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ABSTRACT 

The one-dimensional many-body problem described by the non-relativistic 

theory of a complex scalar boson field (also known as the 6 -function 

model) is studied. By induction, it is shown that the set of nth order perturbation 

theory graphs for the N-particle in-state wave function can be combined and 

reduced to an equivalent set of factorized graphs in which the particle 

lines are numbered according to their ordering in momentum space at time 

t = -02. By carrying out loop integrations, each factorized graph is reduced 

to one of a finite number of skeleton graphs multiplied by a dressing function. 

The dressing functions are related to the multiparticle phase shifts which 

appear in Bethe’s form of the N-body wave function. The skeleton graphs 

are shown to be associated with the ordering of particles in configuration 

space which characterizes Bethe’s hypothesis. The analogy of a classical 

system of billiard balls is found to be helpful in interpreting the form of 

Bethels hypothesis and the physical significance of the skeleton graphs. The 

use of factorized graphs in the scattering theory of statistical mechanics is 

demonstrated by a graphical calculation of the second virial coefficient. 

e Operated by Universities Research Association Inc. under contract with the Energy Research and Development Administration 
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I. INTRODUCTION 

This is the second in a series of papersi dealing with the many-body 

problem in one space dimension described by the Hamiltonian 

H = [V ,$*(x)][V$b(X)] + C ~“(X,$(x)~(x)~(x)) 

where o(x) is a quantized boson field and c is a coupling constant. This 

Hamiltonian corresponds to a local Lagrangian density 

cy = $ m”TOQ _ (v($)(v($) _ c$&b* 

(1.1) 

(1.2) 

This model has been discussed previously by a number of authors ’ - 7and 

has proven to be surprisingly amenable to exact analysis. However, these 

discussions have all been in the context of the first-quantized formalism, 

in which an N-particle system is described by an N-body wave function 

which is an eigenfunction of the operator 

N 
H = - 

c 

a2 - +2c 

i =I a xi2 c 
6 (Xi - Xj) . 

i<j(N 

(1.3) 

The advantage of this formulation is that it allows one to invoke Bethels 

8 
hypothesis, which provides a complete set of eigenfunctions of (1.3). 

All previous discussions of this model use Bethe’s wave functions as a 

starting point. On the other hand, all the N-body problems (N = i, 2, 3, . . 

defined by (1.3) can be subsumed under the quantum field theory (1.1) 

. ) 
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or (I. 2).9 In view of the fact that modern many-body theory is largely 

built around the field theoretic formulation of the many-body problem, it 

seemed desirable to investigate the behavior of this model from a different 

point of view in which (1. 1) or (1. 2) served as the starting point. From this 

point of view, we would expect Bethe’s wave functions, as well as other 

known results (e.g. the S-matrix’ 
6 

and the equation of state ), to emerge 

from the appropriate field theoretic calculation. In addition to providing a 

clearer understanding of known results, such an approach may yield calcu- 

lational tools which would allow us to consider other properties of finite 

density systems which have not yielded to the Bethe’s hypothesis approach. 

Motivated by these and related considerations, we began some time 

ago an investigation’ of the properties of multiparticle systems described 

by (1. 1) or (1. Z), using the standard graphical techniques of quantum field 

theory. Roughly speaking, we can divide the properties to be investigated 

into two categories, those relating to zero density systems (scattering theory) 

and those relating to finite density systems (statistical mechanics). The 

first interesting problems in the scattering theory of this model are 

encountered in the three-body system. The Feynman graph combinatorics 

of the three-body scattering problem were resolved in I. In this paper, 

we complete the investigation of scattering theory by explicitly summing 

all terms in the graphical expansion of the in-state wave function for any 

number of particles N. This is accomplished by decomposing and rearranging 

the set of Feynman graphs in each order of perturbation theory to produce 
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a new set of “factorized” graphs. By an induction on the order of perturbation 

theory, the evolution from Feynman graphs to factorized graphs is demonstrated 

to all orders. The calculation and topological classification of the factorized 

graphs is much simpler than that of the corresponding Feynman graphs. It 

is found that the performance of a loop integration on a factorized graph is 

equivalent to removing an internal line from the graph and multiplying 

the resulting graph by a factor which depends on the initial state momenta 

(but not on any of the remaining loop momenta). In this way, any multi-loop 

graph can be reduced to one of a finite number of relatively simple graphs 

(which will be referred to as the skeleton of the multi-loop graph) multiplied 

by a certain function of the initial momenta. The graphical expansion of 

an in-state wave function can thus be written in terms of a finite number of 

skeletons, each one multiplied by a “dressing” function which is an infinite 

series in the coupling constant. The dressing of each skeleton is a function 

of the variables k., i = 1, . . . , N, the momenta of the N-particle plane 
1 

wave state 1 k> from which the in-state [Q (+) (k)> = U(0, -m ) 1 k> evolves 

(here, U(t, t’) = e 
iHOt eiH(t’ - tJe 

-iHot’ 
is the time development operator 

in the interaction picture). The dressing functions are related to the phase 

shift factors which appear in Bethe’s wave functions. The analytic properties 

(+) 
of the momentum space wave function <p [ Q (k)> in the N momentum 

variables pi reside entirely in the skeleton graphs themselves, which can 

be associated with the configuration space ordering which characterizes 

Bethels hypothesis. 
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In Section II the rules for factorized graphs are stated and a topological 

