 
2 2 2 

+y +Z - 2(xy + yz + 2x). For small t, we can make 

the asymptotic approximation 

Ql(z) = B(P+1, +H~z)+~ , (4. 3 
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where B is the usual Euler beta function. A combination which is free 

of kinematic singularities in t is then 

2irB-*(P + 1, f )qt -2pTl(t) z Al(t) > 

where Al (t) is defined as in Eq. (3. 4). If we apply this projection to 

Eq. (3.11). for example, we obtain 

w,(t) = r(t)(sa++t)-- . 

If we associate a coupling-strength parameter 4 with each cluster, 

the sum of Fig. 1 can be written 

At(t) = $A 
P 

(l)(t) + $2A (2)(t) + . . . 
P 

, 

where, for example, 

(g (1) 
P (t) = wp . 

An [N, M] Pad& approximant is then defined in the usual way as the 

ratio 12,13 

$n(” -t N (N) 
+4 n 

[N, M] = 
1 + c#,,(‘) i’.‘. . + $“d(M) 

(4.4) 

(4.5) 

(4. 6) 

(4.7) 

(4.8) 

where n(l), . . . ntN) and d(l), . . . dCM) are chosen so that an expansion 

of Eq. (4.8) in powers of 6 agrees with the expansion (4. 6) up to terms of 

order $N + M. For example, 
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[I, 11 = W,(t)/Dp(t) (4.9 

where 

Dp(t) = 1 - Bp(t)/Wg(t) (4. 1 

and B 
e 

= b2AP (‘I is the contribution of Fig. l(b). 

An advantage of the “diagonal” [N, N] Pad6 approximants is that 

they satisfy a version of t-channel unitarity in which the particles lying 

on the exchanged Reggeon trajectories appear in the intermediate state. 
13 

If we include TI exchange along with the Regge exchanges of Fig. 1, these 

approximants also satisfy elastic t-channel unitarity exactly in the elastic 

region. Furthermore, in the case of a factorizable multiperipheral model, 

it is simple to show that the [1, 11 approximant is in fact exact. In such 

a model, which we shall justify in Appendix A, 

$ZA(2 1 =u Kv 
P I P 

b3A(3) 
=uKvu’K:v , 

PPPPPP 

. . . . . . . . . . . . 

(4. 1 

where u and v 
P P 

represent external couplings and K p the internal loops 

of Fig. 1. (Explicit examples are given in Appendices A and B). The 

series (4.6) can now be summed exactly to give 
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Al = u&(i - Ka’ . (4.12 

This is exactly what we would obtain from the [1, 11 Pade/approximant 

if we take Acl) and At21 from Eq. (4. 11). 

The practical advantage of using the [1, 11 Padk approximant is 

that we only have to evaluate the first two diagrams of Fig. 1 explicitly. 

We do not have to first set up a full-fledged multiperipheral integral 8: 

equation. 

V. BOX GRAPH NEAR THE FORWARD DIRECTION 

We will assume that the coupling Ta in Fig. 6 factorizes so that we 

can write 

* 

‘a = y ,aa(t”, th,a,yw, t) 

In the forward direction, Fig. l(b) then gives 

B(s, 0) = & TR(t’, O)( 28(s - 4s,) 

where Q is the usual step function, 

t*= -4 
[ 

4 
S’ F (s - 4sa)f 

I 
2 

2 
in the limit of small mrr , and 

TRW > t) = y2 fla* (t’, t )x(t’ )(ds P’ ) 

(5. 1 

(5.2 

(5. 3 

(5.4 



. . . 
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with 

X(t) = e -ira(t) 
/sin aa . 

Fig. l(b) also gives 

(5.5) 

-pi37 q, _ o = & ~‘+dt’~ [$ (TRW, 01 “1, q o 

(t’- t,) (t’ - t-,, 

S 
8(s-45,) . (5. 6) 

We will see later how ynacr can be related to the QXYLI triple-Regge 

coupling. For the present we shall simply parametrize it as 

/x(tg)l 2yta,(tu, t) = Gi’2eAt’ect’2 

where G, A and c will all be determined etientually by our bootstrap 

conditions. Eqs. (5. 2) and (5.6) can now be evaluated to give 

B(s, 0) = L g &s) 
2Lu0 

ibrs R E. 

and 

[“~~~* ‘)I t = o = CB(S, 0) + & GJ(cYIs~~‘E~ , 

(5.7) 

(5.8) 

(5.9 1 
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where 

+ cu’ln(a’s) 1 (5.1 

J = + +((Y%&~ (5.1 

EO = 2e sinh iit, (5.1 

E1 = 4e 
31 &, cash &, - sin&t2 1 / &) (5. ! 

t 
1.2 

=$ct+*t, . (5.: 

To simplify our expressions further we could make the approximations 

E1 = i-4s,/s 1 312 
I (5: 

which are exact for large s and have the correct type of threshold 

behavior as s -. 4s 
a’ 

They are still rather unwieldy, however, and 

so we will instead make the cruder approximations 

E. - ets - SLO) 

E1 
= e(s - SLi) (5. 

where s 
LO = 5. 333 sa and sL1 = 10.81 sa are the values of s where Eqs. 

