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ABSTRACT - 

We give a simple phenomenological analysis of hadronic and 

electronic vacuum polarization effects. We argue that the derivative of 

the hadronic vacuum polarization, evaluated in the space-like region, 

provides a useful meeting ground for ccrnparing e’e- - hadror. annihilation 

data (assumed t? arise from one-photo?. amxhilation! with the predicticns of 

parton models and of asymptotically free field theories. Using dispersion 

relations to connec. _ + “he annihilation and space-like regions, we discuss 

the implications in the space-like region of a constart ete- annihilation 

cross section. In particular, we show that a flat cross section between 

t = 25 and t = 81 (G&c)’ wouid provide strong evidence against a pre- 

cociously asymptotic color triplet model’fcr hadrcra. We then turr, to a 

consideration of the apparent discrepancy between observed and calculated 
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muonic atom X-ray transition energies. Specifically, we analyze the 

hypothesis of attributing this discrepancy to a deviation of the asymptotic 

electronic vacuum polarization from its expected value, a possibility which 

is compatible with all current high-precision tests of quantum electrody- 

namics. Under the additional technical assumption that the postulated 

discrepancy in the eiectronic vacuum polarization spectral function increases 

monotonicaliy with t I the hypothesis predicts a decrease in the expected 

value of the muon magnetic moment anomaly a = $ gy - 2) of at least ( 
P 

-7 
-0.96 .lO , whish should be detectable in the next round of g 

P 
- 2 experi- 

ments and which Is substantially larger than likely uncertainties in the 

hadronic contribution to a 
tJ’ 

By contrast, postulating a weakly coupled 

scalar boson + to explain the muonic atom discrepancy would imply a 

’ (very small, increase in the expected value of a . 
P 

Both the vacuum polari- 

zation and scalar boson hypotheses (for M+) 1 MeV) predict a reduction of 

order 0.027 eV ic the 2pl - 2s, transition energy in [ 
4 

He, p]+, an effect 
z 2 

which may be observable. 

I. Introduction 

A number of recent experiments have brought aspects of vacuum 

polarization phenomena to the fore. Most prominent are the measurements 

by the CEA and SLAC-LBL groups of an unexpectedly large cross section 

for e+e- - hadrons, 
1 

which gives the absorptive part of the hadronic vacuum 

polarization. In another area of physics, measurements of muonic atom 

X-ray transition energies, undertaken to probe the asymptotic form of the 



-3- 

electronic vacuum polarization, appear to show a persistent deviation from 

2 
theoretical expectations. Forthcoming high-precision measurements of the 

muon magnetic moment anomaly g - 2 will provide an even more sensitive 
P 

probe of the asymptotic electronic vacuum polarization, and of the hadronic 

vacuum polarization as well. We present in this paper simple phenomeno- 

logical arguments which bear on the interpretation of both the annihilation 

and the muonic experiments. Although fundamentally different physical 

issues are at stake in the two classes of experiments, common elements of 

formalism make it natural to consider them together. In Section 2 we use 

dispersion relations to determine what the time-like region e’e- annihila- 

tion data say about the possibility of precocious asymptotic scaling in the 

space-like region of the hadronic vacuum polarization (assuting that the 

observed data do indeed result from one-photon annihilation). In Section 3 

we analyze the muonic experiments, with the aim of distinguishing between 

the possibilities that the muonic atom X-ray discrepancies may arise from 

a discrepancy in the asymptotic electronic vacuum polarization, or from 

the existence of a weakly coupled light scalar boson. Some technical 

details are given in the Appendices. 

2. Electron Positron Annihilation and Precocious Space-like Scaling. 

The experimental data for electron positron annihilation into hadrons 

are conveniently expressed in terms of the ratio R(t), defined as 

t - 
R(t) = 

r(e e - hadrons; t) 
t - 

u(e e - p+p-;t) ’ 
(1) 
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t - 
r(e e -pfp-;t) = (ltyJi) (lqy + 

4na2 
+ 

87.lo-33 an2 cz -= 
3t 

t [in (CieV/c)‘] 
(2) 

and with t the virtual photon four-momentum squared. In Fig. 1 we have 

1 
plotted (versus E = tZ ) a smooth interpolation through all available experi- 

mental data for R in the continuum region (excluding the p, w and + vector 

meson contributions). The CEA and SLAC-LBL data points are indicated,1 

while the portion of the curve below t = 2. 5 is taken from the “eyeball” 

fit given by Silvestrini.3 When replotted versus t, the data for R(t) rise 

approximately linearly, indicating a roughly constant hadronic annihilation 

cross section of 21.10 
-33 

crn2. Assuming that single photon annihilation is 

indeed being measured, this behavior strongly contradicts the asymptotic 

behavior expected on the basis of parton or of asymptotically free field theory 

models of the hadrons, which predict 

R -c. t-m (3) 

with the constants C tabulated in Table I. However, it can always be 

argued that while precocious asymptotic behavior is expected from the SLAC 

scaling results in the space-like region, the annihilation reaction involves 

the time-like region, in which asymptotic predictions may be approached 

much more slowly. This objection naturally raises the question of determin- 

ing what the annihilation data tell us about behavior in the spare-like region. 
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To answer this question we consider the renormalized hadronic 

vacuum polarization tensor (t = q2) 

nW’ ~‘v (9’ = (qpq, - tgJ n(H+t’, (4) 

which obeys the dispersion relation 

1. Im II 

dH’(t) cc t j- + lT 

(H’ (u) 

4mt 
u-t 

(5) 

and which is related to the electron-positron annihilation cross section 

into hadrons by 

1 
LT(,‘,- - hadrons; u) = - 1x1 II (H) (u) X (known constants). 

u 
(6) 

Rather than using Eq. (5) directly, we consider its first derivative 

(7) 

which on substituting Eq. (6) and using Eqs. (1) and (2) can be rewritten as 

% IIH(t) = s” du 
R(u) 

4m2 (u - tJ2 
X (known constants i. 

ll 

(8) 

-Restricting ourselves to the space-like region t = -6, s > 0 and resealing 

to remove the constant factors, we obtain from Eq. (8) our basic relation 

d 
=t 

IICH’ (t’ X (known constants). (9) 
t= -6 
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The quantity T(-s) has two desirable properties which make it suitable 

for studying the implications of the annihilation reaction for space-like- 

region behavior: 

(i) The integrand in Eq. (9) is positive definite, and so omitting the 

high energy tail of the integral makes an error of known sign. 

