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ABSTRACT 

We discuss the KL-KS mass difference and many rare decay modes 

of K mesons in a phenomenological unified gauge model of strong, 

electromagnetic and weak interactions. The strong interactions of the 

system of pseudoscalar mesons which belong to a 15-dimensional 

representation of STJ(4) are described by a phenomenological Lagrangian 

which possesses approximate chiral SU(4) x SU(4) symmetry. The 

additional quantum number is charm. The weak and electromagnetic 

interactions are described by the Weinberg-Salam model. In general, 

the results are in qualitative agreement with those of the free quark 

model calculations. Results on the K L-KS mass difference indicate that 

charmed hadrons must not be very heavy. As in the quark model 

calculation, we also find a surprising cancellation of the leading terms 

0 
in K + p; amplitude. The result for the K+ + r+ee branching ratio is 

in reasonably good agreement with the recent experimental result. 

Calculations of the branching ratios for the decays K+ -f n+v;, 

K 
L, s 

+ rr”.; and K 
L, s 

+ rr’ee are also performed. 

e Operated by Universities Research Associafion Inc. Under Contract with the United Stales Atomic Energy Commission 
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I. INTRODUCTION 

Recently, several models 1, 2 which unify weak and electromagnetic 

interactions through spontaneously broken gauge theories have been 

proposed. Such models are renormalizable and as such they have finite 

predictions for higher order weak processes. Mostly, the weak inter- 

actions of the hadrons are incorporated% such models by postulating 

that hadrons are constituted of quarks and by assigning the quarks to 

representations of the weak gauge group. In terms of quarks, p,n and 

X, the hadronic weak (charged) current is expressed as 

(J;(c))+ = (J:(C ) )=pyp(l-y5)(ncos .Q + Xsin .9) =fiyp(l-y5)n 
C 
(1.1) 

where 0 is the Cabbibo angle. In these gauge invariant theories the 

neutral current 51 defined by, 

J)) = ; b’,‘“‘(x), ld3y J;(‘) (Y] (1.2) 

together with J +(c) 
P 

sat’isfy the algebra of SU(2 1, and J:(x) couples to the neutral 

weak gauge,bosons withthe same strength as the charged weak current. With 

the charged weak current J +cc ) ~ (xl of Eq. (1.1)) it is well known that 

J:(x) contains pieces which can change strangeness. Thus the strange- 

ness changing (AS = 1, AQ = 0) hadronic weak processes will proceed 

with rates of the same order of magnitude as the AS = AQ = f 1 

processes; in contradiction to the observed suppression of the 1 AS 1 = 1, 
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AQ = 0 processes. In quark models, this situation is remedied by the 

addition of one or more new quarks. In the case of the Weinberg-Salam 

model, which we shall be using this, this situation is remedied by the 

introduction of a new quark p ’ [the Glashow-Iliopoulos-Maiani mechanism] 3 

which has the charge, the strangeness and the hypercharge of p quark 

and is distinguished from p by the introduction of an additional quantum 

number, the charm. Charm is assumed to be conserved by strong 

interactions. 

Since the charm is introduced4to suppress the AS = 1 neutral 

currents, the calculation of 1 AS 1 = 1, A& = 0 processes can provide us 

with information about (the mass of) the charmed quark Lee and Gaillard 

have recently performed these calculations in connection with the rare 

decay modes of K-mesons in the Weinberg-Salam model! These cal- 

culations yield bounds on the quark masses and predictions for several of 

the suppressed decays. However, one does not know as to how these 

quark masses will be related’to the masses of hadrons containing the 

charmed quark p’. Further, one does not know to what extent the strong 

interactions will modify the free quark model results and therefore one 

does not know how reliable these estimates are. 

With this motivation, we have performed similar calculations in 

a phenomenological unified gauge model of the strong, electromagnetic 

and weak interactions. It is assumed that Chiral SU(4)x SU(4) is an 

approximate symmetry of the strong interaction dynamics, and it is 
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broken only by the “mass terms” [which can give a higher mass to the 

charmed particles as compared to the uncharmed ones] . It is assumed 

that the pseudoscalar mesons belong to the 15 dimensional representation 

of the SU(4) and that this 15 dimensional representation contains the octet 

of the uncharmed pseudoscalar mesons. A phenomenological model 
a 

of the strong interactions of the pseudoscalar mesons, which will 

incorporate the results of current algebra of the chiral SU(4) x SU(4) 

group and PCAC in the tree approximation, is constructed by an analog 

to the o-model9 and the SU(3) versior!‘of the o-model. Such a model 

consists of a set of 16 pseudoscalar (: II) and 16 pseudoscalar (E X) 

mesons which are assigned to (4,4) + (4,4) representations of the chiral 

SU(4)x SU(4) group, and with an appropriate choice of the potential term, 

the masses of the scalar mesons are made arbitrarily large via spontaneous 

breakdown of symmetry (analogous to the o-model). In order to incor- 

porate the weak and the electromagnetic interactions in a renormalizable 

way, we have coupled this model to the Weinberg-Salam model6 of the 

weak and the electromagnetic interactions by assigning transformation 

properties to C and II under the weak gauge group. We have chosen the 

Weinberg-Salam model as this is the simplest model which is reasonably 

11 
consistent with the present data on neutral currents. 

In Sec. II, we have described the model in detail. We have 

explained how the SU(4) symmetry breaking is produced and how the weak 

and electromagnetic interactions are incorporated. In Sec. III, we have 
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explained the phenomenolcgical point of view taken while performing 

the calculations [i. e. , while drawing the Feynman diagrams for a 

relevant process 1 to lowest order in the weak and electromagnetic 

interactions and to all orders in the strong interactions. In subsequent 

sections, we have performed the calculations of the amplitudes for 

(i) KL + p; (ii) K+ + X’V; (iii) KL s -+ v”v; (iv) K+ + - -TT ee 

0 
(v) KS, L 

- rr’ee and the calculation of the KL - KS mass difference. 

These calculations are done in the approximate p2 >> M2 >> m: >> m 2 
K 

2 >> m TI , where TV, M and mc are respectively, the masses of the scalar 

* 
mesons, the W and the charmed pseudoscalar meson. It is interesting 

to note that even though individual diagrams may not have a finite limit 12 

2 
as P -t m [ through terms like p.‘, In p2, etc.1 the total amplitude in 

all cases have a finite limit as p2 + m. Furthermore, all the results 

are found to be independent of the parameters p.:, (Y, p, y which enter 

the phenomenological Lagrangian of the strong interactions [ see Eq. (2. 3)l . 

This is very important for otherwise the results will be useless. The 

results depend only on the observable parameters like mc, fK, Mw 

etc. It is important to note that the only unknown parameter the results 

may sensitively depend on is mc. [ The dependence on Mw in the final 

form, is at most logarithmic. 1 

In several cases, it is obvious that the corrections to the amplitude 

due to the SU(3) symmetry breaking (m, # m # 0) are small as compared 1T 

to the leading order contribution. In such cases, we shall perform the 
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calculation in the exact SU(3) x SU(3) limit and set mK = mTT = 0, 

wherever possible. 13 

In Appendix A, we have summarized many of the Feynman rules, 

used in the calculations. Since the use of the Ward-Takahashi ( WT) 

identities simplifies the calculations considerably, in Appendix B, we 

have derived the WT identities relevant to the calculations. The 

Appendices C and D are added to make it more transparent the facts 

that the results are finite and independent of the parameters (Y, p, y 

2 asp -+a. 
0 

The Appendices E, F, G, H and I deal with some specific 

calculations which are rather lengthy or less important, but essential. 

In Sec. X, we have made the numerical estimates of the decay 

rates and branching ratios. 

We find that the results are in qualitative agreement with those 

of the free quark model of Ref. [%I [i. e., with respect to the order of 

magnitude. 1 Thus, it was found in the free quark model calculation of 

Ref. (5) that there is an unexpected cancellation of the terms of the leading 

order in the amplitud for K m2 M+S-p;. We also find a similar cancellation 

of terms of O(GFa L ln -1 in the amplitude for K. - FE. 
M2 m2 

Thus our 

result indicates that the cangellation found in the free quark model holds 

14 
even in presence of the strong interactions. The amplitude we have 

computed is found to be of two orders of magnitude lower than the 

amplitude for KL + yy * pi as a result of this cancellation. The result 

for K+ -f ,“e, is found to be in good agreement with the recent 
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15 
experimental result. The calculation of the KL-KS mass difference in 

this model puts stringent upper bound on the masses of the charmed 

The amplitude for the process K+ + TT 
+ - 

mesons. vv is found to be 

sensitive to the charmed meson mass (mc); however, present experimental 

bound is not sufficiently strong to use this result to put a meaningful 

bound on mc. Calculations of the branching ratios for the.decay processes 

0 
KS, L 

0 - 0 0 - 
-TT ee andKS,L-‘r vv are also performed. The results can 

0 - 
obviously be extended to K* + T*$ and K” - 71 wp . 

II. THE MODEL 

(II. 1) The Model for Strong Interactions 

The model for strong interactions is a natural extention of the 

o-model 9 and the SU(3 ) version of the o -model”to incorporate the 

chiral SU(4) x SU(4) symmetry. It consists of a set of 16 pseudoscalar 

fields and 16 scalar fields which are assigned to (4, z) + (2,4) representation 

of the chiral SU(4) x SU(4). The scalar and the pseudoscalar fields may 

be written as 4 x 4 hermitian matrices X and II respectively. These 

are given below: 

-q c x: 

-0 
xC 

g.+ +$ 

vO TT 
II = 

xc K- 

+ 
i-r 
C K,’ 

+ 
TI Kf 

-g+g +; 
KO 

2tl 

% -&+> I ) i 
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and, 

5 Y,” 

F0 
4 5 v. 

c +7-hiT 

+c 4- 

K K C 

4+ + K 

. 12.1) 

In terms of the quark language, the basis chosen for the four 

dimensional representation is (p ‘, p, n, X). In addition to the SU(3) 

nonet, there are 7 scalar and pseudoscalar particles whose quark 

contents are: 

K+ K+- :p* 
c’ c etc. 

We assign M = Z + iI and M t = z - iIIto (4,i)and (4,4) 

representation of the chiral SU(4) x SU(4) group; i. e., the fields M and 

Mt transform under the chiral SU(4) x SU(4) transformation as 

[Q+,M,~I = -$(hi)‘Yy~YP 

IQ~,MJ,I = ~~~~~~~~~~ 

[QT,M~~I = ~~~~~~~~~~ 

t 
IQ;,ML~I = -$(x~)~~M~~ 

(2.2) 

where, ($ A i) are 4 x 4 matrix representation of SU(4) and QT are the 
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generators of the chiral SU(4) x SU(4). 

We write down the most general Lagrangian which is invariant 

under the chiral SU(4) x SU(4) transformations and has dimensions four 

or less [to ensure renormalizability after it is coupled to the Weinberg- 

Salam model of the weak and electromagnetic interactions. I 

T = $ tr (a pMtapM) - V(M,Mt) 

V(M,M+)z pitr WtM) (2.3) 

t $ {cutr (MtM)2 t p[tr(MtM)l 2+y[detM+det Mtl). 

The coefficients (Y, (3, y are arbitrary to the extent that they produce 

t 
the potential V(M, M ) such that V - m as any linear conbination of 

fields + m . 

We shall not discuss this model in detail. We shall only note 

that like the o-model and its SU(3) version, ” 9 if we let p2 be negative, 0 

spontaneous symmetry breakdown will occur, M will develop a vacuum 

expectation value (which may chosen to be real). Then z. will 

describe a theorylbcontaining 15 massless pseudoscalar fields and 16 

scalar and one pseudoscalar ( $ tr II) massive fields. Furthermore, 

the tree diagrams with external pseudoscalar lines will, in the limit’ 

-F”, + 00 reproduce the results of the current algebra (extended to the 

SU(4) x SU(4) group) with PCAC, and thus will contain the low energy 

phenomenology. [As far as the model of the strong interactions is 
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concerned, we may add to y. a term of the form tr A(M + M t, SO 

as to break the SU(4) symmetry and make the charmed particles 

massive. However, as we shall see, to maintain the gauge invariance 

with respect to the weak gauge group such a term cannot be added 

arbitrarily, but ~niust be produced through the Biggs’ scalar couplings. 1 

Further, in the spirit of a phenomenological model of strong interactions, 

such tree diagrams will be assumed to represent the effect of strong 

interactions to all orders. 

(II. 2) Extention of the Model to Incorporate Weak and Electromagnetic 
Interactions 

In order to incorporate the weak and the electromagnetic inter- 

actions into the Lagrangian y. of Eq. (2.3), in a renormalizable way, 

we assign to M and M , transformation properties under the weak 

gauge group SU(2) x U(1) of the Weinberg-Salam model.6 This model is 

so well known that we shall not describe it in detail, except to introduce 

our notations. The basic Lagrangianl’zonsists of gauge fields 
t 

fl (LY = 0, 1, 2, 3) and a complex doublet of Higgs’ scalars @ = E. which 
P ( ) 

belong to the representation of the local SU(2) x U(1) gauge group. This 

Lagrangian is described by 

oq =-$F” F;’ 
IL” 

t 2 + tDP@+DP@- mi@t@+ A (a a) (2.4) 

where 



-Ii- FERMILAB-Pub-74/96-THY 

Fn =a Ba _ a Bff + ,ffPY,P,Y 
py PV “P P ” 

F0 =a B” - aB” 
P” P” “k 

D @= $@-tg?B;@-;g’B;a 
P 

A> 0. 

When rni is negative, spontaneous symmetry breaking occurs 

and @develops a vacuum expectation value which may be chosen to be 

0 
<a> = 

0 ( ‘i via 

where v is real. Then 3 describes a theory of a charged doublet 

of massive vector bosons ( VJY a massive neutral vector boson (2) and 

a massless vector boson (A) which is identified with the photon. The 

masses of W’ and Z are given by, 
6.17 

M w= ;gv 

MZ=+m vz +. 

We define the fields, 
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, 

AP 7 ;s”’ . (2. 6) 

We shall work in some special case of the R 
5 

gauges* for which 

the gauge term is given by 

27 = !e.F2 
gauge - 2 cy (Y (5 @) 

t & (a PAP)2 (2.7) 

where we define the fields S* and x by: 

S i 

~3 = v + $, fix ; s- = (s+)t . 

( ) c 

(2.8) 

In these gauges the unphysical scalars sf and x are decoupled 

from d and Z. 

t 
To assign the transformation properties to M and M under the 

weak gauge group, we refer to the quark version of the Weinberg-Salam 

model for hadrons. 2,6 There the quark quartets (p’,p,n, A), and 

(p ‘, p, n, x), form reducible representations of the gauge group 

SU(2) x U(1). They transform under a local SU(2) x U(1) gauge 
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transformation described by parameters 8 (x) as a 
- - 

P’(X) 

P(X) 

n(x) 

A(x) 
- - 

-i TLY 
L,RV) -e 

L R 

. - 

P’(X) 

P(X) 

n(x) 

A(x) L R 
- 1, 

(2.9 1 

where T L and TE form reducible representations of SU(2) x U(1) and 

are given by 

T”L = Ta (cu = 1,2,3) > T;- YL 

TG 
= 0 (cu = 1,2,3) > T; G YR 

T+ q 
T1 + iT2 

4-i 
= (T-j+ 

0 
=&, L 0 

0 -sin I3 CDS e 

0 o CDS o e sin 0 0 

0 0 0 0 

T3 
= Diag($, i, -5, -+) 

yR 
= Diag (3, 3, -4, - $). 4 4 (2.10) 

The generator of the electromagnetic gauge transformation, Q, 

is given by 

Q = T3 + $(Y, + Y,) (2.i$) 
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We define the transformation properties of M and M ‘under an 

SU(2) x U(i) local gauge transformation as: 

M(x) -t e 
-iT:O @(xl 

M(x) e 
i TGOa.(x) 

t 
M (x)-e 

-iTi cy(xl 
M+(x)e 

iTEBa(x) 
(2.12) 

so that, denoting quarks by q, (0 = 1, 2,3,4); M 
4 

transforms as 

‘aL qpR and M 
t 
4 

asq - 
aR ‘PL * 

The gauge-covariant derivative DaM is given by, 

DpM E (aaM - igT@BzM - $g’YLBLM+-&g’MYRBi). (2.13) 

Then the Lagrangian which incorporates q of Eq. (2.3) and is 

gauge invariant under the gauge transformations of the weak gauge group 

17 
is : 

+ P z= itr(DVM D Ml - pi MtM 

2 cy tr(MtMj2 + (3(tr MtM12 + y (det M + det Mt) - PO C 1 
(2.14) 

where qq, is a gauge-invariant interaction (up to quartic terms) of 

M and CO fields. 