(5. 15) and (5. 16) attain their maximum values. At the same time we 

will “exponentiate” x and J 
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x = ~LowsLo) 
2.V;iL0 

J = JL1(s/sLi) -HLi 

so that the value and s-derivative is exact at s = s 
I;0 and s = s 

L1 
respectively. Thus 

and 

and 

s = SLi 

J 
Li = LJ) 

s = sL1 

HL1 = $ru’n/~Li)3JL1-i . 

If we now make the partial-wave projection (3.4), we obtain 

Bp (0) = 

[+Bp(l)]t =. = c+(1 +i -L.~+-) 

(5. 19) 

(5.20) 

(5.21) 

(5.22) 

(5. 23) 

(5. 24) 

(5. 25) 

x 

1 

p ,s )2ao- 1 - 1 

liLOJ,i P +“i’ - ,“” 

$1 + 1)s -i 
LO , 

@O + HLi P +2-2nOt2~~la / 
LoI 
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VI. BOOTSTRAP RESULTS AND COMPARISON WITH THE DUAL TREE 

Eq. (4.9) has an output pole at P = a(t),if 

D &)W = 0 

The corresponding residue is then 

b(t) = Watt) . 

(6. 1) 

(6.2) 

We will only consider the value and t-derivative at t = 0 and require that 

this output pole be consistent with the input as given by Eqs. (4. 5), (3.16) 

and (2.2). If y 
2 = cyf -% we then obtain mTcy 

aO 
10.49, G+ = 34.6 y 

TITICY 
(o), A = 1.99, c = 0.12. (6. 3) 

Our value of rug is in good agreement with experiment. 

There is no direct unambiguous way of comparing G, A and c with 

experiment. To relate ~~a~ to the (Y(YCY triple-Regge coupling g we will 

use the usual Finite-Mass Sum Rule for the inclusive process TTTT - rrX 

-I Ao2da2 [,,:;M2 - (,,:;M2) R-, = ’ 
with 

1 =- 
16rrs2 

Y rrrrrr2(t ‘) lxw ) I 2g(tf, t’, o)YT*cr(o) 

(6.4) 

x(s,+)w’) car+ )40) 
(6. 5) 
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where m 
2 

0 
=N2-m2-t’,~2=M2-m2 - t’ and M is the 

0 ll lr 

missing mass (see Fig. 7). We will assume that the low M2 region is 

dominated by the production of the cluster a so that in the narrow-resonance 

approximation 

do 
dt’ dM2 

6 (M2 - sa) , 
a 

(6.6) 

where (da/dt f)a is the usual differential cross section for VT~ + va, which 

is given by 

1 =- 
16ns2 

YfTa(t’) I XW)j 2y;ae(t’)(a ‘s) 2a(t ‘) . (6. 7) 

From Eqs. (6. 4) - (6. 7) we obtain 

g (t’, t ‘, 0) = Ey’ 
Y;ao(t’) cd(O) + 1 - 20(V) y (6. 8) 

==a lo) (s702d) 
c?(O) + 1 - 2&‘) + 

This quantity is still difficult to compare with experiment. If we relate 

it to the fff coupling gc normalized as in ref. 2 we obtain gc = 11 at 

t’ = 0. This should be compared with the “experimental” estimate 

gc = 6. 3 obtained in ref. 2. However, our calculated value will be 

lower if we include pion exchange as in ref. 9. Moreover the estimate 

of ref. 2 relies heavily on a version of two-component duality which may 

not be valid. In the next section we will consider a less ambiguous 

confrontation with experiment. 
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We can also compare our results with the dual-tree approximation, 

which gives 

IXW) 12gw, t’, t) _ Np4t))r2(1 - ah’)) 

r2(1 + a(t) - 2c?(t’)) 
(6. 9) 

where N = 3 if we assume that SU(3) is the underlying group. We then 

obtain Ng2/i6n = 3. 53, which is again somewhat larger than the usual 

value. If we use the dual tree to calculate A and c by expanding Eqs. 

