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ABSTRACT 

New finite-energy sum rules relate the 

isospin dependence of low-energy s-channel amplitudes 

to the ratio of p and w exchange contributions in the 

Regge region. Applications to NN, KN, KA, and N.4 

scattering are discussed. Results include the isospin 
- 

dependence of NN annihilation, SU(6) symmetry breaking 

in the couplings of strange baryon resonances to the KN 

system, and predictions for exotic production in b- 

exchange reactions. 

I. INTRODUCTION 

Superconvergence relations were originally written for 

amplitudes that had no contribution from the leading Regge trajectories 

because they carried exotic quantum numbers. 
1 

They have also been 

written for linear combinations of amplitudes, each of which has nonvanishing 

contributions from the leading Regge trajectories, in situations 

in which the coefficients of the linear combination are chosen to 

make these contributions cancel one another. Such sum rules require 

some input to give the relation between the different Regge residues so that 

a cancellation can be constructed. Universality relations between the 

couplings between different hadrons and the same trajectory have been 

used as such an input and can be justified either on theoretical or 

experimental grounds. 
2 

This paper proposes new sum rules for odd- 

signature amplitudes dominated at high energies by exchanges of the 

p and w trajectories. The sum rules are obtained by choosing linear 
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combinations of amplitudes for which the p and w exchange contributions 

cancel one another. If the p and w trajectories are degenerate, one can 

construct linear combinations of amplitudes in which the p and w exchange 

contributions cancel at all energies in the Regge region. Such linear 

combinations satisfy a superconvergence sum rule. If the p and w are 

not degenerate, an energy-independent cancellation in the Regge region 

cannot be obtained, but a finite-energy sum rule can be written for a linear 

combination of amplitudes chosen to make the p and w contributions to the 

right-hand side of the sum rule cancel one another. The particular linear 

combination will then depend on the upper limit of the integral in the finite- 

energy sum rule. Since degeneracy of the p and w trajectories seems to be 

a very good approximation, the approach will be to consider primarily the 

degenerate case but to indicate which conclusions are unaffected by a 

departure from degeneracy. 

Like all superconvergence or finite-energy sum rules, these 

new sum rules relate the low-energy behavior of an amplitude in the resonance 

region to the parameters of the Regge trajectories that dominate the high- 

energy behavior. 
3 

When Regge parameters are used as input, conclusions 

regarding the properties of low-energy s-channel amplitudes and possible 

resonances are obtained. This sum rule differs from previous sum rules 

in that its input is the ratio of the p and w exchange contributions-i. e., 

the ratio of t-channel amplitudes having different isospins. The output 

is expressed in the low-energy region as a ratio of integrals of s-channel 

amplitudes having different isospins. The resulting expression relates 

the isospin dependence of a t-channel amplitude in the Regge region to the 

isospin dependence of the corresponding s-channel amplitude in the resonance 

region. These isospin dependences are sometimes predicted by models 

and symmetry schemes. Such predictions could be tested by the new sum 

rules, by analogy with the use of finite-energy sum rules in duality 

treatments in which the absence of exotics in one channel is used to obtain 

relations between couplings in the cross channel. 
4 

However, the input 

is not absence of exotics, but rather the experimental value of the ratio of 

the p and o nonflip couplings to the nucleon, and this value does not agree 
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with the predictions of any known model OJZ Symmetry. 
5 

The use of the 

experimental value as input therefore includes symmetry breaking 

effects which are not simply described by any model. The sum rule thus 

connects these symmetry-breaking effects in the Regge region with 

phenomena in the resonance region and can give some insight into the symmetry 

breaking there. 

The smallness of the ratio of the p to w nonflip couplings 

to the nucleon is one of the unexplained mysteries of hadron dynamics. Both 

SU(~) symmetry and SU(3) symmetric quark models predict a value of l/3 

for this ratio. 6,7 The experimental value8 is closer to 115 or 116. 