classification scheme is introduced. The separation of a factorized graph 

into (skeleton) x (dressing function) is described and equivalence to 

ordinary perturbation theory is established for the two-body system. In 

Section III the general procedure is described by which the perturbation 

series for the N-body wave function reduces to a set of factorized graphs 

to each order in c for any number of particles N. The formalism thus 

developed is applied in Section IV to a detailed investigation of the many-body 

wave functions, and the connection between the skeleton expansion and 

Bethels hypothesis is traced. An analogy to a system of classical billiard 

balls moving in one dimension is found to be very helpful in understanding 

the nature of Bethe’s hypothesis and the physical significance of the skeleton 

expansion. Some initial efforts toward an extension of these techniques to 

finite density systems are described in Section V. Using a technique related 

IO 
to that of Goldberger, and Das hen, Ma, and Bernstein, 

11 
the second virial 

coefficient is expressed in the language of operator scattering theory and 

calculated via factorized graphs. It is noted that the momentum derivative 

acting on the phase shift in the two-body density of states can be interpreted 

as the manifestation of a forward singularity of a matrix element. 
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II. FACTORIZED GRAPHS, SKELETONS, 
AND TWO-BODY SCATTERING 

The understanding of multiparticle scattering which will be developed 

in Sections III and IV relies heavily on a graphical representation of the 

many-body in-state wave function in each order of perturbation theory. 

In this section we introduce the basic elements of these graphs (which 

will be referred to as “factorized” graphs) and discuss some of their 

properties. 

The N-body in-state wave function can be constructed from a free 

N-particle plane wave state [ kik2.. . kn> z 1 k> by a perturbative expansion 

of the Lippmann-Schwinger equation, 

1 @t+)(k)> = 2 [Go(mk)V]njk>, 

n=O 

where Go is the free particle Green’s function operator 

Go( w) = 
1 

w-H +ie ’ 
0 

(2.1) 

(2.2) 

Ho and V are the first and second terms in (1.1) respectively, and w k 

is the energy of the plane wave 

(2.3) 

The mass of the particles has been set equal to i/2 for convenience. The 

(+) momentum space wave function <PI 5@ (k)> can, by virtue of (2.11, be 
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calculated by a set of graphs in each order of perturbation theory, representing 

vertices, energy denominators, and loop integrations. These will be 

referred to as ordinary perturbation theory graphs. We will also have 

occasion to consider graphs which are obtained from matrix elements of 

the form <p IV G to )V 
[0 k ]“I 

k> which will be called amplitude graphs. The 

latter can also be obtained by carrying out all energy integrations on the 

corresponding Feynman graphs (see I for further discussion). The basic 

vertex 

<p1pz Iv k&’ = 4c(Zrr)6 (p, + p2 - ki - k2) (2.4) 

will be represented by a dotted interaction line connecting two particle lines, 

Fig. 1. This is a change in graphical notation from I, where (2.4) was 

represented by a single 4-point vertex. The convenience of the present 

notation will become apparent. It will be important to keep in mind that, 

in spite of appearances, Fig. 1 contains no dependence on the momentum 

exchanged across the interaction line and is symmetric under the interchange 

Pi -P2’ Throughout this paper, the letter k will be reserved for the momentum 

variables of the plane wave from which the in-state is constructed, and the 

argument of Go, unless otherwise indicated, is understood to be o 
k’ 

In 

constructing the in-state 1 q’+)(k)> by successive applications of V and 

Go, the k’s never appear as integration variables, which allows us to choose 

a particular ordering, viz. 
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kl < k2 < ~. . < kN . (2.5) 

Now Let us define the basic element of a factorized graph, the wiggly, 

directed exchange line shown in Fig. 2. In an N-body factorized graph, 

there are N particle lines proceeding from the initial momenta ki at the 

bottom of the graph to the final momenta pi at the top. Each line is numbered 

from 1 to N according to the ordering of the momentum it carries in the 

initial state, e. g. for the ordering (2. 5), the line carrying momentum kp 

would be numbered 1. Graphs will always be symmetrized over the final 

momenta pi corresponding to the Bose symmetry of the wave function. A 

factorized graph of nth order in the coupling constant will have n exchange 

lines like that shown in Fig. 2, each of which connects a pair of numbered 

particle lines. The direction of the exchange line is always from the lesser 

numbered line to the greater numbered line. The value of a factorized graph 

is given by the following rules: 

(a ) A momentum pole 

-i 
q - ie 

for an exchange line of momentum q. 

(b) A line dependent “coupling constant” 

ic 
x.. = 

1J ki - kj 

(2. 5a) 

for each exchange line connecting numbered particle lines i and j, i i j. (2. 5b ) 
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(c) An integration dq z;; for each closed loop. (2.5c) 

(d) A factor of two for each distinct pair of numbered particle lines 

which is connected by one or more exchange lines. (2. 5d) 

The properties of factorized graphs will become clearer in the subsequent 

discussion of multiparticle scattering, but at this point it is worth emphasizing 

some of their structural properties which can be inferred directly from the 

rules (2. 5). First of all, instead of merely specifying the order n of a 

graph in the coupling constant, where n is the total number of interaction 

vertices in the graph, a factorized N-particle graph can be characterized 

by a set of N(N - l)/Z numbers (nijt, i < j I N, where nij is the number 

of exchanges between the particle lines numbered i and j. The order of 

the graph is then 

n = c n.. 
IJ . 

(2. 6) 

i<jlN 

The set of numbers {II,. 1 will be called the topological index or simply the 
Ll 

topology of the graph. This notation will sometimes be abbreviated, viz. 

