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ABSTRACT

We consider a dual multiperipheral model at and near t = 0, and
argue that the usual imposition of a Regge-cluster finite-energy sum
rule is probably redundant. Instead we require that the mm amplitude
satisfy the Adler PCAC condition and crossing near s =t =0, This leads
to a Reggeon intercept «(0) = 0.5 for a broad class of models. We then
set up a specific Padé approximation to the multiperipheral model. This
becomes exact for a factorizable model but takes into account {ransverse
momentum effects and explicitly incorporates the deferred thresholds
arising from the production of clusters. We do not make the dual-tree
approximation for our Reggeon couplings, which we represent instead by
a more general exponential form. If we then assume a linear Reggeon
trajectory «(t),self -consistency gives an intercept «(0) = 0.49 and a triple=
Regge coupling which is in reasonable agreement with experiment. There

are no arbitrary parameters in our model.
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[. INTRODUCTION

The first step in any strong-interaction dual-unitarization program,
such as the Veneziano 1/ N expansion, 1.2 is the "planar bootstrap, n3
This is a self-consistent calculation of exchange-degenerate Reggeon poles
based on planar -unitarity, and is unaffected by Regge-cut corrections,
fixed poles, diffraction and absorption. 4 One then adds in corrections
(cylinder, torus, etc.)} which bring in a Pomeron and its interaction with
the Reggeon and with itself, 2,5

Planar bootstrap calculations are generally carried out -within a
cluster multiperipheral-model framework, In addition,

(i) Rather simple kinematics is usually assumed. This does not
take into account threshold and transverse~momentum effects which are
known to be important in certain problems. 6.7

(ii) Clusters are related to Regge-exchange using either explicit..
finite-energy sum rules8 or local duality. 2 We shall argue that suchsa«
procedure may sometimes be redundant.

{(iii) Unless the planar bootstrap is used merely to fix certain para-
meters for cylinder and torus calculations, the dual-tree approximation

.

generally has to be made for Regge couplings. It would be desirable
to do a calculation in which as many coupling properties as possible are

determined by the bootstrap itself.

In the present paper we set up a model in which the above three

difficulties do not arise.
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In previous planar bootstrap calculations crossing was only applied
in a very limited way. In the present calculation we shall apply it directly
in the neighborhood of s =t = 0. At the same time we require that the wr
amplitude satisfy the Adler PCAC condition. If we then assume a linear
Reggeon trajectory and a general exponential form for our Regge couplings
we find that we can calculate all the parameters of our model.

In Sec. Il we review the dual multiperipheral model. In Sec, III,
we discuss the Adler PCAC ccmdition10 and show that it leads to a Reggeon
intercept «(0) = 0, 5 for a broad class of models; we also discuss crossing
near s =t = 0. In Sec. IV we discuss a Padé approximation to the multiperipher
model., This involves a box graph, which is evaluated in Sec. V. In
Sec. VI we write down our bootstrap results and compare them with
the dual-tree approximation. In Sec. VII we include cylinder corrections
and calculate the parameters of the Pomeron at intermediate energies.
These are then compared with experiment. Finally, in the Appendices
we discuss various multiperipheral models in detail, and, in particular,

the conditions under which a Padé approximation may be valid,
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II, DUAL MULTIPERIPHERAL MODEL

In the muitiperipheral cluster-production model, the absorptive
part for a two-body process is given by a sum of ladder graphs (Fig. 1).
The vertical lines are narrow-resonance clusters a of mass '\f-s-;. It was
argued in ref, 6 that only a single meson cluster, with s, = 0.5 GeVz
and corresponding tothe p, w, e; ... peaks, is expected to be important
at the sort of intermediate energies where Reggeons play any important
role and where duality considerations are expected to apply. In a dual
multiperipheral model the horizontal lines are linear combinations of
exchange-degenerate pairs of Regge exchanges a.