Although the deviation from the symmetry prediction can be attributed to 

symmetry-breaking effects, there is no successful prediction for the magnitude 

of this symmetry breaking. The ratio of the p and w couplings to the nucleon 

is thus an interesting experimental number which awaits a theoretical 

explanation. 

The smallness of this ratio has recently been used as a new 

input to a finite energy sum rule. In the extreme limit of neglecting the 

p-nucleon coupling altogether, Finkelstein9 has obtained a superconvergence 

sum rule for the p exchange contribution to p-nucleon scattering. One 

can question the approximation of setting the admittedly small p exchange 

contribution equal to 0. There is therefore interest in finding better 

sum rules that incorporate the exact value and not merely the fact 

that it is small. Such sum rules should include both isoscalar and 

isovector contributions. The sum rule for p-nucleon scattering is not 

easily extended to include isoscalar exchanges as well as p exchange 

because G parity requires the isoscalar and isovector contributions to 

have opposite signature. They are therefore not easily incorporated 

in the same sum rule. The sum rules considered in this paper include 

nontrivial contributions from both p and w exchange and can test the 

validity of the Finkelstein approximation in which p exchange is neglected. 

However, they are not applicable to the scattering of nonstrange mesons, 

which are eigenstates of G. We therefore restrict our consideration to 

scattering amplitudes for kaons and baryons. 
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Nucleon-nucleon and nucleon-antinucleon scattering are 

considered in Sec. II, and the ratio of the p and w couplings is shown 

to place constraints on the ratio of isovector to isoscalar annihilation at 

low energies. Kaon-nucleon scattering is considered in Sec. III, and 

the breaking of Su(6) symmetry predictions in the ratio of the p and o 

couplings is shown to be related to and consistent with the experimentally 
- 

observed breaking of SU(~) predictions for the couplings of the KN system 

to isovector and isoscalar resonances. The general case of KN scattering, 

where K denotes any strange nonexotic boson, is considered in Sec. IV, 

and the results of Sec. III are shown to apply equally to all K” resonances 

and trajectories, as well as to pseudoscalar kaons. This is in qualitative 

agreement with the experimental observation that Su(6) symmetry breaking 

in the production of strange baryons via strangeness exchange seems to 

be universal and independent of which K or K” is exchanged. Section IV 

considers Kh scattering in which the I = $ s channel is exotic, and the 

result being that the p and w couplings must satisfy SU(3) symmetry with 

the canonical mixing angle if the exotic amplitude is required to vanish. 

Section V considers Nh and E& scattering and finds that the exotic 

I : 2 s-channel amplitude must be of the same order of magnitude as the 

nonexotic I = 1 amplitude. This is the familiar “baryon-antibaryon 

catastrophe, ” which requires the existence of exotic contributions to 

satisfy finite-energy sum rules. However, the new sum rule provides 

a quantitative estimate for the exotic contribution relative to the nonexotic 

contribution. This can be used in a quantitative and conclusive search 

for exotics. 

II. NUCLEON-NUCLEON AND NUCLEON-ANTINUCLEON SCATTERING 

We first consider nucleon-nucleon scattering. Under the 

assumption that these amplitudes are dominated in the Regge region by 

the p and w exchanges, we can write the finite-energy sum rule 

JNvnt[A(;p) - A(pp)](l - K~) - [A(;n) - A(pn)](l t K’)}dv = o. (la) 
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where A denotes a scattering amplitude at some value of t and K is a 

parameter chosen to make the right-hand side vanish. If the p and w 

trajectories are assumed to be degenerate, K is just the ratio of the p 

and w couplings to the nucleon, i. e., 

K = gN&kN&,. 

In this case the upper limit of the integral in the sum rule (la) can be 

taken to be infinite to give a superconvergence sum rule for a suitable 

value of n. However, even if the p and w trajectories are not degenerate, 

K is a well-defined number determined by the behavior of the scattering 

amplitudes in the Regge region and can be determined either theoretically 

or experimentally and substituted into the sum rule. 