Specifically, if experimental data on R are available only up to 

a maximum momer.tum transfer squared tC , and if we define 

T obs(-si by 

tC 
T obs(-s’ = s, 

du R(u) 

4m (st”‘2 
ll 

then we have 

(10’ 

(11’ T obs(-s’ - < V-s’ , o<s<m. 

(ii) It is the quantity T(-s) for which parton models and asymptotically 

free field theories most directly make predictionsq the asymptotic 

predictions for R are always obtained from the prediction for T(-s) 

by a dispersion relation argument, which is bypassed if we use T(-s) 

as the primary phenomenological object. In a model in which R 

asymptotically approaches C, we have 

TtX(-S) - 5 , s - m . (12) 

In asymptotically free field theories, the leading logarithmic correc- 

tion to Eq. (12) is also determined. Specifically, in the SU(3)@ SU(3)’ 

color triplet model of the hadrons, one has 
4 
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Tth(-6’ - t ..~ 1 9 (13) 

with s 
0 

an arbitrary momentum scale which, in the numerical work, we 

will take as 2 (&V/c)‘. 

Before proceeding to numerical applications, let us briefly discuss 

the question of subtractions. Clearly, if the one photon annihilation cross 

section were to remain constant as t - m, we would have R(u) cc U, U-* 

and the integral in Eq. (9) would need an additional subtraction to be well- 

defined. 5 However, such behavior of R would in itself contradict Eq. (3) 

for all values of C, and hence would rule out all versions of the parton 

model or of asymptotically free field theories. On the other hand, if Eq. (3) 

is true for any finite C then the integral in Eq. (9) converges as it stands, 

and provides a suitable medium for comparing the annihilation data with 

theoretical expectations in the space-like region. Note that a constant 

subtraction term in Eq. (5), which would be present if we renormalize at 

a point other than t = 0, would not contribute to the t-derivative in Eq. (7); 

hence the renormalization prescription is not a possible source of ambiguity. 

We turn now to the numerical results. In Fig. 2 we plot Tobs(-6) 

,*” 
m units where unity = (1 Ge~/c)~] , as obtained from all experimental data 

= 25(GeV/c)' 
6 

upto t 
C 

according to the formula 
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T obs(-~) = Tw+’ (-6) t Tp(-s) t Tcont(‘+-s) , 

T 
MJ(V-A-’ 

CY (s t M;12 

4m2 312 

Tp(-s) z4i2 (,yt12 i (1 - -+ /~T(t)12 ’ 

n 

(14) 

Tco*t(l)(-s)= y’ dt 
0.39 b+t’2 

R(t) . 

The vector meson parameters appearing in Eq. (14) are given in Appendix A, 

while R(t) is the continuum contribution to R graphed in Fig. 1. In Fig. 3 

we plot a family of curves, obtained by assuming that for 25 <_ t (t 
C 

the 

annihilation cross section m(e’e- - hadrons; t) remains constant at 

21.10 crn2. 
-33 

That is, we take 

T 
obs(-” 

= Tw++ (ms) +. Tp(-s) t Tcont(“(-6) + Tcone(2)(-s) , 

tC 
Tcont(2’(-s) = s dt 

(6 t t’2 
5. 94 

25 

(15) 

= 0.24 [in(I:z) - s ,stt~~s~:5J]- 

Rather than plotting Tobs(-S) we have plotted the comparison ratio 

T obs(-~) I Tth(-6) , with Tth (-s) the color triplet prediction of Eq. (13). 

The tC = 25 curve is just the curve of Fig. 2 divided by Eq. (13); since 

this curve lies below 1 the existing annihilation data do not yet challenge 

the color triplet model in the space-like region. [However, since the 
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tC 
= 25 curve lies well above l/3, the existing data already definitively rule 

out a precociously asymptotic simple quark triplet model.] Evidently, the 

curves in Fig. 3 rise rapidly with tC, and show that if the annihilation cross 

section should remain constant at roughly 21.10 
-33 2 

cm m the region 

25 < t < 81 which will be accessible at SPEAR II, a precociously asymptotic - - 

color triplet model would be ruled out in the space-like region. 

To explore the consequences of an annihilation cross section which 

remains flat up to large t 
C’ 

we ignore the vector meson contributions to 

T 
obs 

and approximate T 
cant(1) 

(-6) by taking R(t) c 0, t < 2; R(t) = 0. 24t, 

2 < t < 25, - - giving the simple analytic expression 

T obs(-S’ = 
tC dt 

J 2 0. 24t 

= 0.24 I’n ;;)+:’ s ,s::c,;;;t2,] 

- 0.24 [In(>) - -$q 1. 

Hence, 

T 
obs(-” 

1 = WC’ f(z) , 
- 
S 

NC’ = 0. 24 tC, 

i 

f(z) = 
1 

* Pn(ltz) - - 
1tz ’ 

z = tc/s . 

(16’ 

(17) 

A simple maximization shows that f(z) attains a maximum of 0. 22 at 
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-1 
‘M = 

sM/tC = 0. 46, and falls to half maximum at 
-1 

z = 053 L s L/tC= 0. 