9 Mu can be chosen such that it can produce the SU(4) and SU(3 ) 

symmetry breaking. For simplicity, we shall first consider the SU(4) 

symmetry breaking. To construct gauge invariant couplings, it is 
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convenient to write M with the basis (p ’ , Xc, p. nc 1; 
L 
where 

Xc : Xcos l3 - n sine 

nc 3 n cos 0 + A sine ( 0 E the Cabbibo angle). 
3 

Let us call it M ‘. Then the coupling 

where, 

rl= 

is gauge invariant. Explicii 

(2.15) 

+ (<2 5 s-[(cocos B - 4, sin o)-i(Kc cos’e -.rr~sinO)]+h.c.). 

(2.16) 

If we let pi be negative, M will develop vacuum expectation value 

which may be chosen to be real and diagonal. In this case, with the 

su(4 1 symmetry breaking, 
16 

<M> = (2.17) 
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The vacuum expectation values f ’ and f satisfy the constraints 

which follow from the requirement that there should not be terms linear 

in fields (here cc and 5,). These can be obtained from Eqs. (2. i4), 

(2.16) and (2. 17). They are: 

-aif* - ,;{4CYf*3 + 4P(f .2 +3f2)f’ + 2yf3/ + 2v& = 0, 

I. e., 

4afC2 +4P(fp2 
3 

2vL +3f2)+2+ +1 = 2 

f ’ PO 

and 

4af *2 +4P(f’ 2 +3f2) + 2yff’ +1 =o. (2.19) 

From Eqs. (2.18) and (2. i9), it is clear that as ai * -mj f’ +f. 

Let us define 

f’! f(l+ e) . 

Then, to the first order in E, Eqs. (2.18) and (2. 19) yield: 

E = VL 
2 3 (2.20) 

2pof (2ru - v) 

The mass terms in the Lagrangian of Eq. (2.14) can be computed 

and simplified using Eqs. (2. 18), (2. 19) and (2. 20). We shall only quote 

the results. We obtain, to the first order in E: 

(i) FGo=m; : 
2 

=m zm c 
c c 

= 2p;f2r(Zu - v) 
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Thus, 

(ii 1 

(iii 1 

(iv) 

=v5 
f using Eq. (2. 20) 

2 

i2$ = 
2M 

2 2 2 
mK=mrr = ml18 =0 

2 2 
mE 

=m 
“8 K 

= -; z p2 

=4l$f2(2ry- y) - 4l+f2e 

2 2 2 2 
my0 =mK =m$cc- pc 

c 

(2.21) 

(2. 22) 

(2. 23) 

(2. 24) 

= p2 + 3m2 (2. 25) c 

(v) The mass terms containing the diagonal pseudoscalar fields 

are: 

(2. 26) 

- $1-8 &f2(nc +Fn”)2- b&fen; 

2 
+2 (mE+$ yfc)vr, 

1 
. 

Thus there is mixing between n, and no. The SU(4) singlet 

$trIIE 770’ = i(o, +h/j 0,) and ‘I; = +7rlc - r) o ) are approximate 

eigenstates of thecmass j2 operator 
L 
to zeroth order in E 1 with 

eigenvalues 

mi2- 2 0 (-pi) and m’c = trn,” (2.26al 

respectively. 
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(vi) There will be similar mixing between EC and 5,. To the 

zeroth order in E, 

5, E $tr E = $($ +A<,) 

and, 

5, = +5, - 5,) 

are the eigenstates of the (mass )2 operator with the eigenvalues: 

2 
- 24; 

2 2 
PI = IJ.2 =P (2. 26b) 

respectively. 

Next consider the SU(3) mass splitting. We can introduce an SU(3) 

splitting by the addition of terms to 
-%k which are similar to that of 

Eq. (2. 15) with suitable choices of r~ ‘s and a’s so that the isospin and 

hypercharge are still exactly conserved by strong interactions. For 

convenience let us consider such an SU(3) symmetry breaking that will 

still keep pions massless. This can be achieved by the addition of the 

following type to PM@ : 

(alri~+a2~~)(M~)t@l + blqI t t 
+ b2rj 2) (M’ ) Q2 + h. c. 

(2. 27) 

where 

0 '0 

1 

i:i 
0 

'11= 

0 '12= i:l 0 

0 1 
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St 0 ’ 

SO 0 

@I= 0 m2= s+ * I! ij 0 SO 

Given the Cabbibo angle, the constants ai, a2, bl, b2 must be SO 

constrained that they produce: 

(i) no K,,x and Ko.x couplings, since there are no KoZ, KoZ 

couplings. 

+- - + 
(ii) non s andr s couplings since we want TT* to be massless. 

[ These requirements follow from the gauge invariance of the tree 

diagrams containing 2 and W* internal lines. These conditions may be 

rephrased as there are to be no linear terms in K 

‘0 ‘8 ‘0 

o, K o and 

(- E+dT +q$. This is all very similar to the Biggs couplings in 

the corresponding quark model. 1 

These conditions leave only one free parameter which may be 

chosen to be m 
2 
K’ 

The details of these constraints are unimportant to US. We shall 

only need the mass splitting. For this purpose we note that now <MO> 

takes the form: 

<M> = 
0 

f 
(2. 28) 

f 
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With this <M>0 we may carry out the steps 

Eqs. (2. 171 - (2. 26). The relevant results are: 

(1) rnt = 0, 
2 

mK=2po 2f2(2a 

outlined in 

-y)6. (2.29) 

(ii 1 The mass terms containing the diagonal pseudoscalar fields 

to the first order in 6 and E now, are: 

+~p~yf2~c+2fiii0)2 - 61$yf2en~+2(m~+ $yf2elnc 

- Z&f26 + 2(mi+ $yf26 1 

Since at 6 = 0, n8 was an exact eigenstate of (mass 12; in the 

approximation 6 / E << 1, the corresponding eigenstate of (mass l2 in 

Eq. (2. 30) will be of the form r) ’ = n8 + O(6 1(x n, + yno). Therefore, 

the (mass)’ of ~7; to the first order in 6 can be read from Eq. (2.30) 

1 2 as the coefficient of - z n8. Hence 

(2.311 

which, incidently, is the GM0 mass formula with m2 = 0. TI 

(iii) The (massJ2 of some of the charmed pseudoscalars and of 

scalars may also be changed by an amount of O(m2&. 

In some calculations, [the calculations of the amplitudes for 

K+ - il’e, and K” + Toei 1 it is not possible to let rnt = 0 because of a 

2 
(log m,,) dependence of the amplitude. There we shall need to keep 

pions massive. The pion mass can be generated similar to the generation 

of kaon mass. The terms that one needs to add to 27 ~,Mm for this purpose 
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are similar to those that generate the (nonzero) mass for the p quark, 

mp(= m ). n 

Finally we note that the leptons are coupled to the gauge fields and 

6 
the Higgs fields in the usual way. 

The Feynman rules for the leptonic and the mesonic weak and 

electromagnetic couplings are given in the Appendix A. We shall note 

some of relevant characteristics which will be useful later, 

(i) Couplings of the Z with the mesons are always AS = AQ = 0. 

(ii) The only couplings which have AS = AQ = +i involve a singlet 

* 
W* or a single s . Couplings with two W’ are necessarily AS = AQ = 0. 

(iii) There is no scalar meson - Z nor a scalar meson -x two 

point vertex. Only the diagonal pseudoscalar mesons couple to Z in a 

two-point vertex 

III. PHENOMENOLOGICAL APPROXIMATION 

We shall, briefly, explain the point of view taken while performing 

the calculations to the leading order in the weak and the electromagnetic 

interactions and to all orders in the strong interactions. 

It is well known that the tree graphs containing only the external 

pseudoscalar lines (and no weak vertices) in such models with the chiral 

symmetry of strong interactions will reproduce the results of the 

corresponding current algebra with PCAC. Thus the strong interaction 

Lagrangian in Eq. (2.3 1 is phenomenological in that the tree approximation 
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of this Lagrangian produces the results to all orders in strong inter- 

actions (of some underlying field theory of strong interactions ). 

It is essential to make a similar assumption regarding the vertices 

involving the gauge bosons. Here, we take the point of view similar to 

the one used in calculating electromagnetic corrections (like TI+ - x0 

mass difference) using a phenomenological Lagr angian. 20 
For example, 

we may consider the pi +o - 
c 

TT W vertex. 
P 

See Fig. 1. It is assumed that the 

nir” W; vertex is described by the sum of the diagrams l(a) and l(b). 

[ In a renormalizable gauge, there will be a rrz~1’s- vertex as in l(c )I 

to all orders in strong interactions and to the lowest order [here to 

O(g)1 in weak interactions. Thus such couplings of vector bosons to 

mesons (pseudoscalar and scalar) are assumed to arise only via : 

(i) possible direct coupling and (ii) their mixing with the mesons. And 

even though one can draw Feynman diagrams for this vertex with higher 

loops and of O(g), e. g. , like the one shown in Fig. 2, they are to be 

discarded. 

For the sake of clarity, let us discuss some examples which will, 

later, be useful. There are two kinds of diagrams. These are shown 

in Fig. 3(a) and 3(b). 

The KoZ coupling which is zero to O(g) arises in several 
c 1 

possible ways. Among them are (i) K. _ W+W- + Z diagram and (ii) 

through the mixing of Z with the pseudoscalar mesons. These are shown 

in Figs. 3(c) and 3(d). 
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Then with the above rules, we may draw the shaded K 
0 

+W+W- vertex 

which is of O(g2). There is no direct K. - W’W- vertex. The diagrams that 

will contribute to this vertex to O(g2) are shown in Fig. 4. 

The KOrrO self-energy diagrams in Fig. 3(d) which are of O(g2) 
[ 

in the leading order) are to be constructed by drawing all possible tree 

diagrams for the proces K. + rroWfW-and then closing the W-loop. Thus 

to O(g’) in the weak interactions and to all orders in the strong inter- 

actions, the KOrO self-energy is described by the diagrams in Fig. 5 

[ and the diagrams with the unphysical scalars in a rencrmalizable 

gauge. 1 

We shall use the same criteria while drawing the diagrams for the 

other decay processes and the K. - co transition amplitude. We shall 

not discuss this in detail in these cases. 

In the subsequent sections, we shall discuss in detail the calculation 

of the KL-KS mass difference and several decay amplitudes of the K mesons. 

These are (i) KL, s + )+; (ii) K 
+ 

- v+v;; (iii) K” 
0 - -lT vv; 

(iv) Kf - r+ee; (v) KL s - rr’ee . 

We shall always use the Landau gauge for the W-propagator. As 

a result, any diagram containing a meson-W vertex (2-point vertex) 

vanishes identically in this gauge. Therefore, we shall not draw those 

diagrams in the following discussion. 

The diagrams that contribute to this process are of two kinds: 
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(i) The one particle reducible diagrams; (ii) The one particle 

irreducible diagrams. We shall first consider the one particle 

reducible diagrams. These consist of (i) K. - Z, x--f+; 

(ii) Kg-y -11;; (iii) K 0 - YO - p; , (Go is the Higgs scalar). The 

K. - Y + cl; diagram is zero because the KOy vertex is proportional to p 
IJ“ 

the momentum of the photon and when it is contracted with the electro- 

magnetic muon current (on mass shell) the result is zero. 

(IV-A) Z-Reducible Diagrams 

Let us first consider the K. - Z, x + r; diagrams. If we denote 

the truncated KoZ Green’s function by EI*(p )E ppE(p 1 and the truncated 

K, x Green’s function by F(p) then the Ward-Takahashi identity, in the 

one loop approximation 1 see Appendix BI states that 

ppE?p) = -i MZF(p) . (B. 28) 

Putting in the Z and the x propagators, the above statement can be 

easily shown to imply that the sum of the diagrams K 
0 

- Z - r; and 

K. - x - pi is independent of the gauge parameter n [ see Eq. (2. 7)1 

in the one-loop approximation. [ This is not surprising since these are 

the only diagrams that depend on n in the one-loop approximation. 1 We 

shall use this fact conveniently. 

Let us choose the Landau gauge for the Z-propagator (n - m). 

Then K. -, Z - rr diagrams vanish since the KOZC, vertex is proportional 

to P P’ 
the Z-momentum. Hence, we need to compute only the KOx 

vertex. The diagrams that contribute to the KOx vertex are shown in 
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Fig 6. We shall put rn: = 0. 

The diagram in Fig. 6(a) is finite for each of the intermediate 

states. When the intermediate states are scalars (K ‘, Qc,KzL the 

amplitudes are proportional to L2 and therefore may be neglected as 

2 r 
p -m. We shall compute the results to the leading order. The diagrams 

in Fig. 6(a) with the intermediate states Kz, in- are proportional to rnz, c 
+ 

while with the intermediate state K , it is proportional to m 
2 

K 
and there- 

fore we shall neglect the diagram with the intermediate state K+. 

The contributions of the diagrams with the intermediate states 

KLand n, are equal and their sum is given by 

-&6a.) = -(sin e cos 0 )p’pvg3f mc2 
M(2rr14 

where 
k%v ,JpV(k) = gp” - - 
k2 . 

Next, we shall compute the one particle reducible diagram (the 

pole diagrams) contribution to the KOx vertex. We note that the one 

particle irreducible vertex m(6a 1 is directly proportional to p2 ( = rnk 

on the mass shell ). To the leading order, the contribution of the pole 

diagrams can have a term independent of p2 as well as a term proportional 

to P2~ Since the x-propagator in the Landau gauge ( n -c m ) is -& , 
P 

the constant term in the KOx vertex will give rise to a term in the 

1 
amplitude which is proportional to - . 2 We shall show that 

mK 
(i) therearenotermsinthe [KO-fZ-tt.t;+Ko*~ -piI 
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1 
amplitude which are proportional to 2, and 

mK 
(ii) the contribution of the pole diagrams to the KOx vertex cancels 

the IPI contribution to it, in the limit of exact SU(3). 

In computing the pole diagrams, we shall find it convenience to 

insert the eigenstates of the (mass l2 matrix. Since we have let m2 = 0, ll 

no does not couple to x . Let ‘I;, 11:) 0; be the eigenstates of the (mass)2 

matrix, which are “mostly” ~6, nc and no. Let rni , m;, mcY be their 

masses. The couplings of n i , 0,’ , n 0’ to x are proportional to their 

(mass l2 respectively. Let these Feynman rules be i mg’ag, i ml 
2 

a ’ , 
C 

i m’ 
2 

0 a 6 respectively. Denote by Z;I , CE and Ch the self-energy 

diagrams for the K. - ng’, K. + qE and K. + no’ respectively. Then 

the pole diagram contribution to KOx vertex at p2 = rni is 

(KOX lpole in = 2 2 *im ,2 i * 
, 8 

a; *C; f 2 
.2 

im’ 2 a’*C’ 

mK-m8 
c c c 

mK-mc 

+ 
i 

2 ,2 
- im *2,*. Z’ 

0 c 0’ 
mK-mO 

From Eq. (2.311 we know that, 

rn*i 

2 .2 
=-4+0(6,E) . 

mK - m8 

3 
Further, rn*: = z rn: >> m 

2 
K 

m;12 - O(-$)>>rnl. 

Hence, 
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2 .2 
mK-mc 

and, 

2 .2 
=-1+0(b). 

mK-mO 

Using the above equations in Eq. (4. 21, we obtain 

2 

(KOX lpole 
mK =*I3;a~+Zda~+Z~a;)+O 2 . ( i (4.3) 
m 

C 

To compute (K x ) 
0 pole 

in the exact SU(3) limit, we need to compute 

C’ 
8’ 

Zg and Z h only to the zeroth order in the SU(3) symmetry breaking. 