(A) At the planar bootstrap level we only have uncrossed (planar)
quark-duality diagrams of the type shown in Fig. 2, The exchanges then

correspond to Regge propagators

-i'!raf(t)sa(t)

R = e (2.4)
A s
We will assume that SU(3) is exact so that the p - Az, K -K , w-f
and ¢ - {' pairs are all degenerate, with a linear trajectory
aft) = a, + o't . {2.2)

0

All possible quark diagrams have equal weight.

If we are interested in generating the Pomeron, we must include
in the sum of Fig. 1 crossed (cylinder) loops of the type shown in Fig., 3,
in addition to the uncrossed loops of Fig. 2. In the former case we then

have a Regge propagator
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«lt) 2.3)

(B) In order to obtain an additional constraint on the couplings, the assumption
is usually made that the clusters are dual in a finite-energy sum-rule

sense to Regge behavior. (See Fig. 4, where the external lines would

be either Reggeons or particles), This kind of constraint on sums of

ladder graphs was first used a number of years ago within a pion-exchange
moclel8 and has recently been applied extensively in the dual multiperipheral
approach, 3.4 often in the extreme local-duality limit. 2 If Ta represents

the coupling of the cluster a to the external lines of Fig. 4, we have a

relation of the form

I, = Fg.seg (2. 4)

where Fa is a purely kinematic factor. We shall argue in Appendix A
that Fa has approximate factorization properties. This in turn means
that l‘a likewise factorizes,

Explicit expression for Fa can be obtained from finite-energy sum
rules (FESR). There are two difficulties which then arise, however.
{i) An explicit FESR involves a separation point between low and high

energies which is only known approximately.
(ii) since Fig. 1 itself has the correct analyticity properties and gives
Regge behavior for high s, our multiperipheral model already relates the

cluster of Fig. 1(a) to Regge behavior. Thus any further application of an



-6~ FERMILAB-Pub~-76/93-THY

explicit FESR to the overall amplitude A of Fig. 1 is redundant and may even
lead to difficulties. At best it may be a crude and indirect way of imposing
crossing, since crossing-symmetric dual amplitudes are known to satisfy
simple FESRs. However, a better procedure would be to avoid an explicit
FESR altogether in this case and impose crossing directly instead. This

will be discussed in the next Section.

111. ADLER ZERO AND CROSSING
c . 2
Suppose we consider ww scattering for simplicity, with m = 0.

10
Adler's self-consistency condition  then requires that the amplitude
T(s =0;t=0) =0 . (3.1)

Now the planar amplitude satisfies a fixed-t dispersion relation

' @O
Alv?,
T(s, t) = 1f dS‘—-(-,-v-_-L) , (3.2)
T 2 v v
4m
s

where v = Xs - u) = s + 1t is the usual crossing-symmetric variable

used in finite-energy sum rules. I we expand in v,

[+]
nT(s, t) = Z val(t) . (3. 4)
£ =0

where
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A (1) = f ag v A, o . (3. 4)
2

4m
kD

At t = 0 this coincides with the usual Mellin transform. We shall see
10
in Sec. IV that it also arises naturally for t # 0. If we follow Lovelace

and apply Eq. (3.1) to Eq. (3.3) we obtain
A 0) = 0 . (3.5)

Further constraints can be obtained by combining Eq. (3.4) with the planar

crossing condition

T(s, t) = T{, s) . (3.6)
In particular the relation

T(0, t) = T(t, 0) ; (3.7)

which relates the amplitude along the lines s = 0andt = 0 in Fig, 5,

gives the relations
A0} = ZA,(0), ... (3.8)

We shall now consider two different applications of the above results.