-1 
and z 

-1 
= 

U 
VC = 3. 22. That is, Tobs(-S)/S reaches a maximum 

[T obs(-Sj /,-l]MAX = 0. 22 x 0. 24tC = 0. 053 tC w=) 

_~ 

and lies above half this value in the wide range 

0.053CC ( s _5. 3.22tc . (Mb) 

To give a concrete ill,ustration, if u(e 
+ - 

e -hadrocs; tj should remain 

constapt up CL- the maximum t C 
of 900 obtainable in a 15 GeV/c on 15 GeV/c 

storage ring, the maximum of T obs(-Sl /s-l would be 0. 053 X 900 = 481 

This would exclude by a factor of two parton or asymptotically free models 

with C < 24, thus covering just about every model which has been seriously - 

proposed. 

3. The p-Mesic Atom X-ray Discrepancy and g - 2. 
P 

Recent studies of the transition energies between large circular orbits 

in p-mesic atoms have shown persistent discrepancies between theory and 

experiment. Because the muonic orbits in question lie well outside the nucleus 

and well inside the innermost K-shell electrons, one believes that nuclear size 

and electron screening corrections can be reliably estimated. In particular, 

the disputed nuciear size corrections to the vacuum polarization potential have 

been reevaluated recently by three independent groups,’ in good agreement 

with one another. A survey of all known theoretical corrections has been 

given by Watson and Sundarasen2(see also Rafelski, et al. 8, , with the conclusion 



that all important effects within the standard electrodynamic theory have 

been correctly taken into account. On the experimental side, independent 

measurements by the groups of Dixit, Anderson, et al. 
9 

and of Walter, 

Vuilleumier, et al. 
10 

agree on X-ray transition energies which deviate by 

two standard deviations from the theoretical predictions, as summarized 

in Table II. While it may still turn out that systematic experimental errors 

or errors or omissions in the theoretical calculations account for the dis- 

crepancy, we will assume this not to be the case. Rather, we will treat the 

discrepancy as a real effect, to be explained by modifications in the conven- 

tional theory, 

The unique aspect of the muonic atom transition energies is that, 

because the muonic orbits lie well inside the electron Compton wavelength, 

they receive a large contribution from the electronic vacuum polarization 

potential and (unlike the more accurate Lamb shift experiments) they probe 

the asymptotic structure of this potential. Motivated by this observation, 

our principal focus will be to explore the possibility that the observed 

X-ray energy discrepancy arises from a nonperturbative deviation of the 

electronic vacuum polarization from its expected value. Such an effect is 

qualitatively expected (but with unknown quantitative form) if recent specu- 

lations that the fine structure constant (Y is electrodynamically determined 

prove to be correct.” We will also briefly consider an alternative explana- 

tion which has been advanced to explain the X-ray discrepancy, the possible 

existence of a weakly coupled light scalar boson. 
I‘ 
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To calculate the effects of a possible discrepancy in the electronic 

vacuum polarization we start from the Uehling potential written in spectral 

form, : 

V(r) = -2 ” ,i ; F (+) Pe[tl I 

PeLtI = (1 + 3) (l _ I$,’ . 

-(19) 

If we now assume that the spectral function pe[t] is changed by nonpertur- 

bative effects13 to p,[t] t 6P[t], then V is replaced by V t 6 V, with 

2 y $ (s$) &p[t] . 6 V(r) = -z 3* 

4m2 

(20) 

e 

This potential contributes to p-mesic atom energies through the diagram 

shown in Fig. 4(a). Since Eq. (20) is a small perturbation and since the 

muon orbits of interest are appreciably larger in radius than the muon 

Compton wavelength, in evaluating matrix elements of 6V(r) we make 

the approximation of using non-relativistic hydrogenic muon wave functions. 

[The same approximation applied to Eq. (19) yields the Uehling energy shifts 

for all of the levels in Table II to an accuracy of about 5%. ] l4 Thus we take 

Rn n-l(=) = {(-$)’ A}’ e - ” ($-r-l , (2.1) 

giving for the change in transition energy produced by 6V(=), 
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6E = 6E - 6E 
Y n n-l 

r’dr [R n n-1(r)2 - R n-l n-2(=j2l 6V(=) . (22) 

Substituting Eq. (20) into Eq. (22), evaluating the r-integral, and using 

a21(3nao) = 4.35 eV , we find 

6E E 6Ey 
Y 4.35 ev zy& = 9 f,‘tl 6p[t1 ’ - $3 6:: 

f,bl = kf? - 3-l { ,,f,,2 
- -$ [lt (2,’ 

!A 

p( LJL$=-‘) 
P 

-2n 
n 

z, 1) ’ 

(23) 

fyi01 = 1 . 

Finally, for convenience in doing the numerical work we make the change of 

variable 

t q 4m2 ew , 
e (24) 

giving the formulas 

6E 
Y 

dw fy(w) 6,(w) , 

fy (w) = fy [4mZ eW] , 6,(w) = 6p [4inz e”]. 

(25) 

Evidently, in the non-relativistic approximation which we are 

using, the shifts in the transition energy 63 
Y 

are j-independent, and 

hence the two transitions for each n,P measure the same weighted integral 
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of 6,(w). Thus, for purposes of comparison with Eq. (25) we average 

the two discrepancy values for each n,!, as shown in the fourth column of 

Table II. 
15 

The “reduced discrepancies” 6E 
Y 

introduced in Eq. (23) are 

tabulated in the final column of Table II. 

Before proceeding further with our discussion of the p-mesic X:ray 

discrepancy, let us turn to consider another electrodynamic measurement 

which is sensitive to the asymptotic electronic vacuum polarization, the 

muon g 
P 

- 2 experiment. Here the conjectured deviation in the electronic 

vacuum polarization spectral function contributes through the diagram of 

Fig. 4(b). Introducing the standard definition 

a 
P 

= 2g, - 2) (26) 

and using well-known formulas 
16 

for the photon spectral-function contribu- 

tion to a, we find that changing the electron vacuum polarization spectral 

function induces a g 
P 

- 2 discrepancy 

ba = 
P 

1 

f,[t] = 2 s dx 
x2 (1-x) 

I fa[Ol = 1 . 

