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ABSTRACT 

We study the SU(3) content of the Pomeron at asymptotic energies 

in two types of model: s-channel absorptive models (generalisations of 

the eikonal model), and t-channel models (Reggeonfield theory). In 

first case the Pomeron is a pure SU(3) singlet, and in the second case 

it has approximately the same admixture of octet as is observed at 

present energies. 
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At present accelerator energies elastic scattering seems to be 

well described by a bare Pomeron pole with intercept above one, 

particularly in the case of meson-baryon scattering where the influence 

of absorption on total cross-sections seems to be very small. While 

this pole of course carries vacuum quantum numbers, it appears to 

have a small but significant (approximately 5%) SU(3) octet piece, 

which is responsible for the difference between the np and Kp cross- 

sections, even when secondary trajectory effects have been subtracted 

out. In addition, the octet and singlet pieces have a different t-dependence, 

with the singlet becoming increasingly dominant in t < 0. I,2 

There are two distinct types of model which attempt to reconcile 

the appearance of a bare pole above one with the asymptotic require- 

ment of the Froissart bound. In the first, s-channel, type unitarity is 

enforced via interations in the s-channel, allowance being made for the 

possibility of inelastic diffractory. 
3 

In t-channel models, for example 

Reggeon field theory, the asymptotic amplitude is dominated by t-channel 

iterations, together with internal Reggeon interactions, at least when the 

bare Pomeron intercept (Ye is less than or equal to its critical value 

4 ct 
oc’ 

Despite their considerable difference in form, these models give 

rather similar predictions. In s-channel models, whenever the bare 

Pomeron intercept cyo is above one, total cross-sections grow 
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asymptotically as (Ins)‘, and also factorize. In Reggeon field theory, 

there is, for aos cy 
oc’ 

a regime of high energies in which cross- 

sections grow as a power of Ins, and factorize. For a0 = aoc (where 

Ly 
oc 

is a model dependent number which is probably greater than one) 

this regime of logarithmically growing cross-sections extends to 

infinite energy. It may well be difficult, then, to differentiate between 

the two types of model on the basis of measuring the energy behaviour 

and factorisation properties of cross-sections. 

However, their predictions of the SU(3) content of the Pomeron 

at asymptotic energies are quire different. We shall show that in 

s-channel models (where multiple re-scattering of diffractive inter- 

mediate states enforces the Froissart bound), the non-singlet pieces 

of the Pomeron are averaged out, leaving a pure SU(3) singlet, which 

implies, for example the asymptotic equality of up and Kp cross- 

sections. In t-channel models (where re-scattering of non-diffractive 

intermediate states is dominant), we expect to see roughly the same 

admixture of octet as at present energies. 

In what follows, we present a general argument for the suppres- 

sion of SU(3) non-singlet contributions in the s-channel models and 

give a simple example of how this works. We then give a simple rule 

for determining the SU(3) structure of a general diagram in Reggeon 

field theory, and show how this picture simplifies at asymptotic 
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energies. All these results are asymptotic predictions, but we also 

show the variation of octet admixture at foreseeable energies can in 

principle throw light on the relative importance of diffractive and non- 

diffractive re-scattering. 

To define the general class of s-channel models we shall consider, 

we first disregard the SU(3) structure. The amplitude for elastic 

scattering ab - ab has the form 

(0 03 
T(Y,B) = c 

n=i 
Tn = - 

c 
c-u* 

n=i 
- a gb n! 

g(*) (n) 
Al (Y,B? , (1) 

where the Born term A1(Y. B) is given, as a function of rapidity Y and 

impact parameter B, in a simple Regge pole model as 

Ai(Y,B) = (A) exp [-[A) + 6Y]. (2) 

where d=ffo-l. In (1) we have neglected any t-dependence of the 

external couplings, as we can at high enough energies. In the case of 

the simple eikonal model, which takes into account only elastic re- 

b) (*I scattering, the couplings ga ,gb have the form gz,gz respectively. 