In the zeroth order in the SU(3) symmetry breaking, n 6 = n8. We shall 

not need to know the other two eigenstates n E, n ‘0 exactly. We know 

that, at b = 0 (exact SU(3) symmetry) 

I); = 
*Jj, -u. c 

2 + ac 

i 

qc +ho 

2 

rl, +a0 
“0 2 + be 

where a and b are number we shall not need to know. 

From the Appendix A, we note that the meson-2 two-point 

couplings are described by, 

Gf -- 
2 a ~ (l+E)q 

C 
c 
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=-$ aw 
C 

II,’ +c,,;+ $ ‘18 + g=o zp I 
I 

(4.4) 

where c depends on a and b. 

Gauge invariance requires that the meson-~ couplings are described 

Therefore, 

a8 = - & =- -$&-, ac’ = 

' = cc. 
aO (4. 5) 

Since ai = O(E ), only those terms in Co’ which are of O(~J’) will 

, a survive in X o a0 as p‘ -r m . An inspection of the diagrams in Fig. 6 

2 
shows that there are no terms of O(p2) which are proportional to p , 

while there are terms of O(JL~) which are constant. However, as we 

shall see, we shall be able to avoid computing these. 

Substituting the values of a i , a 6 and a i from Eq. (4. 5) in 

Eq. (4. 3) we obtain that in the exact SU(3) limit, 

(KO~)pole =-& & x8+zc - q+ Co+de “;. c 1 (4. 6 ) 

where d depends on a, b, and c; and Z8, Xc, X0 have the obvious meaning. 

First let us consider the terms proportional to p2 in the right- 

hand side of the Eq. (4.6). The diagrams in Fig. 6(b) are proportional 
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to p2. The diagrams in Fig. 6(e) and 6(f) are independent of p2. The 

diagrams in Fig. 6(c) and 6(d) have terms proportional to p2 which are 

of 0 (p” $) . However, these terms cancel in the linear combination 

of X’S appearing in Eq. (4.6). Thus the terms proportional to p2 come 

entirely from the diagrams in Fig. 6(b). We quote the results: 

The contribution of 6(b) to Zc = 2A (mc) - 2A(pcLC) 

The contribution of 6(b) to -& -1_, 0 =4A(mc1+A(~Cl 3 
[ 

4 
The contribution of 6(b) to ,-&Z8 = ;; 

C 
-3A(O) + A(mc 

- WE”) 1 )+A(~c)+A(/d 1 
where, 

g2P P 
A(A)= -$sin0cos8*---rY 

(2=14 ’ 
(4. 7) 

Therefore, the total contribution of the diagrams in Fig. 6(b) to 

(K. x ) vertex is given by, 

-iQ 2M 
t 

4A Cmc) - 4ACO) 

P 
= + (sin 0 cos 0 ) 

Pvg3f -,” 
’ 

d4k D”(k) 

(2~)~ M [k2-M21 [(p+kJ2-mz l(p+kj2 

(4.8) 

We note that for each of the intermediate states, the contribution 

to I: is finite. However, each of these depends on the scalar mass through 

terms of the type In which would go to infinity if we let t.t2 - m. 

It is interesting to note that this p-dependence cancels exactly in the 
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linear combination sz +iz G 8 c+T~o- ) 
We,further, note that the contribution to (KOx ) vertex in Eq. (4.8) 

cancels that of the IPI graphs in Eq. (4. 1). Whatever its significance, 

we note that this cancellation is an exact one (i.e., to all orders in 
m2 2 2 ) as p + m, mK- 0. 

Finally we shall show that there are no terms in the K. +x + pr 

1 
amplitude which are proportional to 2 . As mentioned earlier, such 

mK 
terms arise out of the terms in the (K x ) 0 pole 

which are constant (i.e., 

independent of p2) since the x -propagator in the Landau gauge is 

1 1 -= 

P2 
---2- on mass shell. However, it is much easier to varify this 

in the t?:auge ( n -f 0). This is permissible since, as mentioned 

earlier, the sum of the amplitudes (Kg -t Z - r; + K. -x * pi) is 

independent of n. In the U-gauge, we need to consider the KoZ vertex. 

In the KoZ vertex, such terms proportional to 
1 2 would arise out of the 

in 
diagrams shown in Fig. 7. To compute these weKnote that from Eq. (2.31), 

3 1 - = - 
2 2 2 

mK mK-m8 

and from Eq. (4.4), 

(rr,Z) vertex = h17 (n,Z) vertex 

(2. 31) 

and, therefore, the sum of the diagrams in Fig. 7 is proportional to 

(X 
“0 

-\17z81+. The diagrams that contribute to 2 are already 

mK 
shown in Fig. 6(b) - (f ). It is easy to varify that at p2 = 0, the 
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contribution of each of these diagrams to X 
sO 

is equal and opposite to 

the contribution to -fi X8. Hence, 

(X 
=0 

- d!i X8) = 0 at p2 = 0 

1 
showing that there are no terms proportional to 2 in this part of the 

amplitude. mK 

C 
For the sake of completeness, we comment on letting rnz # 0. 

It is evident that the additional terms that this will generate will be of 

O(s) or of 06) lower than the ones that we have computed. They 

2 
can be neglected provided they have a finite limit as p + m . This has 

been varified to be the case. 1 
Thus it is evident that the contribution of the Z and x reducible 

diagrams to the K. + & amplitude is of 0 

i 

m; 

M2 sin2 .9 
.GFa . 

(IV-B) IPI Diagrams w 1 

Next we consider the one particle irreducible diagrams. These 

are shown in Fig. 8. 

The diagrams in Fig. 8 (a 1 and 8 (b) , with the intermediate states 

K,’ and rc are of 0 
( 

mK - G (Y 
1 

, when the intermediate states are 

K,’ and $i, 
M2 F 

they vanish as p2 -4 a. The two intermediate states that 

contribute to the diagrams in Fig. 8(c 1 are such that their sum 

is of 0 thus is again negligible. 
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(IV-C) Higgs Exchange Diagrams 

Finally, we consider the Higgs-exchange diagrams. They are shown 

in Fig. 9. 2 2 

The diagram in Fig. 9(a) is of 0 MK mc GF cy - - 
M2 p2 Higgs 

two intermediate states in Fig. 9(b) cancel between themselves as 

p2+m. The diagrams in Fig. 9(c), 9(d) and 9(f) are of O(p -2) and they 

2 vanish as p + m. The KOEc self-energy part in the diagram of Fig. 9(e) 

is apparently of OoJ2). However, we have evaluated it later [see Eq. 

(6.8)) in a different context and have found that the terms of O(p2) cancel 

between the two intermediate states. So that the diagram in Fig. 9(d) 

is also of O(p -2 
) and vanis_hes as p2 + m . Thus the total of the Biggs 

exchange is of 0 GF@ Therefore so long as p2 km 
2 

Higgs c’ 

this contribution is also at most that of the other diagrams 
1 

The conclusion is therefore that the contribution to the amplitude 

for KL, s - p; from this set of diagrams is much smaller than would 

be naively expected i. e., 
[I Of ‘bF+] due to the perhaps accidental 

cancellation of the terms ,“f “(3 GF c). ln Sec. X, we have compared 

the amplitude of 0 mK G 
M2 sin2 9 w F 

cy with the total amplitude for the 

KL + p; decay as determined from the experimental result and found 

that it is two orders of magnitude smaller than the total amplitude for 
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KL - r; . Thus the main contribution to the KL * )J; amplitude 

arises out of the process K 
L - YY - G . [ That this is the main 

contribution can be seen from the fact that the unitarity bound obtained 

from the absorptive part of the process KL - yy -c p; is close to the 

21 
experimental result. An identical conclusion was reached in the free 

quark model calculation of Ref. (5 )I . 

V. K+ +rr*v; 

Diagrams that contribute to this process consist of Z exchange 

diagrams and diagrams in which the leptons couple to $ and s* (box 

diagrams ). We shall first consider the Z-exchange diagrams. 

Diagrammatic representation for the total K’ + 
- TT Z vertex is shown 

in Fig. 10. [We note here that there are no 4’ 
+ 

-f a+Z and K - k+Z 

vertices. I 

The diagrams in Fig. 10(b), lo(e), 10(f) and 10(g) are proportional 

to q 
II’ 

the momentum of Z, and hence do not contribute when contracted 

with the neutrino current (on mass shell). 

The calculation of the sum of the diagrams in Fig. 10 (a), 10(c) 

and 10(d) can be simplified through the use of the Ward-Takahashi identity 

derived in the Appendix B. [See Eq. (B. 11). 1 The WT identity states: 

qPIL(p,q) - iMzIX (P,q) = - i C Gfit3ir(i3)(p.q) 
1 

2 ,2 
- * - Z,(p-q) 1 (5.1) 
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lYL(p,q) = the K+(p) * n +(p-q) Z’(q) proper vertex 

Z+(p)=K+&a+ self energy 

IX (p.q) = the K+~-x proper vertex 

T(i3i(p,q) = the proper vertex consisting of K+rr- and IIii the 

diagonal elements of II. 

tji = 1 for i = 1,2 

= -1 for i = 3,4. 

The diagrammatic representation for Eq. (5.1) is shown in Fig. ii. 

Now, from Lorentz invariance, 

r;(p,q) = Ap’.+ Bq’ (5. 2) 

where A and B are functions of the Lorents invariants. To the order 

we shall be interested in, 

X+,(p) = a + bp2 (5.3) 

where a and b are constants. We note that the terms proportional to q 
P 

in rI(p, ql need not be computed. 

We expand A in powers of external momenta: 

A, =A0 ‘A4p.q +A2p2 *A3q2 +,.. . (5.4) 

The leading contribution will come from Ao. 

The sum of the diagrams in Fig. JO(c) and 10(d) when K+and pi+ 

are on mass shell is, 
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-i(2p-q)li 
PTE+(“‘m,~m2 + Z:,(p-9) m~~m~mass shell 

TI 

) - z+(p - q ) mass shell 1 + terms in q 
P 

using Eq. (5.3) 

= pll(g2-zX2)b +terms inqp . (5.5) 

Thus the terms proportional to p in the sum of the diagrams in 
w 

Fig. lo(a), lo(c), and 10(d) (with K’and in+ on mass shell) is, 

C 2 ,7. 

AO+ -G b pII+... 1 (5.6) 

which is what we need to compute. 

On the other hand, if we substitute the expressions for lYi(p, q) 

and C(p) from Eqs. (5. 2) - (5.4) in the WT identity of Eq. (5. i), we 

obtain, 

C (Aop*q+...)+Bq2-iMZIX(p.q) 
1 

2 
= ;G Cfit3i r(;)(p,q) - g ;,““2 . b. kp-q - q2] 

i 

L 
2 

(A0 + g -Gg 
.2 b)p’q +Rq2 1 

2 ,2 

= i Mz TX (p,q) - $GZ-fit3iF;3)(p,q)-+bq2+.... 
i (5.7) 
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2 .2 
*b is given by the terms proportional 

to p-q in 

i MZ TX (p,q) - $Gz fit3iIti3)(p.q) . 
i 

First, consider TX (p, q). The diagrams that contribute to 

TX (p, q) are shown in Fig. 12. The four diagrams in Fig. 12 two 
c 

-7 
intermediate states in each of the Fig. 12(a) and 

to the terms proportional to p. q. Their sum is, 

+ other terms 
(5.9) 

and thus, its contribution to terms proportional to p in Ei(p,q) is 
P 

given by, 

-i p 
3T2 

m2 M2 

4(2~)~ 
g’Gsin6 cos@ Cln- . 

M2 rnz 
(5.10) 

In the Appendix G, we shall deal with the term 

diagrams that contribute to Tk (3’(p,q’ 
7 

are shown in Fig. 13 There, we have shown that, only 

in Fig. 13(h), 13(i), 13(j) contribute to the p-q terms of 0 

total contribution is, 

2 2 

= -(p.q) $ 
m 

L g2 sin 6 cos 9 --% 
w4 M2 

+ other terms (5.111 

and thus, their contribution to the terms proportional to pI* in EL(p,q) 
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is given by 

2 
ip 

‘IT 

p 8(2n)4 
g2 G sin 8 cos Q (5.12) 

We note that this contribution in (5.12) is very small numerically 

as compared to the one in (5.10) 
c 

smaller by a factor of 12 lniMimc)~ I . 

Thus, it is interesting to note that by the use of the WY’ identity of 

Eq. (5. i), we have been able to obtain the major contribution through 

only one independent diagram calculation. 

In the Appendix E, we have shown that the box diagrams for this 

process contribute to 0 and hence will be neglected. Hence, 

the amplitude for K+ * TT + - vv 1s given by 

= E; (p,q) -1 G ;(k)yVyLv(k) 
-M2 2 

Z 

x I-I (k)ypyLv(k) 

k = 4 momentum of v 

1; = 4-momentum of G 1 . 
(5.13) 

Using Eq. (5.13), we shall estimate the branching ratio 

T(K+ - n’ V; )/lY(K+ -all) in Sec. X. 
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VI. K” - rr’~v 

The calculation of the amplitude for K. - rr”v; is similar to 

that of K+ -c .I~+Y;. Here, too, there are two kinds of diagrams: the 

Z-exchange diagrams and the diagrams in which the leptons couple to 

W* s* (: Box diagrams 1. 

Let us first consider the Z-exchange diagrams. They are shown 

in Fig. 14. The diagrams in Fig. 14(b), 14(c), 14(d) and 14(g) are 

proportional to q 
P’ 

the momentum of Z and hence do not contribute 
P 

with v-c on mass shell. The calculation of the diagrams in Fig. N(a), 

namely the proper K”noZ vertex, is simplified through the use of the 

WT identity of Eq. (BL13 1, which reads: 

qpI’blz(p.q) = iMzIoX(p,q) - TZf t 
(3) 

k k 3k r Ok (P*q) 

+ -yp-q 1 

where 

I’:z (p, q) = the proper vertex for K’(p) + rr’(p-q)Zp(q) 

r o X(p, q) = the K”nox proper vertex 

X,(P) = K. 5 8 self energy 

Z;(P) = Ko5 o self energy 

Z;‘(p-q) = K o*. self energy 

r(3) Ok (p, q) = the proper vertex consisting of K. noand IIkk. 

(6. 1) 
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k = 3.4. 

The diagrammatic representation for Eq. (6. 1) is shown in Fig. 15. 

Let us first consider the diagrams that contribute to I ox (P> q 1. 

They are shown in Fig. 16. These diagrams are, in fact, very similar 

to those for TX (p,q) of Fig. 12 in Sec. V. The p-q terms in roX (p,q) 

are given by 

iMZTOX(p,q) =-&rX (p,q)(iMzl 

2 
=--&(p.q) 3T4 g2Gsin0cos@ 

4(21r) 

+ other terms ~ (6. 2) 

Next, let us consider the other two terms in the right-hand side 

of the Eq. (6. 1). The analysis of these terms is a little complicated 

and hence we shall deal with them in the Appendix F. The diagrams 

that contribute to these terms are shown in Fig. 17 and Fig. 18 

respectively. In the Appendix F, we have shown that the contributions 

come only out of the diagrams in Fig. 17(a), 17(c) and Fig. i8(f 1. 