When explicitly writing the topological index of a graph, we 

will arrange the numbers nij such that all numbers n are first, in order 
13 

of increasing j, then all numbers nzj, and so forth. Thus, the index of the 

4-particle graph in Fig. 3(a) is (3, 1, 0, 0, 2, 21 

Next we note that the value of a factorized wave function graph for 

given initial and final momenta is independent of the time-ordering of the 
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exchange lines and is in fact completely specified by the topological index 

l”ij t’ 
(Moreover, it will be found that, in the construction of the many-body 

wave function, graphs with the same index and different orderings should 

be considered identical and counted only once. ) The fact that the time 

ordering of the exchange lines can be permuted without changing the value 

of the graph is a key property which allows us to push together all exchange 

lines which connect a particular pair of particle lines. For example, the 

graph shown in Fig. 3(a) is equivalent to the graph in Fig. 3(b). 

Since the value of a factorized graph is entirely specified by its topological 

index in/, we will use %?((n} 1 to denote a particular graph. It will now be 

shown that a factorized graph g((n}l can be written as a product of two 

factors 

Sl{n}) = ~({n~)~~n~) . (2.7) 

The first quantityg({n}) will be called the dressing function of the graph 

and contains all the factors of xij which arise from rule (2. 5b), as well 

as all the numerical factors from rule (2. 5d). The second quantity%{ ni 1 

is the skeleton of the graph, and is obtained by ignoring all factors arising 

from rules (2.5b) and (2.5d) and computing the graph by rules (2.5a) and 

(2.5~) only. It will be convenient to define a set of numbers {aij 1 associated 

with each set (nij 1, where 
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A nij = 0 if n.. = 0 
‘3 

aij = 1 if Y ’ O ’ 

(2.8a) 

(2.8b 1 

The skeleton of a graph can, in general, be greatly simplified by a few 

graphical operations which correspond to carrying out most of the loop 

integrations. First, the commutability of the vertices can be used to bunch 

together all the exchange lines connecting a particular pair of particle 

lines, as we did, for example, in going from Fig. 3(a) to Fig. 3(b). Then 

the identity shown in Fig. 4, 

(2.9) 

can be used to remove all but one of the exchange lines connecting that 

pair. The skeleton of Fig. 3(a) thus reduces to Fig. 3(c). In general, this 

procedure gives us the skeletal identity 

3qnp = xi{i+ . 

From rules (2. 5b) and (2. 5d), the dressing function of an arbitrary graph 

gj t n can be written explicitly in terms of its topological index, 

(2. IO) 

(2.11) 

where 2 is the number of exchange lines in the skeleton after it has been 

reduced by (2.101, i.e., 
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“n = ii. * (2.12) 13 
i<jlN 

The first factor in (2. 11) is dictated by rule (2. 5d) and the second by rule 

(2. 5b). Eqns. (2. 10) and (2.11) will be extremely useful, both in the 

reduction of ordinary perturbation theory graphs to factorized graphs and 

in the summing up of factorized graphs to calculate the many-body wave 

function. 

In the next section we will give the explicit inductive procedure by 

which the ordinary nth order perturbation theory graphs for the N-body 

wave function, for any number of particles N, reduce to an equivalent set 

of nth order factorized graphs. Although the utility of the factorized graphs 

becomes fully apparent only at the level of the N-body problem, N 2 3, 

a brief consideration of two-body scattering is instructive. Because of the 

simplicity of the two-body system, the factorized graphs offer no great 

calculational advantage over ordinary perturbation theory, and the present 

discussion, which may seem unnecessarily complicated, is designed 

with the N-body problem in mind. By virtue of (2. I), the construction of 

the (n + l)th order wave function graphs can be viewed as a two-step 

operation on the nth order wave function graphs. First the operator V is 

(+) applied to the nth order part of the state [ ‘Ir (k)>. Graphically, this 

contracts together a pair of lines at the top of the graph into a vertex like 

(2.4), converting the nth order wave function graph into an (n + l)th order 

amplitude graph. The total result of applying V to an N-particle wave 
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function graph is the sum of the N(N - 1112 possible contractions. All 

the particles are then propagated forward in time by the energy denominator 

arising from the action of Go on the (n + 11th order amplitude graph, 

yielding an (n + 11th order wave function graph. To zeroth order in the 

coupling constant, the equivalence of ordinary and factorized graphs is 

trivial. We therefore assume that the nth order wave function graphs have 

been combined and factorized and demonstrate the construction and factorization 

of the (n + 11th order graphs. 

For two-body scattering, there is only one factorized wave function 

graph in each order of perturbation theory, e.g. Fig. 5(a) for n = 3. Its 

topological index is a single number ni2 = n = order of the graph. By 

rules (2. 5 b and d) the dressing function is 

{o/j = 1 (2. 13a 

(nj) = 2x:2, n # 0 . (2. i3b 

Because of (2. 10) and (2.8), there are only two distinct skeletons, the 

non-interacting graph (summed over the orderings of final state momenta), 

%(Ot, p) = 2~p(27d6bt - ki) (2.14a 

and the one-exchange skeleton, Fig. S(b), 

qq> Pl = 2YpCk* -a, _ ie). (2. 14b 
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The momentum space wave function <p / * (+) (k)> is given by the sum of 

graphs multiplied by (2~) times an overall momentum conserving b-function. 