In general the couplings may be written as integrals over the absorptive 

part of a 2-particle/n-Pomeron amplitude, so that the inclusion of 

inelastic diffraction will increase the couplings from their eikonal 

values, for nl 2. 
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The asymptotic behaviour of (1) is found, as usual, by observing 

that for B2> R(Y)’ =4cr’6Y2, Ai-0 as Y-m, while for B2< R(Y)‘, 

Af+O. The behaviour of T(Y, B) as Ai -m can be found by postulating, 

(n) (*) following Ref. (5), that ga , gb are suitably analytic in n to define a 

unique continuation to Ren> - E where E > 0. (If one does not make such 

an assumption, it is difficult to see how (1) gives a sensible model). 

The sum can then be converted to a Sommerfeld-Watson integral 

sinmlY(l+n) ' 
C 

(3) 

where the contour C encloses the poles at n = 1,2,. . . As A 
1 

--cm we 

pull back the contour to pick up the leading contribution of the pole at 

n = 0, giving 

TV, B) - g;) gb”’ 8 [R (Y)’ - B2] . (4) 

(*) (0) For reasonably behaved functions ga , ga will be real, less than one, 

and hopefully positive. Of course, for the eikonal model, g (0) = 1 
a . 

Eq. (4) corresponds to a factorismg grey disc picture. 

We can take account of the SU(3) structure of the Pomeron in this 

picture in the following way. The Born term T, is equal to the matrix 

element between <al and lb> of an operator which we take to transform 

according to some representation lJ of SU(3). The current data suggests 
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that 

(5) 

The n-Pomeron exchange term Tn is equal to the matrix element of an 

operator which will transform according to the representation 

($ = s 8 ,B 63 ,p.. . If we decompose this into the irreducible repre- 

sentations g(p) of SU(3) we obtain T in the form 
n 

Tn = (-~~~-’ A; x br)~ C:I~ Mpappb ~ 

I*v a b 
(6’ 

In the above the pi are representation labels, and the V. denote the 
I 

eigenvalues of the remaining operators (I,IyY) necessary to specify the 

states. The br’p are coefficients appearing in the decomposition of 

the n-Pomeron operator (including the external couplings) into irre- 

ducible tensors, the M’s are reduced matrix elements of these tensors, 

and the C’s are Clebsch-Gordan coefficients. Equation (6) is there- 

fore quite general. 

It is of course difficult to calculate the b (n)p , even in a specific 

model of the couplings. However, we note that”bf)p will vanish 

whenever the representation D Cd does not appear in the decomposition 

of ($. The number of times Q(‘) appears in (z)n is given by’ 

I-r 
dR x(‘I) (R)” x(p)n (R) , (7) 
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where I dR represents an invariant integral over group space, 

normalised to unity, and x denotes the character of the element R 

in the appropriate representation. Noting that x(‘)“(R) = [xP(R)]~, 

we see that a:’ can, in general, be continued to arbitrary n, and it 

will satisfy the Carlson condition since X(R) is bounded. In particular 

x(p) ($ = 6 
PO ’ (8) 

that is, a (0’ 
P 

1s only non-zero for the singlet representation. Therefore 

if we again assume that we can continue b (n)v as before (and that this 

is related to the above continuation of a we obtain the asymptotic 

amplitude 

p O% 
T(Y,B) u b;)‘CVao y M ‘a0 % 

8 [R(Y)2 - B2] ~ 
a b 

(91 

Thus the Pomeron is, in this model, asymptotically pure singlet. 

This somewhat heuristic argument can be illustrated by a simple 

example. Suppose that Ti ot ui + u where u 
8 1 

and u 
8 

denote the singlet 

and octet pieces. Suppose that T,= (ul +u8jn andu <<u 
8 1’ 