The diagrams in Fig. 17(a) and 17(c) are equal and their 

contribution to the p-q terms in -$$Zf t 
k k 3k 

$3) 
Ok 

(p, q) is given 

by 



-4o- FERMILAB-Pub-74/96-THY 

3Tr 
2 

17(a) + 17(C) = s2 (P*q)- 
4(2d4 

g2G sins cos0 

+ other terms . (6.3) 

The contribution of the diagram in Fig. is(f) is finite and finite 

as p2 - m . The contribution of Fig. 18 (f) to the p* q terms in 

- t G 2; (p-q) is given by, 

2 
18(f) =+(P.,) 31T 

4(2d4 
g2G sin 8 cos 

+other terms . (6.4) 

Thus, using Eqs. (6. 2) - (6.4) in the WT identity of Eq. (6. i), 

we obtain the terms proportional to p, in lY:,(p, q): 

* g2G sins cos 0 

+ terms proportional to q . 
P 

(6. 5) 

Finally, we shall compute the one particle reducible diagrams in 

Fig. 14(e) and 14(f ). Refering to the Feynman rules in the Appendix A, 

we find that their contribution to ELz (p, q), (the total K”rroZp vertex) is: 

+ 2 2 -zr (6.6) 
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where 

Zoi(p) = KoEi self energy 

and Eils are the two eigenstates of the (mass)’ matrix and are defined 

in Eq. (2. 26b). pi is the mass of ki [see Eq. (2.26b)l . We thus need 

to compute the terms of 0 (p” 2) in the self-energies. The diagrams 

that contribute to the self-energies Zol, Zo2 and are of O(p2) are shown 

in Fig. 19. 

The Kg-tadpole diagram is identically zero (when summed over 

both the intermediate states). In Zol and Zo2, the diagram in Fig. 19(b) 

cancels that in Fig. 19(a). This can be seen from the Feynman rules for 

the meson-S+ vertices and the int,eraction terms describing the trilinear 

vertices : 

K 
5 

- zair;(f5c+f$) +4pfpi (Cc +QXo) - &Yt$ f5, 1 
x FC’K; +r+& i Ko(+; + ,;K;) . (6.7) 

Thus, 

LzOi(P = 0) = O(pO) . 

I- 

(6.8) 

Referring to the Eq. (F. 10) in the Appendix F, we obtain and L 
this has been varified directly : 1 

xi’(o) = -&Zo(0) + O(p*O) . (6.9 ) 
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Thus the leading contribution 

and 14(f) is given by: 

Ae) +J(f) = !!$i E!Z.dE . 2i~~‘(O) . 
-P2 

(6. 10) 

The contribution to X,0, (0) of O(p’) comes from the diagram in Fig. 20. 

It is easily shown to be, 

2 
2 22 

x;(o) =x 
g mew 

w4 S&M2 
sin 8 cos 6 + O(p”) (6. ii) 

and hence its contribution to the terms proportional to pP in ELz(p, ql 

is : 

2 m2 * 

4(2nj4 
g2 G sin 9 cos 9 -2 +oo( 

M2 
l)+termsinqP. 
M4 

(6. 12) 

Hence, from Eqs. (6. 5) and (6. 12). the terms in Eiz(p,q) which 

are proportional to pP are given by 

E;z (p, q) = -p,+ 
2 m 2 2 

L g2 G sin 0 cos 0 
(2rj4 

Lj&NI -1 
M2 1’ m2 4 I 

c 

+ terms in q 
P * 

(6. 13) 

As in the case of the K+ - TI+ V; amplitude, the box diagrams for 

this process are of 0 and therefore will be neglected. Hence the 

total amplitude for 
. 

A&K’ m: 
M2 sin2 9 w m 

c 
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It is easy to verify directly that for this amplitude that 

/#!f(K’ -. TOY;) = -t,k&, + T’“; ) 

and hence, 

/&(K”s - rr’.;, = &AKO-~‘v;) 

iG F 3~2 -: 
=G=T’z;; sin 9 cos Cl 

M2 sin2 f3 

x pP&k)yPyLv(k) 

(6. 14) 

(6.15) 

(6.16) 

and 

AK; + TI’Y;) = 0 . 

The branching ratio, 

r-(Ki - 
0 - 

TT vv) 

is estimated in Sec. X. 

VII. K+ + - -TI ee 

The diagrams contributing to this process consist of (i) the photon 

exchange diagrams, (ii) the Hi ggs scalar ( 4,) exchange diagrams 

(iii) the Z-x exchange diagrams, (iv) the ‘box’ diagrams. We shall 
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show that the photon exchange 

evaluated the K+- a+Z vertex 

to the amplitude is of 0 

diagrams are of O(GFa). We have already 

in Sec. V, and we know that its contribution 

. Therefore, we shall neglect it. 

The box diagrams for this process are similar to those for the process 

( 

m2 
K+ - rr+v; . They will be of the order 5, 0 GF~ c 

M2 1 
and hence can 

be neglected. 

Let us first consider the photon exchange diagrams. The K+r-y 

truncated Green’s function is shown in Fig. 31. [ See Appendix B. 1 It 

is shown in the Appendix B that Er (p, q), the full K’r-y vertex, on mass 

shell is given by. 

E”, (p, q) = C3q2pp + terms proportional to qp (B. 23) 

2P where C3 is the coefficient of the q p terms in the proper vertex 

T:(p, q) evaluated on mass shell [i.e., p2 =m i , (p-q)’ = mS;l . 

The diagrams that contribute to the proper vertex I-,” (p, q) are 

shown in the Fig. 21. First consider the set of diagrams in Fig. 21(a) - 

21 (n). 

In the diagram of Fig. 21(a), the two intermediate states contribute. 

with opposite signs and the resulting amplitude is of 0 (- ’ ) and hence 
M4 

will be neglected. The diagram in Fig. Zi(i) is independent of q and hence 

do not contribute to terms proportional to q2p 
II’ 

The diagrams in Fig. Zl(h) 

are proportional to q . 
P 

The diagram in Fig. 21(j) depends only on 

(P-q)2. Since we have chosen (p-q)‘, q2 and p2 as the three independent 
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Lorentz invariants, it does not contribute to terms proportional to 

q2pll either. All the rest of the diagrams contribute to the terms pro- 

portional to q2p 
P’ 

The results upto 0 4) are: 
M 

Mtb) = -q2p 2. 2 c g e sine cos e 

p (2iTj4 4M2 

de e(i-elln 1 
- 7-i (7.6) 

-q2p 
2. 2 

&c, 3 g e sin 0 cos 0 = . - 
iJ (2?Tj4 4M2 

; +J&) (7.7) 

J&d) =Ab) (7.8) 

A(~, = -q2p 2. 2 u g e sin 0 cos f3 . - 
p (2,,J4 

2 ; +./&b) (7.9) 

Af, =.&) = -g2pP -$ 
TI II 

- dI:(1-elln ~e’~~‘q)--$6 1. (7. 10) 

C 1 Note that the logarithmic singularity ln(-q2) in these amplitudes 

arises from the fact that the * and s* propagators have a singularity 

at k2 = 0. However, this singularity cancels when we add up Ab) + 

. . . + d(g). 
1 

Adding Eqs. (7.6) - (7. iO), we obtain 

2. 2 
/z&b)+ . . . 

+dlgl = -g2p z g esine cos0 1 . - 
bJ (2.rr14 4M2 2 . (7.11) 



-46- FERMILAB-Pub-74/96-THY 

Summing over all intermediate states in the diagrams of Fig. 21(k) 

and 21(1 ), we obtain: 

2 J(k) = -q2pP $4 g e ‘rM; ‘OS e 
TI 

m: 
rni - pq2 

+2. 
’ 

(7.12) 

and 

dcl) = -q2p 2. 2 g e sine cos Q T 1 

tJ (2rrj4 4M2 

X (7.13) 

The contributions of the diagrams in Fig. 21(m) and 21(n) to terms 

proportional to q2pW are equal and their sum is given by 

. (7.14) 

C Here, we note that $*‘w’y and x*W’y coupling is of the 

m2 
0 

( 1 
2 . Hence the diagrams with intermediate states ($+, $‘, ) in 
P2 + + 

Fig. 21(l) and (x ,x,) in Fig. 21(k) do not contribute as p2 - 03 . Also 

+ + 
the diagrams with the intermediate states K , kc in Fig. 21(m) and 

1 
6f, 6: in Fig. 21(n) are of 0 - 

( i 
as k’-+m. 

1 

P2 
and hence they do not contribute 

Further, we note that the q2pP terms in the diagrams in Figs. 21(b) - 
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Zi(g) and in Figs. 21(k) - Zl(n) are not proportional to m,” and thus are 

of zeroth order in the SU(4) symmetry breaking. Hence we must also 

+ +-- 
consider the diagrams with intermediate states K , K TI $ etc., shown 

in Figs. 21(o) - Zi(v) which may have terms proportional to q’pp which 

will not vanish in the SU(3) limit being of zeroth order in the SU(3) symmetry 

breaking. 

In the diagrams of Fig. 21(u) and 21(v) when the intermediate states 

to which photon couples are scalars, the contribution to the terms pro- 

1 
portional to q2pV is of 0 - 

( 1 P2 
and hence will be neglected. We quote 

the results for the diagrams in Figs. 21(o) - 21(v): 

2 ‘A(O) = -q2ppT& 32 eS;;2cos e 
77 

x $JdY y(i-y) ln(m!i:T ) (7.15) 

J&p) = 0, since the $+s- coupling is zero. 
c 
This is so because 

from gauge invariance, this coupling has to be proportional to 

2 2 m -m =O + 0 1 T lr 
4q, = -q2p 2. 2 3 g e sin 0 cos e 

lJ (2d4 

x $by y(*-y) ln[,$i2vqz12. 

(7. 16) 

(7.17) 

Ar) vanishes in the SU(3) limit . (7. 18) 
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&f(s) = g2p 
2. 2 

ill g e sin 6 cos 8 

tJ (2nJ4 4M2 

X dy y(l-y) ln 
-Y q2 

(7. 19) 

lfu, = q2p 2. 2 g e sin e cos 8 TT 1 

p (2~)~ 4M2 

X Jdy y(*-y) In [Il-‘)~~)~~‘--:q:lylq2] 

2. 2 dcv, = q2p x g e sin 0 cos 0 

’ (2~)~ 4M2 

X 

(7. 21) 

(7.22) 

The singularities in the above amplitude of the type 

dy In (m2 - YS2) > etc. (a cut q 2 2 
TI Z mTI ) are unphysical and arise 

solely because of our choice of the Landau gauge for the W*,s * 

propagators. We note the cancellation of such singularities between 

the amplitudes &+?(I) +,&od ,[,&k) + .,kiq;] and [As) + An) + 

The singularities which are cuts in q2 2 4mz and 
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q2 2 (mK + mrr)’ are physical and they may stay. 

Adding Eqs. (7. i2), (7. 13) and Eqs. (7. 15) - (7. 22), we obtain 

[A(l) + d&k)] +J&o) + . . . + J&V) = 

= -q2p 
2. 2 

L g e sin 0 cos e 

w (2n)4 4M2 

(7. 23) 

Thus, from Eq. (7. ii), (7.14) and (7. 23), we obtain the terms 

proportional to q’pp in F”, (p, q) and hence Er (p, q) as, 

2 2 p r2i g e sin f3 cos B 
Ef)p.q) = -4 P - 

(2rr)4 4M2 

X dpp.(J-P)ln 

+ terms proportional to q . 
IJ 

(7. 24) 

Thus, the contribution of the photon exchange diagrams to the 

K+ + n+ee amplitude is given by 

--$(-ie);(k)yp v(c) Er(p.q) 
q 

iG 
= $- pn sin 0 cos 0 p’;(k) yV v(k) 

(7. 25) 



-5o- FERMILAB - Rub-74/96-THY 

In the Appendix H, we shall show that the contribution due to the 

Higgs exchange is negligible. Hence Eq . (7.25) describes the full 

amplitude to O(GF LY). 

As a crude approximation, we may let: 

m: m2 
2 =$ln+ . 

m Ti - p(i-p)q2 + ie m TI 

Then, 

.l(K+ -TI ee) = + - 2 5 sinOcos0 [tln$+ $1 

TT 

x p’ ;(k)yPv(k ) . (7. 26) 

We have computed the branching ratio for this process in Sec. X 

15 
and it is found to be close to the recent experimental results. 

VIII. K” - n”ee 

This calculation is similar to the calculation of the decay 

+ 
amplitude for K * rr”e,. Here, too, the leading contribution comes 

from the photon exchange amplitude. All other contributions are of the 

same order of magnitude as the corresponding amplitudes for the process 

K+ +- -71ee, and therefore, can be neglected as compared to the photon 

exchange amplitude. 

As mentioned in the Appendix B, we need to compute the terms 

proportional to q2pP from the diagrams that contribute to the proper 

K”noy vertex. The set of diagrams that contribute to the K” + rr” y 
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proper vertex are shown in Fig. 22. 

The terms proportional to q2pP in the diagrams of Fig. 22(a) 

are given by 

2. 2 Mca) = -q2p a g e sin 0 cos 0 

p (2*)4 2 d? M2 

x FhPdy yln( mcZ 
m’(p+@y+y’)-Pyq’-P(i-P-y)mi 

71 

) 

‘ m 
- 

i 

1 
dPdy y In 

C 

y$y +Py +p2) -Pyq2 -y(i-P-y!mz 
-18 * 1 (8. 1) 

The q2pP terms in the diagrams of Fig. 22(b) are given by, 

2 
,Jf(b) = -q2pp fi4 . $ . g esin; cos e . (8.2) 

TI d-FM 

The diagrams in Fig. 22(c) and 22(d) do not contribute to q2pP 

terms as p2 - m . The diagrams in Figs. 22(i) and 22(j) are functions 

only of p2 and (p-q)’ respectively, and hence, do not contribute to the 

terms proportional to q2p 
P’ 

The diagrams in Fig. 22 (k) are proportional 

toq. 
P 

The diagrams in Figs. 22(e) - 22(h) are very similar to the 

diagrams in Fig. 21(a) - 21(g) and 21(o) - 21(t). The diagrams in 

Figs. 22(l) - 22(o) are similar to the diagrams in Figs. 21(k) - 21(n) 

and 21(u), 21(v). In fact there is a one-to-one correspondence between 

the diagrams. The total contribution of the rest of these diagrams to the 
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q’p, terms is given by, 

d&ie) + . . . +/#@(h) +‘/&I) + . . . . l(o) 

GP (1-F) In 
* 

(8. 3 1 

The total amplitude for K” - nay is obtained by adding Eqs. (8.1) - 

(8.3). As a if we approximate the integrals in 

Eq. (8. 1) by 2 respectively, then we find that the 

terms proportional to”q2pir in the - ray vertex, E’ oy b, 9) are 

given by: 

esin @ cos@ 

4M2 

2 
1 mc 

c 

m2 
x -ln-- 

2 
++ - g 

rnt mK 

+terms in 9 
v * 

Hence, 

(K” -7~ ee) = ‘- i-w-% GF 
J-T .p 2.m 

sin 0 cos 0 pP; (k) y’~(li) 

i 

m2 x ilnC 
6 rnt 

(8.4) 

(8. 5) 

It is easy to varify that this photon exchange amplitude satisfies: 
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-d(K” *rr’ee) = -A(k” ’ - -7r ee) (8.6) 

SO that we have 

A(K, - rr’ee ) =fiJflK’ ’ - -T ee) 

GF 
2 2 m mK 21) -- = i n k sin t3 cos 0 $ In --$ + $ In m2 

c 
m i 

Ti TT 

x pP ; (k)y’v(i;) . 

o-. 

(8.7) 

The amplitude for the process KL * TT ee is highly suppressed. 

IX. _KLss MASS DIFFERENCE 

KL-KS mass difference arises because of the weak K. -* K. 

transition. K. * K. transition is a AS = 2, A& = 0 process and therefore 

must proceed through a minimum of four steps: two of which are 

AS = A& = *i processes and the two other AS = 0, A& = *i processes. 

Thus the lowest order Ko-K. transition amplitude is of O(g4) and the 

diagrams for this O(g4) do not contain either (i) internal Z, x, y lines 

or (ii) a vertex involving two or more gauge bosons (like 2 mesons- 

w+w-, WfW-Z, etc. 1 since either of them add additional factors of g 

without accomplishing any additional steps of the four mentioned above. 

Thus, the diagrams contributing to the Ko-K. transition amplitude 

involve 2 internal W lines (and the corresponding diagrams in which one 

or more W’s are replaced by the associated unphysical scalars. 
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These fall into two categories. When the two W lines are opened, the 

corresponding Green’s function KOKO * W’W-W’W- is disconnected 

for the diagrams of the first category and connected for the diagrams 

of the second category. The diagrams of the first category contain 

one loop while those of the second category contain two loops. This is 

shown schematically in Fig. 23. 

