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ABSTRACT

We discuss the K mass difference and many rare decay modes

1. 5s
of K mesons in a phenomenological unified gauge model of strong,
electromagnetic and weak interactions, The strong interactions of the
system of pseudoscalar mesons which belong to a 15-dimensional
representation of SU{4) are described by a phenomenological Lagrangian
which possesses approximate chiral SU(4) x SU(4) symmetry. The
additional quantum number is charm. The weak and electromagnetic
interactions are described by the Weinberg-Salam model. In general,
the results are in qualitative agreement with those of the free quark
model calculations. Results on the KL"KS mass difference indicate that
charmed hadrons must not be very heavy. As in the quark model
calculation, we also find a surprising cancellation of the leading terms
in K0 - p.}_J. amplitude. The result for the K+ - 1-r+eé branching ratio is
in reasonably good agreement with the recent experimental result,
Calculations of the branching ratios for the decays K= atyy,

K - wov; and KL - 'rroec_e are also performed,
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I. INTRODUCTION

2

Recently, several models which unify weak and electromagnetic
interactions through spontaneously broken gauge theories have been
proposed. Such models are renormalizable and as such they have finite
predictions for higher order weak processes, Mostly, the weak inter-
actions of the hadrons are incorporated%n such models by postulating
that hadrons are constituted of guarks and by assigning the quarks to

representations of the weak gauge group. Interms of quarks, p,n and

), the hadronic weak {(charged) current is expressed as

-{c),t HHe), _ - . -
—4 = - = -
{J ) (J ) pyp(i ys)(n cos # + hsgin 8) pyp(i YS)nc
(1- 1)
where 0 is the Cabbibo angle. In these gauge invariant theories the

neutral current Ji defined by,
3, .4 [+c) J' 3 ~(c) ]
JP-(X) 5 ETH (x), |d yJO (y) (1. 2)

together with Ji(c) satisfy the algebra of SU(2), and Ji(x) couples to the neutral
weak gauge bosons withthe same strength as the charged weak current. With
the charged weak current J:(C )(x) of Eq. (1.1), it is well known that

Ji(x) contains pieces which can change strangeness., Thus the strange-

ness changing (AS =1, AQ = 0) hadronic weak processes will proceed

with rates of the same order of magnitude as the A5 = AQ =1

processes; in contradiction to the observed suppression of the [AS] =1,
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AQ = 0 processes, In quark models, this situation is remedied by the
addition of one or more new quarks. In the case of the Weinberg-5Salam
model, which we shall be using this, this situation is remedied by the
introduction of a new quark p“ [the Glashow-Iliopoulos-Maiani mechanism] 3
which hag the charge, the strangeness and the hypercharge of p quark
and is distinguished from p by the introduction of an additional gquantum
number, the charm, Charm is assumed to be conserved by strong
interactions,

Since the charm is introduced4to suppress the AS = 1 neutral
currents, the calculation of [AS[ =1, AQ =0 processes can provide us
with information about (the mass of ) the charmed gquark Lee and Gaillard5
have recently performed these calculations in connection with the rare
decay modes of K-mesons in the Weinberg-5Salam modell:) These cal-
culations yield bounds on the quark masses and predictions for several of
the suppressed decays. However, one does nof know as to how these
quark masses will be related7to the masses of hadrons containing the
charmed quark p“, Further, one does not know to what extent the strong
interactions will modify the free quark model results and therefore one
does not know how reliable these estimates are,

With this motivation, we have performed similar calculations in
a phenomenological unified gauge model of the strong, electromagnetic
and weak interactions, It is assumed that Chiral SU(4)x SU(4) is an

approximate symmetry of the strong interaction dynamics, and it is
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broken only by the "'mass terms' [which can give a higher mass to the
charmed particles as compared to the uncharmed ones]. It is assumed
that the pseudoscalar mesons belong to the 15 dimensional representation
of the SU(4) and that this 15 dimensional representation contains the octet
of the uncharmed pseudoscalar mesons., A phenomenological model
of the strong interactions of the pseudoscalar mesons, which will
incorporate the results of current algebra of the chiral SU(4} x SU(4)
group and PCAC in the tree approximation, is constructed by an analog
to the o- model9 and the SU(3) versionioof the o-model, Such a model
consists of a set of 16 pseudoscalar (= II) and 16 pseudoscalar (= Z)
mesons which are assigned to (4, §)+ (i, 4) representations of the chiral
SU({4)x SU(4) group, and with an appropriate choice of the potential term,
the masses of the scalar mesons are made arbitrarily large via spontaneous
breakdown of symmetry (analogous to the c-model). In order to incor-
porate the weak and the electromagnetic interactions in a renormalizable
way, we have coupled this model to the Weinberg-Salam model6 of the
weak and the electromagnetic interactions by assigning transformation
properties to = and II under the weak gauge group. We have chosen the
Weinberg-Salam model as this is the simplest model which is reasonably
consistent with the present data on neutral currents.“

In Sec. II, we have described the model in detail. We have

explained how the SU(4) symmetry breaking is produced and how the weak

and electromagnetic interactions are incorporated. In Sec. III, we have
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explained the phenomenolegical point of view taken while performing
the calculations [i.e., while drawing the Feynman diagrams for a
relevant process] to lowest order in the weak and electromagnetic
interactions and to all orders in the strong interactions, In subsequent
sections, we have performed the calculations of the amplitudes for

(i) K; = ap (i) K = e (i) K(I)J,S ~2luy (iv) K -1 ee

(v) KO

S 1, — TfOEE and the calculation of the KL - K., mass difference.

S

These calculations are done in the approximate |.|.2 >> M2 >> mg >> mé
>> mi , where g, M and mc are respectively, the masses of the scalar
mesons, the Wi and the charmed pseudoscalar meson, It is interesting
to note that even though individual diagrams may not have a finite limil:12
as p.z ~ o [ through terms like p.z, in p.z, etc.] the total amplitude in
all cases have a finite limit as pz - o, Furthermore, all the results
are found to be independent of the parameters pg, a, 8,y which enter
the phenomenological Lagrangian of the strong interactions [ see Eq. (2.3)].
This is very important for otherwise the results will be useless. The
results depend only on the observable parameters like m,, fK’ MW
etc. It is important to note that the only unknown parameter the results
may sensitively depend on is m,. [ The dependence on MW in the final
form, is at most logarithmic, |

In several cases, it is obvious that the corrections to the amplitude

due to the SU(3) symmetry breaking (mK # m_ # 0) are small as compared

to the leading order contribution, In such cases, we shall perform the
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calculation in the exact SU(3) x SU(3) limit and set my, =m_ = 0,

wherever possibie, 13

In Appendix A, we have summarized many of the Feynman rules,
used in the calculations. Since the use of the Ward-Takahashi ( WT)
identities simplifies the calculations considerably, in Appendix B, we
have derived the WT identities relevant to the calculations. The
Appendices C and D are added to make it more transparent the facts
that the results are finite and independent of the parameters o, 8, vy
as pg ~ o, The Appendices E, F, G, H and I deal with some specific
calculations which are rather lengthy or less important, but essential.

In Sec. X, we have made the numerical estimates of the decay
rates and branching ratios.

We find that the results are in qualitative agreement with those
of the free quark model of Ref. [5] [i.e., with respect to the order of
magnitude. | Thus, it was found in the free quark model calculation of
Ref. (5) that there is an unexpected cancellation of the terms of the leading

order in the amplitudi for K g~ pfx . We also find a similar cancellation
mc M ’ -
—— Iln —} in the amplitude for K, - pp. Thus our
Mz 2 0

m

result indicates that the cancellation found in the free quark model holds

of terms of O(GFa

14
even in presence of the strong interactions, The amplitude we have
computed is found to be of two orders of magnitude lower than the

amplitude for K. — yy = |.L|-:L as a result of this cancellation. The result

L

+ + -~
for K — 7 ee is found to be in good agreement with the recent
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15
experimental result. = The calculation of the KL—KS mass difference in

this model puts stringent upper bound on the masses of the charmed
mesons. The amplitude for the process K+ - 1-r+v; is found to be
gensgitive to the charmed meson mass (mC }, however, present experimental
bound is not sufficiently strong to use this result to put a meaningful

bound on m . Calculations of the branching ratios for the decay processes

o - 0 0 -
KO -1 ee and K - 1 vv are also performed. The results can

S, L S,L
+ + - -
obviously be extended to K = m pu and KO - Tl'op.}l .

II. THE MODEL

(11, 1) The Model for Strong Interactions

The model for strong interactions is a natural extention of the
c—model9 and the SU(3) version of the G—modelioto incorporate the
chiral SU(4) x SU(4) symmetry. It consists of a set of 16 pseudoscalar
fields and 16 scalar fields which are assigned to (4, 4) + (4, 4) representation
of the chiral SU(4) x SU(4). The scalar and the pseudoscalar fields may
be written as 4 X 4 hermitian matrices I and Il respectively. These

are given below:

— XO -rr+ K+ —
C C C C
-0 "o g 7o + +
X + +
c N2 N6 N3 T K
II =
" o o, "8 o K
0 NZ N6 N3 0
2n n
- - - 8 0
K. K 5 7r T
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and,
0 + + -
|—EC YC qb(: KC
o £ n
=0 0 8 0 + +
Yo BrtwtTE ¢ K
zZ = ¢ £t . (2.1)
- - __0 8 °0 .
¢ ¢ N EEY 0
i - ) %, &,
K K - +
e 0 SN

In terms of the quark language, the basis chosen for the four
dimensional representation is {p 7,p,n, »). In addition to the SU(3)
nonet, there are 7 scalar and pseudoscalar particles whose quark

contents are:

- 't 0 -
” - - rd
Es .~ PP X, Y, ~ pp
+ 4 - + 4+ -
~ np’ K ~ Ap”
o dJc np o % Ap“ etc,

We assign M = = +ill and M-y i1l to (4,4)and (4, 4)
representation of the chiral SU(4)x SU(4) group; i.e., the fields M and

MT transform under the chiral SU(4) x SU{4) transformation as

+ .1

+ T 1 T
[Qi’MafB] = EMQ'Y( 1)\”3

. 1 (2. 2)
[Qi’Ma'ﬁ] - EMQ‘Y i)yﬁ

- Ty 1 T
[Qi’Maﬁ] = --Z-(Ri)afyMyﬁ

+
where, (-::_— ki) are 4 x 4 matrix representation of SU(4) and Qi are the



-9- FERMILAB-Puh-74/96-THY

generators of the chiral SU(4) x SU(4).

We write down the most general Lagrangian which is invariant
under the chiral SU({4) x SU(4) transformations and has dimensions four
or less [to ensure renormalizability after it is coupled to the Weinberg-

Salam model of the weak and electromagnetic interactions. ]

F -t w5 MatM) - VM, M)
0 2 K
VM, M) = pg b (M M) (2. 3)

+ us fotr (M M2 + Blte(M M) 2+ vl det M +det M1}

The coefficients a, B, y are arbitrary to the extent that they produce
the potential V(M, MT) such that V = © as any linear conbination of
fields — o,

We shall not discuss this model in detail. We shall only note
that like the o-model and its SU(3) version,g’ ? if we let p(z) be negative,
spontaneous symmetry breakdown will occur, M will develop a vacuum
expectation value (which may chosen to be real). Then % will
describe a theoryﬁ::ontaining 15 massless pseudoscalar fields and 16
scalar and one pseudoscalar ( %tr 11) massive fields. Furthermore,
the tree diagrams with external pseudoscalar lines will, in the limf\t8

—920 - o reproduce the results of the current algzbra (extended to the
SU{(4) x SU(4) group) with PCAC, and thus will contain the low energy

phenomenology. [As far as the model of the strong interactions is
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¥

concerned, we may add to % aterm of the form tr A(M + M ') so

0
as to break the SU(4) symmetry and make the charmed particles
massive. However, as we shall see, to maintain the gauge invariance
with respect to the weak gauge group such a term cannot be added
arbitrarily, but must be produced through the Higgs' scalar couplings. ]
Further, in the spirit of a phenomenological model of strong interactions,
such tree diagrams will be assumed to represent the effect of strong

interactions to all orders.

(I1, 2) Extention of the Model to Incorporate Weak and Electromagnetic
Interactions

In order to incorporate the weak and the electromagnetic inter-
actions into the Lagrangian 5{”6 of Eq., (2.3), in a renormalizable way,
we assign to M and M , transformation properties under the weak
gauge group SU(2) x U(1) of the Weinberg-Salam rnodel.6 This model is
so well known that we shall not describe it in detail, except to introduce

1,2
our notations. The basic Lagrangian consists of gauge fields

_ +
B(:L(a =0,1,2,3) and a complex doublet of Higgs' scalars & = (20) which
belong to the representation of the local SU(2) x U(1) gauge group. This

Lagrangian is described by

F - Lpe pev
| 4vaFa
T
+ %Dpi’ D”@—mijcw k(CI)TtI))z (2.4)

where
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F¢ -3 B -5 B+ ¢*PVpPRY
pv Kvoov o bV
(a,B, vy # 0)

0
P -5 BY-58°

i @O i 0
Da&=g3gd-—gT7 B &--g”“B @
M w28 B 2 & "y

A> 0,

2 . . .
When m is negative, spontaneous symmetry breaking cccurs

and & develops a vacuum expectation value which may be chosen to be

0
)
viN2

where v is real, Then .,‘/11 describes a theory of a charged doublet
of massive vector bosons (W:b) a massive neutral vector boson (Z} and
a massless vector boson (A) which is identified with the photon. The

+ 6,17
magses of W and Z are given by,

1
My = 3 8Y
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—_—t . (2.6)

18
We shall work in some special case of the R, gauges for which

§

the gauge term is given by

= 2 :F%@® e
gauge 2 e °

i

+, igv +,2 [ 1 : 1 Gv 2
=g|a“wp+-§%—s 1 +gn.l8HZH-—

1 2
+— (a%a ) (2.7)
2a V3
+
where we define the fields & and x by:
g7
= |vty,tix): s =(s) . (2.8)

N2

In these gauges the unphysical scalars si and X are decoupled
from Wt and Z,

To assign the transformation properties to M and M T under the
weak gauge group, we refer to the quark version of the Weinberg-Salam

3

model for hadrons, There the quark quartets (p“,p,n, ML and
p7,p,n, MR form reducible representations of the gauge group

SU{2) x U(4). They transform under a local SU(2) x U(1) gauge
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where Ta and TQ form reducible

L

are given by

I, R

FERMILAB-Pub-74/96-THY

{2.9)

representations of SU(2} x U(41) and

(x})as
o
— - S
px) p~(x)
(x) 4T 8 (x) (x)
P R L.R o p
n(x) nix)
xix) A (x)
. _L,R ]
R
T = T% (@=1,2,3), T2 =Y
L @ r ? .= "L
T =0 (@=1,2,3), To =Y
R @ He2is Sp= IR
T + iT
T, = i__ L (T_)T
N2
[0 0 -g5in 6 cosfﬂ
_ 1 0 0 cos 8 sin 8
N2 0 0 0 0
0 0 0 0
% T T T )
T3 - Dlag(z, z, 2’ 2)
1
Y, % 3
R 4 & _z _2
YR—D1ag(3,3, 3 3)

(2.10)

The generator of the electromagnetic gauge transformation, Q,

is given by

Q=T

3

1
+ E‘(YL + YR)

(2.41)
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We define the transformation properties of M and MTunder an

SU((2) » U(1) local gauge transformation as:

T 0 (x) i TRO (x)
M(x)—+e M(x) e
o " (2.12)
-iT 86 (x) iT_ 6 (x)
MT(X)"’G R o MT(x)e L o
so that, denoting quarks by qa (e =1,2,3,4); Mozﬁ transforms as
- 1 -
4,1, qﬁR and Ma[i as qaR qu .
The gauge-covariant derivative DI-LM is given by,
D M= (8 M-igT%BM - +g-v. B'M+Lg My BY). (2. 13)
T u 2 L 2 Rp "

Then the Lagrangian which incorporates _gg of Eq., (2,3)and is

gauge invariant under the gauge transformations of the weak gauge group

17
is:
F- %tr (DMMTD“M) - p.g MM

2

- H(Z) Eztr(MTM) + Bltr MTM)Z + vy (det M + det MTil

+ F+ s (2.14)

1 M &

where Zﬁ@is a gauge-invariant interaction (up to quartic terms) of
L¥

M and @ fields.
yM«I: can be chosen such that it can produce the SU(4) and SU(3)

symmetry breaking. For simplicity, we shall first consider the SU(4)

symmetry breaking. To construct gauge invariant couplings, it is
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convenient to write M with the basis (p~, kc,p, n, ) E;vhere