Then the 

leading singlet piece in T 
n 

is uy, and the leading octet piece is 

nun-i 1 ‘8’ neglecting other singlet and octet pieces which come from 

higher order terms in u 8. (Of course this assumption is not justified 

as n-a. ) The octet piece that we have retained explicitly vanishes 

at n=O. The other, higher order, octet pieces will also vanish at 

n= 0 since, in this trivial example we can calculate T and it is purely 
0 

singlet. 
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This simple asymptotic result is corrected by two types of 

non-leading contribution. The region outside the disc, where Ai ‘0, 

gives a constant contribution to the total cross-section,which will 

contain approximately the same admixture of octet as the original bare 

Pomeron. The region inside the disc can give a contribution O(S-~) 

from the term at n= - 1 (but only if b (n)r is singular there), which 
” 

has an octet piece. Therefore we see that the leading octet piece is 

highly peripheral. This peripherality results solely from the absorptive 

procedure, and is detached from the peripherality of the octet piece 

which may reside in the ‘bare’ octet component. A different reason 

for peripherality related to r-exchange was given by Pumplin and 

Kane. 
2 

In Reggeon field theory the situation at asymptotic energies is 

somewhat simpler. For an arbitrary Reggeon diagram including 

Reggeon interactions, we can state the following rule for its SU(3) 

structure: it will transform according to the representation (E)” 

where n is the least number of Pomerons in a t-channel intermediate 

state. This is so because such a diagram is equivalent, as far as 

quantum number structure goes, to the simple n-Pomeron exchange 

diagram. In stating this we have chosen a particular way to incor- 

porate the SU(3) structure in the framework of Reggeon field theory. 

We assume that the SU(3) breaking manifests itself primarly in the couplings 

of Pomerons to the external particles. There indeed are other SU(3) 
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breaking terms to be taken into account, but they are usually assumed 

to be smaller’ and in any case do not seem to make the pomeron any 

more of a singlet. This point deserves more investigation in a suitable 

framework like the topological expansion. 
7 

When a0 = cz c the leading contribution to the total cross-section 

comes from diagrams which are dressings of a single bare Pomeron-- 

the external couplings to a single Pomeron are not renormalised. 

Thus we expect to see the admixture of octet as seen in the bare 

Pomeron at present energies. When (Ye < LYE and when t # 0, the single 

Pomeron vertices are renormalised by the multi-Pomeron couplings, 

by an amount which tends to unity as (Ye - CI 
C 

and t -0. Thus there 

will not, in general, be a complete cancellation of the octet piece. 

Recently 
8 

a solution has been proposed for Reggeon field theory 

with cy > (Y 
0 c’ 

It turns out that unlike the s channel model considered all 

multi-Pomeron Green-functions contribute equally to partial waves 

within a black disk and therefore again there does not seem to be a 

reason for the Pomeron to end up as a singlet. 

We conclude, therefore, that one can distinguish between the two 

types of model by observing whether np and Kp cross-sections are 

asymptotically equal or approximately in the same ratio as at present 
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energies. In the case of s-channel models the increasing importance 

of the s-channel iterations will lead to an increasing cancellation of the 

octet piece, and so the ratio of the two cross-sections should tend 

monotonically to unity. In Reggeon field theory the situation is more 

complicated. At intermediate energies non-enhanced diagrams 

(diagrams which are one-Pomeron irreducible, for example the multi- 

Pomeron exchanges considered in the s-channel models) will become 

important. Their effect will be to decrease the ratio (cr 
“P 

- OKp’ / Onp’ 

as in the pure s-channel models. At asymptotic energies, however, 

these diagrams are negligible, and this ratio should actually increase 

towards an asymptotic value approximately equal to that currently 

observed. 

At foreseeable energies, neither of these pictures will probably 

apply. However, the behaviour of the ratio can in principle distinguish 

between the relative importance of re-scattering of diffractive and non- 

diffractive intermediate states. As two-Pomeron exchange diagrams 

become increasingly important, those which correspond to diffractive 

re-scattering will contain a large octet piece than the single Pomeron 

and non-diffractive re-scattering, one-Pomeron reducible, diagrams. 

(Approximately twice as much, according to our simple model above. ) 

Since these diagramsgive a negative contribution to the total cross- 

section, they will tend to decrease the value of the ratio. On the other 

hand, if the ratio is observed to remain roughly constant, this will 
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indicate the dominance of non-diffractive re-scattering, and the 

enhanced diagrams of Reggeon field theory will give a more suitable 

description of the amplitude. 
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