(A) A broad class of simple multiperipheral models gives the form

A {t) = nz(t)/[i - K ()] (3.9)

£

where n, is nonsingular in £, and
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K, « In [z- czC(t)J (3. 10)

for ¢ in the neighborhood of a«C(t) = 2a(4t) - 1. Thus, when ¢ e,
Kf - o and go AF_ —~ 0. If we identify this zero with that of Eq. (3. 5)
we see that we must have arc{O) =2¢(0} -1 = 0, so0 that «(0) = 0. 5.
A nonsingular n, would arise in a completely factorizable model
(see Sec. IV). In a more realistic model we might also expect a singularity
in n, at ¢ = &, . Since a factorizable model appears to be a good approximation,
however (see Appendix A), we would expect such a singularity to be weak,

so that «(0) should at least remain close to «{0) = 0, 5,

(B) From Fig. i(a) we have a contribution to the absorptive part
W(s, t) = T() & - sa) . (3.11)

Figs. 1(b), (c), ..., on the other hand, give rise to approximate Regge

behavior. We can therefore make the usual FESR assumption that
Afs, t) = Wis, t) » 8<N (3.12)

bit)y ) s> N (3. 13)

i

where NO is midway between S, and the next cluster above it, If we take

both of these to lie on the trajectory (2, 2) we then have

Noaf' = 1.5 ey (3. 14)
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where
a = (1 - ao)/sa . {(3.1¢

If we now insert Egs. (3.412) and (3. 13) into Eq. (3.2) and impose the

conditions (3.1) and (3.7) we obtain

T{t) = F({t)b(t} ; (3. 1¢
where, for small t,
a. s &y ay {a'N y 1
0 a . 1 1 CTETQ
= — + -—
Fit) = Ny 3 ““’t[“‘No eN. Tas. @ 7 .1 ]" - 3.1
0 0 a 0 0

/
IV. PADE APPROXIMATION

Let us consider the usual Froissart-Gribov projection of Eq. (3.2}

. 0

1
T, ) - Ey f ds'A(s', t)Ql(i » 2 , (4.1

qut 4m 2 th

o
where q, = it - m_-~ and A is normalized so that
3 2 2
Afs, 0) =x7(s, m_", m_T)o_ (s) , (4.2
m T tot

. 2 2 2
with Nx, y, 2) =x +y +2 - 2(xy +yz + 2x). For smallt, we can make

the asymptotic approximation

Q, (z) = BlL+4, 1yez)t?
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where B is the usual Euler beta function. A combination which is free

of kinematic singularities in t is then

-1 -2
2vB (£ +1, 1o, fo(t) - A, (4. 4)
where AE (t) is defined as in Eq. {3.4). If we apply this projection to
Eqg. (3, 11), for example, we obtain
W, 1) = T)s, +1t) t7 (4. 5)
£ a - ) ’
If we associate a coupling-strength parameter ¢ with each cluster,
the sum of Fig. 1 can be written
1 2 2
A {t) =¢A()(t)+¢A()(t)+... , (4. 6)
£ ! £
where, for example,
(1) _
¢!AE (t) Wf(t) (4.7)
An [N, M] Padé approximant is then defined in the usual way as the
o 12,13
ratio
on'th 44 QSNn(N)
[N, M] - (4.8)
1+ d:d(” +...F ¢Mdm}
1 1
(1) (N) and d( ), - d(M} are chosen so that an expansion

wheren ', ... n
of Eq. (4.8) in powers of ¢ agrees with the expansion (4. 6) up to terms of

order 9 For example,
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[1, 11 = Wz(t)/DE(t) (4.9
where
D, () = 1 - B /W () (4.1
2, (2), s .
and B£ = ¢ AE is the contribution of Fig. 1(b).