?\c = Acos 8 - n sind

n, Zncos 8 +Asing (8 = the Cabbibo angle):i

Let us call it M 7, Then the coupling

“Z\/{@ =N2 ¢ nT(M’)T<5+h.c.

where,
— -- +—1
1] s,
4] -8~
n = ® = {2.15)
0 0
L 0 ] .0 _]

1
is gauge invariant, Explicitly, ?

gQZZEEC(v+¢O)-nC>§

M

+ {'\f—z £ S-[(KZcos g - d); sin 9)-'1(K; cos 6 -TT(-: sin 0 )]+ h(;}m)

2
If we let Mg be negative, M will develop vacuum expectation value
which may be chosen to be real and diagonal. In this case, with the

SU(4) symmetry breaking, 16

F—'?‘ ——
f/

<M> = . (2.17)
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The vacuum expectation values f“ and f satisfy the constraints
which follow from the requirement that there should not be terms linear
in fields (here gc and EO). These can be obtained from Egs. (2, 14),

(2.16) and (2,17), They are:

~pgf’ - pg{4af’3 + 4B 30 v 2yt + 20t = 0,

i.e.
’ 3
4af‘2+4[3(f'2+3f2)+2y-§_—; +4 = zvgz (2. 18)
f o
and
L2 L2 .2 .
dof”” +4B(F77 +3f7) + 2yff7 +1 =0 ., (2.19)

From Egs. (2.418) and (2. 19), it is clear that as pg -+ -, f7 = f,

Let us define
f“ = f(1+ ¢)

Then, to the first order in €, Egs. (2.48) and (2. 19) yield:

€ = 2"3@ X (2. 20)
Zp.of (2a - y)

The mass terms in the Lagrangian of Eq. (2.14) can be computed
and simplified using Eqs. (2.18), (2,19) and (2, 20). We shall only quote

the results, We obtain, to the first order in €:

. 2 2
(i) my = my =m =m
C
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= \;.—C‘ using Eq. (2. 20) (2.21)
Thus, 2 2
mcf gfrnc
t,: = v = M (2. 22)
2 2 2
(ii) mp=m_ = m_ =0 (2.23)
w n
8
(1i1) 2 .z _ 2 _ 2
iii m.  Sm o= mg =g
8
=4p0f (Za—y)—‘lpoyf € (2. 24)
(iv) mz *mz -mz = .2
= = = u
YO Kc ¢c ¢
2 2
= +3mg (2.25)
{(v) The mass terms containing the diagonal pseudoscalar fields
are:; 2

Y I f2”c+“}_§-”’o e uBures?
2} "o 2 o YE€ M0

2 2 2
+ +
Z(mC kg yfe)nc}

Thus there is mixing between M. and Mg The SU(4) singlet

1 4

— o A = e + .=
ZtrII_no 2‘(nc rﬁno)andnc_
eigenstates of 'che(matss)2 operator [’co zeroth order in €| with

eigenvalues

respectively.

(2. 26)

1
={~3 n, - no) are approximate

(2.26a)
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(vi) There will be similar mixing between EC and &0. To the

zeroth order in €,

and,
1
[ J— 3 -
£, =73 - &)
2
are the eigenstates of the (mass) operator with the eigenvalues:

2 2 2 2
My = - Zpo H By = B (2. 26b}

respectively.

Next consider the SU(3) mass splitting, We can introduce an SU(3)}
splitting by the addition of terms to _gi/[ & which are similar to that of
Eq. (2.15) with suitable choices of n “s and &“s so that the isospin and
hypercharge are still exactly conserved by strong interactions. For
convenience let us consider such an SU(3) symmetry breaking that will

still keep pions massless, This can be achieved by the addition of the

following type to .Cz:ﬂM@:
T i T li
(a1n1+a2n2)(M ) tI>1+(b1n1+b

where

=3
(a8
1]
o o o

o O = O
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sJr 0
¢]
s 0
d = d =
1 0 2 ST
0 s0

Given the Cabbibo angle, the constants a s bi’ b2 must be s0

1222
constrained that they praduce:

(i) no Kox and ﬁo.x couplings, since there are no KOZ , KOZ

couplings.
. + - -+ . . *
(ii) nom s and 7 s couplings since we want m to be massless.
[ These requirements follow from the gauge invariance of the tree

+
diagrams containing Z and W internal lines. These conditions may be

o KO and

rephrased as there are to be no linear terms in «
4’0 ES %0
20,78 L9y phis N . . i
( NS «/3—) his is all very similar to the Higgs couplings in
the corresponding quark model. ]

These conditions leave only one free parameter which may be

2
chosen to be mK.

The details of these constraints are unimportant to us. We shall

only need the mass splitting. For this purpose we note that now <MO>

takes the form:

’_«f(i + ¢ )

<M>_ = . (2, 28)

- f(4+6)
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With this <M>O we may carry out the steps outlined in
Eqgs. (2.17) - (2. 26), The relevant results are:

(i) m? =0, mS =2 p.gfz(Zr:v -y)6 . (2.29)

(ii) The mass terms containing the diagonal pseudoscalar fields

to the first order in 6 and € now, are:

8 . ”c“/?”oz_f)z e r2m s b vile)
T > po VI €ng+2(m_+ povi e

2

2n 27 Zn 7. \2
2 2 0 812 2 2 2 8 0
- + + +2{m_.+ - +
Zpoyf 5 (nc Nich W) 24 K poyf 6)( Tz T (¢
(2.30)

Since at & =0, Ng was an exact eigenstate of (mass)z; in the
approximation 6/ e << 41, the corresponding eigenstate of (mass )z in
Eq. (2.30) will be of the form n~ = ng +0(6)(x n, + yno). Therefore,
the (rnass)2 of ”é to the first order in & can be read from Eq. (2.30)

as the coefficient of - %ng Hence

4
m ='3—m (2. 31)

which, incidently, is the GMO mass formula with rn_lz; =0,
(iii) The (m:a.ss)2 of some of the charmed pseudoscalars and of
scalars may also be changed by an amount of O(mzk).
In some calculations, [the calculations of the amplitudes for
+ + - 0 N . 2
K ~u ee and K~ - 7 ee | it is not possible to let m_ = 0 because of a
{log mi) dependence of the amplitude, There we shall need to keep

pions massive. The pion mass can be generated similar to the generation

of kaon mass, The terms that one needs to add to %@ for this purpose
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are similar to those that generate the (nonzero) mass for the p quark,
mp(= mn).

Finally we note that the leptons are coupled to the gauge fields and
the Higgs fields in the usual Way.6

The Feynman rules for the leptonic and the mesonic weak and
electromagnetic couplings are given in the Appendix A, We shall note
some of relevant characteristics which will be useful later,

(i} Couplings of the Z with the mesons are always AS = AQ =0,

{ii) The only couplings which have AS = AQ = +1 involve a singlet
Wi or a single si. Couplings with two W:h are necessarily AS = AQ =0,

(iii) There is no scalar meson - Z nor a scalar meson -y two

point vertex. Only the diagonal pseudoscalar mesons couple to Z in a

two-point vertex

117, PHENOMENOLOGICAL APPROXIMATION

We shall, briefly, expiain the point of view taken while performing
the calculations to the leading order in the weak and the electromagnetic
interactions and to all orders in the strong interactions.

It is well known that the tree graphs containing only the external
pseudoscalar lines (and no weak vertices) in such models with the chiral
symmetry of strong interactions will reproduce the results of the
corresponding current algebra with PCAC, Thus the strong interaction

Lagrangian in Eg. (2.3)is phenomenological in that the tree approximation



-22- FERMILAB-Pub-74/96-THY

of this Lagrangian produaces the results to all orders in strong inter-
actions (of some underlying field theory of strong interactions ),

It is essential to make a similar assumption regarding the vertices
involving the gauge bosons. Here, we take the point of view similar to
the one used in calculating electromagnetic corrections (like T - TTO
mass difference) using a phenomenological Lagr.ang‘i.an.20 For example,
we may consider the w: wow; vertex. See Fig. 1. It is assumed that the
ﬂz _ W vertex is described by the sum of the diagrams 4(a) and 1(b).
[In a renormalizable gauge, there will be a TI': wos“ vertex as in 1(c }]
to all orders in strong interactions and to the lowest order [ here to
0(g)] in weak interactions. Thus such couplings of vector bosons to
mesons (pseudoscalar and scalar) are assumed to arise only via:

(i} possible direct coupling and (ii) their mixing with the mesons. And
even though one can draw Feynman diagrams for this vertex with higher
loops and of 0(g), e.g., like the one shown in Fig, 2, they are to be
discarded.

For the sake of clarity, let us discuss some examples which will,
later, be useful. There are two kinds of diagrams. These are shown
in Fig. 3(a)and 3(b),

The KOZ- coupling ‘}vhich is zero to O(g)] arises in several
possible ways. Among them are (i) KO——- W+W_ = Z diagram and (ii)
through the mixing of Z with the pseudoscalar mesons. These are shown

in Figs, 3(c)and 3(d).
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Then with the above rules, we may draw the shaded KO-*W+W_ vertex
C . 2 \ . e
which is of 0{g ). There is no direct KO - W W vertex., The diagrams that
will contribute to this vertex to O(gz) are shown in Fig, 4,

The KO“O self-energy diagrams in Fig. 3(d)|which are of O(gz)
in the leading order] are to be constructed by drawing all possible tree
diagrams for the proces KO - wOW+W— and then closing the W-loop. Thus
to O(gz) in the weak interactions and to all orders in the strong inter-
actions, the KO“O self-energy is described by the diagrams in Fig. 5
[ and the diagrams with the unphysical scalars in a rencrmalizable
gauge. |

We shall use the same criteria while drawing the diagrams for the
other decay processes and the KO - KO transition amplitude. We shall
not discuss this in detail in these cases,

In the subsequent sections, we shall discuss in detail the calculation
of the KL—KS mass difference and several decay amplitudes of the K mesons,
These are (i) K; = pis (i) KT > v Gil) KO~ n0uh
(iv) K - Tr+eé; (v) KL, g™ woeé .

We shall always use the Landau gauge for the W-propagator, As
a result, any diagram containing a meson-W vertex {2-point vertex)

vanishes identically in this gauge. Therefore, we shall not draw those

diagrams in the following discussion.

V. Ky sz

The diagrams that contribute to this process are of two kinds:
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(i) The one particle reducible diagrams; (ii) The one particle
irreducible diagrams. We shall first consider the one particle

reducible diagrams. These consist of (i) KO -~Z, x- p;;

(1) Ky =~y =pp; (i) K, = w, =~ pp, ( is the Higgs scalar). The

KO -y > p;l diagram is zero because the Koy vertex is proportional to pp,
the momentum of the photon and when it is contracted with the electro-

magnetic muon current (on mass shell) the result is zero.

{(IV-A) Z-Reducible Diagrams

Let us first consider the K, —~ Z, x — p;:. diagrams. If we denote

0

the truncated K 7 Green's function by Ep(p)E pHE(p) and the {runcated

0
K, x Green's function by F(p) then the Ward-Takahashi identity, in the

one loop approximation [ see Appendix B] states that
By o s
p E¥p) = -1 M, Fp) . (B. 28)

Putting in the Z and the x propagators, the above statement can be
easily shown to imply that tk_le sum of the diagrams KO - Z - p;x and
KO -y - }1;; is independent of the gauge parameter n [see Eq. (2.7)]
in the one-loop approximation. [ This is not surprising since these are
the only diagrams that depend on n in the one-loop approximation, | We
shall use this fact conveniently,

Let us choose the Landau gauge for the Z-propagator (n -+ «),

Then KO - Z - pﬁ diagrams vanish since the KOZ;.L vertex is proportional

X

to pHL , the Z-momentum. Hence, we need to compute only the KO

vertex, The diagrams that contribute to the Kox vertex are shown in
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A
Fig 6. We shall put m = 0.
The diagram in Fig. 6(a)is finite for each of the intermediate
+ -
states., When the intermediate states are scalars (k | ¢ |« : ), the
C

1
amplitudes are proportional to — and therefore may be neglected as

+.L2 - o . We shall compute the rlfesults to the leading order. The diagrams
in Fig. 6(a) with the intermediate states K: Tr; are proportional to mz‘,
while with the intermediate state K+, it is proportional to mé and there-
fore we shall neglect the diagram with the intermediate state K+.

The contributions of the diagrams with the intermediate states

-+ -
KC and m, are equal and their sum is given by

3 p
P pgifm 4 _pv
A(6a) = ~(sin 8 cos § 2 7 cfz ?_dez(k) —
M(2w) (" -M"Mk+p)~ [ (k+p) -mc]
(4. 1)
where y
Dp'v(k) - g}JvV - kpl{

Next, we shall compute the one particle reducible diagram (the

pole diagrams} contribution to the Kox vertex, We note that the one

2

particle irreducible vertex m(6a) is directly proportional to p2. (= my

on the mass shell). To the leading order, the contribution of the pole

2
diagrams can have a term independent of p as well as a term proportional

to pz, Since the ¥ -~propagator in the Landau gauge ( n - « }is ——;—- ,
p
the constant term in the Kox vertex will give rise to a term in the

amplitude which is proportional to We shall show that

2
mK )
(i) there are no terms in the [KO ~Z~ ot Ky x>l
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amplitude which are proportional to , and

mZ
K

(ii) the contribution of the pole diagrams to the Kox vertex cancels
the IPI contribution to it, in the limit of exact SU(3).
In computing the pole diagrams, we shall find it convenience to

2
insert the eigenstates of the (mass)z matrix. Since we have let m_ = 0,

”

0 be the eigenstates of the (mass)2

no does not couple to x. Let n8’ R nc’ » N

. . 1" " - -~ ” :
matrix, which are mostly Ngs M, and g Let mg , m7, m/ be their

masses., The couplings of n8’ , nc’ , n(; to X are proportional to their

(mass 2 respectively, Let these Feynman rules be i m8’2 ag. 1 mc’ zaé )

23; and Za the self-energy

Fd

8 >

i mé zaa respectively. Denote by =

diagrams for the KO—'* Ng KO =/ and KO - 1, respectively. Then

the pole diagram contribution to Kox vertex at p2 = mé is
i 2 i 2
I marr——————tr———— - p— . 1 - ” .Zf + - -, I' ”
Kox ote 22 Mgt its Tz a e P T
K K c
i 2
F o— . - L Ez
z__.z ‘Mo % Yoo (4. 2)
K 0

.2
Mg
7 3 ==4 +0(6&, €)
My - m
.2 2
Further, m ~ =m_>>m
o c K

Hence,
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.2 2
m m
= -1 + —
2_ 2 1+0
mK m mC
and,
m’2
0 =-1+0(56)
2_ 2 *
mK mo

Using the above equations in Iig. (4. 2), we obtain

m.
= - ”~ + ”~ - _}_Zf’ A +
(Kox)ole 4}:838 anc an 0 mz : (4.3)
c

To compute (Kox )pole in the exact SU(3) limit, we need to compute

Eé , 2(’; and 26 only to the zeroth order in the SU(3) symmetry breaking.

In the zeroth order in the SU(3) symmetry breaking, ”é = Ng. We shall

-

not need to know the other two eigenstates n (’:, . exactly. We know

that, at 6 = 0 {exact SU(3) symmetry)

_ - +
Me 2 2
+ —
.. e N3, fbe N3ng - g
M0 > 2

where a and b are number we shall not need to know,
From the Appendix A, we note that the meson-Z two-point

couplings are described by,

Gf T0 . 2 = :] m
—— + -
> aH [(1 €hn, —~f3=+~f_%”8+d2“o Z
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Gf . . 1 N3 m
WBM nc+cen0+ﬁn8+ﬁﬂ(;lz . (4.4}

where ¢ depends on a and b,

Gauge invariance requires that the meson-x couplings are described
by

2 i 2
W_—[m n +cem0 no '\f_:: 8 :Ix.