(6. 9), (6. 8) and (5. 7) in t’ and t around t’ = 0 and t = 0, we obtain 

A = 1.51 andc = -1.61. This should be compared with the bootstrap 

values obtained in Eq. (6. 3). We see that the value of A is relatively 

close but that c is quite different. 

VII. POMERON PARAMETERS AND COMPARISON WITH EXPERIMENT 

As discussed in Sec. II, the Pomeron can be calculated by adding 

in the cylinder loops of Fig. 3. Thus, we must make the replacement 

B, (t) - srn (t) = Bp (t) + BL:;(t) P , 

in Eq. (4.10), where Bp x has the same form as Bp except that we must 

make the replacement 

X(t) - xX(t) = i/sin m?(t) (7.2) 

in Eq. (5. 5). This leads to 
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Bp x(O) = B1 (0) . (7.3) 

Cm the other hand, Eq. (5. 9) must be replaced by 

[“2;# “It = o = cBX(s, 0) t& G(a’slZngEi . (7.4) 

If we use the approximations of Sec. V we then obtain 

1 = ct 
t=o 

e t1-2ruo+~ 
LO ! j 

x 
LO (sLl I sLo) 

2eo - 1 - 

4 
e + 1 - 2P. 

-1 
+ (1 + 1)s 

LO 
1 t 2 - 2oo + 2a ‘/XL0 (7.5) 

(A) From Eqs. (6. 1) and (6. 2) we now obtain, for small t, 

“9 = 0.75+0.97t (7.6) 

b$/bf = 1. 31 (1 - 0.34 t) . (7. 7) 

The f itself becomes extinct in this calculation. Our “Pomeron” 6, of 

course, is only an effective pole which describes the cross section for 

s 2 50. To obtain the correct (bare) Pomeron which describes scattering 

at higher energies, we would have to include higher-mass clusters. 
6, 14 

Our intercept is somewhat lower 
15, 5, 9 and our trajectory slope is 

larger 2, 6 than in other calculations, but should not be inconsistent 

with the data for s 5 50 GeV’. (See Fig. 4 of ref. 16). 
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The ratio of Eq. (7.7) is the one for r= scattering. For pp 

scattering we must make a correction to take into account the fact that 

the mass of the end cluster m N + ea. From ref. 6 or Appendix C 

we have 

2(cY - CYA) 

(b$/bf) = (mNZ/sa) p (b$/bfl . (7. 8) 
-PP .TT* 

If we assume that the end cluster is the nucleon, we have mN =1 GeV. 

The resulting br is similar to the one obtained in refs. 6 and 9 and is 
P 

consistent with the data within the usual large diffractive-correction 
. 

uncertainties. If we assume f; andw exchange, with w exchange-degenerate 

with the f, Eqs. (716), (7. 7) and (7. 8) give an essentially constant total 

pp cross section in the range 10 5 s 5 50 GeV2, 

(B) We can calculate tne average cluster multiplicity from the 

general formula 

<n> = 4 
1 ab$ aa; 

cluster 
-- +-Ins 
b+ a4 a@ 1 (7.9) 

where o is the same parameter as in Sec. IV (see Appendix C). If we 

use Eqs. (6. 1). (6. 2) and (7. 8). we obtain 

<n> 
cluster 

= 0.85 + 0.39 In s 

for pp scattering. The coefficient of In s is much smaller than the 



-21- FERMILAB-Pub-76/93-THY 

usual experimental value. On the other hand it must be remembered that 

our result is valid only for s 5 50 GeV’. For higher s additional 

clusters are produced and we may have a more rapid overall energy 

dependence. At s = 20 GeV’, Eq. (7. 10) gives <n>cluster = 2. If we 

assume 2 - 3 particles/cluster, i. e. 1. 3 - 2 charged particles/cluster, 

we obtain a charged-particle multiplicity <n> ch = 2. 7 - 4.0. Experimentally, 

<n> ch 
= 3.2. 

(C) If we use,Eq. (7. 7) we can use the bootstrap results of Sec. VI 

to predict the K-p - K”X inclusive cross section, which is dominated by 

the Reggeon-Reggeon-Pomeron graph of Fig. 8. This is given by 

dc 1 2 

dtdM2 = aYKKc (t ’ ) 1 XW) I”$- gu(Y;w’wYppp 

i 1 
& 

Za(t1) 
X (rn2d) 

qo) 
(7; 11) 

-2 
where now M = M2 - m 

2 

P 
- t 1, and yiKO = 2y KKf with our normalization. 