An advantage of the '"diagonal” [N, N] Padé approximants is that
they satisfy a version of t-channel unitarity in which the particles lying
on the exchanged Reggeon trajectories appear in the intermediate state.
If we include = exchange along with the Regge exchanges of Fig. 1, these
approximants also satisfy elastic t-channel unitarity exactly in the elastic
region. Furthermore, in the case of a factorizable multiperipheral model,
it is simple to show that the [4, 1] approximant is in fact exact. In such

a model, which we shall justify in Appendix A,

PAL = uyv,

2, {2} _

¢ A = ulKﬂvﬂ

3

d)A(a)-uK.vqu (4.1

------------

where u, and v 2 represent external couplings and sz the internal loops

of Fig. 1. (Explicit examples are given in Appendices A and B), The

series (4. 6) can now be summed exactly to give
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Al =u£v£/(1-Kz) . (4. 12

This is exactly what we would obtain from the [1, 1] Padé approximant

if we take A'Y) (2)

and A from Eq. (4.141).

The practical advantage of using the [1, 1] Padé approximant is
that we only have to evaluate the first two diagrams of Fig. 1 explicitly.
We do not have to first set up a full-fledged multiperipheral integral «

equation.

V. BOX GRAPH NEAR THE FORWARD DIRECTION
We will assume that the coupling 1‘3 in Fig. 6 factorizes so that we

can write

- 1 '
l"a Y T!'a.a‘(t , t)ywaa(t » ) . (5.1

In the forward direction, Fig. 1{(b) then gives

fa
Bs. 0) = —— | at' [T (', 0)| %0(s - 4s.) (5.2
5 167s ‘ R’ a ‘

t—

where 0 is the usual step function,
1 1
1 3 s 12

t, = - :,;[S F (s - 4sa)"'] (5.3

Tt t) = v (', X ) a's)” (5.4
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with
~imalt

X(t) = e )/ sin nalt) . (5. 5)

Fig. i(b) also gives

t
RB.(s, t)] 1 f* [a | 'z]

| &ds, ) - ar!|l= [T, )

[ ot =0 167s . Lot R -0

8T __(t', 0)
R r6(5-4sa) . (5. 6}

("=t ) (=t )

5

We will see later how Y oo C2D1 be related to the coa triple-Regge

coupling. For the present we shall simply parametrize it as

2 2 2 At' ct
[xtn] “yE v, t) = g1/ 2 At ct/2 (5.7)
TaAw
where G, A and c will all be determined eventually by our bootstrap
conditions., Egs. (5.2)and (5. 6) can now be evaluated to give
2a
1 G 0
- - . 8
B(s, 0) 168 & (ot s) E0 (5. 8)

and

" Zao
[BB(S’ t)] = ¢Bi(s, 0) + GJ(a's) "E, (5.9)
- t

16ms
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where
A = z[A + a'ln(a's)] (5. 1
1 ~ 2
J = 7 +{a'n/A) (5.1
~
Atl ” ' .
E0 = 2e sinh Atz (5.1
B o ~ L
E1 = 4e [Atz cosh Atz - smthtz]l (ﬁs) (5,
and t:l,Z = %(t+it_‘) ' (5. :

To simplify our expressions further we could make the approximations

E

1

. [1 - 45 ] s]% (5. -

E, [1 - 4sa/s]3’2 , (5.

I

which are exact for large s and have the correct type of threshold
behavior as s — 4sa. They are still rather unwieldy, however, and

so we will instead make the cruder approximations

EO ~ f(s - SLO) (5.
Ei = B(S - sLi) (5.
where S10° 5.333 S, and 514 7 10, 81 s, are the values of s where Eqs.

(5.45) and (5. 16) attain their maximum values. At the same time we

will "exponentiate’ A and J
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' "t
2a /ALO

A =~ ALO(S/SLO)

-H
141
J = JL‘i(S/SL‘l) .

so that the value and s-derivative is exact at s = SLO and s = SLi

respectively. Thus

A . = (&) _
Li s -sLi
J = {J), _
| 3% 5 -sL1
_ 4, 3 -1
and HLi = ;’{Q’TI’/ALi) JLi

If we now make the partial-wave projection (3.4), we obtain

2‘20 . Zafo -1 -
B (0] = Ge! .0
- '
! 161'r§L0 P +1 2&0 + 2o IKLO
and
lnB(t)] =C+(£+1-2a+zat>
N R oK,
20 -1 - ¢
0 A -1
" (5147510 AT

A J
Lo L1£+1—2010+HL1

£ +2 - 2a0 + 2a1/:§L

!