Therefore,

. _ . - f
aj = ce (T’g‘%ﬁ_) (4. 5)

Since aa = 0{e), only those terms in 26 which are of 0(}.}.2) will

2 . . .
survive in 7 a’ as p — @ . An inspection of the diagrams in Fig. 6

00
shows that there are no terms of 0(|.L2) which are proportional to pz,
while there are terms of O(p.z) which are constant. However, as we
shall see, we shall be able to avoid computing these,

Substituting the values of aé s a(’) and a; from Eq, (4.5}1in
Eq. (4. 3) we obtain that in the exact SU(3) limit,

(KOX )pole E/—.G 2 +Z 7\7== Z +de Z (4,6)

where d depends on a, b, and ¢; and 28’ Zc, ZO have the obvious meaning.
First let us consider the terms proportional to p2 in the right-

hand side of the Eq. (4.6)., The diagrams in Fig. 6(b) are proportional
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to pz. The diagrams in Fig, 6(e) and 6(f) are independent of pz. The

diagrams '115 Fig. 6(c) and &(d) have terms proportional to p2 which are
m

2 c

of 0 (p -—2—) . However, these terms cancel in the linear combination
M

2
of Z’s appearing in Eq. (4.6). Thus the terms proportional to p come

entirely from the diagrams in Fig. 6(b). We quote the results:

The contribution of 6(b) to Zc = 2A (mc) - ZA(MC)

The contribution of 6(b) to —%ZO = %Ex(mch A(p.c) - ZA(pII

The contribution of &6(b) to QSTZB = %E3A(0)+ A(mc)+A(pc)+A(pﬂ
where,
gzp p 4 BV
A\ = - %sin 6 cos 6 - “4"‘[ Zd 1;[) (k)z — . (&7)
(2m) ¢ & -M") [(p+k)"~A"]

Therefore, the total contribution of the diagrams in Fig. 6(b) to

(K. x ) vertex is given by,

0
s -
5] {4A (mc) 4A(0)}

3 2
PP, g fm, J' a*k D*Vk)
(zn)* M (k-M7] [(p*—k)z-mi l(p+k )
(4. 8)

=+ (gin 6 cos G )

We note that for each of the intermediate states, the contribution

to Z is finite, However, each of these depends on the scalar mass through
2 2

terms of the type In (E-—z) , which would go to infinity if we let p~ — o,
M

It is interesting to note that this p-dependence cancels exactly in the
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8 1
. . . 8 + _
linear combination (!\[_6 28 Zc U? ZO).
We,further, note that the contribution to (Kox ) vertex in Eq. (4. 8)
cancels that of the IPI graphs in Eq. (4,1). Whatever its significance,

we note that this cancellation is an exact one (i,e., to all orders in
2
m

< ) as 2*00 mZ"*O
2 b s Mg ™ B

M
Finally we shall show that there are no terms in the KO =X > M

amplitude which are proportional to As mentioned earlier, such

2
m

terms arise out of the terms in the (KOX )pole which are constant (i, e.,

independent of pz) since the ¥ -propagator in the Landau gauge is

> T 12 on mass shell, However, it is much easier to varify this
p myg
in the U-gauge (n —~ 0}, This is permissible since, as mentioned

earlier, the sum of the amplitudes (K, ~ Z ~ e+ K, 7x ™ up ) is

independent of n. In the U-gauge, we need to consider the KOZ vertex,

In the KOZ vertex, such terms proportional to would arise out of the

diagrams shown in Fig. 7. To compute these we note that from Eq, (2, 31),

R S (2. 31)

3
2
mp m m
and from Eq. (4,4),

(r.Z) vertex = N3 (n

0 Z) vertex

8
and, therefore, the sum of the diagrams in Fig. 7 is proportional to
(ZTT - N3 28) —-—1—2—- . The diagrams that contribute to = are already

0 m
shown in Fig, 6(b} - {f). It is easy to varify that at pZ =0, the
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contribution of each of these diagrams to ZW is equal and opposite to
0
the contribution to -3 Tge Hence,

(= -~N3Z )=Oatp2=0
TI'O 8

12 in this part of the
MK

showing that there are no terms proportional to
amplitude,
E_Tor the sake of completeness, we comment on letting mi 4 0,

It is_evident that the additional terms that this will generate will be of
m m

0(—;) or of 0 (—;) lower than the ones that we have computed. They
My me 5

can be neglected provided they have a finite limit as p~ - o . This has

been varified to be the case]

Thus it is evident that the contribution of the Z and x reducible

_ mZ
diagrams to the KO = pp amplitude is of 0 - GLa

. F
M~ sin GW

(IV-B) 1PI Diagrams

Next we consider the one particle irreducible diagrams, These
are shown in Fig. 8.

The diagrams in 2Fig. 8(a)and 8(b), with the intermediate states

m
+ -

K andnw areof 0 ——-I—{—- G av) , when the intermediate states are
c MZ F

and 95; , they vanish as pz"“’ «, The two intermediate states that

[
+
K

C

contribute to the diagrams in Fig. 8{(c)are such that their sum

2
m

is of O (—-—-ﬁ G Q') , thus is again negligible.
Mz F
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(IV-C) Higgs Exchange Diagrams

Finally, we consider the HHiggs-exchange diagrams. They are shown

in Fig., 9.

2 2
MK e
The diagram in Fig, 9(a)is of 0 GF @ = 5 . The
M e Higgs
two intermediate states in Fig, 9{b) cancel between themselves as

HZ - = , The diagrams in Fig, 9{c), 9(d) and 9(f) are. of 0{;;2) and they

vanish as p.z —~ o, The KOEC self-energy part in the diagram of Fig. 9(e)
is apparently of O(MZ). However, we have evaluated it later [see Eq.
(6.8)] in a different context and have found that the terms of 0(;.;2) cancel
between the two intermediate states, So that the diagram in Fig. 9(d)

is also of O(p_z) and vanishes as [.1.2 -+ @, Thus the total of the Higgs

m?2 m?
- B Theref 1 e xm?
exchange is of 0 GFQ Mz > . erefore so long as “Higgs R m_,

”Higgs
this contribution is also at most that of the other diagrams [1 e., of
2 -

.
0 -—;{ GFa ]
M
The conclusion is therefore that the contribution to the amplitude
for KL g~ pﬁ. from this set of diagrams is much smaller than would
: 2
m
be naively expected E e,, of 0 ((;:Fa —Cé)] due to the perhaps accidental
m M
cancellation of the terms of 0(-——92— GF ce) . In Sec. X, we have compared
w2 M
the amplitude of O( > GF ar) with the total amplitude for the
M ™sin" 6

W

KL - }.L}_.L decay as determined from the experimental result and found

that it is two orders of magnitude smaller than the total amplitude for
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KL ~ W . Thus the main contribution to the K - MZ amplitude

L
arises out of the process K. =~ = yy -~ ug . [ That this is the main
contribution can be seen from the fact that the unitarity bound obtained
from the absorptive part of the process KL - yy }.L}.—.I. is close to the

21
experimental result. An identical conclusion was reached in the free

quark model calculation of Ref. (5)],
+ 4+ -
V. K _~m vy

Diagrams that contribute to this process consist of Z exchange
. . . +
diagrams and diagrams in which the leptons couple to Wi and s (box
diagrams)., We shall first consider the Z-exchange diagrams.
+ +

Diagrammatic representation for the total K = v Z vertex is shown
. + + + +
in Fig. 10. [ We note here that there areno ¢ —~« Zand K - « Z
vertices, |

The diagrams in Fig, 10(b), 10(e), 10(f) and 10(g) are proportional
to qp, the momentum of Z, and hence do not contribute when contracted
with the neutrino current (on mass shell),

The calculation of the sum of the diagrams in Fig. 10(a), 10(c)
and 10(d) can be simplified through the use of the Ward-Takahashi identity

derived in the Appendix B. [See Eq. (B.11).] The WT identity states:

M . __ i (3)
qMTZ(p,q) lMer (p.q) > iZGf].Lf:_,’il"i (p.q)

2__.2
-E £ 2+(p)-2+(p-q):| (5.1)
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+ +
1'“; (p,q) = the K {(p)~ 7 (p-q) Zp(q) proper vertex
+ +
Z+(p) =K = rm self energy

4+ -
I" (p,g) =the K w X proper vertex

X(
(3) _ . + -
1“i (p,q) = the proper vertex consisting of K m and IIii the

>

diagonal elements of II,

—+
1l

-y
34 1 for i , 2

-1 for i = 3,4,

The diagrammatic representation for Eq. (5.1) is shown in Fig. 11,

Now, from Lorentz invariance,
Tt (p,q) = Aph+ B (5.2)

where A and B are functions of the Lorentz invariants, To the order

we shall be interested in,
2
z (p)=a+bp (5.3)

where a and b are constants. We note that the terms proportional to q
in I“;(p, q) need not he computed.

We expand A in powers of external momenta:
A=A +A pg+A p +A q°+ (5. 4)
T B TP T AP 34 T ’

The leading contribution will come from AO.
+
The sum of the diagrams in Fig. 10(c)and 10(d) when K and

are on mass shell isg,
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2.2 . .
) - i i
_1(2p-q)p.(%§'—) [EJP) 7z TR e z]

MMy M "Mg mass shell

: mz " mz + terms in q
K s

- gz -g’z (2p ) E:+(p)‘z+(p_q5|mass shell
2G o

using Eq. (5.3)

2 L2
= —g-——:-g————)b +terms in (5.5)
pu( G T ’

Thus the terms proportional to pHL in the sum of the diagrams in

+ +
Fig. 10(a), 10(c), and 10(d) {(with K and m on mass shell) is,

2 L2
£ ]
l:AO+ a bpp+,,_ (5.6)

which is what we need to compute.
On the other hand, if we substitute the expressions for Tz(p, q)
and Z(p) from Egs. (5.2) - (5.4)in the WT identity of Eq. (5.1), we

obtain,
EA p-q + )+Bq2:|—iM T, (p,q)
O L I Y Z x H)
i (3) gz-g’?’ . 2
ZEGiZfit’jiri (p.q) - >0 .b. [‘ZP'CI"CI]
2 .2 >

. i (3) g -g 2
=iM, T, (p,q) ZG?fitﬁri (P, q) bg +....

2 i (5.7)
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2,2
Thus, we see that (AO + L_é— b) is given by the terms proportional

to p+q in
{3)

. i
1Mer(p,q)—2szZfit ) (p,q) . (5.8)

1

3ir

First, consider I"X(p, d). The diagrams that contribute to
Tx (p,q)are shown in Fig. 12, The four diagrams in Fig. 12 Ewo
intermediate states in each of the Fig., 12{(a)and 12(b£‘ contribute equally

to the terms proportional to p-q. Their sum is,
2

30t 3 Mo M-
r . (.q)= -(p-q) 7 & sinf cos § — In —5- +other terms
4(2n) M mc (5.9)

and thus, its contribution to terms proportional to p}.L in E;(p,q) is

given by,
2
2 m 2
2
-ip -—-—31—4—g Gsinb cos B ——%m N; (5.10)
B 42w) M® m
In the Appendix G, we shall deal with the term
. G (3} . - (3)
-i == f t,, T p,qk The diagrams that contribute to T"77" "(p, q)
2 K k 3k "k k
are shown in Fig. 13.] There, we have shown that, only the diagrams
m
in Fig. 13(h}, 13(i), 13(j) contribute to the p-q terms of 0(—-——;—) . Their
M
total contribution is,
M)+ M)+ M)
2
1 'n'2 2 mc
= =(p-q) = g sin 6 cos 6§ -——= + other terms (5.11)
4 4 2
(2m) M

and thus, their contribution to the terms proportional to pu in E;(p,q)



-37- FERMILAB-Pub-74/96-THY

ig given by

2 2
1'1'2 2 mc mc

ip —— & G sin @ cos 0 2+0(-—-—2) . (5.12)
K ge2m) M M

We note that this contribution in (5.12) is very small numerically

. ) 1 ‘
as compared to the one in (5.10) | smaller by a factor of —=— e )J :

Thus, it is interesting to note that by the use of the WT identity of
Eq. (5.1), we have been able to obtain the major contribution through
only one independent diagram calculation.

In the Appendix E, we have shown that the box diagrams for this

2
m
process contribute fo O( I; ) and hence will be neglected, Hence,

+ -
the amplitude for K ~ = vv is given by

+ -
./J(K '->1'r+vv)
- g et S 1< i X
EZ (p,a) > 3 u(k)vHvLV(k)
-M
Y
2
G m 2
.3 F oa . c M 1
_14ﬁﬂs1n6cose 52 31:1 2+6E
M sin 8 m
W C
e u(k)yHyLv(k) (5.13)

1-y5
|:YL = - k= 4-momentum of v

k = 4-momentum of ;]

Using Eq. (5.13), we shall estimate the branching ratio

3 + - +
TK »x vv)T(K ~all)in Sec. X.
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VI, KO - rro vV

The calculation of the amplitude for KO - TI'O vv is similar to
that of K+ - 1T+V; . Here, too, there are two kinds of diagrams: the
Z-exchange diagrams and the diagrams in which the leptons couple to
Wﬂ:si (= Box diagrams),

Let us first consider the Z-exchange diagrams., They are shown
in Fig. 14. The diagrams in Fig. 14(b), 14(c), 14(d)and 14(g) are
proportional to qH, the momentum of ZpL and hence do not contribute
with v-v on mass shell. The calculation of the diagrams in Fig. 14(a),

0
namely the proper K TI‘OZ vertex, is simplified through the use of the

WT identity of Eq. (B+13), which reads:

p - _iG (3)
qpl"oz(p,q) 1M, Ty p.a) - 5 ifktml"Ok (p,q)
iGy 1 NZ
o ’, g - %=
ST Zo(p) T3 Eo(p) 0 {(p-q) (6.1)
where
B 0 0 B
T Z(p,q) = the proper vertex for K (p} — v (p-q)Z" (q)
_ 00
T, X(P,Q) = the K vy proper vertex
Zo(p) = K, £ 8 self energy
” =
‘20 (p) KOE, 0 self energy
EO (p-q) =« oo self energy
T(a) (p,q) = the proper vertex consisting of K =n and IL ..
0k ’ 00 kk
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=1
tay k

]

1,2

= -1 k

3,4,

The diagrammatic representation for Eq. (6.1) is shown in Fig. 15.
Let us first consider the diagrams that contribute to TOX {(p,q).

They are shown in Fig, 16, These diagrams are, in fact, very similar

to those for I‘X (p,g)of Fig. 12 in Sec., V. The p-q terms in I‘OX (p.q)

are given by

. 1 .
1MZrOX(p,q) _J'i“rx (p,q)(lmz}

2
: 2 m 2
= -\—;'"-Z(p'Q)-—"?ﬂ"z'ngsin 6 cos 9(—-—9—2 In —1\%)
4(2m} M m
+ other terms . (6.2)

Next, let us consider the other two terms in the right-hand side
of the Eq. (6.1). The analysis of these terms is a little complicated
and hence we shall deal with them in the Appendix F. The diagrams
that contribute to these terms are shown in Fig. 17 and Fig. 18
respectively. In the Appendix F, we have shown that the contributions
come only out of the diagrams in Fig. 17(a), 17(c}and Fig. 18(f).

The diagrams in Fig, 17(a)and 17(c) are equal and their

(3)

contribution to the p+q terms in - iG Zf t.. T '(p,q)is given
2 K k "3k "0k

by
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2

-i 3 2 m. M
17(a) + 17(c) = 73 (p+q) T — 5°G sinf cosé — In —5
4(2m) M m.

+ other terms . {(6,3)

The contribution of the diagram in Fig, 418(f) is finite and finite
as p.z - o, The contribution of Fig. 18(f) to the prgq terms in

- __15 G 26’ (p-q)is given by,

2 1:112 2
18(f} = 2—:;,? (p-q) —ﬂTgZG sin 8 cos -—%-ln M—Z
4(2m) M mc

+ other terms . {(6.4)

Thus, using Egs. (6.2) - (6.4) in the WT identity of Eq, (6.1),

we obtain the terms proportional to pl.L in rgz(p, q):

2 m2 2
i 3 2 . M 1
ng(p,q) = -p Jl? - 2T 3 & G sin@ cos 6 ; In 2+0( 7 )
K 4(2m) M m M
+ terms proportional to qM . (6. 5)

Finally, we shall compute the one particle reducible diagrams in
Fig. 14(e) and 14(f). Refering to the Feynman rules in the Appendix A,

we find that their contribution to Egz(p, q), (the total KOTTOZH vertex)is:

Me) + M)

2 . z (p} Z_..(p)

_iG _ i oo i 0 __02

=5 @p-a) |5 Rt —S—— T NG
i e

m_-p

201(13)

+ TS N (6.6)
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where

ZOi(p) = Koéi self energy

2
and gi,s are the two eigenstates of the (mass) matrix and are defined

in Eq. (2.26b). p, is the mass oéf £, [see Eq. (2.26b)}. We thus need
m
to compute the terms of 0 ( 2 —-—9-) in the self-energies. The diagrams

2
M

that contribute to the self-energies 201, Zoz and are of O(pz) are shown

in Fig. 19,

The Ko-tadpole diagram is identically zero (when surmmed over

both the intermediate states), In 201 and 202, the diagram in Fig. 19(b)

cancels that in Fig., 19(a). This can be seen from the Feynman rules for

+
the meson-S vertices and the interaction terms describing the trilinear

vertices:
- E 2(fg +fE—9)+4 f 2(& +n3E ) - 2 ng
TPV T T3 Bfpg 5o o’ T N3 YPo “5o
I\Lz
+ -~ + - [o] + - + -
X EicKc +Trc1Tc| T 2f KO(KCTFC * d)cKc) ) (6.7)
Thus,
T (p=0) =0 6. 8)
0i'P A .