The symbol 9’ in (2. 14) is defined in Eq. (6) of I. It indicates a symmetri- 

zation over the momentum variables of a particular state. When the momentum 

dependence of a graph is indicated explicitly, as in (2. 14), the variables 

exhibited will always be the momenta of the final state particles. The 

application of V to the nth order two-body wave function graph gives the 

(n + l)th order amplitude graph, e.g. Fig. 5(c) for (n + 1) = 4, 

d((n + 11, p) = 2c xy2 . (2.15) 

The notation for amplitude graphs will be generalized to N-body graphs in 

the next section. For now, we only note that the topological index of an 

amplitude graph will always be defined by counting the dotted interaction 

line (arising from the last application of V) in the same way as all of the 

wiggly exchange lines. Thus, for example, the amplitude graph in Fig. 6(a) 

has the same topological index as the wave function graph in Fig. 3(a). 

Now, (2. 15) may be written 

n+i 
M{n + 11, p) = 2x12 kl - k2)yp(kl - pi) _ ‘d -ie . (2. 16) 

1 1 

Noting that y (p 
P 1 

- p,) = 0 we can write 
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m{n + 11 p) = 2x ;2fi,yp[(ki -k2)+(pi -!=2i](ki -p&j, --; ) 
1 i-If 

= yp[(ki +~~)(k~ -piI - (k2 +p21(p2 - k2j]F({n + 11, p) 

= 
‘Ok - wp)v(in + if, p) . (2.17) 

Now, when Go is applied to the (n + 11th order amplitude graph, it gives 

an energy denominator which cancels the first factor in (2. 171, leaving 

the factorized wave function graph %{n + 11). This demonstrates by 

induction that the factorized graphs are equivalent to ordinary perturbation 

theory for two-body scattering. The procedure followed here will be 

generalized to the N-body scattering problem in the next section. It is 

helpful in this regard to associate the energy differences 
c 

ki2 - pi2 
> 

and ( k22 - p,‘) in (2. 17) with numbered particle lines 1 and 2 respectively. 
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III. N-BODY SCATTERING: REDUCTION OF 
PERTURBATION THEORY TO FACTORIZED GRAPHS 

Having developed some techniques for classifying and manipulating 

factorized graphs, we can now describe the general inductive procedure 

by which the perturbation series (2. 1) for the N-body wave function can be 

reduced to a sum of factorized graphs. The treatment is similar to that 

of the two-body problem discussed in Section II. We assume that the 

factorization has been carried out on the nth order wave function graphs and 

consider the construction of the (n + i)th order graphs by attaching one more 

vertex and one more energy denominator (successive application of V and 

Go). The reduction of the (n + l)th order graphs is facilitated by generalizing 

a trivial observation about the two-body system. In that case, we note that 

the amplitude graphM{n + 1)) evolved, by the application of Go, into 

the wave function graph of the same topology, i. e. e(((n + 11). (Recall 

that, by definition, the topological index of an amplitude graph is found 

by ignoring the distinction between the dotted line and the wiggly lines. ) In 

the N-body system, the situation is complicated by the fact that a factorized 

amplitude graph is not completely determined by its topological index, 

since this quantity does not specify which pair of particle lines is contracted 

by the dotted line vertex. For an amplitude graph with topology (m 1, 

this contraction may occur between any of the pairs (i, j) which have 

mij ’ O’ 
Thus, there are i?i distinct amplitude graphs with topology (m}, 

where r% is calculated from (ml via (2.8) and (2.12). It will be found that 
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these A amplitude graphs combine very nicely and evolve, under the 

application of G o, into the single wave function graph with topology (m}. 

In order to show this we must discuss some properties of factorized amplitude 

graphs. 

The amplitude graph with topological index (ml in which particle 

lines i and j are contracted by the dotted line at the top of the graph will 

be denoted $j({m} ). F or example, the graph in Fig. 6(a) is 

<2({3, 1, 0, 0, 2, Z}). An amplitude graph is computed by the rules (2. 5) 

along with a factor 2c for the dotted line vertex. Again it is helpful to 

write the graph as the product of a skeleton graph and a dressing function. 

The dressing function of an amplitude graph is conveniently written in terms 

of the dressing function (2. 111 for the wave function graph of the same 

topology. Specifically, the dressing function for the amplitude graph 

Tj({m\, p) is defined to be 

(-iNi - kj)g({m/) . (3.1) 

The remaining factors in the graph, coming from momentum denominators 

and loop integrations, are included in the skeleton. A technicality involving 

factors of 2 can be elucidated by considering two cases separately, mij = i 

andm.. > 1. 
13 

For mij = 1, the dotted line is the only interaction which 

connects particle lines i and j. The reduction of the skeleton graph to one 

with topology (A} (defined as in (2.8)) can be achieved by repeated use of 
A 

(2.9) or Fig. 4. In this case, the factor 2m contained in (2. 18) appears 
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A-1 
as 2 from rule (2. 5d) and 2 from the dotted line vertex factor 2~. & 

n 
the other hand, if m. > 1, there is already a factor of Zm from rule (2. 5d) 

13 

and there might seem to be an extra factor of 2 in this case. This factor 

is in fact cancelled during the reduction of the skeleton to one with topology 

b% The removal of the last wiggly line connecting i and j involves a 

loop integral with only one momentum denominator. The divergence of this 

integral is an artifact which is removed by an explicit symmetrization 

of the intermediate state momenta, producing a factor of i/2. Thus the 

skeleton of an amplitude graph <j ({ml) LS calculated by removing all 

wiggly lines connecting i and j (leaving only the dotted line), removing all 

but one wiggly line connecting any other pair, and computing this reduced 

graph by rules (2. 5a and c). For example, the skeleton of Fig. 6(a) 

reduces to Fig. 6(b). The dotted line in such a reduced skeleton incurs 

no factors at all except insofar as it may complete a closed loop. 