The sum rule (la) can be rewritten 

lNvn[A@p) -A(pp)ldv = : t ‘l 
-K 

[” v*[A(&d - -%=)I. (2) 

Let us now consider the case in which A is the imaginary part of the 

forward scattering amplitude. The sum rule (2) then applies to the 

total cross sections and the couplings appearing in Eq. (ib) are the 

nonflip couplings. For this case in which the experimental value is 

K = l/5, it is a reasonable approximation to neglect K2 in Eq. (2). This 

leads to the surprising result that the difference between the antiproton 

and proton total cross sections on a proton target is equal to the 

corresponding difference on a neutron target when suitably averaged over 

energy, i.e., 

(lr tot - utot(pp)) = (~tot(& - rtot(p=) ).. (3) 

This result is surprising since the differences between the total cross 

sections can be assumed to have a large contribution from annihilation 
- 

at low energies and the p” system is a state of isospin 1 while the pp 
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system is an equal mixture of isospin 0 and isospin 1. This gives the 

conclusion that nucleon-antinucleon annihilation in the isospin-0 and 

isospin-1 states are approximately equal when averaged suitably over 

energy, or that there are additional nonannihilation contributions that 

exactly compensate for any isospin dependence in annihilation. In 

models in which the annihilation is described by a simple s-channel 

mechanism, the sum rule (i) requires some kind of exchange 

degeneracy of isoscalar and isovector s-channel contributions. Thus, 

Rubinstein’s model that nucleon-antinucleon annihilation is dominated 

by the Regge recurrences of the pion 
10 

could not give the whole story. An 

additional isoscalar trajectory, possibly exchange degenerate with the 

pion, is needed to enable this mechanism to satisfy the sum rule (i). 

If this isoscalar trajectory has odd G parity (e. g., if it is the isoscalar 

member of the octet containing the B meson), annihilation into 

nonstrange mesons would still be dominated by odd-G states and there 

would be a systematic difference between annihilation into even and odd 

numbers of pions as predicted by Rubinstein. 

If one attempts to saturate the sum rule by resonances 

(admittedly a rather dubious procedure for baryon-antibaryon scattering), 

degenerate or nearly degenerate isoscalar and isovector resonances 

would occui-. Some evidence for this has been noted in the case of proton- 

antiproton annihilation into kaons. 
11 

III. KAON-NUCLEON SCATTERING 

We now apply the same approach to KN scattering and 

obtain the sum rule 

iN vn{[A(K-p) - A(K’p)] (1-K) - [A(K-n)-A(K’n]( 1 +K))dv=O. (4) 

If factorization of Regge residues is assumed and SU(3) is used to give 

equal couplings of the p and w to kaons, the parameter K in the sum 

rule (4) is the same as that appearing in the sum rule (ia) and is given 

by Eq. (lb). Note that when the symmetry prediction K = l/3 is 
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substituted into Eq. (4), the linear combination of amplitudes appearing 

in the integral is just the one required to vanish by the Johnson-Treiman 
6 

relation for kaon-nucleon scattering. The disagreement between this 

particular relation and experiment is well known, and the value of K 

obtained from the data8 is about i/5 or i/6. Note that the Finklestein 

approximation 9 of neglecting p exchange completely corresponds to 

K = 0. This sum rule can be tested both by comparison with experimental 

data and by resonance saturation. 

The sum rule (4) can be expressed in a more convenient 

form by introducing amplitudes corresponding to a definite isospin in 

the kaon-nucleon system. These are 

A(K-p) = 4 [&, +Ai], 

A(K-n) = Ai, 

A(K’P) = Ai , 

A(K’n) = $ [A,, t Ai], 
- 

where Ai and Aiare amplitudes for KN and KN scattering in the state 

of isospin i. Su~bstituting these expressions (5) into the sum rule (4) 

yields 

6”“” {A,(1 - K) -Ai(i t 3K) t A,(1 t K) - Ai(i - 3K))dv = 0. 