Referring to the Eq. (F.10) in the Appendix F, we obtain [and

this has been varified directly:] :

_ 1 0
z0 (0) = N 20(0)+0(u ) . {6.9)
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2
m

Thus the leading contribution I:of 0 (—%)]of the diagrams in Figs., 14(e)
M =1

and 14(f) is given by:

M)+ Hs) - (” G (2p 2‘”” - 2iz57(0) . (6. 10)

-

The contribution to Z’O’ (0) of O(pz) comes from the diagram in Fig, 20,
It is easily shown to be,
2 22
sz £ mw 0
E’O’(O) = ) > sin @ cos 6 + 0(u ) (6.11)
(2m)” 8N2 M

and hence its contribution to the terms proportional to ’pFL in Egz(p, q)

is:
2 2 mcz: 1
3 — —_) 4+ :
H ;F w(zm) g Gsin 8 cos 8 —5 + 0 4) terms in qH
(6. 12)

Hence, from Egs. {(é.5)and (6.12), the terms in EE’Z {p,q) which

are proportional to pp are given by

2 m 2

ngsinecose —

0
=

|

L T 3
E (p,q) =-p 7= = In
0Z poN2Z (Z'n')4 2

e,

m

=
[¢ 2NN ]

+ terms in qFL . {(6.13)

+ + -
As in the case of the K — w vv amplitude, the box diagrams for

m
K
this process are of 0(—-—-—2) and therefore will be neglected. Hence the
M
total amplitude for KO - Tl'OVV is given by:

G rn2 2
- i Fa._ _____c_____{i M___i}
MK ™ vv) NN sin 6 cos 8 5 32 21r1 5 1
M sin @ m
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2
m
X p“u(k)y Y V(k)+0(—-K—)
po L M4

It is easy to verify directly that for this amplitude that
- - o -
,//(KO - TI'O'VV) = -./f(KO -7 vy )
and hence,

.///(KS-“Trvv '\/‘/K**Trvv)

iG m2 MZ

c 1]
_U:f- sin 6 cos 0 > > {1n > _EJ
c

M sin 6 m.
x prak)y v, vik)
po L
and

/K '""'TTUV):O.

The branching ratio,

o

0 -
- T vy

T'{K

(€2}

[e=]

I"(K - all)

is estimated in See, X.

+ + -
VII, K -1 ee

(6. 14)

(6.15)

(6, 16)

The diagrams contributing to this process consist of (i) the photon

exchange diagrams, (ii) the Higgs scalar {4 .} exchange diagrams
g g g 0 g

(iii) the Z-x exchange diagrams, (iv) the 'box' diagrams. We shall
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show that the photon exchange diagrams are of O(GFa). We have already

+ +
evaluated the K -« Z vertex in 2‘§‘>ec. V, and we know that its contribution
m

to the amplitude is of O(GF a ——92—) . Therefore, we shall neglect it.
M
The box diagrams for this process are similar to thozse for the process

m
—;) and hence can
M

+ + -
K -1 vv ., They will be of the order < 0 (G‘FQ’

be neglected.

Let us first consider the photon exchange diagrams. The K+Tr-y
truncated Green's function is shown in Fig. 3. [ See Appendix B, It
is shown in the Appendix B that Et: (p,q), the full K+1-r‘y vertex, on mass

shell is given by.
E"; (p,q) = C3q2p’l + terms proporfional to qH {B. 23)

where C3 is the coefficient of the quH terms in the proper vertex

I‘t(p, q) evaluated on mass shell [i.e., p2 = mé , (p-q)2 = mi] .

The diagrams that contribute to the proper vertex ]“:(p,q) are
shown in the Fig. 241, First consider the set of diagrams in Fig. 21(a}) -
21(n).

In the diagram of Fig. 24(a), the two infermediate states contribute,

with opposite signs and the resulting amplitude is of 0 (—14) and hence
M

will be neglected. The diagram in Fig. 21(i}is independent of q and hence
do not contribute to terms proportional to qZpH. The diagrams in Fig. 241(h)
are proportional to qp. The diagram in Fig. 21(j) depends only on

(p-q)z_ Since we have chosen (p—q)z, q2 and p2 as the three independent
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Lorentz invariants, it does not contribute to terms proportional fo
qu either., All the rest of the diagrams contribute to the terms pro-
p.

1
portional to qup' The results upto 0 (——2) are:

IV
2 1T2i. gze ginf cos f
‘/(b) =-q p 4 2
B2 4M
fde el(l- E)h’l[ :' } (7.6)
2 2i 2e sin 6 cos 6 1
‘//(C):'q P u 4 & anC * z"'u’/(b) (7.7)
(2m) 4M
M) = M) (7.8)
2 2i 2esint? cos 0 1
Me) =-q°p 2 & > . 3'“*‘.//(10) (7.9)
H(2m) 4M

2.
‘//(f) =~/(g)‘~g2p ul 14 { J‘de €41~ (—:)ln|:€(1 celi-e)q ] z {7.10)
B (2m)

[-E\Iote that the logarithmic singularity ln(—qz} in these amplitudes
arises from the fact that the W:k and st propagators have a singularity
2 : ; .
at k= = 0., However, this singularity cancels when we add up ./[(b) +
.+ M) :l

Adding Eqs. (7.6) - (7. 10), we obtain

2 Tl'zi. ze sin 8 cos @ 1
M)+ ... + Mg =-gp 7 g > L 7
H2m 4M

e
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Summing over all intermediate states in the diagrams of Fig. 21(k)

and 21(1 ), we obtain:

‘//(k) - _qZpM 1-r2i gze sin 6 cos 6

(211')4 41\/12
1 m 1
% —z—fdﬁﬁ(i-fs)ln -—_2-—"—2 Tz (7.12)
m,. - Pq
and
2 wzi gze sin 6 cos @
./l{l) ==q p ] 2
2 aM
m
x %J-dﬁﬁ-(i'ﬂ)ln —-—-2—(}“‘*‘2— + éz— (7.13)
m_ - Bq

The contributions of the diagrams in Fig. 24(m) and 21(n) to terms

proportional to qZPH are equal and their sum is given by

2 w°i glesin® 8 1
M)+ Mn) = p a° = g e o E. 5 (7.14)
B (2 4M

el

+ F +__+ ] .
Eiere, we note that ¢ W yand x W vy coupling is of the
2

M , s . + .
0 (T) . Hence the diagrams with intermediate states (¢ , qﬁc ) in

b + 4+
Fig. 21(1} and (x ,xc) in Fig, 21(k) do not contribute as p.z - o . Also

+ 4+
the diagrams with the intermediate states « , K, in Fig, 241(m) and

2

2 1 b
as u — o,

Further, we note that the qupL terms in the diagrams in Figs, 21(b) -

+ +
é, dJC in Fig. 21(n) are of O(-—-—i-—) and hence they do not contribute
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241(g) and in Figs. 21(k) - 24(n) are not proportional to mz and thus are
of zeroth order in the SU(4) symmetry breaking. Hence we must also
consider the diagrams with intermediate states K+, K * T qS- etc., shown
in Figs. 24(0) - 24{v) which may have terms proportional to qu}L which
will not vanish in the SU(3) limit being of zeroth order in the SU(3) symmetry
breaking.
In the diagrams of Fig, 21(u) and 21(v) when the intermediate states
to which photon couples are scalars, the contribution to the terms pro-

portional to quH is of D(——Zi—) and hence will be neglected. We quote

I
the results for the diagrams in Figs. 21(o) - 24{v}:

2 2
2 i sin 6 cos @
‘MO):'C} o ™ 1 g esin C

bt aM?
2
1 m'rr BRLY
x 5 fdy v(1-y) Inj ———— (7.15)
-v4a

. + -
./{(p) = 0, since the ¢ s coupling is zero. El’his is so because

from gauge invariance, this coupling has to be proportional to

2 2
m -m", _:i (7.16)
T m
2 2, 2 sin @ cos @
™
./f(q)=-qp 14ge1 2c
(2m) 4M
2 2
Lla N i S
X 3z dy y(t-y)lIn 5 . (7.17)
- -Y4q

./f(r') vanishes in the SU(3) limit . {7.18)
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.//(s) _ .2 n-zi gze sin # cos @
. g p|~L 4 2

2 2 2 2 2
mo-yda ('1-\()mK+ymTr-y(1—y)q
X dy y(4-y}In ————— - dyy{i-y)ln

- qz (1-'\’)(111%{-\( qz)
(7.19)
‘-Mt) -0 (7. 20)
2, 2 .
M) = qu LU S - Sln29 cos 0
a (217)4 4aM
o 2 P (7. 24)
(1-y)m, - vq
2 2
- g2 T i gesind cosé
M) = q pH 1 >
(2m) 4M
m” - y(1-y)q”
X |dy y(i-y)1n > - ‘ (7. 22)
(1—‘1')(1'.{1“ - ya )

The singularities in the above amplitude of the type
2 2 2 2 . :
fdy In (rnTr -vyq ), ete, (acutq = m_ ) are unphysical and arise

+
solely because of our choice of the Landau gauge for the W ,si :

propagators, We note the cancellation of such singularities between

the amplitudes E,ﬂl) +,Moﬂ ,[,,/(k) + .,/(q)] and [//(s) + J[(n) +

,/(vﬂ . The singularities which are cuts inq” > 4m_ and
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2

q =2 {m_ + rnTr)2 are physical and they may stay.

K
Adding Eqgs. (7.12),(7.43) and Eqgs. (7.15) - (7.22), we obtain

[ H)+ H) +.Mo)+... + M) =

2 A n‘_L2
2 ] i 1
- -q% T i v g esm(;cos@ 2:}_ +jd'ﬁf3(1'ﬁ)1n > c -
B2 4M m_ -B(1-B)q

(7.23)

Thus, from Eq. (7.11), (7.14) and (7.23), we obtain the terms

proportional to quu in I‘}; (p,q) and hence Ef: {p,a) as,

2 2
e ._2pmi gesinf cosf

(2m) 4M

2

i
x %+fdﬁra.u—s)1n — ,
mw-ﬁ(i-ﬁ)q

+ terms proportional to q'J. . (7. 24)

Thus, the contribution of the photon exchange diagrams to the

+ -
K = v ee amplitude is given by

i . - - &
- (- k k) E ,
(-ie)u( )Yp. vik) Y(p q)

2
q
iGF o " _
=5 sin 6 cos 6 p u(k) va(k)
p 2
31 : mc
v +fd[3[3:(1—ﬁ} In — 51 - (7. 25)
m_ - p(1-Blq
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In the Appendix H, we shall show that the contribution due to the
Higgs exchange is negligible. Hence Eq., (7.25) describes the full
amplitude to O(GFaf).

Ags a crude approximation, we may let:

mi 1
fdﬁ ﬁ(i—ﬁ)ln > = gln
mﬁ =

Then,

ln o jgwlngw

iG m
t+  +- F o . 1 31
.//(K ™ ee) —T-Z Y sin # cos 6 {6 In 2+ 36}
i

x pt ﬁ(k)ypv(‘;:) . (7. 26)

We have computed the branching ratio for this process in Sec. X

and it is found to be close to the recent experimental results.
VIL K° ~nles

This calculation is similar to the calculation of the decay
amplitude for K+ - Tl‘+e;:' . Here, too, the leading contribution comes
from the photon exchange amplitude. All other contributions are of the
same order of magnitude as the corresponding amplitudes for the process
K+ - rr+e§ , and therefore, can be neglected as compared to the photon
exchange amplitude,

As mentioned in the Appendix B, we need to compute the terms
proportional to quH from the diagrams that contribute to the proper

00
K w vy vertex. The set of diagrams that contribute to the KO - TTO v
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proper vertex are shown in Fig. 22,
The terms proportional to qZPH in the diagrams of Fig. 22(a)

are given by

2 TTZi 2'e sin & cos 6
M) =-q"p =
Mi2m® 22 M

m
X Zjdﬁd\( v 1n > < >
[ (mf‘r(ﬁwvw )- Bya” ~B(1-p-y)m”

m
1
~ |dgdy yIn — 5 Cz 5 - -1-"] . (8.1)
J mZ(y+By+8%) -Bya’ ~y(t-p-y)mZ  *°

m

2
The q p}JL terms in the diagrams of Fig. 22(b) are given by,

2. 2 .
.//(b) - _qu T 14 . % B estEJ cos b . 8. 2)
(2m) N2 M

The diagrams in Fig. 22(c) and 22(d} do not contribute to qup
terms as pz - @ , The diagrams in Figs. 22(i) and 22(j) are functions
only of p2 and (p—q)2 respectively, and hence, do not contribute to the
terms proportional to qu o The diagrams in Fig. 22 (k) are proportional
to qp.

The diagrams in Figs, 22(e) - 22(h) are very similar to the
diagrams in Fig. 24(a) - 24(g) and 24(o) - 24(t). The diagrams in
Figs. 22(1) - 22(0) are similar to the diagrams in Figs. 21(k) - 24(n)

and 21(u), 21(v). In fact there is a one-to-one correspondence between

the diagrams. The total contribution of the rest of these diagrams to the
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q pp terms is given by,

Me)+ ... +MH0)+ M) +.... Hlo)

2 2
_ {4 (_)2. i g esinf coséd
N 4 I 4 2
(2m) 4M

2
31 mc
x{—?’g +J'dﬁf3 (1-8) In 5 A} . (8.3)

2
m_ - B(1-B)q

0 .
The total amplitude for K — -rroy is obtained by adding Eqgs. (8.1) -

{8.3). As a rough agproximation, if we approximate the integrals in
m m

Eq. (8.1) by % In CZ and -:; In ~—-—-§- respectively, then we find that the
m

0 0
terms proportional toﬂquFL in the K™~ = v y vertex, EELY (p,q) are

given by:
1) _ 1 2 m i g esin § cosB
E. p,ql= -sap 2
Oy J2U TR on am®
2 2 3
g Be 1 Te 2ty
2 mz 3 2 36 |
T K
+terms in g (8.4)
Hence,
G
0 0 - F o - -
(K —*wee)=-—-1-——_--—sinecosﬁ u (k) yMv(k
UL P, (k) yMv (k)
m2
1 c K 21
x{SIn 5 31n TR (8.5)
m m B
T s

It is easy to varify that this photon exchange amplitude satisfies:
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0 0 - - -
MK —x ee)*—‘-/(KOﬂ-'rroee) (8.6)
so that we have

.//(KS - woeé ) =f\/_2/f(KO - 'rroeé )

G m m;, ]
- 2 5ing cos Blbln —< + 3 RS 4
"Nz T 6" 2z 37" 27 3%
™ w
xppa(k)vpv(ﬁ) : (8.7)

The amplitude for the process KL - woeé is highly suppressed.

IX. K, -Kg MASS DIFFERENCE

KL—KS mass difference arises because of the weak KO i KO

transition. KO - I_{O transition is a AS = 2, AQ = 0 process and therefore
must proceed through a minimum of four steps: two of which are

AS = AQ = x1 processes and the two other AS = 0, AQ = +1 processes.
Thus the lowest order KO-I_{() transition amplitude is of 0(g4) and the
diagrams for this 0(g4) do not contain either (i) internal Z, ¥,y lines

or (ii) a vertex involving two or more gauge bosons (like 2 mesons-
W+W-, W+W_Z, etc, ) since either of them add additional factors of g
without accomplishing any additional steps of the four mentioned above,

Thus, the diagrams contributing to the K —f{O transition amplitude

0

involve 2 internal W lines {and the corresponding diagrams in which one

or more W's are replaced by the associated unphysical scalars.
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These fall into two categories, When the two W lines are opened, the
corresponding Green's function KOKO-* W+W-W+W_ is disconnected
for the diagrams of the first category and connected for the diagrams
of the second category. The diagrams of the first category contain
one loop while those of the second category contain two loops. This is
shown schematically in Fig. 23.

