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: ﬁpstract

By studying the partial wave expansions of multiparticle
amplitudes we show that analytic properties in complex helicity
are just a reflection of the familiar analytic structure in
angular momentum. We give a criterion which'deﬁermines
when an asymptotic behaviour in an azimuthal angle (conjugate
to the helicity)} can be reached in a physical process. Our
discussion centers around the five and six point functions; the
latter, being relevant for siﬁgle particle inclusive processes,
is considered in detail. One of the interesting features of
analytic structure in X 1is that it depends in detail on what
other variables one chooses in addi;ion‘the azimuthal angle
conjugate to it. That singularity structure is found by
examining the partial wave analysis appropriate to the chosen

variables. Finally, a discussion of signature in many particle

amplitudes is given,



I. Introduction

1

In the study of the asymptotic behaviour éf hadron amplitudes it is
possible to isolate processes in which one of the "external' objects is a
Reggeon; namely, a ''particle" both off the mass shell p2=m2 and off tﬁe
spin shell a(pz) = integer or half-integer. The simplest scattering,
of course, in which a Reggeon makes its appearance is elastic or quasi-
two body scattering. Here one measures a Reggeon - two particle vertex
function as the factorized residug of a pole in the complex J-plane., In
processes involving more particles one can discuss Reggeoﬁ~particle scatter-

1)

ing and production. A degree of freedom suppressed in elastic processes,
thehelicity of the Reggeon, begins to play a role in multiparticle problems.
One may view its appearance either as reflecting the non-trivial dependence
on azimuthal angles which enters in five, six,... ﬁoint amplitudes, or one
nay recall that in four or more line amplitudes involving particles with
spin, the dependence on helicity becomes significant,

These azimuthal degrees of freedom, ¢J invite one to inquire'into the
behaviour of multiparticle amplitudes as some cos$ becomes asymbtotically

2)

large. Such behaviour will be governed by the analytic structure in the
variable conjugate to ¢; namely, the helicity. One is led thereby to
investigate the singularity properties, poles and cuts especially, in
complex helicity. From the outset it is clear that singularities in the
helicity must be thought of as on a somewhat different footing from those
in angular womentum or invariant energies. This difference comes from our
understanding of particles as being classified according to irreducible

representations of the Poincar€ group. Under such a classification the spin

2 2 . ..
J and (mass) =p~, apart from internal quantum numbers, are sufficient to
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specify a state., When we consider S-matrix singularities in J or pz, or

together as for Regge p&les*with J = a(pz), we Temaln within this Poincare
invariant scheme. tHowever, helicity has quite a different character in the
classification of states. It labels the components of a representation and
under a Leorentz transformation can change or be mi%ed up with other helicities.
In short it is not a quantity that provides a Lorentz frame independent charac-
terization of a stafe and to regard singularities in helicity variables as
somehow "'dynamic'" necessitates a major reorientation in our views of what

constitutes a particle. We will argue in this paper that such a drastic

move is not called for, and that, indeed, singularities in helicity are

kinematic reflections of familiar analytic structure in angular momentum.
The way in which this comes about will be given in detail in theldiscussion
of the five point function found in the next section. The relevant feature
is the isolation of a T(A-J) in the double Sommerfeld-Watson transform in
angular momentum J, and helicity, A. This factor will insure that a
pole, say, at J=a in the angular momentum is a series of peles in X at
A=, a-1, ... . In this way we sée directly the "kinematic' manner in
which J-plane structure goes over into A-plane structure,
We will then argue that the isolation of these kinematic gamma functions
is enough to determine the énalytic structure in A in multiparticle amplitudes.
In particular we will study the six point function in a configuration appropriate

3)

for learning about the three Reggeon vertex,” and during this study we will
develop a criterion for deciding when a certain asymptotic azimuthal angle
limit can be reached in the physical region of an S-matrix element. This

becomes particularly important in the investigation of inclusive processes,

L
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)

It has been knewn to many people4 that there are singularities in
A at a, o-1, ... and, in a sense, our discussion of that point is meant
to give a stronger motivation than we have found in the literature. Particular-

5) and WeisG), the

ly relevant to the present work are the papers of White
latter of which has certainly stimulated many of our ideas here. Beyond this
pedagogical contribution, the discussion of more general §onfigurations than
five or six point functions and the criterion for physical region asymptotic
behaviour in azimuthal angles may have some value in further study of multi-
particle production. One of the additional points we will emphasize is that
the detailed structure in the A-plane will depend on exactly what other
variables one chooses in addition to the ¢ conjugate to XA. The selection
of those variables will be connected with variou$ multiple partial wave

expansions whose significance will be given by the kind of physical information

one wishes to extract from the multiparticle amplitude in the cos¢ + = limit.