First let us consider the one loop diagrams. The one-loop diagrams 

that contribute in the Landau gauge are shown in Fig. 24. The two 

possible intermediate states in the diagram of Fig. 24(a) contribute 

equally. Their sum is given by, 

sin’ 0 ~0s’ 0 

=-i-if;@ &)sin’O cos20 M2s$e . (9.1) 

W 

There are four possible intermediate states in the diagram of 

Fig. 24(b). They are such th.at at p = 0, (p being the 4-momentum of 

K”) their sum would be identically zero. 
C 
In other words, for mK = 0, 

the diagrams in Fi.2. 24(b) would vanish. The amplitude in Fig. 24(a) 

also obviously vanishes at mK = 0. 1 The sum of the diagrams in Fig. 24(b) 

is given by, 
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,&b) = + imifk 2 $z& sin28 cos2e 
M2 sin2t3 

(9.2) 

w 

so that the total contribution of the one-loop diagrams to the K,, - k. 

transition amplitude is given by 

,&?(a ) + &?(b 1 = -i rnkfigF e sin2 0 cos’ B 
M2 sin’ 9 W 

. (9.31 

Next, consider the two-loop diagrams. The number of the two- 

loop diagrams that may contribute is large. Again, we shall choose 

the Landau gauge. In any other gauge, the number of the contributing 

diagrams is tremendously large because of the presence of the meson-W 

( 0 ) vertex. Further, many of the diagrams are more convergent 

in the Landau gauge. Figure 25 shows the diagrams that contribute 

in the Landau gauge. In Fig. 25 we have shown the diagrams collectively 

and have not shown the intermediate states explicitly. We shall draw 

the diagrams in more details where we shall deal with them individually. 

The diagrams can be classified according to the number of the W- 

propagators they contain. The diagrams in Class 1 contain two W 

propagators while those in Class 2 contain one W* and one s 
? 

propagators. 

The diagrams in Class 3 are obtained by first constructing the Green’s 

function for KOKO -t 4 charged charmed mesons (4p or 2p + 2s or 4s ) 

and then closing it with s+and S- propagators. The diagrams contributing 

to this Green’s function are classified in Fig. 25(n), 25(0; and 25(p) 
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according to whether they contain a p.s. neutral intermediate state, 

a scalar intermediate state, or no neutral intermediate state at all 

respectively. 

We shall compute only those terms which make a non-zero 

contribution to 
1. 

lim 
m -m 

L S 
m,-O mK I 

, in other words, we shall drop the 

terms proportional to m4 and higher powers of mK 2 in the K -I? 0 0 

transition amplitude. 

It is found that each of these diagrams, separately, may contain 

terms which grow like (In p2) multiplied by various powers E. e., 0, 

1,2, . . . 
1 

mc2 
of - and terms 

M2 
and upto one power of In M2 or In rn: 

m2 
which grow like (In r-12)2 multiplied by various powers of c. 

M2 
Each 

kind of these terms must cancel separately, in order that the amplitude 

has a finite limit as p2 * m. Furthermore, it is not obvious here 

that the diagrams of Class 3 do not contain terms that grow like p2 

2 
asp + a. Also, each diagram in Classes 1 and 2 may contain terms 

that are proportional to M” or M 
-2 

. Unless these terms cancel the 

amplitude will not be of O(GG), which it experimentally is. Finally, it 

is far from obvious that the two loop contribution to the K” - I? o 

amplitude vanishes at m2K= 0. Therefore, we shall show by direct 

calculation or otherwise that, 

2 
(i) the two loop contribution vanishes at mK= 0, 

(ii) the amplitude has a finite, limit as p2 - 00 , 

in the leading order, and then 
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compute the terms of the leading order. 

(i) First, consider the amplitude at m 
2 
K 

= 0. Any diagram whose 

left-most and/or right-most vertex is a meson-meson-W vertex is 

proportional to p2 ( = mkon mass shell) because such a vertex is 

proportional to pp in the Landau gauge (and because of the Lorentz 

invariance ). Thus all the diagrams in Class 1 and all the diagrams in 

Class 2, except 25(f), 25(g), 25(h) and 25(l) are proportional to mi. 

At p = 0, the diagrams in Fig. 25(f) cancel among themselves. For 

example, consider the subset of intermediate states contributing to 

Fig. 25(f) as shown in Fig. 26(a). Then we find the cancellation at 

p = o as shown in Figs. 26(b) and 26(c), when summed over all the 

unlabeled intermediate states. One can varify similar cancellations 

among the intermediate states in Fig. 25(g) and 25(l) taken together. 

The fact that the sum of the diagrams of the class 3 vanishes 

at p = 0 is not so easy to see. We have given the proof in the Appendix I. 

We shall only outline the proof here. The sum of the diagrams can be 

shown to be proportional to the Green’s function for the process 

+ 
(.~+iK~),(k~+iK~), (4: - in:) (4, - iTz) -‘KO(p) KO(-p) (9.4) 

c which is defined to be the derivative of the generating functional of 

Green’s function Z (J], with respect to appropriate sources, e.g. , 

(Jo- + i JK- ), (J$+- i J.,,+ ), JK etc. 1 when p=o, the Green’s function 
c c c c 0 

can be related to 4-point Green’s functions not involving Kol_S through 
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the Ward identities that follow from the broken chiral SU(4) x SU(4) 

(global) symmetry of the strong interaction Lagrangian. These 4-point 

functions are much easier to evaluate directly than the original 6-point 

functions. Then one can easily varify that the Green’s function of 

23 
Eq. (9. 4) vanishes at p = 0. Thus, we have shown that the Ko-I?, on 

mass shell amplitude is proportional to m”,. 

Now, consider the diagrams of Class 3 in Fig. 25. To examine 

their behavior for 1 k2 1, / q2 1, 1 (k+q12 1 < p2 we may expand the scalar 

propagator, 

1 1 k‘ =-- -- - 
k2- p2 p2 p4 

. . . . , etc. (9.5) 

When this is done, there are contributions which behave as p4, ~~~ p”, 

1 
t *** and higher powers of (+). We shall show that the terms which 
P 
grow as p4, 

P 
p2 cancel among themselves. To this end, we note that in 

a 4-point function with 4 pseudoscalar external lines (not involving the 

SU(4) singlet $ tr II), the terms proportional to p.’ must cancel. This 

can be seen as follows: the terms proportional to p2 are independent 

of external momenta, hence they are the same if the external lines are 

on mass shell. But the on-mass shell 4-point function is equal to the 

corresponding on-mass shell 4-point function of the related nonlinear 

24 
model which is independent of p2, etc. We will use this to show the 

2 
cancellation of the terms proportional to TV and p4 in the diagrams for B. 

The diagrams which may contain terms proportional to p2 and p4 
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and their cancellation are shown in Fig. 27. [Note that, here we are 

considering the Green’s functions, i.e., external propagators of mesons 

except those of KO, I?0 are included. 1 Figure 27(a) is just the statement 

made about the 4-point function of pseudoscalars. Because of this the 

terms proportional to p2 and p4 in the diagrams of Fig. 27(b) and Fig. 

27(c) cancel. The diagrams in Fig. 27(d) together with those in Fig. 

27(b) form a 6-point pseudoscalar Green’s function, which must not 

have terms in p2 and p4 at least on mass shell, (as in the case of the 

four-point function). As shown above, the sum of the diagrams in 

Fig. 27(b) does not have them, while the terms proportional to p‘ are 

independent of the external momenta. Hence, the terms proportional to 

p2 in the sum of diagrams in Fig. 27(d) must also cancel, etc. 

Now consider the diagrams of Class 1, viz. , those in Figs. 25(a) - 

(c). In Fig. 25(a), the IT’ and the n8 pole diagrams can be summed 

together using 

3 1 
2 2=2 2 * 

mK- mu mK- m8 

In the sum, the pole 1 

< - rnz 
cancels and the resulting amplitude 

m -m 
is proportional to m$ therefore, will not contribute to lim L ’ . 

mK 
-0 mK 

The diagram with the n g pole is also proportional to rni . The other 

1 
pole diagrams are of 0 - 

( ) P2 
, therefore we neglect them. The diagrams 

in Fig. 25(b) and (25(c) are redrawn with details in Figs. 28 and 29 

respectively. 
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The sum of all the diagrams in Fig. 28 is given by 

-A(OOm) -A(mOO)+~A(mOm)+$A(mm’m) 

- A(Omm) - A(mm0) 1 
+2 

C 
-A(~oo)-A(oo~)+ fA(mopJ+ $(pom) - $A(W’m) 

- $A(mmp)+ A(Omp) +A(ysnO) + A(mmp) + A(Pmm) 

+fA(pO,,) +$A(pn’p) - zA(wtd 

- A(opo) -A(mpm) +~A(Opm) + A(mP0) 
J 

(9.6) 

where 

A(mim2m3) = * sin20 co;’ t7 
4(2rr? 

kp qa g Jk)gVP(q) x 

(k2 - rnt) [(k+q)2 - mE](q2 -m:)(k’ - M2)(q2 - M2) 
(9.7) 

P2 
2 

= mK, rnZ m C’ 
m’K m’ 

C* 

It is easy to show, by appropriately grouping the terms in the second 

bracket, that these terms vanish as p2 - m. For example, 
- i- 

:A(Opm) - A(mpm) is finite and is proportional to (m2/ p2). 
1 

The terms 

in the first square to the amplitude. To see that 

their contribution is of 0 we regroup the terms in the first 

bracket as: 

4 ~(000) - A(mO0) - A(OOm) + A(mOm) 
c I 

+ $ A(mm’m) - 
c 

- A(mOO)j . 
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The first square bracket in the above is of a second 

derivative. It can be easily shown to be The second and the 

third square brackets contain terms of However, these 

terms cancel between them. This can be seen by using m x2 =2.,2 
c 2 c 

L 

8 ,2 ~.e., Frn c =4mE. 
1 

A similar discussion applies to the diagrams in Fig. 29. We shall 

only write those terms which are analogous to the first square bracket 

in Eq. (9.6): 

&(29) = 2 B(000) - B(Om0) + $ B(mm’m) - $ B(mOm) 
c 

-B(mmm) 1 (9.8 ) 

where 

4PV 
B(mim2m3) = ig P P 

4(2njl 
sin’ 8 cos2 9 

d4k d4q k%PgV(k)gep(q) 

(k2 - mz)(k’ - rni)m 
c 
(k+q)2-m2 

(9.9 ) 
2 1 (k2 - M2)(q2 - M2 )’ 

By an appropriate regrouping of the terms in Eq. (9.8 ), we can show, 
m4 

as above,that 429)is also of 0 c . 
( ) M4 

Finally, consider the diagrams of Class 2. Figures 25(d) - (m) . C 1 
1 

These are obviously proportional to - 
M2 

due to the couplings of sf with 

the mesons. In each of the Figs. 25(d) - 25(m ), there are intermediate states 
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for which the amplitude may be of 0 . However, we have varified 

that such terms cancel between different intermediate states of the same 

diagram. Thus the total result for the diagrams of Class 2 is of 0 

The diagrams of Class 3 are clear of 0 

We have computed the terms which are proportional to 

2 
are no terms of the type . These come from the 

M2 
diagrams of Class 1 and 2. Because of the factor ln - 2 6, these are 

assumed to dominate over the terms not containing this factor i. e., 

m4 
c 

proportional to -!Z- 
M4 1 . The result is 

4 
.,&Z-loop) = -im2,* L 

9 
m4 M2 

(2Trj8 * s 
- g4 sin20 cos2t3 . 2 ln- 

M4 

m4 
mc2 

+ terms of 0 -5 
i ) M4 

(9.10) 

The contributions of both the one loop and the two loop diagrams to 

(mL-mS) are separately positive. Their sum is, 

,&(KO+I?O) = -i rnk 5 z sin2 6 ~0s’ e 
M2 sin2 t7 

w 

(9.11) 

The KL-KS mass difference is given by, 
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m -m 
L s= - +&K” * go, 2 0.7 x 10 

-14 
(9.12) 

mK imK 

experimentally. 

Using Eqs. (9.11) and (9. 12) and fKsin8 = 33 Mev, we obtain 

Amc 2 0.7 GeV. 

It should be noted that we have computed the results as m - 0 and 
K 

therefore it is appropriate to think of the result as an estimate of the 

difference between the masses of the charmed and uncharmed mesons. 

We also note that with this value of mc, the two loop contribution is 

about three times larger than the one loop contribution. 

It should be pointed out that in the quark model calculation of Ref. 4, 

the procedure of evaluating the matrix element of the effective AS = 2 

Lagrangian by inserting only the vacuum intermediate states is, in a 

sense, equivalent to only computing our one loop diagrams. The contri - 

bution of the two -loop diagrams is large and helps restrict the bound on 

X. NUMERICAL ESTIMATES AND CONCLUSIONS 

In this section we shall compute the branching ratios and compare 

them with the experimental data. We shall also compare our results with 

the results of the free quark model calculation of Ref. 5. 
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As remarked earlier in Sec. IV, we have found that there is a 

cancellation among the terms of the leading order: 0 
( 
GF (Y 

The resulting amplitude from this set of diagrams is expected to be of 

o- 
i 
mK G 
M2 F 

cy . In addition, the amplitude KL - yy + p; also contributes 
) 

to this process. To see the relative orders of magnitude, we note that 

if we parametrize the total amplitude for KL + @ as, 

v&f KL -r;1= sin 0 cos 9 *& (10.1) 

then we find, from the experimental decay rate for this process that 

This is to be compared with 
2 

m,K 1 

M2 sin2 Q 
=5500* 

w 

(10.2) 

(10.3) 

Furthermore, we know that the unitarity bound from the absorptive 

part of the amplitude KL * yy - +J; is of the same order as the experi- 

21 
mental result. We thus conclude that the main contribution to the 

KL -f p; amplitude comes from the two photon intermediate states. The 

same conclusion was reached in the free quark model calculation of 

Ref. 5.. We have demonstrated that the result still holds even when 

strong interactions are taken into account. 
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(B)K+ +- * 77 ee 

This process is of more interest because the result for the branching 

ratio in the free quark model was found to be close to the experimental 

bound. Recently, the result (not bound) has been reported for this 

branching ratio. 15 

From Eq. (7.26) we have 

&K+(p) + a’(r)e(k)e (k)) 

sin 8 cos 9 

x (p +r)p 6 (k) Y vEG) +“(Gk) * 
EL 

(7. 26) 

The result is of the same order of magnitude as thequark model 

estimate, in fact, same except for the replacement: 

in the case of the fractionally charged quarks. 

To obtain the branching ratio, the result is to be compared with the 

first order decay K+ - lr”e Y which has the same phase space. We 

parametrize the amplitude for K+ 
o- 

-n ev as 

.d?[K+Cp) - no 

x c (k)ypyLe(k) (10.4) 
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where q 2 = (p - r)2. The contribution due to the term f-(q2)(p - r jP 

is small. Therefore, we shall neglect it. Also, we approximate: 

f,(q2) z f+(O) = i/e . (10.5) 

We, then, find from Eqs. (7.26) and (to.41 that 

T(K+ 

2.[.(gj +q COS j’ 

-+T+ee) _ 

T(K+ 
o- - 

-71 ev) (2f+j2 

m2 
z 2 iln3 +g COSQ 2 . 

i ( ) 3 
TI 

(10.6) 

Clearly, the result is not very sensitive to the value of mc. AS 

an example, let mc = 2, (5) GeV. Then using the experimental branching 

ratio for K+ - .pl’e Y, we obtain, 

T(K+ - ,+e,) -7 
CZ 0.75,(1.0) x 10 . (10.7) 

r(K+ -f all) 

15 
This is to be compared with the recent experimental result for the 

branching ratio 

rfK+ - 7r+e, ) = (2.3 f 0.8) x 1o-7. (10.8) 
r(K’ -all) 

expt. 