First let us consider the one loop diagrams. The one-loop diagrams
that contribute in the Landau gauge are shown in Fig. 24, The two

possible intermediate states in the diagram of Fig. 24(a) contribufe

equally. Their sum is given by,

5 4f2m2
. ine 3 2 Bl W, o 2
M) = - 4" g Mg ——F7  sin"6 cos”e
(2m) M

2

G m

22 ( F 3a) .2 2 c

Z

K K 2 16w M Sinzﬁ

W

There are four possible intermediate states in the diagram of
Fig, 24(b). They are such that at p =0, (p being the 4-momentum of
KO) their sum would be identically zero, I:In other words, for mK =0,
the diagrams in Fiz, 24(b) would vanish, The amplitude in Fig. 24(a)
also obviously vanishes at mp = 0] The sum of the diagrams in Fig, 24(b)

is given by,
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2
m
. 2.2 F Ta .2 2 c
,%(b) "+1meKﬁ 36+ gin 0 cos 6 . {9.2)
M sin BW

so that the total contribution of the one-loop diagrams to the KO - IEO

transition amplitude is given by

2
G m
Ma)+ M) =-i méfzK-U% 91;1? sin® 6 cosZ @ < . (9.3)
M sin 8

W

Next, consider the fwo-lcop diagrams, The number of the two-
loop diagrams that may contribute is large, Again, we shall choose
the Landau gauge. In any other gauge, the number of the contributing
diagrams is tremendously large because of the presence of the meson-W
( —¥~~an ) vertex, Further, many of the diagrams are more convergent
in the Landau gauge., Figure 25 shows the diagrams that contribute
in the Landau gauge. In Fig. 25 we have shown the diagrams collectively
and have not shown the infermediate states explicitly, We shall draw
the diagrams in more details where we shall deal with them individually.

The diagrams can be classified according to the number of the W~
propagators they contain, The diagrams in Class 1 contain two W
propagators while those in Class 2 contain one Wi and one S:F propagators,
The diagrams in Class 3 are obtained by first constructing the Green's
function for KOKO — 4 charged charmed mesons (4p or 2p + 2s or 4s)
and then cloging it with S+ and s~ propagators. The diagrams contributing

to this Green's function are classified in Fig. 25(n), 25{(o; and 25(p)
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according to whether they contain a p.s. neutral intermediate state,
a scalar intermediate state, or no neutral intermediate state at all

respectively.

We shall compute only those terms which make a non-zero
lim ML Ms
contribution to —=———1 , in other words, we shall drop the
2 A
terms proportional to m  and higher powers of m. in the KO—P?:O

transition amplitude.
It is found that each of these diagrams, separately, may contain

terms which grow like (In pz) multiplied by various powers l—l__l e., 0,

M2 m

which grow like (In },LZ)Z multiplied by various powers of -—-(2:— . Each
M

kind of these terms must cancel separately, in order that the amplitude

2
m
1,2, .. :] of — and upto one power of In Mz or in mz' anzd terms

has a finite limit as pz ~» o, PFurthermore, it is not chvious here

that the diagrams of Class 3 do not contain terms that grow like pz

as |J.2 - o, Also, each diagram in Classes 1 and 2 may contain terms
that are proportional to MO or M—z. Unless these terms cancel the
amplitude will not be of O(GFZ‘), which it experimentally is. Finally, it
is far from obvious that the two loop contribution to the KO - KO
amplitude vanishes at mZK: 0. Therefore, we shall show by direct
calculation or otherwise that,

(i} the two loop contribution vanishes at mz

k- %

(ii) the amplitude has a finite limit as p.z -~ o,
m

(iii) the amplitude is of O (——-—CZ) in the leading order, and then
M
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compute the terms of the leading order.

(i) First, consider the amplitude at m}i = 0, Any diagram whose
left-most and/or right-most vertex is a meson-meson-W vertex is
proportional to p2 ( = m;on mass shell) because such a vertex is
proportional to pFL in the Landau gauge {and because of the Lorentz
invariance). Thus all the diagrams in Class 41 and all the diagrams in
Class 2, except 25(f), 25(g), 25(h)and 25(1) are proportional to mIZC

At p = 0, the diagrams in Fig. 25(f) cancel among themselves. For
example, consider the subset of intermediate states contribufing to
Fig. 25(f)as shown in Fig. 26(a). Then we find the cancellation at
p = 0 as shown in Figs, 26(b} and 26(c), when summed over all the
unlabeled intermediate states, One can varify similar cancellations
among the intermediate states in Fig. 25(g) and 25(1) taken together.

The fact that the sum of the diagrams of the class 3 vanishes
at p = 0 is not so easy to see, We have given the proof in the Appendix .

We shall only outline the proof here. The sum of the diagrams can be

shown to be proportional to the Green's function for the process

- . - - + +. .+ o+ = -
(e +1KD), (] HIK), (8] = in) (9 - iv ) ~ Ko@) Kol-p)  (9.4)

E;vhich is defined to be the derivative of the generating functional of
Green's function Z [J], with respect to appropriate sources, e.g.,
(JKC_ i Jg- ) (J¢J(r:—i Jn+ ), JK etcj when p = 0, the Green's function

c c 0

can be related to 4-point Green's functions not involving K 's through

0
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the Ward identities that follow from the broken chiral SU(4) x SU(4)
(global) symmetry of the strong interaction Lagrangian. These 4-point
functions are much easier to evaluate directly than the original 6-point
functions, Then one can easily varify that the Green's function of

Eq. (9.4) vanishes at p = 0.23 Thus, we have shown that the KO—KO on

mass shell amplitude is proportional to m;.

Now, consider the diagrams of Class 3 in Fig. 25, To examine

2
their behavior for Ikzl , fqz { , [ (k:-i~q_)2 [ < p we may expand the scalar
propagator,
2
1 1 k
3 3 ""T3 "4 " ... etc (9.5)
k- 2 B

. . . . 4 2 0
When this is done, there are contributions which behave as p, p, p,

—% ... and higher powers of (—%). We shall show that the terms which

B M
grow as 94, p.z cancel among themselves, To this end, we note that in

a 4-point function with 4 pseudoscalar external lines (not involving the
SU(4) singlet %— tr II), the terms proportional to }.LZ must cancel. This
can be seen as follows: the terms proportional to p.z are independent

of external momenta, hence they are the same if the external lines are
on mass shell., But the on-mass shell 4-point function is equal to the
corresponding on-mass shell 4-point function of the related nonlinear
mode}?éwhich is independent of pz, etc, We will use this to show the
cancellation of the terms proportional to pz and p,4 in the diagrams for B,

2 4
The diagrams which may contain terms proportional to p and p
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and their cancellation are shown in Fig. 27, [ Note that, here we are
considering the Green's functions, i.e., external propagators of mesons
except those of KO, fio are included. ] TFigure 27(a)is just the statement
made about the 4-point function of pseudoscalars, Because of this the
terms proportional to |J.2 and }.1.4 in the diagrams of Fig. 27(b) and Fig.
27(c) cancel. The diagrams in Fig, 27(d) together with those in Fig.
27(b) form a 6-point pseudoscalar Green's function, which must not
have terms in p,2 and p4 at least on mass shell, fas in the case of the
four -point function). As shown above, the sum of the diagrams in
Fig. 27(b) does not have them, while the terms proportional to 92 are
independent of the external momenta. Hence, the terms proportional to
92 in the sum of diagrams in Fig. 27(d) must also cancel, etc.

Now consider the diagrams of Class 1, viz., those in Figs. 25(a) -

(¢). In Fig. 25(a), the 11'0 and the Ng pole diagrams can be summed

together using

1
— 3 cancels and the resulting amplitude

rnK—mTr m _mS

is proportional to m?{, therefore, will not contribute to lim -———.
m -0
K K

In the sum, the pole

The diagram with the 5 ; pole is also proportional to m; . The other

pole diagrams are of 0 (——1-2—) , therefore we neglect them. The diagrams
H

in Fig. 25(b}and (25(¢c) are redrawn with details in Figs. 28 and 29

respectively.
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The sum of all the diagrams in Fig. 28 is given by
ﬂZB) = 2 [:ZA(OOO) -A(00m)} —A(mOO)+%A(mOm)+§-A(mm'm)
- A{0mm) - A(mmOEI
1 1 4 .
+2 EA(p.OO}-A(OOpL)+ FAmO)+ TA(p0m) - TA(un “m)
- ‘;—A(mmp.n A(Omy) +A(umo0) + A(mmy) + A{umm)
2 4 .
+ ;A(].I.Op.) + ;A(pm ) =~ 2ZA(pmp)

- A(Opo0) -A(mpm) ""A(Opm) + A(mpOﬂ {9.6)

where

4 4 Bq® k
de K dtq P e® F 0D ) o
2 2 )

(- m%) [oera) - m2Y@? -my? - MP)g® - M%)

2-rn2 m=m , m°=m°~’
p K’ - e’ - c’

It is easy to show, by appropriately grouping the terms in the second

bracket, that these terms vanish as pz - o, For example,
A(Opm) - A(mpm):] is finite and is proportional to (mZ/ ;.Lz ), The terms

in the first square bracket cgntribute to the amplitude. To see that
m

their contribution is of 0 (———z—), we regroup the terms in the first
M

bracket as:

4 Ex(oom ~ A(m00) - A(00m) + A(mOmﬂ

+ 533— [A(mm"m) - A(mOmﬂ -4 EA(mmO) - A(momj .
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The first square bracket in the above is in the fcarm of a second
m
derivative. It can be easily shown to be of 0(——4‘:—) The second and the
2
m

M
third square brackets contain terms of 0(——-—%—) each., However, these
M

terms cancel between them, This can be seen by using m ’(2: = % mi
E 8 .2 2
i.e., 7m =4m ]
3 c c
A similar discussion applies to the diagrams in Fig. 29, We shall
only write those terms which are analogous to the first square bracket

in Bq. (9.6):

(29) = 2|B(000) - B(0OmO0) + = Blmm “m) - =+ B(mOm)
M l: ; ;

-Bimmm) (9.8)
where
; 4 v
Bim m m_) = BRPP_ gin 6 cos 6
1 2 3 4
4(2m)
j d*e d'a k%P 0., )
b .(9.9)
- w5 - m2) [ikraP-m? o - aria” - )

By an appropriate regrouping of the terms in Eq. (9.8), we can show,

m
as above,that Jf{Z?)is also of 0(—-94—)
M

Finally, consider the diagrams of Class 2, Ef‘igures 25(d) - (m)]

These are obviously proportional to—li due to the couplings of si with
M
the mesons. In each of the Figs. 25(d) - 25(m), there are intermediate states
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2
m

for which the amplitude may be of 0(—-%) . However, we have varified
M

that such terms cancel between different intermediate states of the same

diagram. Thus the total result for the diagrams of Class 2 is of 0 (—iz)
M

M4 m 2

We have computed the terms which are proportional to -—-2— In Mé—
c

The diagrams of Class 3 are clear of O(L) . 4

4 M m
m MZ 2
(There are no terms of the type —— (In —-). ) These come from the

M4 n:12 2
diagrams of Class 1 and 2. Because cf the factor ln -M—z > 6, these are

m
c

assumed to dominate over the terms not containing this factor {:'1. e.,
4

m
proportional to ——9—] . The result is
i

4 m 2
2. g4 Sinze cosZQ . --—--Ciln£

(2'rr)8 8 M m
C

4
m

+ terms ofO(-—C-) . (9. 10)

,,/Az-loop) = -i m;:

M4

The contributions of both the one loop and the two loop diagrams to

(m, -m

L S) are separately positive. Their sum is,

G m2

; . 2 "F a _. 2 2
,ﬁ?(KO K, =-imy -5 — sin" 0 cos”6

[\ B Rel

2 .
M sin GW

2
9m 2
11 2 C M
{96 fK+ > 1n 2} . (9.11)

mass difference is given by,

The KL-—KS
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LS __ 2 _ #x’~Rg%-o0.7x1" 9. 12)
Mo 'rn2
b e
experimentally.

Using Eqgs. (9.11) and (9. 12) and £ sin8 =33 Mev, we obtain
Amc ~ 0.7 GeV.

It should be noted that we have computed the results as mK-—* 0 and
therefore it is appropriate to think of the result as an estimate of the
difference between the masses of the charmed and uncharmed mesons.,

We also note that with this value of rnc, the two loop contribution is
about three times larger than the one loop contribution,

It should be pointed out that in the quark model calculation of Ref. 4,
the procedure of evaluating the matrix element of the effective AS =2
Lagrangian by inserting only the vacuum intermediate states is, ina
sense, equivalent to only computing our one loop diagrams, The contri-
bution of the two -loop diagrams is large and helps restrict the bound on

m .
c

X. NUMERICAL ESTIMATES AND CONCLUSIONS

In this section we shall compute the branching ratios and compare
them with the experimental data, We shall also compare our results with

the results of the free quark model calculation of Ref. 5,
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(A) Ky = pp
As remarked earlier in Sec., IV, we have found that there is a

m 2
cancellation among the terms of the leading order: O(GF e’ —%— In —1\%) .
M cC
The resulting amplitude from this set of diagrams is expected to be of

2
m
o(—%— Gp, cr). In addition, the amplitude K

M
to this process. To see the relative orders of magnitude, we note that

L TYY p:L also contributes

if we parametrize the total amplitude for KL - pﬁ as,

GFa

J2r

then we find, from the experimental decay rate for this process that

1
. W = o5 (10.2)

This is to be compared with

MK > pp) =

£ sing cos 0 . (10, 1)

mz
K 1
= (10, 3)
Mz sin2 A 5500

W
Furthermore, we know that the unitarity bound from the absorptive
part of the amplitude KL—* Yy = }.L;L is of the same order as the experi-
mental res‘.ult.21 We thus conclude that the main contribution to the
KL - pp amplitude comes from the two photon intermediate states. The
same conclusion was reached in the free quark model calculation of

Ref, 5.. We have demonstrated that the result still holds even when

strong interactions are taken into account.
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(B} K& ~ 1 ce

This process is of more interest because the result for the branching
ratio in the free quark model was found to be close to the experimental
bound. Recently, the result (not bound) has been reported for this
branching ratio. >

From Eq. (7.26) we have

K p) > (r)ek)e (k)

iG m2
i) o 1 c 31
= —_— == 1 — —_ 4 ——
+\/2 pp sin 8 cose[6 In > 3%
m
w
B - 2
x (p+r) u(k)vpv(k) +0(GF) . (7,26}

The result is of the same order of magnitude as the quark model

estimate, in fact, same except for the replacement:

.2 2
i SO W SR
In 2 (33 lnmz %)

had T

in the case of the fractionally charged quarks.

To obtain the branching ratio, the result is to be compared with the
first order decay K" ~ 1% v which has the same phase space. We
parametrize the amplitude for K+ - woe_: v as

+ 0 - GrF 2 2
/[:K (p)~>m (r) e{] =i2 N sin 6 Ep +r)pf+(q )+ (p-r)pf_(q El

. J(k}y“yLe(E) (10.4)
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where q2 =(p - r)z. The contribution due to the term f_(qz)(p - r)$L

is small, Therefore, we shall neglect it, Also, we approximate:
2
f.{q”) = £,(0) = 1/NZ . (10. 5)

We, then, find from Egs. (7. 26) and (10, 4) that

2 A
a |1 c 31
. . 2 e 61.n >~ T 36| ©°® 8
T(K —~mee) _ ‘ T
+ -
r&" - 'e v 21,
2
m 2
o (1 C 31
= —_— — R— + —
{4 (6 In m?‘ 36) coSs % . (10, 6)

Clearly, the result is not very sensitive to the value of m . As
an example, let m_ = 2,(5) GeV. Then using the experimental branching

. + 0- .
ratio for K - v e v, we obtain,

K" ~ree) -7
- T Ee) L 0.75,(1.0) x 10 ) (10.7)
T(K - all)

This is to be compared with the recent experimental resultiSfor the
branching ratio
+ + -
(K —m ee)
+
T'(K —all)

= (2.3 +0.8)x 1077, (10.8)

expt.