0 x2 t (l-x) t/In2 
w 

(27) 

2 2 
Using LY /(3rr ) = 1.80 -10 

-6 
and making the change of variable of Eq. (24)) 

we get the convenient formula 
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ba = 1.80 *lo 
-6 

II 
dw f=(W) 6,(w) > 

(28) 

ia = fa[4m: e”] . 

The result of carrying out the integrations in the expression for f=(t) is 

given in Appendix B. 

Let us now return to our analysis of the p-mesic X-ray discrepancy. 

The kernels fy (w) for four representative transitions are plotted in Fig. 5. 

Our numerical evaluation shows that the six transitions listed in Table III 

have weight functions f 
Y 

which are nearly identical (their spread around 

curve b in Fig. 5 is less than one third of the spacing between curve b 

and curve a) ; averaging the weight functions for these transitions gives the 

function T 
Y 

plotted in Fig. 6. Substituting the average of the reduced dis- 

crepancies for these six transitions into Eq. (25), we find 

(54.5 + 10) * 1o-3 q Average of six(- 6Ev ) 

: y dw $ (w) &P(W) o 

0 

(29) 

indicating that the sign of the discrepancy corresponds to a reduction in the 

electronic vacuum polarization spectral function from its usual value of 

Eq. (19). Referring back to Fig. 6, we note that the function f 
a 

is always 

greater than i 
Y’ 

Hence if we assume that 6p(w) is always of negative 

- 
sign in the region where f and f 

a Y 
are non-zero [as might reasonably 

be expected if we are just entering a new region of physics where the 

discrepancy 6p(w) is turning on] we learn that 



-16- 

dw f,(w) 6~ (w) 5 - (54. 5 + 10) - 1o-3 . (30) 

0 

Comparing Eq. (30) with Eq. (28) we then get an inequality for the g - 2 
P 

discrepancy, 

: ba )I- < -1. 80.10 -6 + (54.5 2 10) -3 * 10 .= - (0.49 - + 0. 02) .10-7, 

bP (04 
6a 

-$ ( -42+8ppm. (31) 
P 

A stronger prediction follows if, in addition to our assumption on the sign 

of bp > we assume that the magnitude of bp Increases monotonically 

with t [again as might reasonably be expected for an effect just turning on]. 

Then defining 

fp = 0, w < 0 , (32) 

we find that we can represent fa(w) as a superposition of displaced 

curves r 
Y ’ 

10. 2 
fa(W) = 1.016 ‘v(w) t J dw’ c(w’) fY (w-w’) , 

0 

with the positive weight function c plotted in Fig. 6. Multiplying by 

&P(W) and integrating we get 

.r” 

co 

dw fa(w) 6p(w) = 1. 016 s dwTY (w) 6p(w) 

0 0 
10. 2 co 

+ .f dw’ c(w’) j,. d wfy(w4d) 6p(w) . 

0 0 

(33) 

(34) 
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But using Eq. (32) and the assumed monotonicity of 6p, we get 

0. 

f dw TV (w-w’) bp (w) dw ty (w) bp(w t w”) 

d+W a,(w) , 

(35) 

and so we learn 

J) 10. 2 

s dw f=(w) 6p(w) ( [l. 016 t s dw’ c(w’) ] 

0 

/=dw +v) bp(w) 

0 0 

= 2. 00 Jrn 

(36) 

0 

dwfy(w) a,(w) . 

Thus adding the assumption of monotonicity doubles the prediction of Eq. (30), 

giving 

bP 2 0 6a 2 -to. 98 + 0.18) l lo-’ 

4 

p 

I&PI ? 
2E 

a ( -84 + 16 ppm . 

P 

(37) 

Eq. (37) is the principal result of our analysis. 

Two remarks about Eq. (37) are in order. First, the discrepancy 

1” a 
)I 

predicted in Eq. (37) is compatible, within errore, with the present 

‘agreement of experiment with the conventional electrodynamic prediction 

for a 
17 

P' 

ap (expt ) - aP(conventional &CD) = (2. 5 + 3.1) - lo-‘. (37) 

However, it should be readily observable in the next g 
P 

- 2 experiment, 

where it is anticipatedl’l that the current experimental error of L3.1.10 
-7 
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(= 2 270 ppm in 6= /a ) will be reduced by a factor of 20. 
II II 

Second, the 

predicted effect is substantially larger than the likely remaining un- 

certain contributions to a 
PL’ 

Specifically, these are: 

(i) The 8th order electrodynamic contribution to a 
P” 

which has been 

variously estimated 
18 -9 

~1~6-7.10 , with an uncertainty of perhaps a _ 

few parts in 10 
-9 

. 

(ii) The uncertainty in the hadronic contribution to a 
P’ 

Including the 

t - 
p, w and 4 resonances and integrating the e e annihilation continuum 

up to tC = 25 gives a known hadronic contribution of 71 * 10 -9 
with an 

estimated uncertainty of t 7 + 10 - -9 (S ee Appendix B) . The unknown 

contribution of the e’e- annihilation continuum beyond tC = 25 will of 

course depend on the behavior of R(t) in that region. To get a crude 

estimate, let us make the (hopefully extreme) assumption that R(t) 

rises linearly up to t = (460)2, where the one photon annihilation cross 

section violates the J= 1 unitarity limit, 
19 

and cut off the integral at this 

point. This procedure suggests ZI bound 0x1 the high-energy hadronic 

contribution to a of 15.10 ain 
P 

-9. (Ag see Appendix B). 

(iii) Unified gauge theories of the weak and electromagnetic interactions 

which do not have charged heavy leptons typically give contributions 
LO to 

a 
-9 

P 
in the range from a few to ten parts in 10 . Specifically. the Weinberg- 

Salam SU(2) @ U(1) model predicts a contribution to a 
-9 

v 
of less than 9. 10 . 