Our result is in reasonable agreement with the experimental branching 

ratio. Of course, since the branching ratio is not very sensitive to the 

value of mc, we cannot obtain a bound on mc . 
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(C) KS + rr’ee 

Equation (8.7 ) gives the amplitude for KS * rr’ee: 

.M(Ks (p) -c*‘(r) e(k): 

GF 

= i z 2 sin 0 cos e I 

1. 

In 

-: 
6 

2 +I- 

21 

lnmk 1 

--- 3 m2 36 

TI TI 

x (p+r) ;(k)yp(k) . 
P 

(8.7) 

We compared this with the branching ratio for the process 

f-- -+ 
-TT e v,*e v. As before, we find that, 

2F(K 
0 - 

S -‘li ee) 
L In 

T(KL - a’ev)+ F(KL+rr-ev) 
6 

and thus 

0 - r(KS - 71 ee ) 
= 3.2 x 10 

-4 
r(KS -all) 

Thus for m C 
= 2.0, 5.0 Gev, 

rws 
0 - 

-1~ ee) 
= lx, - all) 1.4 

-10 -10 
x 10 ) 2.2 x 10 (10.10) 

(D) K+ - rr+v; 

We compare the decay rates for K+ 
+ - + - 

-nvv lr”V 
e e’ with that 

PI” 

for K+ + noi v . The decay amplitude for the process K+ 
f - 

-7~ vv is 

given in Eq. (5.13): 



-68 - FERMILAB-Pub-74/96-THY 

3 GF cy r_ i- - - sin 9 cos 0 
4Jzr 

(5.13) 

From Eqs. (5.13) and (10.41, we obtain, 

UK+ 
In 

from which, we find: 

r(K+ --rr+v i )+T(~+v~Y~) 
I*P 

r(K+ -all) 
= 0.8x10 

ln kj(Io: 12) 

The present experimental bound on this branching ratio is 

r(K+ - ?T+v; ) 
< 0.6 x 10 

-6 

r(K+ + all) 
(10.13) 

and it does not allow us to place a meaningful bound on mc. Our result 

is in close agreement with the result of the free quark model calculation. 

(E) KS * IT’S; 

0 - 
The decay amplitude for the process KS - TT vv is given by 

Eq. (6. 16): 
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A?(Ks~P) - r’(r) v(k) 

GF = i - a sin tI cos f3 
P 2 2T M2 sin2 9 

W 

x (p +rlp;(klypYLv(kl . (6. 14) 

* -F 
Comparing this with the decay width for the process KL + il e v, 

we obtain 

r(K 
S 

-+ ,r”v in ) + F(KS-+ -“ve-, 
PP 

rwL -~‘e-;~)+r(K~ + n-e+ve) 

(6.15) 

and thus 

Ix, -+rrO" ;)+r(K& 
FP 

r(K, - all) 

In conclusion, we have, here, constructed a phenomenological model 

unifying strong, weak and electromagnetic interactions. The model of 

strong interactions is constructed to incorporate the results of 

SU(4) x SU(4) current algebra and PCAC; thus incorporating the low 

energy phenomenology. 

We have found that our results are in qualitative agreement with the 

quark model estimates of Ref. 5. We have also found that the amplitude 

for K. + pi which proceeds via exchange of only the heavy vector 
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bosons (W*, 2) is unexpectedly small due to the cancellation of the 

( 

m2 
leading order terms i. e., 0 GF a 2 

M2 ) 
. The experimental knowledge 

of this process does not allow us to infer about the average mass of the 

charmed mesons therefore. Our results for the K’ -+ r+ee branching 

ratio is in reasonably good agreement with the recent experimental 

15 The experimental bound on the K+ -f ?i 
+ - 

result. vv branching ratio 

is not stringent enough to allow us to obtain a bound on mc, at present, 

via this decay. However, calculation of the KL-KS mass difference in 

the model puts a strong bound on the average mass of the charmed mesons. 

Our estimates of mc are strongly indicative that the charmed mesons 

must lie in the few GeV range. 
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APPENDIX A 

Feynman Rules 

In this Appendix, we shall give some of the Feynman rules (or 

interaction terms) relevant in our calculation. 

(1) Vector meson and Biggs’ scalar interactions: [ See the Lagrangian 

of Eq. (2.4)1 

w; = 
Bip T iB 2p 

z = gB3p - g’Bo 

Jl- P G 

LB3 +gBo 
A---- 

-- 

AP = G= g2 fg’ 
2 

G 

e = -gg’/G cos 0 W = g/G sin 0 w = g’/G. 

The relevant interaction terms are: 

s+s-A : ie A (s+8 S- - s-8 s+) 
P II P P 

- x ap's+) + h.c. 

s +W-A: -e M A’(Wis- +,S+W-) 
F 

s+w-2: Gcos26 WM~ Zp(W; s- + W-s+) . 
IL 

The Feynman rules for the W+W-A and the W+W-Z vertices 

are: 
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w;(p) w,$q)Ap@ ): -ie (p-q) 
1 

~ a p+ (q-r) g g 
ff IlP 

+fr-pppa 

WI(p) WTp (9) Zp(r): iGcos2 0 w fp-9)pgcup + (9-r)ugs:p + fr-pJpgpa 

where the fields and the momenta p, q, y enter the vertex. 

(2) Leptonic Interactions: 

Here, we shall give the interaction terms for the p-leptons. 

E 
he interaction terms for the e -1eptons can be obtained by (p-, up) - 

(e:ve). 1 They are 

YL-~iS~}zlr+gZfYy~yL~W+~+h.c) 

c 
2(iYR s++h.c)+ Lp$o + Gi y5px 1 . 

(3) Meson (E, II), Vector meson (W, Z, A) Interactions 

These are obtained from the Lagrangian of Eq. (2. 14). We shall 

use II, I: and B to collectively denote the pseudoscalar, the scalar and 

the gauge bosons respectively. Also, wherever applicable, we shall 

write the Feynman rules only in the case of the exact SU(3) symmetry 

(and m 
2 

= m2= 0, etc. ). 
K TI 

Changes due to the SU(3) breaking can be 

obtained easily from these. 

(a) IIB Couplings: 

These can be obtained from: -tr 
i[ 

g(T W +T W+)+GT 1 + +)I - Z 
3_1 

FapII . 

(i) Feynman rules for II*;! q)* W:(q) : unit $- q 
P 
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Field II in K TI c Kc 

Vertex -cos 0 -sin 0 sin 8 (1+c ) -cos I9 (i+E) 

(ii) Feynman rules for II’(q)+ ZP(q): unit 
P 

Field II VI, rro ‘8 ‘10 

Vertex (1+E) d-z 

(b) Z B Couplings: 

These are obtained from: - ; tr F, aPs- (T+Wt + T W_“) 
I 1 

Feynman rules for X*(q) -q(q); unit: sq, 

Field Z 

Vertex sin f3 -sin 0 -cos 6 cos % 

There are no 2Z vertices. 

(c) Z* - S* and II*-- s* and II* - s* Eq. (2.16) 

Field 
+ 

TT TI 
c c “, % KC 

Vertex i sin 0 -isin 9 -i cos 9 ices 8 -sin 0 cos e 

(d ) II II W Couplings : 

We tabulate below the Feynman rules for 

II (p) + w; (p-q)II0(q) . 

For brevity, we shall omit a factor of + cos B or +sin 0 which can be 

easily supplied by observation. The Feynman rules for 

Z-(p) + 2’(q) W;(p -9) are given by the same table with appropriate 
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replacements II - .Z. The Feynman rules for the process II+(p) - 

II’(q) Wi(p -9) need only a sign change. 

Feynman rules for II-(p) + II’(q)W;(p - q) 

unit: * [’ (p+q)P sm 0/cos 0 ] 

TT K- TI K, 

so 
-dT -i/d2 i/v% 0 

KO 1 1 1 -1 

%OC 1 -1 -1 -1 

‘)8 
0 -3I& -i/&7 -2lG 

‘10 0 0 -f/G l/d- 

‘1, 0 0 1 -1 

(e) II Z W Couplings: 

Feynman rules for II* (p) - X0(q) WE(q) 

unit: -3= 2 2 (p+q)P 

f f il K” 77 
c 

“0 0 l/h/Z 1ldF 0 

KoGo) 1 1 1 -1 

Yoc(Yoc) -1 1 1 1 

‘8 26 -I& -I+-.&- -2&5 
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50 2143 216 -l/d7 l/h/3 

% 
0 0 -1 1 

The Feynman rules for LX++(p) - II”(q)dp(p -9) are obtained by 

replacements X +-f II and a change in sign. 

(f) II x vertex: 
2 

- igf mc 
tl,x = M ’ 

(g) II II Z Interaction Terms: These can be obtained from, 

where, 

(C IIJij = eij IIij ; eij = electric charge of IIij (1.0, -1) . 

We shall write only those couplings which we have used: 

(K+ 8pK--K-$K+)+(“+a rr--ir-8 a+) . 
I* I* 3 

(h) II X Z Interaction Terms: 

Only the neutral mesons have such vertices. They are obtained 

from, 

9 II x z 
= $ GZptr -2 apn + aV?z11 - a11 2,’ 

I 
. 

We shall write down those vertices which we have used: 
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(g) W*v II Interaction Terms: 

These are given by 

-igef 
2 C 

_ - 
nc sm8 (I+;) +Kc cos f3 (i+ t) +K-sin0 + K~COS 0 WpA 1 + P 

+ h.c. 
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APPENDIX B 

The Ward-Takahashi Identities for Proper Vertices 

Since the use of the Ward-Takahashi (WT) identities simplify the 

calculations considerably, we shall explain them briefly. 

WT identity for proper vertices in arbitrary gauge field theories 

have been derived in Ref. (25 I. We shall only quote the result and express 

it for the Lagrangian yof Eq. (2.14). In th e notation of Ref. 25, the 

WT identity for the generating functional of proper vertices P [ Q, 1 is, 

where, the subscript i runs over all fields in the Lagrangian and over 

the space time; and 

Ls= aq+gLYtiymJ +yq[Ql (B. 2) 

r,[@l =I-[@] +$ F/J] 2 I 3 
yq[@l = -i tt njk[ ~1 Gpy[Ol ($- G~~[@l) . 

k 

In one loop approximation, yq [@I does not contribute to the 

processes that we shall use WT identities for, essentially because the 

pseudoscalar and the scalar mesons (x:,11) do not couple to the Faddeev- 

Popov ghosts directly in the gauge we have chosen [see Eq. (2.7). 1 

When yg I ~1 is dropped c 
becomes the operator 
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which produces the change in a functional under an infinitesimal gauge 

transformation of the gauge group described by parameters (8@} . 

In this Appendix only, we shall, for the lack of symbols, use 

M,Z,II, etc., etc., to denote the expectation value of the meson fields, 

etc., etc., in the presence of the external sources (instead of the fields 

themselves). ok, IIk are 4 x 4 matrices and k refers to the space time 

point x k of the fields in 2 and II. [ Th e notation used here will be 

somewhat different from the usual (e.g., in Ref. 25). We have separated 

the space time index and the field index for the meson fields. The field 

index is identical to the matrix indices of the fields in X and II. I 

Then, dropping yqr@l , the WT identity in our notation becomes, 

6r0 
T 

daMk xM;+6 

(B. 4) 

where, 

-&+ = 1 
g Ly 

bUMk = -iTtMk +iMk Ti 

d Mk=iMkTL Q’f tamiT@ t 
R Mk 

An = 
-i cy 
2’ 

S 
nm m 

Iho = 1, ~@(cy = 1, 2, 3) are the Pauli matrices] 
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T 

t ) 

'ciro 
- = 

6ro 

6M Pv- 6MYP * 
(B. 5) 

[ 
For the sake of notational simplicity, here too, we have made 

some changes as compared to the usual summation integration 

convention. For example, b @Mk is a 4 x 4 matrix with two space- 

time arguments xU,x k. Its ( 5, r) fh matrix element is given by, 

(6UMk)5n = -i(TL)50,kj (MjJcrrl + i(Mj)&l’~)on,jk 

where jk refer to x.. and x 
J 

k; 5, (5, n are matrix indices; and (Ta 
Lkqkj 

- CT& ~ 64(xa- x,) 64(x (Y - xj) etc. So long as one keeps this in 

mind, the simplified notation used here, will not cause confusion. 
3 

We shall not differentiate the WT identity with respect to the gauge 

fields nm with respect to the Higgs fields ( s n) in our applications. 

Hence, in our applications, we may put Bi = <B,> : 0 and 
1 vat 

* 
S = <s*> 

vat Z 0 and x = <x>vac F 0 in Eq. (B.4). Therefore, we 

may replace IO by I[See Eq. (9. 313 and drop the second term in 

baBi of Eq. (B. 5). 

Then the WT identity becomes, 

+ tr 
f 

cy 
C-i TLMk 6rT 

f i Mk Ti) q 

+(iMtTLY -iT@Mt)6TT 6r 
k L 

R k dM+ 
S __ =o . 

n 6s (B. 6) 

k n 
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Expressing Eq. (B. 6) in terms of X and II, we obtain after some 

simplifications: 

6rT 
6Ckzk 

6;r 
IT, - llk~&T;+T;~ 

SIT 
T 

bk IT, + “k gk CT; - T; ) 1 
+6@s = 

n 6s 
=o. 

n 
(B. 7) 

From Eq. (B. 7) we shall derive the desired WT identities in special 

cases successively. 

(1) K+ - V+V; 

Here, we shall derive the WT identity of Eq. (5.1) for the K+B-Z 

vertex. 

We first note that, 

6 
G g 6B 2G (g’/2) 6B . (B-8) 

3P OP 

With the help of Eq. (B. 8 1, the WT identity of Eq. (B. 7) can be 

written, for the special case, as 
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-a 2.L 
II 625 

+$ tr 
P 

Zk-Xk $$)+ ($IIk -IIk $1 (<T3- &cYL+YRi 

++E =0 . 
6x 

(B.9) 

Here, we have used, 

,(3$ =II. 
2 

,5(‘$ = my 
2 * 

vat vat 

We differentiate the WT identity with respect to KL - and TT and n 

set C = F, II = 0. We note: 

(i) The diagonal elements of 
Is2 WT - 

6K;6~r; ( 
c -skg) 

6zk k 
are zero. 

k Z=F, 
II = 0 

(ii) -$ T3 - 5; (YL - YR) = -GT 
3 

2 2 2 
(iii)$T3- k(YL+YR) = Diag 

( 

2 2 2 
i %- a 5,; k - E 5, 

2 3 2 7 
++;$ -$g+&- 

1 

(iv) 
62 tr 6rT 

2 2 

6k11k+1s, 
&T G 3 +% = 0. 

Using these, we obtain, 
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-a a31Y 

p 62 6K;6~; 
P 

6 :a, ‘km)(%) 

+2. 631- 631- 

k 6K=n 6~; 6111k 
fk G(T3 )kk + F 

6x 6K=, 6~; 
=o . 

(B. 10) 

Writing Eq. (B. 10) in momentum space (see also Fig. iI), we obtain, 

qprL(p.q) - iMz rX(p,q) = - ;GS f t k k 3k 
=(3) 

k (Psq) 

qg2 _ ‘2) . 
2G c C+(P ) - X+(p-q) -1 6% 11) 

where, 

r: (p. q) is the K+(p) - s+(p - q) Z’(q) proper vertex. 

+- 
I- (p. q) = K ?T x proper vertex 

X 

C+ = K+v- self energy 

$3) ,(p,q) = F.T. 631? 

6KL6r; 611kk 3 

t3i = 1 i =1,2 

= -1 i =3,4. 