It can now be seen that the rules for calculating the skeleton of an 

amplitude graph$j({m}, p) which will be denoted qj({m{, p), are 

identical to those for the wave function skeleton z(m), p) except that the 

-1 
latter contains an extra factor of (-i)(qij - ie) . Here and elsewhere, 

qij is the momentum transferred across the interaction line connecting 

particle lines i and j in a reduced skeleton graph. This exchange may 

or may not be part of a closed loop. In the following, we will be combining 

the 4 amplitude graphs &?j({m~, p). Their skeletons all have an identical 

topology {A\. We choose to route the loop momenta in each of these 
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skeletons in a topologically identical way, The graphs can then be combined 

before the loop integrals are carried out, treating the momentum passing 

through any exchange line as the same in each graph (i. e. it is the same 

function of initial, final, and loop momenta). 

It will be convenient to define certain sets associated with a particular 

topology (A}. Let g({&%} ) be the set of all pairs of integers (i, j) such 

that i < j C N and Gij .t 0. 

kTl(Gi}) = ((i. j)li < j <Nandm”.. l 0 
‘J 

(3.2) 

5Qc-q) contains A pairs, each one denoting a particular exchange line 

in the reduced skeleton -%(A{) or J?Yj({At). We can also associate two 

sets of single integers, $,‘C{k[) and 4j’({kt), with each particle line j, 

ej’({A]l = (1 1 P > j and Ajp # 0) 

dJ<({A\l = (i[ i <j andAij * Of 

(3.3) 

In the wave function skeleton -%?(A!), $j< and “J’ enumerate, respectively, 

all those exchange lines which enter and all those which leave particle 

line j. This is depicted in Fig. 7. The sum of all amplitude graphs with 

topology {m} can be written 

c 
<QTj({m), p) = -i-B(m~) (ki - kjL%?jC(~t, p) 

(i, jle E”{+i\l (i, jl e g({Ifit) 
(3. 5) 
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using (3. 1). The momenta pi and p. emerge from the dotted line vertex 
J 

at the top of the graph 3 ((ml, p). The latter is therefore symmetric 

under pi- p2, a&lowing us to write 

T c qj(jm). P) = -i=%lm})< 

(i, j) e$j? 

c bi +P~I - (kj +pj)],~j({~/. p) L 

(i, j) E ST 
(3. 6) 

With the previously defined set notation, this becomes 

p) = -*j-t)< 2 
I 

x>(ki +P~)~~(@/, p) 

i = 1 j E Q 
I 

-2 c <(kj +P~)~~c{+, p) 

j q 1 i E Qj 

(3.7) 

= -i=%(m/lq t (kj +pj) 1 c ?,((A}, p) - c<qj({&[, p)I . 
j =i P E y: i E a. I 

.I 

The sum inside the brackets in Eq. (3. 7). taken prior to the loop integrals 

as previously described, involves a simple sum of exchange momenta 

connecting to particle line j, viz. 

c>qjl - c qij = kj - pj . 

1 E aj i E @p.’ 
.l 

(3.8) 
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Using this, it can be shown that 

< 
qjC{6?{, p) = i(kj - pj)%{&i, p) 

i E CD. 
J 

Eq. (3. 7) thus becomes 

N 

.T(, 

1, 

Feg4j({m)s P) = c (kj2 - pj2)q g(m), PI 
j -1 

(3.9) 

(3. IO) 

The first factor cancels the final energy denominator, showing that the sum 

of topologically similar amplitude graphs evolves into the wave function 

graph with the same topology. Applying this procedure to all topologies 

(m} establishes to order m = n + 1 the equivalence of factorized graphs 

and ordinary perturbation theory. 
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IV. WAVE FUNCTIONS, BILLIARD BALLS, 
AND BETHE’S HYPOTHESIS 

The reduction of perturbation theory to factorized graphs provides 

a remarkable simplification in the graphical representation of many-body 

in-state wave functions. In this section we will examine these wave functions 

in more detail and establish the connection with Bethe’s hypothesis. One 

can go a long way toward understanding the nature of the N-body wave functions 

and their emergence as a sum of dressed skeletons in perturbation theory 

by considering the analogous description of a systemof idealtzed pointlike 

classical particles (billiard balls 1 moving in one dimension. The state of 

such a system is specified by giving the coordinates (x,. . . . , x,) and 

velocities (v,, . . . , v,) of all the particles. If all the particles are 

identical, then any state can be described by coordinates xi chosen such 

that 

>x >... ‘X x1 2 N ’ (4. 1) 

At t = -m an in-state is a collection of widely separated particles with 

velocities 

v* < v2 < . . . < VN . (4.2) 

The time development of this system up to t = 0 consists of some number of 

two-body collisions interspersed by free motion. In each collision, energy 

and momentum conservation dictate that the two particles emerge with 
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the same pair of velocities they had before the collision. Thus at t = 0, 

the system still contains the same N velocities it began with. This allows 

us to form a correspondence between the possible states of the classical 

system at t = 0 and the elements of the permutation group S 
N’ 

If the 

particles are located at (xi, x2, . . . , x,), chosen to satisfy (4. 1). the N! 