Thus, from (i), (ii) and (iii) we conclude that the sum of unknown contribu- 

tions to a is likely to be no bigger than - 35 * 10 
-9 

v 
, and hence should not 

mask the effect predicted in Eq. (37). 
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Although we have shown that the inequality of Eq. (37) does not 

contradict the current g - 2 experiment, we must still verify that it is 
P 

possible to find specific functional forms bp(w) which fit the p-mesic 

X-ray discrepancy without seriously violating any of the conventional 

tests of QED, including the very high precision ge- 2 and Lamb shift 

21 
experiments. A postulated vacuum polarization discrepancy contri- 

butes to ge- 2 through the diagram of Fig. 4 (b), giving a formula identical 

to Eq. (27) apart from the replacement of m in I,[t] by m . The small- 
)I e 

ness of m 
e 

then permits use of the lax-se-t asymptotic expression if 2 
a 

m;/(3t), giving the simple expression 

iia ^ 0. 60 * lO-6 e 7 

4mZ 

$ $ &p[t] 

e 

-6 
= 0.15’ 10 P dw e-W bp(w) . 

0 

(39) 

Comparing Eq. (39) with the current difference between experiment and 

theory for 
22 

a 
e’ 

ae(experiment) - ae(conventional QED) :~ (5. 6 + 4. 4) . 10 
-9 

(40) 

we ,g:et the restriction 

dw e-w 6p(w) = (372 29) . lo-3 . 

Next we consider the Lamb shift, which receives contributions from a 

(41) 

vacuum polarization discrepancy via the diagram of Fig. 4(a). Working 
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again in the nonrelativistic hydrogenic approximation, we find for the 

change in the 2s - 2p Lamb transition energy 

6X= 6EZs-2 p = Jar2dr (R,,(rJ2 - R&l’] 6V(r) 

-(42) 

Since tt 
aO 

z-1 = (tt,me) (y-l z-1 >> 1, we can neglect the 1 in the denomina- 

tor of Eq. (38), giving 

4 5 
Zam 

6X = - 
67 

(43) 

which evidently measures the same integral over 6p as does ce- 2. It 

is easy to see that the formula for the ns- np Lamb transition is o!,tained 

by multiplying Eq. (43) by (Z/n)‘. Hence, using the fact that 

5 
a m 

e 
30n 

= 27.1 MHz , (44) 

we get the relation 

a 

dw e -& 6,(w) = 
conventional QED) - &nZ(expt) 1 

Z4 
145) 

271 MHz 

In Table IV we have tabulated the right hand side of Eq. (45) for a series 

of measured Lamb transitions. 
23 

Taking a weighted average of the four 

best determinations [the two measurements for H(n=2) and the measure- 

ments for Din= 2) and He+(n = 2) ] we find 
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dw e-w 6,(w) = (0. 29 + 1.0) . 1O-3 , 

0 

(46) 

evidently a much tighter restriction than ie obtained from ge- 2. 

Our procedure for searching for satisfactory functional forma 6p 

is now as follows. Let 

6 Ey (i) , u(i) = experimental reduced discrepancies and standard 

deviations from Table LX, i= 1 I . . . . 12, 

F(i) = theoretical fit to reduced discrepancicr. 

i= 1, . . . , 12; (47) 

ba 
th 

P 
= predicted change in a , 

rnp 
bIth = predicted value of I dw emw 6,(w) . 

0 

We form two chi-squares , 

-1 i=l 1 U(i) J 

-? / < .th -_ .,-$ 

(48) 

b a th - 2.6’10 

2 

2 s 
Xl , 

i=l 

x: = x;: ~~;~~;;;!o-7~ + (bI;e*3;;m;o-y (4*) 

\ / \ / 

+ (llfhlOO: 2;o;;o-7 ; 

the first tests the fit to the p-mesic X-ray discrepancies alone, while the 

second tests the combined fit to the X-ray data and the g 
P 

- 2, g,- 2 and 

Lamb shift experiments. For each assumed functional form of bp, we 

treat the overall normalization as a free parameter and adjust it to 
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minimize either y 
2 2 
1 or x2 ’ corresponding respectively to 12 - 1 = 11 or 

15 - 1 = 14 degrees of freedom. A sampling of results of this procedure 

is shown in Tables V and VI. We conclude from these fits that: 
24 

(i) Functional forms giving good X 
2 
2 fits can be found. When these same 

functional forms are fit by the X,2 procedure the coefficients change by only 

about 25%, which is satisfactory. 

(ii) The forms which give good X 2’ fits are all nearly step-function-like 

in character, 
2 

with a turn-on at w 2 2 - 3 [i.e., at t “(30 - 80) m ] The 
e 

smallness below w - 2 is required by the Lamb shift data, while the slou 

growth above turn-on is needed in order not to violate the current limits on 

deviations in gP- 2. 

(iii) All of the good fits satisfy bp 5 -0. 03 for large \v. This is a general 

feature for any monotonic form bp which is small in the Lamb-shift region 

w < 2, since (using the fact that 7 -- 0 for w >, 9) we have - Y 

-54. 5 . 10 
-3 m 

= f dw ?+ Ip(wi 

0 

9 
1 bp(9) J- dw iybv) 

2 

(49) 

L 1.6 &p(9) , 

that is 

-0.034 ? (lp(9) . (50) 

Possible implications of Eq. (50) for QED tests involving time-like photon 

vertices will be disrussed elsewhere. 
25 
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One additional place where a vacuum polarization discrepancy 

should produce interesting effects is in the Lamb shift in muonic helium. 
26 

Applying Eq. (42) to this system (and noting that the 2p level here lies 

above the 2s level) we find 

6be([4~e,k,l+) = 6E 
aO" 

= - 2p-2s 6~ 

2 me 
3rr” f ;dw iHe 6p (~1 , 

tJ. 0 

w 

fHe(W) = 
e 

1t 
-2 w/2 > 4 ’ iHe = 0. 13 I 

-e 
rn(Y 

P 

(51) 

Numerical evaluation of Eq. (51) shows that fHe(w) /O. 13 lies within 20% 

of 7 (w) in the range 0 < w < 6 where neither is vanishingly small. 
Y - - 

Hence independent of the detailed form of 6p : we find the prediction 

2 

b-if ([4He,~l+) - en (Y e x (-54.5.1G-3)x 0.13 
m 

P 

a -0.027 eV, 

(52) 

which may be an observable effect. 