(5.19)

(5.20)

(5.21)
(5.22)

(5.23)

(5.24)

(5. 25)
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VI. BOOTSTRAP RESULTS AND COMPARISON WITH THE DUAL TREE

Eq. (4.9) has an output pole at £ = a(t) if
D (t) = 0 . (6. 1)
The corresponding residue is then

1

= a(t) (é', 2)

b(t) = wa(t)(t)[anl )/ BI]I

We will only consider the value and t-derivative at t = 0 and require that

this output pole be consistent with the input as given by Eqgs. (4.5), (3.16)

and (2.2), If v 2. o' ““b we then obtain
Twa

1
. = 0,49 , G2 = 34.6\/ {(0), A = 141.99, ¢ =0,412. (6.3)
0 T

Our value of @y is in good agreement with experiment.
There is no direct unambiguous way of comparing G, A and ¢ with
experiment. To relate vy ao to the aao triple-Regge coupling g we will
b

use the usual Finite-Mass Sum Rule for the inclusive process wmr - X

2

N,
f M | —de— - (L2 2) =0 (6.4)
0 dt'dM dt'dm“/ R
with
/ 1 2 2
l—d—i—é) - > v e IxE | e, v, 0y (0)
\atrdM“/ R 16ms

x(s/ M22e ) (@2 2O (6. 5)
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_— 2 .
where NOZ = NO2 - mﬁ2 - t', 1\112 = M2 - mTT - t' and M is the

2
missing mass (see Fig., 7). We will assume that the low M region is

dominated by the production of the cluster a so that in the narrow-resonance

approximation

do _ (dc

|) §(M”™ - s ) ' (6.6)
dt'sz dt a

where (dof/dt ’)a is the usual differential cross section for nw - wa, which

1s given by

doy 1 2 2.2 2a(t")
(dt')a - > v XA Ty hias) (6.7
167s
From Eqgs. (6.4) - {6.7) we obtain
2
y_, (th) _ '
gltr, b, 0) = o —22__ a0 71 - 2ot (6. 8)

Yrrﬂa(o) (ﬁoza")aw) t1-2Zalty

This quantity is still difficult to compare with experiment. If we relate
it to the fff coupling g, normalized as in ref. 2 we obtain gc =~ 11 at

' = 0. This should be compared with the 'experimental' estimate

g, = 6. 3 obtained in ref. 2. However, our calculated value will be
lower if we include pion exchange as in ref. 9. Moreover the estimate
of ref. 2 relies heavily on a version of two-component duzality which may
not be valid. In the next section we will consider a less ambiguous

confrontation with experiment.
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We can also compare our results with the dual-tree approximation,

which gives

2 1
|xn [Pe, ¢, v - ngdlle®hD - o)) (6. 9)

fz(i + a(t) - 2a(t")

where N = 3 if we assume that SU(3) is the underlying group. We then
obtain N§2/16w = 3. 53, which is again somewhat larger than the usual
value. If we use the dual tree to calculate A and ¢ by expanding Egs.
(6.9), (6.8) and (5.7) in t' and t around t' = 0 and t = 0, we obtain.

A =1.51 and c = -1.61. This should be compared with the bootstrap
values obtained in Eq. {6.3). We see that the value of A is relatively

close but that ¢ is quite different.