(5=) 

(5b) 

(5c) 

(5d) 

(6) 

One would expect resonance saturation to be reasonably 

good for this sum rule since the nonresonant background should be the 
- 

same for the KN and KN amplitudes and therefore cancel one another. 

Since the KN system is exotic and has no resonances, resonance saturation 

of the sum rule (6) gives a relation between integrals over isoscalar and 

isovector kaon-nucleon resonances, namely 

(7) 
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R 
where A. denotes the resonance contribution to the amplitude. Table I 

1 
gives values for the right-hand side of the expression (7) for some 

typical values of K. We see that the Su(6) limit and the extreme 

approximation of completely neglecting the isovector exchange give 

quite different relative strengths for the isovector and isoscalar resonance 

contributions--and that the real world is somewhere in between. Thus 

the use of this sum rule may give interesting information about the 

parameter K. 

As a crude approximation, one might attempt to saturate 

the sum rule (7) with the strange-baryon resonances in the lowest-lying 

Su(6) 56. In this case the sum rule could be applied to the K exchange 

contribution to the reactions 

Atp- B t (A,$ Y*‘), (8) 

where A and B are any hadrons. For any given pair A and B, application 

of the sum rule (7) relates the cross sections through the expression 

o(h) 

7(X0) t TF(Y*O) 
(9) 

where T denotes the cross section for the reaction (8). corrected for 

the usual kinematic and phase-space factors. Although the result (9) 

has been derived only for the contribution of K exchange, we shall see 

below that it is reasonable to expect it to hold as well for other exchanges, 

since similar sum rules can be written for the scattering of the various 

KiiC resonances that would provide the other exchanges. 

In the Su(6) limit, Table I shows that our sum rule 

predicts the value 3 for the ratio of cross sections in Eq. (9). This 

is in fact a well-known Su(6) prediction obtained by considering only 

the reaction (8) without invoking any finite-energy sum rules. 
12 

This 

result thus shows the internal consistency of using Su(6) to relate 
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couplings at low and at high energies and to saturate the sum rule 

relating the two quantities with a set of resonances appearing in a 

single SU(6) multiplet. The experimental value of the ratio (9) is in 

strong disagreement with the Su(6) prediction and is considerably lower. 
13 

This is in qualitative agreement with the Su(6) breaking determined at 

high energies by the experimental value of K. 

IV. UNIVERSAL su(6) BREAKING IN K+;iN COUPLINGS 

One of the peculiar features of the Su(6) breaking 

observed experimentally in the reactions (8) is that the deviation from 

the Su(6) predictions seem to be qualitatively the same regardless of the 

exchange mechanism. 
14 

Different exchange mechanisms have been 

studied extensively for the case in which B is a vector meson and the 

contributions of different types of exchanges (e.g., flip vs nonflip or 

natural parity vs unnatural parity) can be separated by observing the 

density matrices for vector-meson polarization. That Su(6) should be 

broken is no great surprise, but it is very peculiar that it should be 

broken in the same w;ty for all possible exchanges. This implies that 

all relevant couplings have the same D/F ratio for the baryon octet and 

that the ratio of octet and decuplet couplings is also independent of the 

exchange. 

The use of the finite-energy sum rule (4) provides a 

possible insight into the universal coupling ratios to baryons of the 

strange K* trajectories. If finite-energy sum rules are written for the 

scattering of these strange reggeons on nucleons, the high-energy 

behavior of the odd-signature amplitudes can be expected in all cases 

to be dominated by the p and w trajectories. The ratio of isovector 

to isoscalar exchange in all cases depends only on the same parameter, 

the ratio of the p and w nonflip couplings to nucleons, since the relative 

value of the w and p couplings to kaons is uniquely predicted by SU(3) 

and is the same for any meson octet. This universality can be seen 
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explicitly by examining the case in which two strange bosons K and K 
a P 

belonging to different octets scatter on nucleons. In the Regge region 

where the scattering is expected to be dominated by the p and w 

trajectories, we can write down the expressions 

[A(K,p) - A(Klp)] - Cfp[A(Kip) - A(K~P)] = 0 a 

[A(K;n) - A(Kfan)] - C;$A(K;n) - A(K;n)] = 0, 

(lo=) 

(lob) 

where the coefficients C P n 

4 
and C 

4 
can be considered to be defined 

by the relations (10). 