If we again make an end-cluster correction (see ref. 6 or Appendix C) 

/m ’ 
40) - Qph(O) 

g 
N AZ - 

CUCZP 
! i 

Y .,p^ 
S -g 

a Y acyf ’ 
(7.12) 

rrTrf 

which can be calculated using Eq. (7. 7), (6. 3) and (5. 7). The remaining 

parameters can be extracted from two-body processes. Taking 
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YlllrfYppf 
= 20 (mb - GeV units) and the quark-duality results 

YPPf 
= 3/Z ynnf = 3 yKKf, we obtain 

dL,/dt’dM2 = 0.29 mb/GeV4 

at t’ = 0. This should be compared with the experimental value! 

d o/dt’dM2 = 0.33 mb/GeV4 

at t’ = -0.1 GeV 
2 

. 

(7.13) 

(7.14) 

VIII. CONCLUSION 

We have considered a dual multiperipheral model and have imposed 

the Adler PCAC condition and crossing near s = t = 0. We then obtained 

the following results: 

(i) Our Reggeon intercept is c(O) = 0. 5. This is a general consequence 

of PCAC for a broad class of models, in addition to the specific one used 

in the present paper. 

(ii) The Regge coupling we obtained only has a partial resemblance 

to the one given by the dual-tree approximation. 

(iii) Our Regge couplings and multiplicities are in reasonable 

accord with experiment. 

Further work might involve: 

(a) Doing a more accurate calculation which does not make the 

crude approximations used in Sec. V. 
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(b) Doing a calculation over a wider range of t, positive as well 

as negative. 

(c) Adding in higher clusters, 6~14 Including perhaps fj. The latter 

would .also involve baryon exchange. 

(d) Alternative or additional crossing conditions could be imposed. 

(e) Crossing could be imposed directly on the multiperipheral-model 

absorptive part, as in Sec. III. 

(f) The Pad& approach could be applied in an improved way, either 

by going to higher orders or by summing a different series (see 

Appendix A). 

In the present paper we used a rather simple multiperipheral 

model with simple resonance clusters. In a more systematic framework, 

(A) The multiperipheral cluster-production amplitude could be 

systematically improved upon, using perhaps Reggeon-calculus techniques. 
17 

(B) The clusters could be replaced by entire low-energy (lmv-J) 

Regge-Regge “scattering” amplitudes, which would themselves be 

calculated from multiperipheral ladders plus corrections. Energy-thresholds 

in the Regge exchanges of the multiperipheral chain may have to be put 

in to avoid double-counting (for low J). 
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APPENDIX A. A GENERAL MULTI-REGGE MODEL 
WITH REGGEXLUSTER DUALITY 

We will give a justification for our use of the [i, f] Padk 

approximant (4.9) by considering a general model with Regge-cluster 

duality. This will also suggest ways of improving our approximation. 

We assume that the absorptive part A is given by Fig. 9, where 

I and II are the initial and final two-body systems in the t channel. At 

t = 0 we then have 

Ai = Wr f Bp f CL 

where W, B and C correspond to Figs. 9(a), (b) and (c); W is given by 

Eq. (4. 5), whereas 

BL = 
/ pdr’VL I (s’)kL (s’)V, %‘) 

(A. 1) 

(A. 2) 

and 

Cl = 
i/ 

pdr 1 pdr 2Vp I( ri)kr $)A”1 (rl, r2)kr (r2)V1 Tr,) (A. 3) 
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where p is a number given by phase space and kp is a two-Regge propagator. 

In a simple Chew-Goldberger-Low-type model 
18 

with thresholds, we 

would have 

ia 7) 
kpCT) = 1 i- 1 - Za(-r) x 

-I - 1 + 20( 7) 
(A.4) 

where x is a threshold factor. 7,6 

The “reduced” amplitude x is given by the integral equation of Fig. 10 

Ap(~i> To) = v”,(r,, T2) + J pd +ff1 (7 , T1)klW)$W, T 2) . (A. 5) 

Our cluster coupling functions are given by Eq. (3. ii) and 

TT Vi(s, 7) = ri(T)6(S -sa) , i = I, II , (A. 6) 

G(s, 7 i’ T2) = 3Ti, T2)6(S - Sa) , (A. 7) 

assuming that all our clusters have the same mass. Cluster-Regge duality, 

as in Fig. 4 and Eq. (2.4), now gives 

r = yIyIIFW 

I-‘rih) = yig(T)FV(T) 

f%,, T2) = g(T@(T2)~v( Ti T2’ . 

(A.8) 

(A.9) 

(A. 10) 