VII. POMERON PARAMETERS AND COMPARISON WITH EXPERIMENT
As discussed in Sec. II, the Pomeron can be calculated by adding

in the cylinder loops of Fig. 3. Thus, we must make the replacement

it

A X
Bz(_t)—>B£(t) Bf(t)+B!i&(t) , (7. 1)

in Eq. (4.10), where BE x has the same form as B, except that we must

£

make the replacement
X({t) - X (t) = 1/sin we(t) (7.2)

in Eq. (5.5). This leads to
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Bf 0y = B£ (0) . (7.3)
On the other hand, Eq. (5.9) must be replaced by

X “ 2o
B s Y - X S 0
[ 3 Jt Y = ¢cB7(s, 0} + Tins Gla's) E1 ] (7. 4)

If we use the approximations of Sec. V we then obtain

| x ?.ao -1 -
[:—t In Bﬁx(t)]t I (f +1 - 20 +§i;) = (SM{S:“;’)_ 7
T
TT vz 2ap 2@ lE : (7.5)
(A) From Egs. {6.1) and (6. 2) we now obtain, for small t,
af = 0.75+0.97t (7. 6)
ba/b, = 1.31(1-0.34¢) . (7.7

A
The f itself becomes extinct in this calculation. Our "Pomeron' P, of
course, is only an effective pole which describes the cross section for

s £ 50. To obtain the correct (bare) Pomeron which describes scattering

6
at higher energies, we would have to include higher-mass clusters. . 14

15, 5, 9

Our intercept is somewhat lower and our trajectory slope is

r

larger than in other calculations, but should not be inconsistent

with the data for s g 50 GeVZ. (See Fig. 4 of ref. 16).
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The ratio of Eq. {7.7) is the one for nr scattering. For pp
scattering we must make a correction to take into account the fact that

the mass of the end cluster my # '\/sa. From ref. 6 or Appendix C

we have
2 2{ = aﬁ)
walb) = (my"/s) (bA/by) : (7. 8)
PP ST
If we assume that the end cluster is the nucleon, we have mN =1 GeV,

The resulting blg ig similar to the one obtained in refs. 6 and 9 and is
consistent with the data within the usual large diffractive-correction
uncertainties. If we assume f" andw exchange, with o exchange-degenerate
with the £, Egs. (7.6}, (7.7) and (7. 8) give an essentially constant total

pp cross section in the range 10 < s < 50 GeVa.

(B) We can calculate the average cluster multiplicity from the

general formula

ab-‘\ Ja N
1 P P
= +
<n>cluster' qé[b]-_;, 3 3¢ In S] (7.9

where ¢ is the same parameter as in Sec. IV (see Appendix C). If we

use Egs. (6.1}, (6.2) and (7. 8), we obtain

= 0,85+ 0. .
>cluster 5+0.391n s (7.10)

for pp scattering. The coefficient of In 8 is much smaller than the
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usual experimental value. On the other hand it must be remembered that
2 L

our result is valid only for s § 50 GeV . For higher s additional

clusters are produced and we may have a more rapid overall energy

dependence. At s = 20 GeVz, Eq. (7.10) gives <n> 2. If we

cluster =

assume 2 - 3 particles/cluster, i.e. 1.3 - 2 charged particles/cluster,

we obtain a charged-particle multiplicity <n>ch = 2.7~ 4.,0. Experimentally,

= 3,2,
<n>ch 2

(C) If we use Eq. (7.7) we can use the bootstrap results of Seec. VI

. - 0 . . . . .
to predict the K p -~ K X inclusive cross section, which is dominated by

the Reggeon-Reggeon-Pomeron graph of Fig. 8. This is given by

de 1 2 21
= Ve, T XA | "= g Atrtro)y_4(0)
dtfdMZ 1611'82 KKe NG CaaP ppP

2a(t) aA(0)
X (—iz— (Meany T , (7:11)
M
where now Mz = M2 -m 2 -t', and 2 =2 with our normalization
p ! YKKa YKKE ‘

If we again make an end-cluster correction (see ref. 6 or Appendix C)

- a0
/m 2 () QP( ) A
N TP
A =
gaaP k 8 v gaaf : (7.12)
a wf

which can be calculated using Eq. (7. 7), (6.3) and (5. 7). The remaining

parameters can be extracted from two-body processes. Taking
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YooY = 20 (mb - GeV units) and the quark-duality results
mrlppt

Y , we obtain

opf - 32 Vo0 T 3 Yk

4
dg/dt’sz = 0.29 mb/GeV (7.13)

at t' = 0. This should be compared with the experimental value:
2

do/dt'dM™~ = 0.33 mb/GeV4 (7.14)

~0.1 GeVz.