Our result is in reasonable agreement with the experimental branching
ratio. Of course, since the branching ratio is not very sensitive to the

value of mc, we cannot obtain a bound on m
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(C) Kg~ Lee

O =
Equation (8.7) gives the amplitude for KS - 1T ee:

.,%(KS (p) ~ ror) elk)e (12))

G rn2 m2
1T g B 6 ) 2 36
m_ mTr )

X (p+r)pﬁ(k)vp(1_:) ) (8.7)

We compared this with the branching ratio for the process

+
KO - e v, v e v. Asbefore, we find that,

1.
ZF(KS""TTOEé) o 1 mz 2
ro— — ={‘i—;cose(51n——2—+0.2a
— + —
T(KL Tev) 1"(KL T ev) mTr (10.9)
and thus
0 -
[(Rg = ee) -4 ) o 1 mi 2
= — - — 4
F(Ks Sail) 3.2 x 10 pe cos 6 (6 In mz 0_2'?) .
T (‘10.93)
Thus for InC =2,0, 5,0 Gev,
T{K ""Troeé)
5 = 1.4 % 10710 L 2.2 % 10710 (10.10)

F(KS - all)

+ o+ -
(D) K - 1w vy

+ + - + -
We compare the decay rates for K —- = VeVer T vHvM with that

+ - + + -
for K - woe v, The decay amplitude for the process K — m vv is

given in Eq. (5.13):
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//(K-"(p) -~ 1'r+(I‘ Yvik) v (k ))

2
3R _L{ln_nﬁ +1}
4 JZ Mzsinzﬂ mZ 6
W c
2
- - My
% (p+r)talk)y v, vik) +0 (G a— ). {5.13)
n'L F°_2
M
From Egs. (5.13)and (10.4), we obtain,
+ + - + -
TK =7 vv )+T(m v v ) mzcosﬁ 2 2
MW, e e |3 C [ M 1
+ 0- e 7 =5 * ¢
T{K - eve) (38 GeV) m
(10, 11)
from which, we find:
+ + - + - : ‘
MK =7 v v ) +T(m v v ) m® 2
L € e _ g.8x140° < In
n .
rt - an) 38 Gev)  Me
(10,12)
The present experimental bound on this branching ratio is
+ + -
T >7 vl g4 % 107 (10. 13)

CK ~all)

and it does not allow us to place a meaningful bound on m . Our result
is in close agreement with the result of the free quark model calculation.
(E) Kq~ v
o -
The decay amplitude for the process KS - vv is given by

Eq. (6.16):



-69- FERMILAB-Pub-74/96-THY

G%(stp) > 20 (r) vlk) G(E))

A
L SE e s e 3o Mt
YTJz Ze SmUeos 2 .2 2 T2 T g
M sin 6 m
w c
— IJ‘ p—
+
x {p r)pu(k)y va(k) . (6. 14)
. . . . + F
Comparing this with the decay width for the process KL -Toe v,
we obtain
0 - 0 - 2
— -+ —_
T(KS T vHvH) I‘(KS ™ veve) J3a m M
e— 3 V3 cos ¥ 5~ \In
- +
F(KL T e ve) I'(KL -7 e ve) (38 GeV) m
and thus
T(K —>1T0v v)+ (K _"TI'OV v ) 1:'[12 | 2
S [T S -8 c M
TR = ail) >~ 0,5x%x 10 21n
S (38 Ge V) e

6.16)

In conclusion, we have, here, constructed a phenomenological model
unifying strong, weak and electromagnetic interactions., The model of
strong interactions is constructed to incorporate the results of
SU(4) x SU(4) current algebra and PCAC; thus incorporating the low
energy phenomenology.

We have found that our results are in qualitative agreement with the
quark model estimates of Ref. 5, We have also found that the amplitude

for KO - pﬁ which proceeds via exchange of only the heavy vector
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+
posons {W , Z) is unexpectedly small due to the cancellation of the

m
leading order terms i.e., O(GF o —-—%) . The experimental knowledge
M

of this process does not allow us to infer about the average mass of the
charmed mesons therefore. Our results for the K’ - rr+eé branching

ratio is in reasonably good agreement with the recent experimental

result .15 The experimental bound on the K+ -> 1r+v1: branching ratio

is not stringent enough to allow us to obtain a bound on mc, at present,

via this decay. However, calculation of the KL—KS mass difference in

the model puts a strong bound on the average mass of the charmed mesons.
Our estimates of m  are strongly indicative that the charmed mesons

must lie in the few GeV range.
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APPENDIX A

Feynman Rules

In this Appendix, we shall give some of the Feynman rules {or
interaction terms) relevant in our calculation,

{1) Vector meson and Higgs' scalar interactions: [ See the Lagrangian

of Eq. (2.4)]
Ti -
+ B1 1B2 gB3}1 g BOH
W = —-["L——-—li___ Z =
" J2 b G
g”’B, +gB R
. 3 Op _ 2, .2
Ap a G g *tg
e =-gg /G o8 0\, = g/ G sinf . =g /G.
The relevant interaction terms are:
s A ieA (sT9s -sTps)
K b 3 B
+ - 2 g2 + - - +
s 87 : -1(5—3——)2(sas-s38)
a G M b b
+ .- 1 - + +
8 W y: - =gW "(d x 8 -x8 s)+h,c.
X 2 B M M
- - + -
s+W A -e M AH(WZS + 5W )
M

+ - + - -+
5 W Z: Gcoszﬂ M Z (W 8 +W 8 )
W bR M
+ - + -
The Feynman rules for the W W A and the W W Z vertices

are:
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+ - ) _ _
W, @) Wi@h ) -iefpa) g, o+ @-r)g o (g

W ()W, (@)Z (r1: iGeos® 0 dp-a) g_,+la-r) g +(r-p)g ;
a B o W nap a” up B ha

where the fields and the momenta p, q, vy enter the vertex.
(2) Leptonic Interactions:
Here, we shall give the interaction terms for the p-leptons.

E‘he interaction terms for the e-leptons can be obtained by (p_, VH) -

(e,—ve)] They are
G - _ 2,2 .2 . i e
— + £ -8 - £
{2 VYHYLV MH( G Y, E——VG R)M}Z + 2(" yHprW +h.c)
_ " gm _ - _ _
1t s + + + i
+e ppr.A M I:Z(v YR h.c} By T opl YBHX]

(3) Meson {Z, II), Vector meson (W, Z, A) Interactions

These are obtained from the Lagrangian of Eq. (2.14). We shall
use II, Z and B to collectively denote the pseudoscalar, the scalar and
the gauge bosons respectively, Also, wherever applicable, we shall
write the Feynman rules only in the case of the exact SU(3) symmetry
(and m ?{: mi= 0, etc.). Changes due to the SU(3) breaking can be
obtained easily from these,

(a) IIB Couplings:

These can be obtained from: -tr %%(T+W+p+ T_W+) +GT3ZJ FaMir %

+ + -of
. [ o) . .
(i) Feynman rules for II (q) Wp(q). unit sz- ql.L
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Field II T K T K
c C
Vertex -cos 8 -sinf® sinO(1+e) =-cos b(i+e)
(ii) Feynman rules for IIO(q)-» Z (q): unit igt q
P 2N2
Field I1 U ™ g n,
2 1
Vertex (1+e) N2 TS 5

() = B Couplings:

These are obtained from: - % tr E«“ BHE—I(T+Wt +T_ Wf)

= ige
f - ; it:
Feynman rules for ¥ (q) Wp(q) unit —%2 q

-
+ - + -
Field = ¢ ¢ K K
¢ c c c
Vertex sin & -s8in @ -cos 8 cos @

There are no = Z vertices,

= =* 4=
(c) =5 - &  and Iliz-* s and II" ~s° Eq. (2.16)
I

unit : —i;ﬁ-f- =
’ > M

+ - + -
Field ™ T K K ] K

C c c c c c
Vertex isin® -iginf -icosf 1icos B -s5infH cosé

(d) 11 1I W Couplings:
We tabulate below the Feynman rules for
- - 0
II (p) ~ WH (p-q)II (g} .

For brevity, we shall omif a factor of + cos 6 or +sin 8 which can be
easily supplied by observation. The Feynman rules for

Z-(p) - Zo(q) W;(p -g)are given by the same table with appropriate
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+
replacements II = =, The Feynman rules for the process II (p) —~
IIO(q) W;L (p - q) need only a sign change.

- 0 -
Feynman rules for II (p) ~1II (q)W}.L (p-q)

unit: -ﬁf(p +q)}.L sin GlcosG]

T K i K
— C
m -N2 -1/N2 1INZ 0
K, 1 1 1 -1
- B _ ]
XOc 1 1 1
g 0 -3/N6 -1/NE ~2/N®&
g 0 0 -1/N3 1/N3
n 0 0 1 -1

(e} II = W Couplings:
+ 0
Feynman rules for II (p) — Z

unit: 557 (p +q)p Ein 9/(:086]

+
W
q} LL(q)

— K e K*
o4 C
¢, 0 ANZ 1/NZ 0
KO(;O) 1 1 1 -1
Yo (¥, -t 1 1 1
£ 2N6 ~1NE -iNE -2N6
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£ 2/N"3 2/N3 -1/N3 1/d3

0 -1
’éc 0 1

+ 0
The Feynman rules for £ (p) > II (q)W:;(p - q) are obtained by

replacements = «<-II and a change in sign,.

(f) II x Vertex: 5
_ -igf m_
n X M

(g) II I Z Interaction Terms: These can be obtained from,

“-i——tr{GZ T [H a“xﬂ +g”B ECII)S“IH a“n(cnil}
2 poo3 Op

where,

(CII),, =e, 11 , ; e.. = electric charge of II_. (1,0, -1).
1] 1 1] 1] 1]

We shall write only those couplings which we have used:
2_g-2 + - - + + - - +
-iz“(ﬁ——g———) (K'9 K -K 9K )H+{m 8 m -5 8 7 ).
2 M M B K
(k) 11 = Z Interaction Terms:
Only the neutral mesons have such vertices, They are obtained

from,

1 M= fansd M p..«’ o
= — - -
% 7 > GZ tr 11'3(I18 -z 8 II+0 211 SIIZ)E

We shall write down those vertices which we have used:
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6 SN

& = 215 N 0
nyz- 2 YW\t \TE SN ]t

+ x%% v +xX°% ¥ K 5 % -K. 3 r. b+
¢ p Oc c p Oc 0“0 %o 0% fof e

+
(g) W v II Interaction Terms:

These are given by
-3 - - - - +
B :f [—Tr sinf (1+S) +K cos0(1+5)+K sind + K _cosg| W AP
c 2 c 2 c v

+ h. c,



-77- FERMILAB-Pub-74/96-THY

APPENDIX B

The Ward-Takahashi Identities for Proper Vertices

Since the use of the Ward-Takahashi (WT) identities simplify the
calculations considerably, we shall explain them briefly.

WT identity for proper vertices in arbitrary gauge field theories
have been derived in Ref.(25), We shall only quote the result and express
it for the Lagrangian _‘Zof'Eq. (2.14), In the notation of Ref, 25, the
WT identity for the generating functional of proper vertices T [ & ] is,

61"0

a —_—
Liﬁ@i =0 {B. 1)

where, the subscript i runs over all fields in the Lagrangian and over
the space time; and

& o o o &
= + +
L.=28. gtij@j yi[d)} (B.2)

_ 1 2
r0[ o] =rla] *3 {Falé ]}

a _ i P 5 -1
vilel =-itha, Lol Gﬁv[cp](a@keya[@]) :

In one loop approximation, y? [&] does not contribute to the
processes that we shall use WT identities for, essentially because the

pseudoscalar and the scalar mesons (Z, 1) do not couple to the Faddeev-

Popov ghosts directly in the gauge we have chosen [ see Eq. (2.7). 1]
o

When y?’[@] is dropped {- )2 g—-— LC;

o } becomes the operator
& o

o®,
1
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which produces the change in a functional under an infinitesimal gauge
transformation of the gauge group described by parameters {Qa} .

In this Appendix only, we shall, for the lack of symbols, use
M,Z,]II, etc., etc., to denote the expectation value of the meson fields,
etc., etc., in the presence of the external sources (instead of the fields

themselves), Zk‘ II, are 4 x 4 matrices and k refers to the space time

k
point x K of the fields in X and 1I. [ The notation used here will be
somewhat different from the usual (e.g., in Ref,25). We have separated
the space time index and the field index for the meson fields. The field

index is identical to the matrix indices of the fields in £ and 1I. ]

Then, dropping y?[@] , the WT identity in our notation becomes,

o aro @ f)FOT o 61_OT o 61“O
+ —_—— - — =
<SBi %) trEJMk 5 M 6Mk + 5 Sn s 0
i k 6M_k n
(B.4)
where,
-5%B. = —— a‘.l”+e°"B
1 ga L
a , @ . o
5 Mk-—lTLMk-l-leTR
2 R N S T |
o Mk—leTL 1'I‘R Mk
Gas = -l—-ra 3
n 2 nim m

[t7 =1, 7 (@ =1,2,3)are the Pauli matrices]
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T

(51—0 ) _ (51_0 B 5)
5 M - &M ' :

Py vB

[For the sake of notational simplicity, here too, we have made
some changes as compared to the usuval summation integration

convention. For example, 6“1\/[ is a 4 X 4 matrix with two space-

k

t
time arguments XQ,X Its (E,n) h matrix element is given by,

K"

! o _im@ . o
(& Mk)gn = -i(T (M,) +1(Mj)§G(TR}

L)E, o, kj " jion an, jk

. . . [#4
; £€,0,n are matrix indices; and (T

where jk refer to X‘j and x L%G,kj

k
!

4 4 L.
~ (TL)gcr & (xa— xk) ) (xa - xj) etc. So long as one keeps this in

mind, the simplified notation used here, will not cause c:onfusion.]
We shall not differentiate the WT identity with respect to the gaune
fields nar with respect to the Higgs fields (8 n) in our applications.

Hence, in our applications, we may put Bi = <B'1>vac = OGand .

+ +
8 =<3 > Z O0and x = <y> = 0in Eg, (B.4), Therefore, we
vac vac

may replace I‘O by T'[See Eq. (B. 3)] and drop the second term in

a"’Bi of Eq. (B.5).

Then the WT identity becomes,

T
1 o o7 - ) o, 6T
p Bi . _+tr{(-1TLMk+1MkTR) M
o i k
+(‘MTTa-iTaMT)i rs%s 2T L (B. 6
PV L R 'k ¥ nés i : - 6)
6Mk n
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Expressing Eq. (B.6)in terms of Z and II, we obtain after some

simplifications:
T T T
1 & &T i 6F or oT 6IT o o
- = + = e - —_ —_— - ——
o 81 5 B. 2 tr{[(az: Zk Zk 62) +(6II IIl«: Hk 6IIk)](TL+TR§
i k k
T T T T
1 61" 6T 6T oT @ o
+ —tr (-—21-2 )-( I +1I —-——) (T, -T E}
2 {{Mlk k k éll_k ézk Ik k SEk R R
o4 6T
.I_ ———— =
6 s nEs ] 0 . (B, 7)

From Eq. (B.7) we shall derive the desired WT identities in special
cases successively,

(1) K+ - n'+v v

Here, we shall derive the WT identity of Eq. (5.1) for the K+n‘-Z

vertex,

We first note that,

6 _g _8 g 6
& Z G 6B G 6B
v 3p Op
- gz 1 6 _ g‘z 1 & (B. 8)
G g 6B3p 2G (g7f2) <SB0H

With the help of Fq. (B.8), the WT identity of Eq. (B.7)can be

written, for the special case, as
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2 2
g p _ & _
(GT3 2G LY 9}

. T IT T
65T i (38 (6 o1 )]
“d — +=—tr z == IT -II
“ﬁzp 2 {& k k kaz) Ilklk kéﬂk

1 6T sTo\ [ 6TT st g2 g2
gt [(mk ey 511k)' (62 L +14 az: )]( G T3 3G (YR"YL))

k k

=)

a
5

+ — Gv =0 . (B.9)

(TP
»

Here, we have used,

+ -
We differentiate the WT identity with respect to Km and ™ and

getZ = F, Il =0, We note:

2 T
(i) The diagonal elements of 5 (6I‘ z -2 Eﬁ)
+ - &6 k k §Z
6K o1 k k
are zero m n z = F,
' II =0
¢ . gl
(ii) -—G—-T _ZG(YL R)=-GrT3
2 L2 2 2 2 2
& o g , (13_. 5g7 tg _5g7
(1) BTy - S (v +Y) = Diag5 55-7 B3 5 - 2 5
2 2 2 2
S-S N U S | g__)
2 G 6 G 2 G 6 G
2 T T )
5 &7 g
o o {05 mm, SN, 8 v ) o
skt 5a 6Ek Lk 6Zk G 3 L

Using these, we obtain,
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3 2 2 2 2
i - T —
-8 5 — +§(‘“‘%‘”““ 6, - _.i:l;.: 5km)(g_§—)
M sz 8K b 6K 6 §K_ 6w
M n m n n
3 3
1 §°T Gv §°T
—_— - 4 — =
> 22 £, G(T,) - 0

+ - +
k 6Km6'rrn611kk 5% 6Km6'rrn

(B, 10)

Writing Eq. (B.10)in momentum space (see also Fig, 11}, we obtain,

n . __ i (3)
qpl"z(p,q) iM, l"x(p,q) > Gi fk t3k Yy {p,q)

g -g’) Z+(p)—2+(p—q5] (B, 14)

where,
M ; + + i
I‘Z (p,q)is the K (p) =~ 7w (p-q)Z (q) proper vertex,

4+ -
l"x (p,q) =K w ¥ proper vertex

+ -
E+ =K m self energy

3
il“(;)(P,Q)=F.T.{ — ° L }
§K_&m 6IL
by = 4 i=1,2
= -4 i=3,4.