II. Relating Angular Momentum and Helicity Structure.

In this section we will first give an heuristic discussion‘of the manner
in which certain kinematic factors in partial wave expansions enable one to
determine where singularities in helicity, A , 1lie# when one has 5pecifiéd
the analytic structure in the angular momentum J. Our procedure will be to
consider in detail the five point function in the kinematic configuration shown
in Figure 1. All external particles are spinless, and for simplicity we will
take them to have equal mass, m.

We want to make a partial wave-decomposition of this amplitude which
enables us to look at the analytic properties of the helicity associated with

. a Reggeon of mass t, = Qg = (p1+p3)2. To make this partial wave analysis let

us sit in a frame where



' . P4 = (ms ﬂ, O: 0) F) (1)

and the other vectors are chosen to be

Q; = /E;" (cosh 4;,0,0, sinh ¢,)  i=1,2, '¢))
= Bz(wl) ( /1:,0,0,0],
P, = Bz(wl) (El,p1 sine1 cos¢1, Py sine1 sin¢1,
Py cosBl) y \ (3)
and
Py, = Bz(xpz)(Ez,p2 sinezcos¢2, pzsinezsin¢2,‘pzqosez) (4)
with '
s 2 ‘/._
p; = 5 -m and Ei = Yty / 2 s (5)
| 2 o
and | cosh 1‘b1 = (m -+ t1 - tz)/zm/f; R (6)
2
cosh wz = (m~ + t2 - tl)/2m/€; . (7)

We have chosen the Qi time like so we may make an ordinary 0{3) partial
wave analysis. The Bz(w) is a z- boost through the 1nd1cated angle,

These kinematics define a set of six variables cosel, cosez, tl, t2’

B = ¢1—¢2 and ¢1+¢2 on which the amplitude may depend. Rotational invariance
of the scalar amplitude forbids the appearance of the angle ¢1+¢2, so we have
the five point function given in terms of the first five variables. We will

for the moment, pretend that ¢, and ¢, may be treated independently and

1

will impose this important tonstraint soon. Suppressing all variables except

6 and 9, we exhibit the dependence of the five point amplitude on them by

writing the partial wave expansion
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(T-x, J+r+l; A+1; 1%59 A0 , (10)
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and Pﬁ(x) is the usual associated Legendre polynomial. The purpose in taking
out the designated gamma functions is most apparent in Eq. (10} because one can

see from known properties of the hypergeometric function that there are no
. . s . mA 7
associated J, A singularities in PJ(x).

Furthermore, using the orthogonality  properties of the P; and the

normalization integral

+1
“Aovq2 2 T(J-A+1) '

[ dx [PJ(x)] ol s | Ty (11)

~1
we find +1 o )

1 Sr “1A19
171 1
-1 0

where X = cosel. The important point to notice is that no associated Jl and

Al singularities are present in the partial wave amplitude so defined. They

all reside in the explicit gamma functions.

Now we make an heuristic Sommerfeld-Watson transform ignoring for the

8)

moment all gquestions of signature. Write {8) as



w o -1 o ik1¢1
A_{cosd_,¢.) = :Z Z + Z Z (2J3,+1) e x
5 17 A,20 J =X A maeo Jo=-) 1
1 11 1 1 11
‘ll F(J1+A1+1)
P." (cosb.) wr————e M s (13)
3 1 T A+ J1N
to separate Al > 0 and kl < 0. In order to handle A; < 0, note that
“hooy _ T(J-2+1) =-2A
Pst0 = vy Ba O (14)
2.-3/2
I'{J-x+1) l-x | (1-x7)
= ——— " _F. (J+X,J-h+1; -A+]1; ) , (15)
F{J+x+1) 21 2 ZA [(-A+1)
for A <0
" and defining +1 o .
1 “ déy  -1ré, |
MR(J,A) =5 J dx PJ(x) J = @ As(x,¢1) (16)
-1 0
for the regime A > 0, and for A < 0
1 [ ey T dey -1k
ML(J,A) = "2- J‘ dx pJ (X) J "2-—1'7' e AS(K,¢’1) » (17}
-1 . 0

neither of which has explicit associated {)A singularities, we may write

o o Ly ir e
Ag(cosé,,¢,) = ¥ ) (25,+#1) P; 00 e MR(ql,xl)