At this point let us conclude our examination of vacuum polarization 

effects and turn to an alternative explanation for the p-mesis X-ray dis- 

crepancy, the possible existence 
12 

of a weakly coupled scalar, isoscalar 

boson +. Interest in this explanation has been stimulated by the fact that 

such particles (with undetermined mass) are called for in unified gauge 
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theories of the weak and electromagne,;ic interactions. Letting g 
4tG 

and g 
+Nfi 

denote the $-muon and the 4 -nucleon scalar couplings, and 

M4 
the + mass, the potential produced by +-exchange between a muon 

and a nucleus of nucleon number A [Fig. 4(c) ] is the simple Yukawa 

form 
27 

-M r 

V4(rl = - 
g+ _ r,gbNNAe ’ 

4rr r . 
(53) 

Since a repulsive potential is required to remove the X-ray discrepancy. 

fitting Eq. (53i tc the X-ray data will necessarily give g g < 0. 
4PF @NIT 

As shown in Appendm C, this sign for the produ-: of couplings is not possible 

in the simplest forms of gauge models, in which there is only one physical 

scalar meson and in which the chiral SU(3) @SU(3) symmetry breaking 

term in the strong interaction Lagrangian transforms as pure (3,;) @(T, 3). 

Nonetheless, let us proceed in a purely phenomenological fashion and make 

a quantitative fit of Eq. (53) to the X-ray data. Replacing 6V(r) in Eq. (22) 

by V+(r), we find 

63 
6E’ q 

Y 
= 2. 82 * lo4 g 

+‘Pp g+NE ’ 
f [$I 3 (54) 

with 6E’ 
Y 

the “reduced discrepancy” appropriate to a potential which couples 

to A rather than to Z. The experimentally measured values of 6E’ are 
Y 

tabulated in Table VII. Since in all gauge models the +-electron coupling is 

expected to be of order (melmPj g 
4p; : 

the 4 will have a negligible effect 

on the electron ge- 2 and Lamb shift measurements. So in fitting Eq. (54) 
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to the data we minimize K I2 defined in Eq. (4E), giving the results shown 

in Table VIII, in good agreement with the results quoted by Sundaresan 

and Watson. 
28 

Since a light scalar boson, as well as a vacuum polarization anomaly, 

can satisfactorily fit the X-ray discrepancy, let us examine ways of distin- 

guishing between the two possible explanations. First we consider the 

muonic helium Lamb shift. Since f He(v’) ” fy(w) for O_< w2 6, a scalar 

boson in the mass range from 1 to 22 MeV predicts an effect within about 

20% of -0. 027 eV,while for scalar bosons lighter than 1 MeV (corresponding 

to w < 0). the muonic helium Lamb shift decreases as 

-0. 178 M 
2 

6-f? ([ 4He, pJ+) - + 

(l+ 0. 65 M,J4 
ev * (55) 

Hence the muonic helium experiment could inly dist%guish between a very 

light scalar boson 
29 

and the jcirLi possibilities of a heavier scalar boson or 

a vacuum polarization effect. On the ether hand, the muonic vertex co;- 

rection involving scalar meson excharzge makes a small pcsitive 
20 

contri- 

bution to a 
u’ 

as distinct from the sizeable negative contrtbution predicted 

by a vacuum polarization anomaly. So the next generation of gP- 2 experi- 

ments should unambiguously distinguish betxeen the vacuum polarization 

i 
and scalar meson explanations for the p-mesic atom X-ray discrepancy. 
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Appendix A: Vector Meson Parameters 

For the w and + vector meson parameters we take 
30 

M = 784 MeV, 
w 

r(w - e+e-) = 0.76keV, 

(A. 1) 
M+ = 1019 MeV, I-($ - e’e-) = 1.36keV . 

For Frr(t) we use the Gounaris-Sakurai formula 31 with an w - 2~r interference 

term,30 

M’(i+hr/~) 
Fn(t) = P P 

t Ae 
ia Ml,? 

Mz-ttH(t) -iM r k 
( 1 

3 

P P k 
P 

Mp/ & 
Mi-t-i, JY 

w w 

r M2 
H(t) = - 

k3 
k’[h(t) - h(M;)] t k; , 

P 

h(t) = 2 -& log 
=G 

h’(M;)= 1 + 
2rrM2 

P 
P P 

21 
k = (it-m)‘, k 

2+ 
Ti P 

= (+M;-mT) , 

I 

6 B’(~-~~) r 
w 1 

A = B2(a-2n) , 

(A. 2) 
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with the following values for the parameters, 30 

6 = 0.6, Q = 860 ) 

.? 
M = 775 MeV, r, = 9.2 MeV , P 

L 
r = 149 MeV, 

P 
B’(w-eee) = 0.906'10-2, 

(-4.3) 

I 
m = 140 MeV, B’(w- 2ii) = 0.19. 