possible velocity arrangements are (v pi, vp2, . . .,vp 
N 

), where (Pi, P2,. . . , PN 

is some permutation of (12 . . . N). For some purposes it is more convenient 

to identify such a state with the permutation Q : P 
-1 

by listing the velocities 

in their natural order (v 1’ V2’ . . . , v,) and then specifying their arrangement 

in coordinate space Cx , x 
Ql Q2 

, . . . , x 
QN 

). The time evolution of the 

system from t = -a to t = 0 can be described by labelling each two-body 

collision which takes place in that interval according to the pair of velocities 

I 
vj) which participate. Any particular pair of velocities (vi, vj) can 

collide at most once. Therefore, the time evolution can be characterized 

by a collection of N(N - 1)/Z numbers ?iij , 
i I 

where 2.. = 1 if the collision 
‘.l 

(Vi, J v.) took place and I?. = 0 otherwise. 
1J 

This is clearly the classical 

analog of the topological index of a reduced skeleton graph. The identification 

of a particle by its velocity vi corresponds to the numbering of a particle 

line in a factorized graph according to its “pseudomomentum” ki. The 

distinction between the pseudomomentum and the true momentum carried by 

the line and the appearance of momentum denominators in a factorized 

graph reflect the restrictions of quantum mechanical uncertainty. 
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Further pursuit of this classical analogy serves to introduce the 

remainder of this section in which we trace the connection between the 

factorized skeleton graph expansion of the N-body wave function and the 

form given by Bethe’s hypothesis. Consider the possible states of the 

classical system at t = 0 which can arise from a given time evolution 

ia\. The states at t = 0 are classified, according to the previous discussion, 

by a velocity permutation P, or equivalently, by a coordinate permutation 

Q = P-i. We allow the possibility that two particles may pass through 

each other without interacting. Thus, a time evolution with no interactions, 

i.. = 0 for all (i, j), can give rise to any of the N! possible arrangements 
1.l 

att =O. On the other hand, a collision (vi, vj) with vi < vj at some time 

t < 0 restricts the possibilities at all subsequent times to those which have 

Qi > Qj (i.e., by (4. i), xQ, < xQ, ). Thus, the possible states at t = 0 
1 J 

which can arise from a particular time evolution {:I are described by 

coordinate permutations Q which satisfy Qi > Qj for all (i, j) such that 

i-i.. f 0. 
‘J 

With this classical motion in mind we return to the quantum mechanical 

system and study the skeleton expansion of the in-state wave function 

<p [ q(+)(k)> = (2~) 6(cN(p) - CN(k))x =@({a~)%($ p) . 

ii-it 

Here and in the following, we use the abbreviation 

e 

(4. 3) 

c 
(k) G 

c 
k. . 

P 
1 

i =1 

(4.4) 
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In Eq. (4. 3), g((i?}) is the full dressing function of the skeleton C %{S t)> 

which is calculated by summing B((nt) over all topologies (n) that reduce 

to {c} by (2. 8). This gives 

&q = 8 n i (4. 5, (i, j) E S?j”c(at) 

2 x:) = n Tij 
p 7 i (i, j) e %(gt) 

where 

2x.. i9.. 
T.. = 

‘J 
* = e “-1 . 

‘J 

-1 
We use 6Jij = 2 tan 

[ 
c/ (ki - kj) 1 to denote the two-body phase shift. The 

connection between Bethe’s hypothesis and the skeleton expansion (4. 3) 

can be made clear by introducing a simple concept of formal set theory, 

that of a power set. For any set K the power se&?&?) is defined as 

the set of all subsets of 8. Symbolically, 

9(& = {x(x cfq . 

(4.6) 

Thus, for example, if gis a set of two elements %4= {a, b 1, the power 

setfig) contains four elements 6 (empty), (a), (b), and {a, b}. In 

general, if 8 has n elements,?%?) has Zn elements. We will now show 

that the set of all distinct N-body skeleton graphs, or equivalently, the set 

of reduced topological indices (21, has the structure of a power set. Let 

us define the set containing N(N - i)/ 2 integer pairs 

(4.7) 
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gN = ((i, j)li<jiN} . (4.8 1 

It is seen that for any N-body reduced topology (21, %({;I) C gN, 

where g((Gt) is defined by Eq. (3. 2). Thus, each g({i?/) is an element 

of the power setflgN). Conversely, every element offigN) is equal 

to some @(gj) h w ere {Aj describes some N-body skeleton. Since the 

correspondence between reduced topologies {& / and sets g((i?]) is 

one-to-one, we can denote a reduced topology by the corresponding element 

i? of the power setg%) (e.g. the non-interacting skeleton corresponds 

to the empty set, and so forth). It will in fact be convenient to regard the 

skeleton expansion (4. 3) as a sum over elements of.!?@gN), 

<p 1 X@(+)(k)> = (2rr)6(cN(p) - CN(k)) c =!?camg, p) . (4.9) 

SzE 2FvqN) 

The manipulation of (4.9) into the form of the wave function given by 

Bethe’s hypothesis hinges on a fundamental decomposition property of 

skeleton graphs. Appealing to our classical billiard ball system for 

guidance, we are led to define, for any pair (i, j) E gN, a set which contains 

half the elements of the permutation group SN 

r(i, j) = i P E SN j(PYi ’ (P 
-1 

)j 
) 

, (4.10) 
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In the previous classical discussion, rr(i, j) would be just the set of velocity 

permutations at t = 0 which can be reached by a time development consisting 

of a single collision between velocities vi and v.. To discuss classical 
J 

time developments involving more than one collision (or quantum mechanical 

skeletons involving more than one exchange) we must consider the intersection 

of rr(i, j)‘s over a set of pairs F’, 

d%?“, = n 
(i, j) ~57 

di, j) . (4.11) 

An N-particle plane wave with momenta ki can be decomposed into N! 

pieces corresponding to the possible spatial orderings of the kifs by 

defining the “ordered plane waves” 

N-l 

Q(P; p) = N! 9p(2rr)6(EN(p) - EN(k)) n -i 
zl (p) -Cp (Pk) - ie 

1 

(4. 22) 

P =i 

where 

P 

Cl CR) = 
c kP. . 

i=i ’ 
(4.13) 

The functions (4. 12) are the N-body generalization of Eq. (4.8) of I. 