1]

at t!

VIII. CONCLUSION

We have considered a dual multiperipheral model and have imposed _
the Adler PCAC condition and crossing near s =t = 0, We then obtained
the following results:

(i) Our Reggeon intercept is «(0) = 0.5. This is a general consequence
of PCAC for a broad class of modelé,‘ in addition to the specific one used
in the present paper.

(ii) The Regge coupling we obtained only has a partial resemblance
to the one given by the dual-tree approximation.

(iii) Our Regge couplings and multiplicities are in reasonable
accor& with experiment.

Further work might involve:

(a) Doing a more accurate calculation which does not make the

crude approximations used in Sec. V.
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(b) Doing a calculation over a wider range of t, positive as well
as negative,

{c) Adding in higher clusters, 614 including perhaps P. The latter
would also involve baryon exchange.

(d} Alternative or additional crossing conditions could be imposed.

(e} Crossing could be imposed directly on the multiperipheral-model
absorptive part, as in Sec. III.

(f) The Padé approach could be applied in an improved way, either
by going to higher orders or by summing a different series (see
Appendix A).

In the present paper we used a rather simple multiperipheral
model with simple resonance clusters. In a more systematic framework,

(A) The multiperipheral cluster-production amplitude could be
systematically improved upon, using perhaps Reggeon-calculus techniques. 17

(B} The clusters could be replaced by entire low-energy (law-J)
Regge;Regge "scattering” amplitudes, which would themselves be
calculated from multiperipheral ladders plus corrections. Energy-thresholds
in the Regge exchanges of the multiperipheral chain may have to be put

in to avoid double-counting (for low J).
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APPENDIX A. A GENERAL MULTI-REGGE MODEL
WITH REGGE-CLUSTER DUALITY

We will give a justification for our use of the [1, 1] Pad{
approximant {4.9) by considering a general model with Regge-cluster
duality. This will also suggest ways of improving our approximation.

We assume that the absorptive part A is given by Fig. 9, where
I and II are the initial and final two-body sysiems in the t channel, At

t = 0 we then have

A! = WI +B£ +C£ (A. 1)

where W, B and C correspond to Figs, 9(a), (b) and (c); W is given by

Eq. {(4.5), whereas

B = f d&'V, ek (v, By A

) paT V, i g LTV, r (A.2)
and

I v il
c, = [ [ eor par v, (rk, (B (n iy ()Y, T (aL3)
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where p is a number given by phase space and kz is a two-Regge propagator.
18
In a simple Chew-Goldberger~Low-type model with thresholds, we

would have

E("r) -2 ~ 1 +2a 1)
2 +1 - 2alT)

kl(ﬂ (A.4)

¥

where x is a threshold factor.

The ''reduced” amplitude A is given by the integral equation of Fig. 10

~t L ~
- ! 1 | '
Ay vy = Yyt e fear¥ e, ok 1) L @)
QOur cluster coupling functions are given by Eq. (3.11) and
VoVis, 7) =T (Mels-s ), =L I (A. 6)
Vis, T, T,) = T(Ti’ T,)6(s -sa) , (A.7)

assuming that all our clusters have the same mass. Cluster-Regge duality,

as in Fig. 4 and Eq. (2.4), now gives

r = YIYHFW (A.8)
Fri(-r) = yig('r)FV('r) (A.9)
I.“'"('ri, 'rz) = g(Tl)g(Tz)ﬁv( T -rz) . (A.10)