-; 
77 

As discussed in Appendix B, approximating the small-t region in this 

fashion as a sum of w, $I and p contributions should yield the small-t 

contribution to T obs(-s) (which 1s only a small fraction of the total for 

large -s) to an accuracy of about 15%. 
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Appendix B: 

Formuias for f,Lt] and the Hadror,ic Contribution toA - 2 
+ ,- 

The f-n&ion f,[:] appearing in Eq. (27) has been evaluated by 

Brodsky and de Rafae;~, 
32 

who find 

fa[t] 3 2K(t) , 

022 2 4m2 T = t/4m2 , 
P P 

K(t) = $ _ 4T _ 4T(l.- 27) PIl(4T) 

K(t) = + x2(2 -x2) + (1+x)2(l+x2) * 
Pn(ltx) -xttx2 

2 
+1+x 2 

-x lnx. 
1-X 

x 

(B. lj 

Correspor.dixg to the division of T obs(-~) into four pieces in Eq. (IS)= we 

write the hadrorzic coztrihuticn to a as 
II 

a = 
P 

“J 

41T3 
dt r(e+e- - hadr0r.s; t) K(t) 

4m2 
Ti (B. 2) 

= aW+.cb t a P ta cant(1) + acont(2) 
I* i-L P li 

Working in the sane narrow resonant e approximaticn as ir the text we find 

for a 
LJ+m 

the expr-ssior. 
6 

CI 

a 
wt$ 
p = c i. K(M;) 

r(V- e+e-) 
M 

v=c”, 4 V 
(B. 3: 

while a P 
)I 

is given by the integrai 
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aL :_ -CT- jm 

12n2 
4rn2 

$ ( 1 - $r’2 /FT(t)\2K(tj ~ 

TI 

(B. 4) 

Subst:ircLkg The parameters frcm Appendix A and evaluating Eq. (B. 3) and 

(B. 4) rzzericaliy g!.ves 

lo+0 a 
P : 

9. : - 10-4 ? a; = 45 - 10-9 , 

(B. 5) 
tct..srLali-t 

a 
I-i 

z 54 . 10-g. 

A mcrt tiabcrat.e evaluation of the small-t contribution has been given by 

Bra&r: Etrn 2nd Greco, 33 
who s’xz the contributions of the various im- 

poxant hadrcnic sts..::t;s directly from Eq. (B. Zj, giving 

“ot. srlall-t 
a 

ii 
= (6; 2 7) . IO-~ , (B. 6) 

indicating that c,ur met;hod of treating the small-t. region is good to about 

15%. To eva.~;aie a,b;oni(li and aCont(2j 
P 

we approximate K(t) by its 

asymptccic f0r.x 

2 
m 

K(t) = f $ t-m (B. 7) 

giving [ ir; xcits where unity = (1 GeV/cj’] 

25 

a 
cont(lj dt R(t) 
k 

= 6.7.10-9 j 
2 r 

0.39 t 

t 
cont( 2) C 

a = 6. 7 * lO-9 j- 
dt R(t) 

w 2 . 
25 

t 

(B. 8) 

Evaluating a 
coTIt 

P 
numerically using the data plotted in Fig. 1 gives 

acont(l) 
u. 

-= 9.62 2 , (B. 9) 
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with the error a rough guess. Thus the total known hadronic contribution 

toa 1s 
LI 

(61 + 7) . 1O-9 t (9. 6 _f. 2) . 1O-9 = (712 7) * 10-9. (B. 10) 

Estimating the unmeasured contribution by assuming a linearly rising R(t) 

upto t 
C 

= (2. 23012, we get 

cant(2) 2 
a = 6.7 * 1O-9 X 0. 24 Pn (4;;) = II 15 . 1O-9 , (B. 11) 

as stated in the text. 



-32- 

Appendix C: 

Sign of the Scalar Meson Exchange Potential in Simple Gauze Theories. 

Consider a gauge theory of the weak and electromagnetic interactions 

in which only one scalar field $J develops a vacuum expectation, $-+t ? , 

as a result of spontaneous symmetry breaking. Since i, is the sourceof 

the lepton masses, the interaction Hamiltonian (: - the interaction Lagrangian) 

coupling 6 Lo the muons is 
34 

-34 =+&+ 

@b-G 
P P v . cc. 1) 

Since in the hadronic sector X is the origin of chiral SU(3) @ SU(3) symmetry 

breaking, the interaction Hamiltonian coupling I+ to the hadrons is 34 

34 
I$ hadron 

q * 6% 

x chiral breaking. (C. 2) 

IHence the sign of g 
g - is the same as the sign of 

+tF 

<N’6%hiral hreakinglN”NNNow if &chirai breaking transforms under 

SLJj3) BSsU(3) as (3,?) @ (5, 3). then usins, _) the notation of Gell-Mann. 

Oakes, and Kenner 
35 

we readily find that 

2 2 
- 

,rL 
mK mu 

c - x 2 
t ;m 

2 -1. 25 , 

mK TI 

<Niu8 IN) : baryon mass splittiny parameter = 170 MeV , 

cc. 31 

cr 
nNN 

= $ (d2tc) <Nlz/2u0 t u8 IN>. 
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That is, we have 

<N(d 
choral breaking 

IN> = 12.9 cnNN- 333 MeV . (C. 41 

Recent determinations of the sigma term rnNN suggest a value in the 

range 45 - 85 Me’!, 36 making < Nj Sac 
chlral breaking 

IN > positive and 

giving an attractive scalar meson exchange force. A value of rrNN smaller 

than 25 MeV would be needed to make the scalar meson exchange force re- 

pulsive, as is required to explain the +-mesic X-ray discrepancy. 
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TABLE I. 

Values of C in Different Models 

Model 

Simple quark triplet 

Color quark triplet 

Color quark quartet 

Han-Nambu triplet 

Han-Nambu quartet 

C - 

2/3 

2 

10/3 

4 

6 
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TABLE III. 