We now assume the SU(3) relation for the three-boson 
12 

vertex, namely 

gKaFa~ 

- 

=gKpKpp. 
(11) 

gKaZaW gK ?? 0 
P P 

Note that exact SU(3) gives the value unity for the ratio (11). However, 

we do not need this exact value for our treatment. Thus our result is 

insensitive to SU(3) breaking if it is the same for K and K One 
a P’ 

example of such a breaking would be a departure of the o from the 

canonical expression with the ideal mixing angle. If we further assume 

that the expressions (10) are dominated by the p and o trajectories, 

then it follows immediately from the relation (ii) that 

cp z cn - 4 al3 
= gKE . 

a a” 
/g 

KPKP” 

Note that this result does not require degeneracy for the p and w 

trajectories. Even if they have different intercepts, the energy 

dependence cancels in the definition of the coefficients (12). We can 

therefore write finite-energy sum rules for the expressions (lo), 

eliminate the coefficients (12) between the two sum rules, introduce 

s-channel isospin amplitudes analogous to the expressions (5), and 

(12) 
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assume resonance saturation. We thus obtain the expression 

/$(Eap) v*dv = JxoR (+) ““dv 

J xlR (cap)vndv s x’: (~@““dv ’ (13) 

We thus find that the ratio of isovector to isoscalar resonance contributions 

to these sum rules is a universal quantity related to the ratio K of the 

p to o nonflip nucleon couplings and is independent of the strange meson. 

This suggests that if saturation by the A, Z, and Y*(l385) is a good 

approximation, then the relation (9) holds for all exchanges. 

2 

+ 

2 2 2 

gKa;Z gKa;Y* 

2 
= 

gK ;Z + gKp$-y,K 

2 

gKPp” 

q2) t Ta (y*O) = T (2) t Tp (p) 

yJ4 a (4 P 

(14) 

(15) 

Note that although the relation (9) depends upon degeneracy of the p 

and w trajectories, the universality relations (14) and (15) are 

independent of this degeneracy assumption. 

Difficulties are encountered if the universality relation 

is carried too far. The relation (13) h&s been derived for the nonflip 

amplitude for any helicity state of the kaon or nucleon. Consider the 

forward scattering amplitude for a K* with helicity t 1 and a nucleon 

with helicity -i. The total angular momentum of the system therefore 

has a projection of t$ on the direction of the incident kaon. This 
9 

amplitude can have a contribution from the Y (1385) but cannot have any 

contribution for spin-4 resonances or from baryons such as the A 

or x. Thus, resonance saturation limited to the baryon 56 is clearly 

invalid for this amplitude. One might question the use of such resonance 

saturation for all amplitudes if it definitely fails in a particular case. 
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On the other hand, it is known that there are difficulties in fitting 

polarization data with simple Regge models. One might argue that the 

simple description in terms of p and w poles may not be adequate to 

describe the spin dependence of the amplitudes but may be adequate 

for a nonflip amplitude that is averaged over the nucleon spin direction. 

This is the amplitude whose imaginary part is related to the total cross 

section on an unpolarized target, the case for which the experimental 

agreement with the simple p and w model has been best. One might 

consider then that if the sum rules (9) and (13) are to be saturated with 

a small number of resonances, then they should be applied only to these 

spin-averaged amplitudes. 

V. KA SCATTERING 

The same approach can be applied to K4 scattering. 