0 o -
(2) KW =1 vy
Here, we shall derive the WT identity of Eq. (6, 1) for the KOwOZ

. + -
proper vertex. This derivation is similar to that for the K =« Z
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proper vertex, hence we shall be brief. We differentiate Eq. (B. %) with
0
respect to Km and Trl?1 and set Z = F, II =0, We note that the second

term in Eq. (B.9) does not contribute, We shall only give the final

result, It is

3 3
-9 : 1; "%EzG{T3)kkk : 1“o 0
B sz 6K &n k §I1 . 6K 6
B m n kk " m n
G 52T s .4 51 5 N2 5 °r 5
2 6% 6170 km ~N3 658 GKO kn 3 6t 6KO k
0
k k
G 55T
+ V =0 . (B.12)

2 sl 6K s
Writing Eq. (B.12)in momentum space, (also see Fig. 15), we obtain,

iG (3)

q F (p q)-1M Ty (p,q)-7ifkt3k1"k (p,q)
+ ‘G{m = (p)+-:’7~§u §o) - = - q% (B.13)

where

0
T OHz (p,a) = Ko(p) - 1 (p-q) Zu(q) proper vertex

(3) -
(p q) = KOTrOIIkk proper vertex

T, (p,q)=K Trox proper vertex

Ox 0

Zo(p) =£ SKO self energy , 20 (p-q) =« 0™o self energy

Zé(p) = SKO self energy.
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3) K —+=x Y
+ -
Here, we shall derive the WT identity for the K = v proper vertex,
and show how the terms of our interest can be obtained with the use of

it. We note,

61.0? - £ 6B6 “L%ma6 :'e(i 6B6 +';' - <5];sS )
b 3 Op & PP (g72) °Cou
(B. 14)
Using Eqg. (B.14) in Eq, (B.7) we obtain,
T T T T
5T | ie Jor 5T 6T 5T
- — — —_— e —— - —— =
° A T3 tr{Q N "k " 6z, | oI L - 5111{“ °.
H (B. 15)
where
1 4 4 2 2
L + — + = di m—m—, m e = —
Q T3 Z(YL YR) dlag(3,3, 3 3).

-+ -
Then, differentiating Eq, (B, 15} with respect to Kmrrn and setting
2 =F, Il =0, we obtain the WT identity, which may be written in the

momentum space as,

qpl":(p,q) =g [2+(p) - E+(p -qﬂ , (B. 16)

where,

+ +
Ti:(p,CI) = K (p) = 7 (p-q)y(q) proper vertex.

+
K m self energy, as before,

z, (p)

Equation (B. 16} is shown diagrammatically in Fig. 30.

+ -
On the other hand, the truncated K =« y Green’s function E“'(p,q)
Y
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is given by (See Fig. 31),

2
" (i) e(2p-q)
E (p.q) ={T (p,qQ)+ —5———> Z_ (o)
v mass shell mK - mﬂ_
.2 :
(i) e(2p-q) D
+ 2 2 : Z, (p-q)
m -m mass shell
T k -
e(2p~q)
={T (p,q) - —5——35 IZ,(p) - 3 (p-q : (B.17)
. mk— m1T mass shell

As far as terms of our interest are concerned E e., upto the

terms of 0 (—1—)] Z {p) can be expressed as,
MZ 1+

E+(p)=oe+ﬁp2 +vp4 . {B. 18)

From the Lorentz transformation property of l"p(p, q), we write,
r(p.a)= cp" + Do (B. 19)

where C and D are functions of Lorentz invariants. We shall choose

2
the three independent Lorentz invariants to be p , qz and {p -q)z.

We expand C and D in powers of the external momenta: e.g., as

2 2 2
= + + - + +
C CO Cip Cz(p q) C3q (B, 20)

where the C.l‘s can possibly have (only) a logarithmic dependence on the
Lorentz invariants,

Substituting Egs. (B.48), (B.19)and (B. 20) in the WT identity of
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Eq. (B.16)and compare the coefficients of the powers of the independent

Lorentz invariants, we get:

1
C. =2ep +O(--—-—)
0 M4
Ci = 2ey
C2 = 2ey . (B. 21)

Now,

v _ + 2 Y- 2
Ey(p.q) pp, {Co Cip +Cz(p q)} +C3q tao..

2__2 (-0 ) - m2
P - p-q I

2 2
_efae+pp +vp4] _elatBp-q) +1(p-q)2]}

+ terms proportional to qpL . (B.22)

The terms proportional to ql‘,L do not contribute, E$ {p, q) has terms
2 2 '
proportional to p pp, p -q) pll and p}JL in addition to the terms proportional

to quu. However, using Eq. (B, 21)on mass shell, we find

Ep(p, q)Ln = C3q2pp' + terms proportional to q".L (B. 23)
Y ass shell

Hence, we need to compute C3 only. This can be done by computing

Ft{p, q) on mass shell and picking terms proportional to qu M

0
4) K — ﬂoy Vertex

. 0 0
The only one particle reducible diagram for the K — w y vertex
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consists of KOTTO - K b y. This diagram is clearly proportional to q ,
0
the photon 4-momentum. The WT identity for the total KO - y vertex

Eo}lY (p,q) can be shown to be,

q EBL (p,q) =0 for arbitraryp,q. (B, 24)

Writing,
3%
E_ (p,q) = + Gqg
Oqu Fpll qH

it follows from Eg. (B. 24)that F is proportional to qz. Hence, we

0
need to compute the terms proportional to qZPH from the Kowr y total
vertex (terms proportional to qFl do not contribute) and these terms come

from the IPI diagrams.

{5) KOZ vertex
Here, we shall prove the WT identity relating the KOZ and the KOX
vertices; which is given in Sec. (IV.1)
Differentiate Eqg. (B.9) with respect to KOm and set = = F, II =0,
We obtain,
2 2 2

+M, i -92 61;1 =0,
2, Ok Ikk (B. 25)

Writing Eq. (B. 25)in momentum space, in obvious notation, we get

. 1) + _ G
lpprz(p) MZTX(P) > ifk 3k Z(K Ilkk . (B. 26)
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Next, we shall show that

G 0
- = 2K —
2 f by 2t L P)

= (ipp) (pole diagrams for KO -~z +MZ( pole diagrams for KO-* X).

(B.27)
The right-hand side is

. - i At 4 . i , 2
ip, 25 ) 5 8, ()p M, 2.3 ) 5 ey my /M,
k p -my k p -my

where ai’s are defined in Eq. (4. 5) and the sum over k runs over

Tro!”s Jnc’no

- Z Z Pl ay

TrOncnc n0

- G U
- Z( 2 fkt3k) ZE~ 1. p)
k
changing the basis to H‘kk (k =1,2,3,4).
Thus, from Egs, (B,26)and (B, 27}, we obtain,
ipHEH(p)JrMZ F(p) = 0 (B. 28)

where

E"L(p) = truncated KOZ Green “s function

F({p} = truncated KOX Green s function.
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APPENDIX C

Finiteness of the Results

In this Appendix, we shall make a brief comment which will make
it more transparent the fact that all the results are finite.

Nothing that we are using the Landau gauge for the W propagator,
we find that among all the diagrams that have appeared so far, only the
diagrams which are divergent are the self-energy diagrams with W-
exchange. As an example, we may consider the K+1-r“ diagrams shown
in Fig. 25(a). In the Landau gauge such a diagram with a single inter -
mediate state (say vo) is logarithmically divergent. However, when one
sums over all the intermediate states, the logarithmic divergence
cancels, That this must happen can be seen as follows.

Consider the tree diagrams for the process K+1rp - W+W-. (See
Fig. 25.) There is no direct K+TI‘_W+W_ vertex. EI‘he direct meson-
meson W+W— vertices are always AS = AQ = 0. The self-energy
diagrams we shall be dealing with are always be AS F 0. There are more
diagrams for this process but these vanish when the Wﬂ: are on mass
shell] Then the fact that the sum of all the diagrams with longitudinal
polarizations of the W+ and W must not grow like a positive power of
the CM energy necessarily requires that the sum of the products of the
coupling constants Z hipi must vanish. Due to this condition, the

i
logarithmic divergences must cancel in the self-energy diagrams of

the Fig. 25(al
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APPENDIX D

The 3 meson (2p, 15 or 3s) couplings can be directly obtained from
the interaction terms of Eq. (2.3). However, it is instructive and easier
in some cases to obtain them via the WT identity. It makes many
considerations simpler,

As an example consider the K:: K_On-; vertex., We use the WT

identity of Eq. (B.7) in the tree approximation. Differentiate Eq. (B.7)

with respect to x_, and Tr; and set ¥ = F, II = 0. Then we obtain,

0

3
1 5 T
- (f+£9) T — cos §
2N2 6K 6w &
c 0 ¢

3
L 8°r

+— -
g M sw ok, 6w
0 ¢

- 0
+ terms that vanish when T and ¥ are on mass shell . (D. 1)

-0 - 1 2 2
The first t h K a s sh i -
irst term when and T, re on mas ell is ENER (mc pc)

-0 -+
cos 6. Therefore, the three point x TI'CKC vertex is:
Z 2 2

K tm p
(3 . _e ¢ =(__C +0(1)) ) (D. 2)

Kc )E:On'
The conclusions from this simple exercise is that in the three

meson vertex the parameters p.g L0, By Evhich enter the strong

interaction phenomenological Lagrangiarﬂ enter only in such

combinations that they can be expressed in terms of the masses of the

mesons. Since the Feynman integrals also depend only upon the masses
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(through propagators), it becomes easier to understand the fact that the
results are independent of the parameters «, B, y as |.120 - o,

The fact that the 4-meson vertices (with 4 external pseudoscalar
mesons ) has similar property can be seen easily as follows: As an
example, consider the K+1T- - K:TT; tree diagrams. These are shown
in Fig, 26, We know that the sum of these diagrams must vanish when
the external momenta vanish and mc = my = 0. EExact SU4) x SU(4)
symmetry of strong interactions Lagrangian] This relates the 4-point
function (c) to the diagrams 26(a) and 26(b) which t:emselves can be

2
expressed in terms of p (up to SU(4) breaking corrections).
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APPENDIX E

+ + -
The 'Box ' Diagrams for K = w vv

These are the diagrams that arise out of the direct coupling of
+ - + - I K N
W W (ors s ), Erom the K m W (s )W (s )verte{l to leptons.
They are shown in the Fig. 27.
In the diagrams of Fig. 27(a), when the intermediate states are

2
scalars, (ES,EO,YOC)the diagrams vanish as p~ = «, The two

0
intermediate states (WO,XC ) contribute with the opposite signs. Their
rn2 mi
sum is of order < 0 = In — |- thus smaller by a factor
2 2 M mK
. m
— in —3 as compared to the Z-exchange diagrams. The diagrams
2
M mK mK
in Figs. 27(b)and 27(c) are also of order £ 0 (_Z) The diagrams in
M

the Figs. 27(d), 27(e)and 27(f) can grow as pz individually, but their
sum is finite as pz ~ o , The cancellation of the terms proportional
to }.LZ is related to fact mentioned in the Appendix D (see Fig. 26), that
the sum of the K+Tr— - K:TT; gcattering diagrams vanishes at zero

external momenta and mC = 0. Hence, their sum is found to be of

m
0 (—-JJ—) . The diagrams in Figs. 27(g), 27(h) and 27{i) are also found

M4 2
m
to be of O (—%) . Hence, all box diagrams can be neglected as
M

compared to the Z-exchange diagrams,
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APPENDIX F

. _iG ( )
Here we shall deal with the terms > i fkt3k ok (p,q)
i 1 . . . .
+ 3 G [U? 20 T 0(p) -Z(p qﬂ in the right-hand side of

Eq. (B.13). We need the terms proportional to p-q from these, which

will contribute to the terms proportional to ppL in the proper vertex.

First, let us consider r&)(p,q). The diagrams that contribute
(3)

to FOk

(p,q) are shown in Fig. 17.
We are going to show that none of the diagrams in Fig. 17

except those in Figs. 17(a), 17(c)and 17(q) contribute to the p-q terms

1 ()
ofo(—-—)mz:ft
N k1:31«; ok

(p, q) and that the contribution of the diagram

in Fig. 17(q)to - GEf t ( )

2 k 3k Ok is equal and opposite to the contri-

bution of the diagram in k Fig. 18(b)to - 3%—— Z 7 (p-q); so that they
together do not contribute to the sum of the terms in the right-hand side
of Eq. (B.413)that we are considering.
Let us first note the following:
(i) Let Ck be the Feynman rule for the vertex of a scalar — WiIIkk.
+

IEI‘he scalar may be « | ¢, ¢ ] Then from the Feynman rules in

the Appendix A, we find that

zt+.C. =0, (F.1)

(ii) We compute all the trilinear couplings involving IIkk and two

charged fields. The result is:
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t o T 2
- + +f +
(chc ch ){afp (f1I " f 1144) Zypo f(II22 E
+ - -+ y . 2 iy
- + + +
(ﬂc (,‘{)C + 'rrcd)c) 3 o.fp.o(f I 11 f 1133) 2y pof(l'lz I }
+ - - 4

2 2
+ + ’ +
(K« +K k) 4ap0f(1122 1144) 2y Mo {f II3 fII
2

+,- -+ 2 ..
(r ¢ +m ¢ ) %apof(1122+1133)+2w0(f II44+fII“)}.(F.2)

+ + + +
Thus, if we define the II - X Hkk vertex as bk’ where II and =

are some charged pseudoscalar fields, then we find:

lvf';‘.fkt3kbk=o . (F. 3)

l;Equation (F.3) can also be alternately derived from the WT identity

for the tree diagrams. (See Eq, B.9). It essentially follows from the
+ + + o+

fact that there are no vertices of the kind II  ~ Z 2',}'L (e.g., K =« ZI_L)TJ

(iii) In particular, we note from Eq, (F.2}that the interaction of

0
m with charged fields are given by,

0
i + , - -+ 2 2
+ 1 -y) - &
N (wcti)c 'rrctﬁc) 2f }.LO(ZQ’ v) 4a'f€p.0

0 - - AL 2 2
- U;._(K k + K k ) {Z.f }-I-O(ZQ"'Y) - ZYfGHO
0 p.z _
J__Zf%,w.]-ﬂd; -—KK—K KJ”‘O(}.I. . (F.4)

(iv) The trilinear interactions of K_ with the charged fields are

0

given by,
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2
i

s
-—-(—:-—KO{K m +K ¢ +K ¢ +x } + O(HO) . (F. 5)
2f c cC c c

Now, consider the diagrams of Figs., 17(b)and 17{d}, They are of
(3)

O(p,o) and therefore in their contributionto = f t_ . T , we may put
I k 3k " 0Ok
fk =f (i.e., € = 0}). Then due to Eq. (F.1), the contribution of the
(3)

diagrams in Figs. 17(b}and 17(d) to i fk t3k rOk

Further, on account of Eq. (¥, 3), the contribution of the diagrams

. , . (3)
in Figs, 17(e), 17(f), 17(h) and 17(i) to ifkt3kr0k

diagrams in Fig. 16(g) do not have terms proportional to p-q since it

vanishes identically.
(p,q) is zero. The

depends on p2 only, In Fig. 16(j), each diagram is of 0 (—12) . However,
M

when summed over all k, for each intermediate state, the contribution

(3) . . + -
to = fk t3kI' Ok (p,q) vanishes. This is so, because the IIkW W vertex

is described by,

(const) W w Mz ),
M Kk k

and since each diagram is of O(p.o ), we may put fk =f, The diagrams

in Fig. 17(k), 17(1)are of 0 L . The contribution of the diagrams

4
(3)

M
in Fig. 17(m}), 17(n)to kat3kr0k

vanishes because of Eq. (F.3).
The diagrams in Fig. 17(p) are of 0 (|.LO l; however, the p-q terms in
them are of 0 (p—z) and hence can be neglected as pz - o,

This leaves us with the diagrams in Fig, 17(a), 17(c)and 47(q).

Let us first consider the p:q terms in Fig. 17(q) together with the p- g

terms from 26 “ (p-q). We shall redraw Fig. 17(q), for convenience,
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with the diagrams for 26’ {p - q) in Fig. 18, [Figure 17{q) = Fig. 18(a§|
The diagrams in Figs. 18(d) and 18(e) are independent of the external
momenta. The diagram in Fig. 18(c)is of O(I.LO ); however, the terms
proportional to p-q are of O(H‘Z) and hence will be neglected. The two
diagrams in the Fig. 18(a) and 18(b) are identical except for the left
bottom vertex in each, We find that the « OK; ‘IT: vertex in Fig. 18(b)

is described by,

.- - + 2 2
¥ + :K‘OKcTrc {-2 (Za-y)fp,o +4afe p.o} + h,c. , (F.6)
KOKCWC

- +
while the KOKc 'ITCIIkk vertex in the diagram of Fig. 18(a) is described by,

” 2 2 0 - +

c = |- + + -

¥ . [4ap0(1111 My, + T, ) - 2ypgll,, | KK 7

OKcTrchk
(F.7)

Thus, the contribution of the diagrams in Fig. 18(a)to Z f t 1“(3) is

K k 3k” Ok
described by an "effective' vertex (Feynman rule)
- 2 s ey 2
-|:4arp0{f 2f) Zyp,ot]
- 2 2
= 2(Za-y)p0f-4rzf€uo (F.8)

-+
which is exactly equal and opposite to the X OKC L vertex in Fq. (F.7).