(2) K” 4 ~‘1,; 

Here, we shall derive the WT identity of Eq. (6. 1) for the K”roZ 

proper vertex. This derivation is similar to that for the K+rr-2 
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proper vertex, hence we shall be brief. We differentiate Eq. (B. 9) with 

respect to Kom and 0 and set 5: = F, II = 0. We note that the second 

term in Eq. (B. 9) does not contribute. We shall only give the final 

result. It is 

-a 63F 
- ; C 2W3)kkfk 631’ 

k 0 0 611kk6Km6rn 

1 
‘km -3 

6’l- 
6kn 

& 621’ 
65, 6K” -n 65 6K0 6k 

k m Ok m 

+ Gv 63r 

2 6Bkk 
6KOm60 

=o . (B. 12) 

Writing Eq. (B. 12) in momentum space, (also see Fig. i5), we obtain, 

sFF&(p,q) = iMz Tox(p,q) - 7 C f t r(3)(p,q) k k3k k 

x;(P) - c;,tp - q) 
3 

(B. 13) 

where 

ro”, b,q) = KO(p) * rrO(p-q) ZpCq) proper vertex 

(3) I Ok (p, q) = KOnOIIkk proper vertex 

=0X 
(p,q)=K ’ orr x proper vertex 

X,(p) =5 8K0 self energy , C’,‘(p-q) = K orro self energy 

X,‘(p) = 5 8Ko self energy. 
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Here, we shall derive the WT identity for the K’n-y proper vertex, 

and show how the terms of our interest can be obtained with the use of 

it. We note, 

6 -= IL 
6A G 6B 

6 +g 6 Go =-e +1 A----.- 6 

P 3v OP 
2 

(g?Z) 6B0p 

EL 14) 

Using Eq. (B. 14) in Eq. (B. 7) we obtain, 

= 0, 

(B. 15) 

where 

4 4 
Q’ =T3+~(YL+YR)=diag(~,~, -$, -4). 

Then, differentiating Eq. (B. 15) with respect to KLri and setting 

Z: = F, II = 0, we obtain the WT identity, which may be written in the 

momentum space as, 

where, 

qFry(P.q) = e C+(p) - z+(p C 
, 6% 46) 

r’*(pjq) = K 
t 

Y (~)+a 
t 

(p-q)y(q)proper vertex. 

E+(P) z K+rr- self energy, as before. 

Equation (B. 16) is shown diagrammatically in Fig. 30. 

On the other hand, the truncated K+a-y Green’s function Ey(p, q) 
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is given by (See Fig. 311, 

E;(m) 
(i12e(2p-q) 

+ 2 2 p E+(P) 
mass shell 

mK-mlr 

~7 

mass shell 

1 - E,(P -q (B. 17) 
mass shell 

As far as terms of our interest are concerned 
C 
i. e., upto the 

terms of 0 Z,(p) can be expressed as, 

2 4 
=JP) = a+pp +yp . W. 18) 

From the Lorentz transformation property of Tp(p, q), we write, 

rp(p, q) = Cp’ + DqP (B. 19 1 

where C and D are functions of Lorentz invariants. We shall choose 

the three independent Lorentz invariants to be p2, q2 and (p - q 12. 

We expand C and D in powers of the external momenta: e. g. , as 

c =co+cip2+c2~P-q~2tc3q2+... (B. 20) 

where the Ci’s can possibly have (only) a logarithmic dependence on the 

Lor ent 2 invariant s . 

Substituting Eqs. (B. IS), (B. 19) and (B. 20) in the WT identity of 
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Eq. (B. 16) and compare the coefficients of the powers of the independent 

Lorentz invariants, we get: 

Co = 2ep + 0 
( 1 $I 

C2=2ey . (B. 21 j 

Now, 

E;(w) =P 
P 

co t ClP2 t C,(p -q)2 + c3q2 + . . . 

_ e[a++p2 +yp4] _ e[a+p(p-q)2+y(p-qj21 

p2 - rnz b-q12 - mi 3 

+ terms proportional to q . 6% 22) 
IJ 

The terms proportional to q do not contribute. 
P 

Ey (p, q) has ,terms 

proportional to p2p ~, (p - qj2pp and pp in addition to the terms proportional 

to q2P 
PL’ 

However, using Eq. (B. 21) on mass shell, we find 

E;(p, 9) 
l-n 

= C3q2p’ + terms proportional to q’: (B. 23) 
ass shell 

Hence, we need to compute C3 only. This can be done by computing 

Fy(p, q) on mass shell and picking terms proportional to q 7-w p . 

(4 j K” - ray Vertex 

The only one particle reducible diagram for the K” - nay vertex 
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0 0 consists of KO~ * K - y. This diagram is clearly proportional to q , 
P 

the photon 4-momentum. The WT identity for the total K” - 77’~ vertex 

Ely (p. q) can be shown to be, 

q EI* ~ oy (p, q) = 0 for arbitrary p,q . (B. 24) 

Writing, 

ELy(p,q) = FPr + Gq ’ 
I* 

it follows from Eq. (B. 24) that F is proportional to q2. Hence, we 

need to compute the terms proportional to q2p 
P 

from the KO~‘y total 

vertex (terms proportional to q do not contribute) and these terms come 
v 

from the IPI diagrams. 

0 
(5) K Z vertex 

Here, we shall prove the WT identity relating the K”Z and the K’x 

vertices; which is given in Sec. (17. 1). 

Differentiate Eq. (B. 9) with respect to Kom and set X = F, II = 0. 

We obtain, 

-a 62r tM h2r 
’ 6K;6Z z 6KOm 6X 

P 
fkt3k = ’ * 

(B. 25) 

Writing Eq. (B. 25) in momentum space, in obvious notation, we get 

z(Ko -+‘$k.p) = 0. (B. 26) 
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Next, we shall show that 

W” - 11,~ p) 

= (ip ) (pole diagrams for K. -Z’) +Mz( pole diagrams for Kg-+ x ) . 
P 

(B. 27) 

The right-hand side is 

ip xEk(p) i 2 ak(i)pp+ MzFxk(p) i 
pk p2-mk p2-rni 

iakm$ Ms 

where ai’s are defined in Eq. (4. 5) and the sum over k runs over 

TIO’ ‘8 ‘,+l; 

= 2 , , Ek(p) ak 

TIoqcqc ‘10 

0 
X(K -11 

kkJP) 

changing the basis to IIlk (k = 1, 2,3,4). 

Thus, from Eqs. (B.26) and (B. 27), we obtain, 

ippEl*(p)+MzF(p)=O 

where 

E’l(p) = truncated Kg2 Green’s function 

F(p) = truncated KOx Green’s function. 

(B. 28) 
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APPENDIX C 

Finiteness of the Results 

In this Appendix, we shall make a brief comment which will make 

it more transparent the fact that all the results are finite. 

Nothing that we are using the Landau gauge for the W propa.gator, 

we find that among all the diagrams that have appeared SO far, only the 

diagrams which are divergent are the self-energy diagrams with W- 

exchange. As an example, we may consider the K+n- diagrams shown 

in Fig. 25(a). In the Landau gauge such a diagram with a single inter- 

mediate state (say no) is logarithmically divergent. However, when one 

sums over all the intermediate states, the ~logarithmic divergence 

cancels. That this must happen can be seen as follows. 

Consider the tree diagrams for the process K+v- - w+w-. (See 

Fig. 25. ) There is no direct Kt*-WtW- vertex. 
L 
The direct meson- 

meson W+W- vertices are always AS = AQ = 0. The self-energy 

diagrams we shall be dealing with are always be AS k 0. There are more 

diagrams for this process but these vanish when the W* are on mass 

shell. 1 Then the fact that the sum of all the diagrams with longitudinal 

polarizations of the Wt and W- must not grow like a positive power of 

the CM energy necessarily requires that the sum of the products of the 

coupling constants Z hipi must vanish. Due to this condition, the 
i 

logarithmic divergences must cancel in the self-energy diagrams of 

the Fig. 25(a). 
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APPENDIX D 

The 3 meson (Zp, Is or 3s) couplings can be directly obtained from 

the interaction terms of Eq. (2. 3). However, it is instructive and easier 

in some cases to obtain them via the WT identity. It makes many 

considerations simpler. 

f- - 
As an example consider the K K One vertex. We use the WT c 

identity of Eq. (B. 7) in the tree approximation. Differentiate Eq. (B. 7) 

with respect to ~~ and rc and set C = F, II = 0. Then we obtain, 

Ia 
-2 P 

h31- - - 
ciw+ GO 6*; 

& (f+f3 
3 

+ 6_ l- cos e 

P 
&Kc6 Ko6*i 

t terms that vanish when 
0 

IT c and K are on mass shell . (D. 1) 

The first term when Lo and rc are on mass shell is &(rnz - 1,:) 

cos e . Therefore, the three point ~“r~K~ vertex is: 

-p2 tm 
2 2 

$3) c 
f tf’C = 

Kc+Xo”C 
CD. 2) 

The conclusions from this simple exercise is that in the three 

meson vertex the parameters $ >Q.P.Y 
c 
which enter the strong 

interaction phenomenological Lagrangian enter only il such 
1 

combinations that they can be expressed in terms of the masses of the 

mesons. Since the Feynman integrals also depend only upon the masses 
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(through propagators ), it becomes easier to understand the fact that the 

2 
results are independent of the parameters cy, j3, y as k. + m. 

The fact that the 4-meson vertices (with 4 external pseudoscalar 

mesons) has similar property can be seen easily as follows: As an 

example, consider the K’v- - K+c tree diagrams. These are shown 

in Fig. 26. We know that the sum of these diagrams must vanish when 
r 

the external momenta vanish and Ln 
c 

=-=o. 
L 
Exact SU(4) x SU(4) 

symmetry of strong interactions Lagrangian . 
I 

This relates the 4-point 

function (c) to the diagrams 26(a) and 26(b) which t:iemselves can be 

expressed in terms of p2 (up to SU(4) breaking corrections). 
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APPENDIX E 

The ‘Box I Diagrams for K+ t - --ii Y” 

These are the diagrams that arise out of the direct coupling of 

W’W-( or s+s-), from the K’rr-W+(s’)W-(s-) vertex to leptons. 
C 1 

They are shown in the Fig. 27. 

In the diagrams of Fig. 27(a), when the intermediate states are 

scalars, (k,,&,, YOc) the diagrams vanish as p2 * a. The two 

intermediate states contribute with the opposite signs. Their 

sum is of order < 0 thus smaller by a factor 
2 

mK m2 
2 In + as compared to the Z-exchange diagrams. The diagrams 
m 2 

c mK 
in Figs. 27(b) and 27(c) are also of order 5 0 . The diagrams in 

the Figs. 27(d), 27(e) and 27(f) can grow as p but their 

2 sum is finite as I* - m . The cancellation of the terms proportional 

to p2 is related to fact mentioned in the Appendix D (see Fig. 26), that 

the sum of the K+rr- 
t- 

-K TT 
c c 

scattering diagrams vanishes at zero 

external momenta and mc = 0. Hence, their sum is found to be of 

,C. 
( ) M4 

The diagrams in Figs. 27(g), 27(h) and 27(i) are also found 

m2 
to be of 0 -k . 

( ) M4 
Hence, all box diagrams can be neglected as 

compared to the Z-exchange diagrams. 
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APPENDIX F 

Here we shall deal with the terms 
iG -Fzft r (3) 

k k 3k Ok (P29) 

++G 
C 
$ C,(p) + j$ E:,‘(p) - “0’ ’ (p-q) 1 in the right-hand side of 

Eq. (B. 13 ). We need the terms proportional to pa q from these, which 

will contribute to the terms proportional to p 
P 

in the proper vertex. 

(3) First, let us consider FOk (p, q). The diagrams that contribute 

(3) 
to rOk (p,q) are shown in Fig. 17. 

We are going to show that none of the diagrams in Fig. 17 

except those in Figs. 17(a), 17(c) and 17(q) contribute to the p* q terms 

of 0 
( ) Q$ 

inZf t $3) 
k k 3k Ok 

(p, q) and that the contribution of the diagram 

in Fig. 17(q) to -;GZf t (3) I- k k 3k Ok 
is equal and opposite to the contri- 

iG 
bution of the diagram in k Fig. 18(b) to - 2 Z y (p-q); SO that they 

together do not contribute to the sum of the terms in the right-hand side 

of Eq. (B. 13) that we are considering. 

Let us first note the following: 

(i) Let Ck be the Feynman rule for the vertex of a scalar - W&k’ 

c 

-+ + 
The scalar may be K , kc, Then from the Feynman rules in 

the Appendix A, we find that 

(F.1) 

(ii) We compute all the trilinear couplings involving IIkk and two 

charged fields. The result is: 
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- (I& t K$C+) 4$(f IIll if ‘1144)+ 2~$ f(IIZ2 + 1144) 
I 1 

- c+ 4; + Q) [4ruPgZUIIli+f’I133)+2yP~f(I122+I144- 
c I 

- (K+k- + K-K+) 
i 

4@iA;f(I122 t 1144) + 2y p; (f ‘II33 t f Iii 1 )) 
1 

- (rr+$- trr- $+) 
r_ 
4aiJgZf(I122+ II33 )t2&f*I144 +fIIii) .(F.2) 

I 

Thus, if we define the II* - E* IIlk vertex as b k, where II* and X* 

are some charged pseudoscalar fields, then we find: 

Cf t 
k k 

b =0 . 
3k k CF. 3) 

I Equation (F. 3) can also be alternately derived from the WT identity 

for the tree diagrams . (See Eq. B. 9). It essentially follows from the 

fact that there are no vertices of the kind II* - E*Zp (e.g. , Kf- k+ZP). 
I 

(iii) In particular, we note from Eq. (F. 2) that the interaction of 

rr” with charged fields are given by, 

0 

4% cc ( 
lT++- t T-b 

cc' )i 
2f $(ZPV) - 4lyf$ 

i 

0 
- * 

( 
K+k- +K-K+ 

)i 
2f $(2Q-v) - 2yfei-L; 

I 

7 
t +; - k+K- - k-K+1 t O(p’) . CF. 4) 

(iv) The trilinear interactions of K. with the charged fields are 

given by, 
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tK-$++K;bc++k,;=; 
3 

+ O(pO) . CF. 5) 

Now, consider the diagrams of Figs. 17(b) and 17(d). They are of 

O(k”) and therefore in their contribution to C f t k k 3k 
I(3) 

Ok I we may put 

fk = f (i.e., e = 0). Then due to Eq. (F. 1). the contribution of the 

diagrams in Figs. 17(b) and 17(d) to Z f t I(3) 
k k 3k Ok vanishes identically. 

Further, on account of Eq. (F. 3), the contribution of the diagrams 

in Figs. 17(e), 17(f), 17(h) and 17(i) to 2 f t I(3) 
k k 3k Ok 

(p, q) is zero. The 

diagrams in Fig. 16(g) do not have terms proportional to p’q since it 

depends on p2 only. In Fig. 16(j ), each diagram is of 0 
( 1 2. 

However, 

when summed over all k, for each intermediate state, the contribution 

toz:f t k 3k IFi (p, q) vanishes. This is so, because the I 
k 

WiW- vertex 

is described by, 

and since each diagram is of O(p” ), we may put fk = f. The diagrams 

in Fig. 17(k), 17(l) are of 0 2. The contribution of the diagrams 

in Fig. 17(m), 17(n) to X fkt3kIrk) vanishes because of Eq. (F. 3). 

The diagrams in Fig. 17(p) are of 0 (11’); however, the p. q terms in 

them are of 0 (l.tm2) and hence can be neglected as p2 - m . 

This leaves us with the diagrams in Fig. 17(a), 17(c) and 17(q). 

Let us first consider the p* q terms in Fig. 17(q) together with the p’ q 

terms from Ck ’ (p -4). We shall redraw Fig. 17(q), for convenience, 
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with the diagrams for “6 (p - q) in Fig. 18. 
L 
Figure 17(q) E Fig. 18(a). 

1 

The diagrams in Figs. 18(d) and 48(e) are independent of the external 

momenta. The diagram in Fig. 18(c) is of O(p’); however, the terms 

proportional to p. q are of O(pe2) and hence will be neglected. The two 

diagrams in the Fig. 18(a) and 18(b) are identical except for the left 

bottom vertex in each. We find that the K oKc n,’ vertex in Fig. 18(b) 

is described by, 

9 _ + = K ,K,+ 
c 
-2 (2a- Y)f pi f 4CYfe + h.c. , CF. 6) 

kKrr 
0 cc 

while the K’K- ~~11 c c kk vertex in the diagram of Fig. 18(a) is described by, 

2 _ + 

KOKCvC1 kk 

P~(IIii+I133fI144) - 2y$IIZ2]KoK;~; . 