The fact that these functions are the pieces of a plane wave is demonstrated 

by the identity 

N 

c @(P; p) = N!(2a)N9p n b(pi -ki) = <plk> . 

P E SN i =I 

(4. 14) 
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The decomposition of a skeleton graph .x%?) expresses it as a sum of 

ordered plane waves over the set of permutations TT( $?), 

(2rr)6(.ZN(p) - ZNkH%% P) = c HP;p) . (4.15) 

P E XT(g) 

This is exactly the decomposition one might have guessed from the preceeding 

classical arguments. The proof of (4. 15) is most easily carried out 

graphically by introducing a skeleton graph-like representation of the 

functions e(P). Attaching this graphical m(P) to the top of a skeleton graph 

and summing over permutations leaves the skeleton graph unchanged, by 

(4.14). When loop integrations are carried out, each term in this sum 

reduces to either a(P) if P E a( g) or to zero if P $ n( $?), giving (4.15). 

Using (4. 5) and (4.15). the expansion (4.9) becomes 

<p ( q(+)(k)> = c HP; P) n rij . (4. 16) 

P E r(g) (i, j) 4? I 

The order of summation in (4.16), i.e. a sum over permutations contained 

in each skeleton followed by a sum over all skeletons, is characteristic 

of the graphical perturbative approach to this system. Bethels hypothesis 

comes about by interchanging this order of summation. To do this, we 

associate a certain subset of 8 with each permutation, 
N 

XiP) = ((i, j) e gNI (P-‘)i > (P-‘Ij 1 . (4.17) 
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In the classical analogy, z(P) can be thought of as the set of all collisions 

(v. I 1 
vj) which can occur in the system at t < 0 without precluding a state 

with velocity permutation P at t = 0. Note the similarity between aP), 

which maps elements of S N onto subsets of %a and rr(i, j) which maps 

elements of gN onto subsets of SN. We now observe that the statement 

P e r( F) is valid if and only if $? C %?P). Physically this is just the 

trivial assertion that if a certain time development described by a set of 

collisions %? can give rise to a certain velocity permutation P then g 

contains no collisions which preclude P, and conversely. This allows us 

to invert the order of summation in (4. 16), 

<p 1 Q(+)(k )> = 
c 

Q (P; p) c n T., . (4.18) 

P E SN ~&QYp)) 6, j) EF ” I 

We see that, just as the full set of N-body skeletons can be identified with 

the power set of %, 
the set of all skeletons which contribute to a particular 

ordered plane wave C (P) can be identified with the power set of a subset 

of gN* namely, withflaP)). This is intimately connected with the 

appearance of simple additive phase shifts in Bethels hypothesis, since 

$9, flap)) 
[ II Tij] = (i, jpap,l’ + Tij)’ (4’19) 

(i, j) e%? 

C 

With this, the wave function becomes 
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<P/Q 
(+I (k)> = 

c 
@ (P: p) n 

P ESN (i, j) E $YtP) 

(4. 20) 

An inspection of the set aP) reveals that (4.17) is equivalent to the 

familiar algorithm for determining the phase shifts in Bethels hypothesis, 

V. SCATTERING THEORY OF THE SECOND VIRIAL COEFFICIENT 

The simplicity achieved in the description of many-body scattering 

processes by the introduction of factorized graphs encourages one to seek 

a similar understanding of finite density systems. The present section 

sketches some initial efforts in that direction. A fuller discussion of this 

subject will be given in a subsequent publication. Of course, the relationship 

between two-body scattering and the second virial coefficient is well 

understood,” and the result obtained here is nothing new. This calculation 

does show, however, that by using factorized graphs, one can avoid the 

usual procedure of putting the system in a box and imposing periodic boundary 

conditions to determine the density of states. In our approach the 

(volume) - ~0 limit is replaced by the i E + 0 limit of scattering theory. 

This limit requires some delicacy due to the forward singularities of the 

matrix element involved. 13 It is interesting that the derivative which acts 

on the phase shift in the familiar expression for the two-body density of 

states arises, in this calculation, as the manifestation of a forward 

singularity. It seems likely that the conversion of forward singularities 



-31- FERMILAB-Pub-761 77-THY 

into momentum derivatives will also be important in the theory of higher 

virial coefficients for this model. The role played by unitarity of the Moeller 

wave operators may also be of more general interest. The method used 

here to relate partition functions to operator scattering theory is inspired 

by the work of Dashen et al., 
li 

and earlier work by Goldberger, 10 
though it 

differs in detail enough to warrant some discussion. 