Hence, the total contribution of the diagrams in Fig. 48(a) and 18(b)to

(3) L
{1ty Tp (P.a)+ 3570 q)}is zero.

We have computed the terms proportional to p~q in the diagrams

of Figs., 17(a)and 17(c) and of Fig. 18(f), The results are already
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quoted in Eqs. (6.3)and (6, 4),

Finally, let us consider the WT identity of Eq. (B.13)atp =q =0,

v

00
07 vanishes at p = q = 0; so does the K m x proper vertex

T
4
]_"Ox (p.q). (See the diagrams of Fig. 16.) Therefore, we obtain

N2

(3) 1 ‘0 =
Zt3kfkr0k (0,0)+2‘(0)-J3=20(0)-W20(0)—0. (F.9)

As remarked in Sec. VI, the contribution of the one particle
0
reducible diagrams to Kow Z total vertex depends on the terms in

EO’ 26 , 26’ which are proportional to pz. ILet us therefore consider

2
the terms of 0 (M -—i?) in Eq. (F.9).
M

From all the above discussion, it is clear that the contribution to

(3)
i e tak Dok

(i) the diagram in Fig. 17(q), (ii) the diagram in Fig. 17(g) with the

{0, 0) which is of O(p.z) comes from only two diagrams:
+ -+ s
intermediate state (v , TI'c , TI'C ). The contribution of these are found to
be equal and epposite in sign, hence, they cancel. Thus we obtain
1 NZ 0
2/-’ - > - > < =
5 (0) NER 0(0) J5 o{0) = 0(p). (F, 10}

We shall use Eq. (F.410) in Sec. VI,
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APPENDIX G

In this Appendix, we shall deal with the term - & Zf t 1"(3)(p,q)
2 I k'3k k

+ -
in the WT identity for the proper K w Z vertex of Eq, (B.11), We

need to find the terms which are of 0 (-—3-2—) and are proportional to
M

p:q. This appendix is similar to the Appendix F,
The diagrams that contribute to this vertex are shown in Fig. 13,
On account of Eq. (F.1), the contribution of the diagrams in

. (3)
Fig, 13(b) and 13(d) to i: fk t3k Tk

Eq. (F.3), the diagrams in Fig. 13(e) and 43(f} do not contribute to

{3)
ifkt3kr K

proportional to p-q. The diagrams in Fig. 13(k})is of 0 (p.o) as such,

(p,q} vanishes. On account of

{p,q). The diagrams in Fig. 13(g) do not have terms

but the p-q terms in them are of O(pﬂz) and hence they vanish as }.1,2"' @,
The diagrams in Figs, 13{(m) - 13(g) are similar to the diagrams in
Figs. 17(j) - 17(n), (which we have discussed in the Appendix F) and
can be neglected for identical reasons, The diagrams in Fig, 13(h),
13(i), and 13(j) contribute to the terms proportional to p*q and their
contribution is already stated in Eq. (5.11). This leaves us with the
diagrams in Figs. 13(a), 13(c)and 13(1). The following, we shall show

that the terms in their sum which are proportional to p-q are of

mé mcz:
O(-—Z) as against the terms of the leading order 0 (_5) and thus
M M

negligible.
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Consider the diagrams in Fig. 13(1). To compute these, we need
58
"effective vertices' suchas Zf t . These can be
Kk k 3k IIkk

T
most easily obtained through the use of the WT identity of Eq. (B.9)
in the tree approximation and the knowledge of the meson-meson-Z2
vertices. As an example, consider the WT identity of Eq. (B.9)
differentiated with respect to EB and U {at 2 = F, II = 0) on mass
shells (of E’S and wo) in the tree approximation. The result is,

3 3

& ¢ G & T
+ - =
Z}fk( 2’c

) =
" 6ZH6€8 5, . 3k’ 68, 6wy 611
m n jas) n

0 kk
mass shell

-8
(G. 1)

Reading the § 8TI‘OZ vertex from the Appendix A, it is easily seen that

£
8 A
2 G 0
=zt . f = - = ——5= + O(p )
K 3k Hkk G 2N3
0 2 .
= - .H__ -+
N (G. 2)
In other words, the effective vertices are described by, % X (the

divergence of the ps-scalar current that couples to Z“). These

effective vertices are, thus, described by,

_HZ[WOES % 2 S8 0 50 -oo]

- - - + +
N3 NG 3 g8"]8 3N 2 Xc Yc XcYc
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™

n
2 0 8 0
NP v Ry B (G2

with the help of Eq. (G. 3)and the Feynman rules in the Appendix A,

it is easy to show that the total contribution of the diagrams in

. (3) o
Fig, 13(1)to Z fkt3kr K {p,q)is given by

k
2
{ My 2]
m() = {(-p+ q){2B{(p,, 0} 2B (p, m )+0(——-—)+0(u }
L © NG |
+ other terms , (G, 4)
where,
. 2 2 4
B(}‘”F’)zhsg K4J 2 2 gkz 7 7 - (G.5)
(2m) k™=-N"Hg -p )k -M")

0
E['he contribution proportional to B(p, mc) comes from the Xg, Yc )
intermediate states. The contribution proportional to B(Hi’ 0) comes

from the (‘éi;Tr ) intermediate states. The contribution from the

0’ s
(&8;170, n8) intermediate states cancels the contribution from the

(€ 27 To n8) intermediate states. Hence, there is no term proportional
to B(u, 0) in Eq. (G.4)]

Next the strong vertices in the diagrams of Fig. 13(a)and 13(c)

are described by

2 2 -
rEg  HE, 1+ - z(zg E’z) 2
'IT)}.L +|,J,

1 + - 8
F KK =7 * 7 Ty by - (m NG N3 154
2
S YD UK )+ 0wy . (G. 6)
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With the help of Eq. (G.6), we have computed the contribution of

the diagrams in Fig, 43(a)and 13(c)to the p.-q terms in Efkt3kr(l3;)(p’ qd

k
The results are:
2
rnK _2""1
m(a) =mlc) = (p-q) B(p.i, 0) - B{g,m )+ 0(*—“)1“ 0{p )]
c 2 =~
M
+ other terms . (G, 7)
Thus, from Eqs. (G.4) and {(G.7) we find,
2
g
mia) + mic) + m{e) = (p-q) x © (-—i\-&-) + other terms . (G. 8)

Hence, the contribution of these diagrams in Figs. 13(a), 13(b) and
m

13{1) to the terms proportional to pILJL of 0 (-——C-z-) in E;(p,q) is zero.

M
This cancellation will becomes less mysterious if one notes that each

diagram is proportional to [B(p,, 0) - B(p, m_} |which, among other
g My M 5 g

things, contains a term proportional to In E-Z— ~ In(2a - y) which

Pq

depends on the parameters « and y which enter the strong interaction
phenomenological Lagrangian. While, if one draws all diagrams for
E; (p, q) it is easy to see (with the help of the Appendix I:)that it

should not depend on o and vy.
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APPENDIX H

+ + -
Higgs' Exchange Diagrams for K =+ 7 ee

These diagrams are proportional to the lepton mass, therefore,
we shall estimate them for the process K+ - ‘rr+;.L}_L to see whether they
are significant., The Higgs exchange diagrams that contribute to this
process fall into two categories. They are shown in Fig. 36(a) and
36(b).

+ -
The diagrams that contribute to the proper K = LiJO vertex %re
m

shown in Fig. 37. The diagrams in Fig. 37(a)are of O(mu' _I;
M
x -——é—i———) for each of the intermediate states, However, their
Mg ' 2 2
Higgs mK o
sum is of 0 (m 2 T3 ) . The diagrams in Figs, 37(b) and 37(c}
mg- ) Miiggs
are of O(m — T3 ) . The diagrams in Fig. 37(d) are of
2 F [
m Higgs
O(rn ——-—) .
bt
-]- -
One can convince oneself that the weak K = &c vertex itself is of
m me m]
0 (—-—-—2) . Hence, Fig, 36(b)is of 0 (m}.L i 3 ) . Thus, all
M pLHiggs

the Higgsi exchange diagrams can be neglected,
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APPENDIX I

The Contributions of the Diagrams in Class 3 in Fig. 25atp =0

We shall show that this contribution at p = 0 is zero with the help
of the WT identities that follow from the broken chiral SU(4) x SU(4)
symmetry of the Lagrangian of the strong interactions with known symmetry

breaking. [This Lagrangian is just _g,ﬂo of Eg. (2.3) +the symmetry

breaking terms, JZ;&@ T.et W[J ] be the generating functional

@:

of the Green's functions for this Lagrangian. WI[J] is defined by

wlJ] =J[deM M exp in‘Lx [_‘2’0 +tr{A(M+MT)+J+1VI VS
(L 1)

Z) is invariant under the global SU(4) x SU(4) group transformations.

Jand J are 4 x 4 complex matrices corresponding to the sources of
M and MT. A is a diagonal matrix proportional to v, which in the exact
SU(3) symmetry limit, (with the SU(3} octet of pseudoscalar mesons

being massive ) has the form:

- : . 2 2 2 2
A = {const) x Diag(f m_, me, me me) . (1.2)

Now, under a left-handed SU(4) transformation, M and MJr transform

according to Eq. (2, 2), viz:

SMix) = - % 9ikil\f1(x)

¥

5M (x) :%GiMT

(x)?k_l. (I.3)
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Such a transformation is just a change of variables of integration which
must leave W[ J] invariant. Further, the transformation has a unit

Using these, one can write down the WT identities for

Jacobian,
2[31 =-ilnWI[J] inthe usval manner. The result is,
J-T
0 =fd4xtr§\i [ag(zx) 3T x) - 1) __f_%___J
6F (x)
T 17
"‘i‘.A - aﬁJ%x)Jz . 1. 4)
54 (x)

Eguation (I, 4) holds for each generator Ki, in general for any complex

. . b . . . .
linear combination of Ri s, and since complex linear combinations of

)\i's span the space of 4 x 4 traceless matrices, it follows, in particular,

that

-A 62 + Bz A_l . (L. 5)

6J";(x) 8J6x) 3 off diagonal element

Now, consider the contribution of the diagrams of Class 3, in
Fig, 25. They can be obtained by constructing the Green's functions

for the processes

K —_
ofp ™ 4P

- 2p + 2s p = pseudoscalar meson

scalar meson.

- 45 8
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[ where the final state involves charged charmed mesons carrying two
units of strangeness and no charge] and by closing them with si
propagators. The Feynman rulzs at the vertices involving si are such
that the contributfion is proportional to the sum of the above Greenst
functions. This sum is in turn proportional to the (hermitian part of the)

Green! s function:
+ + + + - - - -
— + 5 1 -3 f -1
K K (KC 1KC), (KC+1KC}, (¢c 1Trc),(¢c m'c)

00

Thus, at p = 0, we need to compute the Greert s function for,

+ 4 -
— 1 ' - = i -
M41M41M13M13 2 'soft' [i.e., p =0, but massive] K/s.(L6)
{ where,
M, = (<] +iK ), M = (4 -in ), M, =« +iK_ ]
gq T e TR M=o mdm )y My =k HIK

Differentiate the Ward identity of Eq. (L. 5} with respect to J4i(y),

s

J41(z), 313(w), Ji3(v)and set J =J =0 except,

t
(c is a real constant). Then take the (3,4) h element of the resulting
matrix equation. We obtain

5

A44fd4}( = B b
T
6‘,KO(X)6J41(y}6J41(z)6J13(W)6J13(V) e
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4

& Z
= - * % tyez)
6J31(y)6J41(z)6J13(w)6J13(v) .
34
4
y— o Flwe=v) (L7)
6J14(w)6J41(y)6J41(z)6J13(V) ;.
34 1C
wiere, we note,
0 &) &
A = A i = -
33 44 ° 6J_, (x) 6J. (%) 3
KO 34 6J34(x)

The external source is such that it conserves charge and creates
(positive) strangeness. Then the left-hand side of Eq. (I.7)} corresponds
to the Green's function containing 2 'soft' KOS’ while each term on the
right-hand side contains only one 'soft' KO. In the same manner the

Green's functions on the right-hand side can be related fo 4-point

Green's functions containing no Ko's. The result is

5
A44Jd4x > ;'.:Z sk
6J31(y)6J41(z)6J13(w) 6J13(V)6JKO(X)

..]
4 :
= 6_Z + (W <—->v)<t

%

i
6J31(y)6J41(Z)6J14(W)6J13 (v)

5tz
o - (1.8)
67,,(y)83,,(2)83 L (w)6J (v)

etc. Using Eq. (I.8)and a similar equation in Eq. (I.7) we obtain the
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final result which is shown diagrammatically in Fig. 38, The sum of the
4-point Green's functions is much easier to deal with directly., For
example, one component of the right-hand side of I'ig, 38 is shown in
Fig. 9. That this vanishes at least on mass shell can be seen easily,
For, then, it is the corresponding sum of the Green's functions of the

related nonlinear rnodel;23’ 24 which has the interaction terms:

-7

_ +,._ -2 +_. -2 T
(Kc“c) = (const) [(K‘CE*KC) m_8m_) +2(KCBKC)(1TCBWC)]

F - + =2 - 4 -
+iconst) (K K ¥ +(nn Y +2(K K ww)l.
cC ¢C CcC C cC ¢ C C
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FIGURE CAPTIONS

_ + 0 - -
Fig. 1 T W (s ) vertex
. ) + 0__ -
Fig. 2 A possible one loop diagram for T W  vertex,
Fig. 3 Some of the diagrams for KO - p|1 .
4 -
Fig, 4 Diagrams for KO - W W vertex,
00
Fig. 5 K v self-energy diagrams,
Fig, 6 Diagrams for the Kox vertex,
0
Fig, 7 Diagrams contributing to K Z vertex which may be
proportional to 12 for KO on mass shell (and
2 UK
m_ = 0),
T
0 -
Fig, 8 IPI graphs for K - pp.
0 -
Fig. 9 Higgs exchange diagrams for K= -~ pu .
4+ -
Fig, 10 Diagrams for the K = Zp. vertex,
+ -
Fig, 11 WT identity for the K Zuproper vertex,
-+ -
Fig, 12 Diagrams for the K n x vertex,
4+ -
Fig. 13 Diagrams for the K =« IIii proper vertex,
. . e 0
Fig, 14 Diagrams for the K '« Z}L vertex,
00
Fig, 15 WT identity for the K Z}l proper vertex,
0
Fig. 16 Diagrams for the KOTI' X proper vertex.
00
Fig, 17 Diagrams for the K « Hkk proper vertex,
0 0
Fig. 18 The diagram of Fig, 17(q)and thex = self-energy

diagrams.
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Fig. 19 Kogi(gz) self-energy diagrams.
. . 2 . . 00
Fig. 20 The diagram of O{p ) which contributes to v '
self-energy.
. . + -
Fig. 24 Diagrams for the K r y proper vertex.
Fig, 22 Diagrams for the Korroy proper vertex,
0 -
Fig. 23 The two kinds of diagrams contributing to K~ KO
transition,
. . 0 =0 -
Fig. 24 One-loop diagrams for K ~ K transition,
Fig. 25 Two-loop diagrams for the KO - IEO transition,
Fig. 26 The cancellations among diagrams of Class 2at p = 0.
Fig, 27 The cancellations of terms proportional to |.L2 and ]J.4
in the diagrams of Class 3,
Fig. 28 The diagram of Fig. 25(b) shown with all intermediate
states,
Fig. 29 The diagram in Fig, 25(c) shown with all intermediate
states.
4 -
Fig, 30 WT identity for the K m y proper vertex,
+ -
Fig. 31 Contributions to the total K m y vertex,
Fig. 32 Contributions to the fotak KOTrOY vertex.
. + + ps .
Fig, 33 The diagrams for the K — 1 transition involving a

+ - +_ -
W propagator (Landau gauge)and for the K = -~ W W

+
amplitude which do not vanish when W are on mass shell.

+ - + -
g, 34 Diagrams for K v — Kcvc .
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+ + -

'Box! diagrams for K ~-»r vv ,
+ + -

Higgs exchange diagrams for K - pu.
Diagrams contributing to Fig. 36(a).
The equation used in showing that the sum of the diagrams
of Class 3 vanish at p = 0,
A contribution to the right~hand side of the equation in

Fig. 38,
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