By analogy with Eq. (4) we can write the sum rule 

d”v= {[ ( A K-A++) - A(K+At+)](l -A) - [A(K-A-) - A(K’A-)](i +x)}dv = 0. (16) 

We assume as before that the dominant contributions in the Regge 

region come from degenerate p and w trajectories. The parameter 

X is the ratio of the nonflip couplings of these two trajectories to the 

h . However, we encounter a difficulty if we attempt to leave A 

a free parameter to be determined by experiment and introduce 

resonance saturation of the sum rule (16). Only one of the four 

amplitudes appearing in the sum rule is nonexotic, namely A(K-4”). 

Thus resonance saturation combined with the assumption that there 

are no exotic resonances determines the value of A. The result is 

A = 1, (17) 

which is just the Su(6) prediction. 

We thus find that in the KN and NN systems, in which all 

s-channel isospin values are nonexotic, it is possible to break the 
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SU(~) relation between the p and o couplings to the nucleon without 

encountering difficulties; and indeed experiments seem to indicate 

such breaking. HOWeVe r, in the case of KA scattering, in which one 

of the s-channel isospin values is exotic, the requirement of absence 

of exotic resonances in this channel cannot be satisfied unless the p 

and w couplings to the 4 satisfy the Su(6) relation (17). 

VI. NUCLEON-A SCATTERING 

A similar sum rule can be written for nucleon-4 

scattering. Again we assume that the high-energy behavior of the odd- 

signature amplitude is dominated by p and w exchange. The ratios 

of the p and w contributions are determined by the parameters K and 

X defined by KN and KA scattering. Thus without any new parameters 

we obtain the sum rule 

f v= ([NF’a ++) _ A(pA++)](l -XX) - [A(; A-)- A(pA-)](l tKk))dv = 0. (18) 

Here again there is only one nonexotic amplitude namely A(pA’+). Thus if 

all exotic amplitudes vanish, the product Kk must be equal to 1. 

However, it is evident that this is not true either in the symmetry limit 

or in the real world, as can be seen from Table I. 

This is just another manifestation of the well-known 

baryon-antibaryon catastrophe, 
15 

which implies either that resonance 

saturation of finite-energy sum rules is not valid for the baryon- 

antibaryon system or that there are exotic contributions. Let us assume 

that there are indeed exotic resonance contributions with isospin 2 and 

zero baryon number. In that case, resonance saturation of the relation 

(18) gives 

i -6 
N 

AR(;A-)dv = i + Kx J’ vn AR(; A++)dv. 
0 

(19) 
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In the same way that the reactions (8) test the sum rule 

(4), the sum rule (19) can be tested by looking at nucleon-antinucleon 

annihilation via 4 exchange. Consider for example the two double- 

charge exchange reactions 

;+p-n+tM-, (204 

- 
p t IT - 7r* t x--, W’b) 

where .the meson M- is any negatively charged meson while X-- is a doubly- 

charged exotic meson. These reactions can be assumed to go via 
tt 

4 

exchange when the TT 
t 

goes in the direction of the incident antiproton. 

If the states M- and X-- are used to saturate the sum rule (19), one 

sees that the cross sections (2Oa) and (2Ob) are of the same order of 

magnitude since the product Kk should be small. It would therefore be 

of considerable interest to look for the reactions (20.3,) and (2Ob). A 

similar situation obtains for the pion-nucleon reactions obtained from 

the reactions (20) by line reversal 

IT- t p - p t M-, 

TI- t n - p t x--. 

A detailed analysis of the application of the sum rule (19) to the search 

for exotics in reactions (20) and (21), presented in another report at 

this conference, 
16 

shows that the sum rule makes possible a conclusive 

quantitative test of the argument that exotic resonances provide the 

answer to the baryon-antibaryon catastrophe. 
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TABLE I. SU(6) symmetry-breaking factors. 

K (i t 3K)/(i - K) 

Finkelstein limit 0 1 

Real world (?) l/5 2 

Su(6) limit 
a 

l/3 3 

a 
Johnson and Treiman, Ref. 6. 