Element 

ZE 

47*g 

4gCd 

50Sn 

80Hg 

81 
Tl 

8ZPb 

Transitions with Nearly Identical f 
v 

Transition 

“P - -ii-l 

4 f - 3d 

4f - 3d 

4 f - 3d 

5 
g- 4f 

5 
g- 4f 

5 
g- 4f 

Weighted average of six 

reduced discrepancies 
a 

: 

Reduced Average 
Discrepancy -a?? 

(49.3 + 30) * 1o-3 

(20. 5 + 27) * 1O-3 

(43. 5 + 26) . 1O-3 

(71.8 + 27) - 1O-3 

(55.3 + 26) . 1O-3 

(73.72 21) * 1o-3 

(54.5 + 10) . 1o-3 

a 

We have treated the errors as if they were purely statistical and 
quoted the RMS error for the average. 



System 

H(n= 2) 

H(n= 3) 

H(n= 4) 

D(n= 2) 

He+(n= 2) 

He+(n= 3) 

He+(n= 4) 

Li++(n = 2) 

c5+(n= 2) 
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TABLE IV. 

Lamb Shift Measurements 

.L 

Conventional QED (MHz) 

1057.911 t 0.012 - 

314. 896 + 0. 003 

133.084 t 0.001 - 

1059. 27 1 i 0. 025 

14044.765 + 0.613 

4184.42 t 0.18 - 

1769. 088 t 0. 076 - 

62762 i 9 

(783. 678 + 0. 251) . 1O-3 

Expt (MHz) Right-hand Side of Eq. (41) 

1057.90 t 0. 06 - (0.33 + 1.80) * 1o-3 

1057. 86 t 0. 06 (1.5OL 1.80) - 1o-3 

314. 810 t 0. 052 (8. 57 + 5. 18) - LO-~ 

133. 18 t 0.59 - (-22. 7 + 139) - 1O-3 

1059. 28 t 0. 06 (-0.27 i 1. 92) * IO-3 

14045.4 t 1.2 - (-1.18 + 2.49) . 1O-3 

4183. 17 t 0.54 (7.79 - + 3. 55) . 1o-3 

1769.4 + 1. 2 (-4.602 17. 7) . 10-~ 

62765 t 21 t-1. 1 + 8.3) * 1o-3 - 

(744. 0 + 7) . 1o-3 (9042 159) * 1o-3 
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TABLE VI. 

Results of Step Function Fits 

Functional Form 6p 
2 

x2 - 

-0. 004 0 (w - .o. 5) 38 -0. 23 

-0.014 O(w-1.5) 21 -0.69 

-0.032 O(w-2.5) 14 -I. 3 

-0. 072 O(w - 3. 5) I2 -2. 3 

-0. 16 U(W-4. 51 13 -4. 0 

-0.37 O(w-5.5) 22 -6. 7 

-0. 19 fl(w-6.5, 43 -5. 0 

6.t. (H) MHz= 

0. 08 

0. 10 

0. 09 

0. 07 

0. 06 

0. 05 

0. 02 

a 
See the romn~ent in Ref. 25. 
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TABLE VII. 

Reduced Discrepancies for Scalar Meson Calculation 

Element 

Z 
E 

Transition 

“1 - -lp -1 

Reduced Average 
Discrepancy -a??. ’ 

Y 

2oCa 

22Ti 

26Fe 

3aS' 

47Ag 

4aCd 

5oSn 

56Ba 

SOHg 

8iT1 

8ZPb 

3d- ‘p 

3d- 2 P 

3d - ‘p 

4f - 3d 

4f - 3d 

4f - 3d 

4 
f- 3d 

4f - 3d 

5 
g- 4f 

5 
g- 4f 

5 
g- 4f 

5 4 
g- f 

(37.22 54) * 1o-3 

(11.0+41) * 1o-3 

(35. 1 + 30) * 1o-3 

(15.5 + 37) * 1o-3 

(42.9 & 26) * 1O-3 

(17. 5 + 23) * 1O-3 

(36.62 22) . 1O-3 

(81. 0 _r. 19) - 1O-3 

(2O.Oi 32) . 1O-3 

(57.02 21) ' 1o-3 

(43.92 21) * 1o-3 

(58.52 17) . IO-~ 



Me (MeV) 

0. 5 8. 1 

1 

4 

8 

12 

16 

22 
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TABLE VIII. 

Results of Scalar Meson Fits 

2 
x1 

7.9 

6. 8 

6. 1 

6. 5 

7. 5 

10. 1 

(g 
4JtG gW+ 

) /4n 

-i.3. 1o-7 - 

-1.4. 1o-7 

-2.0 * 1o-7 

-3. 8 * 1O-7 

-6. 9 * IO-~ 

-1.2. 10 -6 

-2.5 . 10 -6 
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FIGURE CAPTIONS 

Fig. 1 “Eyeball” fit to the continuum e’e- annihilation data. The 

p, w, and @ vector meson contributions are not included. 

Fig. 2 The function T 
obs(-” 

as obtained from all experimental data 

upto t = 25 (GeV/c)‘, 
c 

m units where unity = (1 GeV/c)‘. 

Fig. 3 Ratios of T obs(-~) to Tth(-s), with Tth(-s) the color triplet 

prediction of Eq. (13). The tC = 25 curve uses the presently 

known data; the curves for higher t assume a constant 
c 

hadronic annihilation cross section of 21. 10 
-33 cm2 

above 

25 (CeV/c)2. 

Fig. 4 (a) Diagram by which a vacuum polarization modification 

(denoted by the shaded blob) contributes to p- and e- atomic 

energy levels. 

(b) Diagram by which a vacuum polarization modification 

contributes to g 
P 

- 2 and ge- L. 

(c) Diagram by which a scalar meson contributes to p- 

atomic energy levels. 

(d) Diagram by which a scalar meson contributes to gp- 2. 

Fig. 5 Kernels f 
Y 

for Some representative transitions. 

Fig. 6 Plots of the kernels 7 and f 
Y a- 

[see the discussion which 

follows Eqs. (28) and (29)of the text] . 
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