Following Goldberger, we write the N-body partition function as a 

contour integral in the complex energy plane, 

QN 
= TrN(e -PH) = J dE 

C 
- empE TrN G(E) Zni (5.1) 

where G(E) = (E - H)-l and Tr N 
indicates a trace over the N-particle 

sector of the Hilbert space. The contour in (5.1) goes from +co above 

the real axis, to the left of all singularities of the trace, and back to 

+m below the real axis. Only repulsive potentials Cc > 0) are considered, 

and hence all discontinuities are at Re E > 0. Letting the contour close around 

the real axis, (5.1) becomes 

QN = J 
m+ic dE 

T-ii e 
-PE Tr N G+(E) - G(E) I 

0 +ie 

J 
m+ ie 

= dE empE TrN [W - Ho)Q+(E)R(E)] . (5.2) 
0 +ie 

The operators in (5. 2) are defined by 
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(2rri)6(E - HO) = GO’(E) - GO(E) (5.3) 

co 

n(E) = c [Go(E)Vln t 
n=O 

with Go+(E) = GO(E”). The last expression in (5.2) is obtained by expanding 

G and G+ in perturbation theory and using the cyclic property of the trace, 

By virtue of the perturbation expansion of (5.2), the partition function QN 

may be realized as a sum of “vacuum” diagrams (forward matrix element 

diagrams with initial particle lines contracted with final particle lines in 

all N! possible ways). The equation of state of a finite density system is 

most easily constructed from QNc = sum of connected vacuum diagrams. 

Note that the connectedness of a vacuum diagram is not necessarily the 

same as that of the matrix element from which it came, since the contraction 

of initial and final lines can convert a disconnected matrix element diagram 

into a connected vacuum diagram (e. g. QNc f 0 even for an ideal gas ). 

The thermodynamics of a system is obtained by writing the log of the grand 

partition function @ as a sum of connected diagrams, 

log d? = 2 zNQN, 

N =1 

where z = fugacity. 

(5.5) 

Now we consider specifically the case N = 2 and write 
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-p(ki2 + kZZ) 
<kik2 1 Q+bk + i e)C%ti k +ie)( k k > 1 2 c .f5.6) 

Expressing the matrix element in (5. 6) in terms of factorized graphs, we 

see that the part of Q2c which depends on the interaction is given by the 

two contractions of the dressed skeleton { 11, Fig. 8 and Fig. 9. The delicacy 

of the E - 0 limit is due to the diagram in Fig. 8. Since the momentum 

transferred across the exchange line is forced to vanish, the skeleton is 

proportional to 11 (ie) . However, the dressing function for Fig. 8 is 

:: :li 
2(712 + 712 + 7127i2 ) = 0 and the dressed graph therefore vanishes. A 

calculation of Q 
2c 

using Fig. 9 only can be carried out and gives the correct 

answer. Here we take an alternative approach which is more closely 

related to the original Beth-Uhlenbeck procedure. 
12 

In the limit E - 0, 

D(wk + ie) becomes the Moelier wave operator U(0, -m ) (when acting on 

a state of energyo k). Thus, by the unitarity of U(0, -CD), 

lim <kl’k2’ [ Q+(mkt + ie)Q(w k + ie) Iki k > 
E-+0 

2 = <ki’k2’ [kik2 > (5.7) 

when kit 6 k.. This allows us to write 
1 

Q 2c 
_ Q2cfo) = ~ - lim lim 

i k! -k. E -0 
1 1 1 
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where Q 
(0) 

2 
is the partition function for free particles. This matrix 

element is again computed from the skeletons in Fig. 8(a) and Fig. 9(a). 

The graph in Fig. 9(a) is perfectly regular in the forward limit even when 

E ‘0. The ki ’ - ki and E - 0 limits of this graph commute and it gives no 

contribution to (5.8 ). On the other hand, Fig. 8(a) develops a forward 

singularity in the E * 0 limit. Its dressing function is 

* I; 
[ 

i(6 -8 
~~~~~ + ~~~~~ + 712-41,21) = 2 

12 1’2’ ) 

e - 1 1 
,--.d 

k.’ -ki 
2i (k2’ - k21 

ae 
12 

1 q-’ 

The skeleton is (-i)(k2’ - k2 - i e)-I. The commutation of limits in (5.8) 

8o12 
thus gives a factor -27. The phase shift derivative may be written 

1 
explicitly as 

ae12 2c -= 
ak 

. 
1 fkl 

- k2j2 + c2 
- 23~ 6(k4 - k2) 

Equation (5.8 1 becomes 

&2 _ Q2(‘) = -zr 6(O) 

/ 

“,“,I d;f “,“,i2 e-pfk12 + k22’ ’ 

1 

(5.9) 

(5.8) 

(5.11) 

which is just a one-dimensional version of the Beth-Uhlenbeck formula. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

FIGURE CAPTIONS 

The basic vertex of ordinary perturbation theory. 

The basic exchange line of factorized graphs. 

(a) An eighth order factorized wave function graph. 

(b) The same graphs as Fig. 3(a), after using commutativity 

of vertices. 

(c) The skeleton graph of Fig. 3(a) or 3(b). 

An identity used in the reduction of a skeleton graph. 

(a) The third order factorized two-body wave function graph. 

(b) The skeleton graph of Fig. 5(a). 

(c) The fourth order two-body amplitude graph. 

(a) An eighth order amplitude graph with the same topology 

as Fig. 3. 

(b) The skeleton graph of Fig. 6(a). 

Numbered particle line j with four exchange lines entering and 

four exchange lines leaving. In the notation of the text, 

< 
iK E dj and PK E $.‘, 

J 
K = 1, . . . , 4. 

(a) Forward singular skeleton graph for the second virial 

coefficient. 

(b) Vacuum graph obtained by contraction of Fig. 8(a). 

(a) Forward nonsingular skeleton graph for the second virial 

coefficient. 

(b) Vacuum diagram obtained by contraction of Fig. 9(a). 
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