(F.7) 

Thus, the contribution of the diagrams in Fig. 18(a)to E f t I (3) 
k k 3k Ok 1s 

described by an “effectivd’ vertex (Feynman rule) 

= 
C 
-4@p;(f=2f) -2$f 1 

2 = 2(2a - y)p,2 f - 4rufe iJo (F.8) 

which is exactly equal and opposite to the x 
0 - + 

K IT c c vertex in Eq. (F.7). 

Hence, the total contribution of the diagrams in Fig. 18(a) and i&(b) to 

{“fkt3kr;;) (p, q) t Ei’(p-q)} is zero. 

We have computed the terms proportional to p-q in the diagrams 

of Figs. 17(a) and 17(c) and of Fig, 18(f). The results are already 
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quoted in Eqs. (6. 3) and (6.4). 

Finally, let us consider the WT identity of Eq. (B. 13) at p = q = 0. 

q,cz 
vanishes at p = q = 0; so does the K 

0 0 
TI x proper vertex 

rox (P> q). (See the diagrams of Fig. 16. ) Therefore, we obtain 

zt 3k fkF;; (0,O) t CTO) --&o(o) - &O) = 0 . (F.9) 

As remarked in Sec. VI, the contribution of the one particle 

reducible diagrams to K 
0 0 

r Z total vertex depends on the terms in 

X0’ IT’ , 2” which are proportional to p2. 
0 0 

Let us therefore consider 

the terms of 0 p 
2 1 

( ) 
- in Eq. (F.91. 
M2 

From all the above discussion, it is clear that the contribution to 

Zf t F(3) 
k k 3k Ok 

(0, 0) which is of O(k2) comes from only two diagrams: 

(i) the diagram in Fig. 17(q), (ii) the diagram in Fig. 17(g) with the 

f- + 
intermediate state (K , TT~, ilc ). The contribution of these are found to 

be equal and opposite in sign, hence, they cancel. Thus we obtain 

d7; 
“‘0 (0) - J+,(O) -G z;(o) = O(pO). W’. 10) 

We shall use Eq. (F. 10) in Sec. VI. 
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APPENDIX G 

In this Appendix, we shall deal with the term - ‘5 C f t k k ,,F($P>9) 

in the WT identity for the proper K+a-Z vertex of Eq. (B. 11). We 

need to find the terms which are of 0 
( ) & and are proportional to 

P’ 9. This appendix is similar to the Appendix F. 

The diagrams that contribute to this vertex are shown in Fig. 13. 

On account of Eq. (F. i), the contribution of the diagrams in 

Fig. 13(b) and 13(d) to C f t 
k k 3k 

I(3)(p, q) vanishes. 
k 

On account of 

Eq. (F. 3 ), the diagrams in Fig. 13(e) and 13(f) do not contribute to 

zf t 
k k 3k 

$3) ,(p, q). The diagrams in Fig. 13(g) do not have terms 

proportional to p. q. The diagrams in Fig. 13(k) is of 0 (it’) as such, 

but the pm q terms in them are of O( nm2) and hence they vanish as l.t2- ~0. 

The diagrams in Figs. 13(m) - 13(q) are similar to the diagrams in 

Figs. 17(j) - 17(n), (which we have discussed in the Appendix F) and 

can be neglected for identical reasons. The diagrams in Fig. +3(h), 

13(i), and 13(j) contribute to the terms proportional to p*q and their 

contribution is already stated in Eq. (5. 11). This leaves us with the 

diagrams in Figs. 13(a), 13(c) and 13(l). The following, we shall show 

that the terms in their sum which are proportional to p-q are of 
2 

0 mK 

( ) 
- as against the terms of the leading order 0 
M2 

and thus 

negligible. 



-99- FERMILAB-Rub-74/96-THY 

Consider the diagrams in Fig. 13(l). To compute these, we need 

“effective vertices” such as E f t k k 3k( 2-1 - These can be 

most easily obtained through the use of the WT identity of Eq. (B. 9) 

in the tree approximation and the knowledge of the meson-meson-Z 

vertices. As an example, consider the WT identity of Eq. (B. 9) 

differentiated with respect to 5, and ~0 (at z = F, II = 0) on mass 

shells (of 5, and no) in the tree approximation. The result is, 

-a b3r p 6ZpG8 bfTO 
m n 

G fJ3r 
+; fk(- Tt3k) “$ 6rro 611kk =” 

mass shell 
m n 

(G. 1) 

Reading the 5 gnOZ vertex from the Appendix A, it is easily seen that 

2 
- S+o(pO) . (G. 2) 

In other words, the effective vertices are described by, i x (the 

divergence of the ps-scalar current that couples to ZP). These 

effective vertices are, thus, described by, 

_ $ $5 - I+- fk8’lg -s++z +gc”yz [ I 
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‘I8 +I&$+ K i 1 
+ O(pO) (G. 3) 

with the help of Eq. (G. 3) and the Feynman rules in the Appendix A, 

it is easy to show that the total contribution of the diagrams in 

Fig. 13(l)to 2 f t ,(3) 
k k 3k- k 

(p, q) is given by 

m(1) =(-p-q) 

+ other terms , (G. 4) 

where, 

2 
x2 

B(X, p) = + - 
d4k 

(2d4 (k2- x2)(k2- p2)(k2- M2) ’ 
(G. 5) 

c The contribution proportional to B( p. mc ) comes from the Xz, YE ) 

intermediate states. The contribution proportional to B(pi, 0) comes 

from the (ki;rro, n,) intermediate states. The contribution from the 

(5 8;ro, ng) intermediate states cancels the contribution from the 

E,, SO’ ng ) intermediate states. Hence, there is no term proportional 

to B(p, 0) in Eq. (G. 4) . 1 

Next the strong vertices in the diagrams of Fig. 13(a) and 13(c) 

are described 

P2 2f Y,” (K;K, + +,) + O(p”) . -- (G. 6) 
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With the help of Eq. (G. 6). we have computed the contribution of 

the diagrams in Fig. 13(a) and 13(c) to the p* q terms in xf t $3) 
kk3k k (P, q). 

The results are: 

m(a) = m(c) = (p-q) B(pi, 0) - B(pjmc) + 0 
i 

+ other terms . (G.7) 

Thus, from Eqs. (G. 4) and (G. 7 1 we find, 

2 

+ other terms . (G.8) 

Hence, the contribution of these diagrams in Figs. 13(a), 13(b) and 

13(l) to the terms proportional to pu of 0 in El(p.q) is zero. 

This cancellation will becomes less mysterious if one notes that each 

diagram is proportional to B(ui, 0) - B(p, m 
c 

1 
1 2 -- 

which, among other 

things, contains a term proportional to In “T - In (20 - v) which 

pi 
depends on the parameters (Y and y which enter the strong interaction 

phenomenological Lagrangian. While, if one draws all diagrams for 

EL (p, q) it is easy to see (with the help of the Appendix I:) that it 

should not depend on cy and y. 
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APPENDIX H 

Higgs’ Exchange Diagrams for K+ 
t- 

-IT ee 

These diagrams are proportional to the lepton mass, therefore, 

we shall estimate them for the process K+ + rtpi to see whether they 

are significant. The Higgs exchange diagrams that contribute to this 

process fail into two categories. They are shown in Fig. 36(a) and 

36(b 1. 

The diagrams that contribute to the proper K’a- $, vertex ye 

shown in Fig. 37. The diagrams in Fig. 37(a) are of 0 

1 
x 2 for each of the intermediate states. However, 

’ Higgs 
2 

Sum is of 0 2 
. The diagrams in Figs. 

diagrams in Fig. 37(d) ar 

their 

37(b) and 

-e of 

37(c) 

One can convince oneself that the weak K+rr- kc vertex itself is of 

0 mcZ 
i 1 2’ 

Hence, Fig. 36(b) is of 0 
( 
m 

2 mcZ 
PM4 2 

. Thus, all 

’ Higgs 
the Higgs’ exchange diagrams can be neglected. 
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APPENDIX I 

The Contributions of the Diagrams in Class 3 in Fig. 25 at p = 0 

We shall show that this contribution at p = 0 is zero with the help 

of the WT identities that follow from the broken chiral SU(4) x SU(4) 

symmetry of the Lagrangian of the strong interactions with known symmetry 

breaking. [This Lagrangian is just q of Eq. (2. 3) + the symmetry 

breaking terms, 2 
Mm @=v’ Let W [J 1 be the generating functional 

of the Green’s functions for this Lagrangian. W[ J 1 is defined by - 

W[J] = [dMdM+l expi d4x [PO +tr{A(MtM’)+J’M +J “TM+ { I. 

(I. 1) 

% is invariant under the global SU(4) x SU(4) group transformations. 

J and J* are 4 x 4 complex matrices corresponding to the sources of 

M and M’. A is a diagonal matrix proportional to v, which in the exact 

SU(3) symmetry limit, (with the SU(3) octet of pseudoscalar mesons 

being massive ) has the form: 

A = (const) x Diag(f*mE. fmi, frni fm2,). (I. 2) 

Now, under a left-handed SU(4) transformation, M and Mt transform 

according to Eq. (2. Z), viz: 

&M(x) = - ; @iKiM 

bM+(x) =; f?M+(x)X . 
1 (I. 3 ) 
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Such a transformation is just a change of variables of integration which 

must leave WI JI invariant. Further, the transformation has a unit 

Jacobian. Using these, one can write down the WT identities for 

2 [ J] = - i In W[ 51 in the usual manner. The result is, 

0 =id4xti-Li [+&JT,x,-J*,:, ,Jz;, ] 

r 
-hiA “,” - 

1 SJ (xl 
(1.4) 

Ecpa.tim (Ia 4) holds for each generator A, 
1’ 

in general for Andy complex 

linear combination of hi’s, and since complex linear combinations of 

Xi’s span the space of 4 x 4 traceless matrices, it follows, in particular, 

that 

JT(x) - Ji;T(x) 
62 
:~ 

6 J .(x) 

62 -A :,’ + - 
6J-(x) 

3 
6J(x) *j off.diagonal element 

(I. 5) 

Now, consider the contribution of the diagrams of Class 3, in 

Fig. 25. They can be obtained by constructing the Green’s functions 

for the processes 

KK 
0 0 - *P 

- 2p+2s p = pseudoscalar meson 

- 4s s = scalar meson. 
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[where the final state involves charged charmed mesons carrying two 

units of strangeness and no charge] and by closing them with s 
f 

propagators ~ The Feynman rules at the vertices involving s* are such 

that the contribution is proportional to the sum of the above Greens’ 

functions. This sum is in turn proportional to the (hermitian part of the) 

Green’s function: 

KOKO - ( K ,’ + iKl). (K ’ +iKl). ( $, C 
- irrC),( o- - irrc) . C 

Thus, at p = 0, we need to compute the Greed s function for, 

+ + 

M4i”4iM13M13-2 
‘soft’ [i.e., p = 0, but massive] KoSs. (I. 6) 

[where, 

M 
41 

= (Kc+iKc), M ~3=($~-i~~). M34=KO+iKOl. 

Differentiate the Ward identity of Eq. (I. 5) with respect to J 4*(Y L 
* 

J4i(z), Ji3(w), Jy3(vland set J = J 
i; 

= 0 except, 

J ” 34 = -J34 = -LC, CZJ 
KO 

(c is a real constant). Then take the (3, 4)th element of the resulting 

matrix equation. We obtain 

A 65Z 
:: 

6JK 
0 

(xl 6J41(y)6J4i(z16J;3 (w)6Ji3(v) 
1 34= -Lc 
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64Z r - 

6J31(y16J41(2)6J~3(w)6J~3(v) 
J 34 

= -ic 

+ty+-z1 

64J + 
6J~4(w)6J41(y)6J41(z)6J~3(v) 

where, we note, 

+ (w--v) (1.7) 

J 34 
= -ic 

A =A44, i6J 
6 6 6 

= - 33 KO (x) 6J34(x) 6J'k . 34 tx) 

The external source is such that it conserves charge and creates 

(positive) strangeness. Then the left-hand side of Eq. (I. 7) corresponds 

to the Green’s function containing 2 ‘soft’ Kos, while each term on the 

right-hand side contains only one ‘soft’ Kg. In the same manner the 

Green’s functions on the right-hand side can be related to 4-point 

Green’s functions containing no KO’s. The result is 

A d4x 65Z 
44 

6J31(y)6J41(z)6J~3(w)6J~3(v)6JK (x) 
0 

etc. Using Eq. (I. 8) and a similar equation in Eq. (I. 7) we obtain the 
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final result which is shown diagrammatically in Fig. 38. The sum of the 

4-point Green’s functions is much easier to deal with directly. For 

example, one component of the right-hand side of Fig. 38 is shown in 

Fig. 9. That this vanishes at least on mass shell can be seen easily. 

For, then, it is the corresponding sum of the Green’s functions of the 

related nonlinear model; 23, 24 
which has the interaction terms: 

+ (const) [ (KzKc)2 + (~~~~)2 + ~(K~K,T~LIT,)] , 
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I 

has the form tr A(M + Mt ). With 0& 

g-0 m=v 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

Fig. 13 

Fig. 14 

Fig, 15 

Fig. 16 

Fig. 17 

Fig. 18 

FIGURE CAPTIONS 

rrzrrOW-(s-) vertex 

A possible one loop diagram for ~:rr’W- vertex. 

Some of the diagrams for K” - i.$ . 

Diagrams for K” 
+ - 

- W W vertex. 

0 0 
K TT self-energy diagrams. 

Diagrams for the K”x vertex. 

Diagrams contributing to K”Z vertex which may be 

proportional to 
1 2 for K” on mass shell (and 

rnz = 0). mK 

IPI graphs for K” - p; . 

Higgs exchange diagrams for K” - i.tL . 

Diagrams for the K+rr-Zli vertex. 

WT identity for the Kt=-ZCI proper vertex. 

Diagrams for the K+IT-X vertex. 

Diagrams for the Kin-IIii proper vertex. 

Diagrams for the KPjaoZV vertex. 

WT identity for the KOvoZp proper vertex. 

Diagrams for the K”,rox proper vertex. 

Diagrams for the K”xoIIlk proper vertex. 

0 0 
The diagram of Fig. 17(q) and the K TT self-energy 

diagrams. 
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Fig. 19 

Fig. 20 

Fig. 21 

Fig. 22 

Fig. 23 

Fig. 24 

Fig. 25 

Fig. 26 

Fig. 27 

Fig. 28 

Fig. 29 

Fig. 30 

Fig. 31 

Fig. 32 

Fig. 33 

Fig. 34 

K”k 1 (5 2) self-energy diagrams. 

The diagram of O(p2) which contributes to aon 

self-energy. 

Diagrams for the K+r-y proper vertex. 

Diagrams for the K”noy proper vertex. 

The two kinds of diagrams contributing to K” -t I?’ 

transition. 

One-loop diagrams for K” + I?’ transition. 

Two-loop diagrams for the K. - K. transition. 

The cancellations among diagrams of Class 2 at p = 0. 

The cancellations of terms proportional to k2 and p4 

in the diagrams of Class 3. 

The diagram of Fig. 25(b) shown with all intermediate 

states. 

The diagram in Fig. 25(c ) shown with all intermediate 

states. 

WT identity for the K+rr-y proper vertex. 

Contributions to the total K+n-y vertex. 

Contributions to the totak K”noy vertex. 

The diagrams for the K+ - TI+ transition involving a 

W propagator (Landau gauge) and for the K’rr- - w+w- 

amplitude which do not vanish when W* are on mass shell. 

Diagrams for K’n- 
i- 

-K 71 c c . 
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Fig. 36 

Fig. 37 

Fig. 38 

Fig. 39 
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+ + - 
‘Box’ diagrams for K * TI YV . 

Higgs exchange diagrams for K+ 
+- 

-+r I+. 

Diagrams contributing to Fig. 36(a). 

The equation used in showing that the sum of the diagrams 

of Class 3 vanish at p = 0. 

A contribution to the right-hand side of the equation in 

Fig. 38. 
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