A1=O J1=ll . 1

© A ix ¢, r(J
(2Jl+1) P; "(x) e
1

1-A1+1)

Now we make a double Sommerfeld-Watson transform in Al and J1

1 T
Agleoss,,0,) = J 771  sinmA
c 1 o
1 1

1 w
271 51nﬂ(Jl-A1)

dA J dJ

ML(T02y) TE AL

T(J +3*1)
F(J1~A1+l)

(18)



i¢1 Al ~l1 : : F(Jl+l1+l]
x (e 7)) 7 (2J,#1) P.7 (=x) M) (I ,A,) e
1 vy R*™1%71 T(Jl Al+1)
g dA dJ =A
1 7 1 n s 1
- J Zil  Sinag J 7 smr@eay ¢ (B Pyt X)X
& L - 171 1
A J
1 1
I'(J,-A,+1) ig; A ‘ . '
171 1.1
M (J153) TTE;:K;:TT- (-e 7) (19)

where the contours are the standard ones needed to reproduce the sums in (18).

Noting now that

-
sint(J -1)) = T(A-J)) TU -2+, (20)
and
'ﬂ’
Sin[-ﬂ(J1+)\1)] - r(—)\l'\ll) .F(J1+A1+1) 3 (21)
we may cast (19) into
dAl dJ1
AS(COSel,qbl) = - { m J —2-1?-; I‘()tthl)F()xl+Jl+1) x
C 1 CJ :
' 1
A 16) X
(23,+1) P;7 (=) M 0 (e )
l
dJ, ) ig) Ay :
+ J 2151nwl1 J FlIt A -J )T(J -2 +1)(2J +1) P 1 (-x)(-e ) ML(JI,Al).
G C5 (22)
1
If there were no other singularities in kl’ we would now be able to
conclude that a pole of MR(JI,Al), say, in J1 at al(tl) would, through

the kinematic gamma functions yield strings of poles at

>
]

1 al(tl), al(tl) -1, ... (23)

~ay(t)) - L, - (t) - 2,0, (24) <ffff'

i

and %i



from the first term in\(22). In the second term, which involves the left hand

-

Al plane, a pole in ML(Jl,kl) at Jl = al(tlj gives rise to singularities in

Al integration at

= cag(e)),  -ay(t) + L. | (25)

b
|

and ll

a (t) + 1, a(e) +2, ... . : (26)

For ¢1 -+ +je we want to pick up the poles from the second (first) term of

(22) which lie furthest to the left (right) in the Al plane. Since MR and

ML are the proper functions to be continued in the right (left) half A,
planes,s) this is appropriate.

Because of our construction so‘far, were there no kinematic constraint on
¢1 that it only enter AS in the form ¢=¢1-¢2, we would be strongly motiv- .

MJlll in Al. In the
representation (22) of A5(¢l,cosel) we would then conclude that the asymptotic
' i¢ a, (t,)
behaviour in e 1 with the other specified variables fixed is (cos¢1} 171
ul(tl]-l
for al(tl) > - 1/2 plus O((cos¢1) )

ated to say there are no further singularities from

However, the invariance under z-rotations of the scalar function AS

tells us that if we go back to (8) and restore 82 and ¢2 and write a

double partial wave expansion to exhibit their dependence also

- Mt

~1 8
%

As(cosﬁl, cosb,,¢,,4,) =

J1=O J2=0 A1=7J1 A2=—J2
iA.6.-i Ad,  _A A
(2T, +1)(2J.+1) e 171 272 p 1 (cos8,) P 2 (cosB.,) %
1 2 J1 1 J2 2

T(J1+A1+1) T(J2+A2+1)
T(Jl—kl+1) F[J2-12+l)

F(J1,5.004) 27

then A, must equal lz so only ¢ = ¢

- that singularities in both J, and J,,

l—¢é appears. This has the implication

the angular momenta conjugate to 61
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and 02 are transmitted to Al via the kinematic gamma functions we have

%

discussed at length.

This lesson is well known,zl we know, but we have belabored it here to
show how it is that the rotational invariance L AS or equivalently the
covariance of the central (Ql Q2 p4) vertex in Figure 1 links tqgether the

otherwise independent helicities A, and .. We are informed thereby to

. think of Al and its associated ¢1 as not connected with the external

orientation of the plane of Py and  pgs but to attach it to the central
vertex to exhibit its meaning.

By going to particle poles in Y “and t, in the function As, one

sees directly that Al and AZ are properly interpreted as the helicities

of the states with spin Jl’ mass /Ei or spin J2, mass /Eé, respectively.

The rotational invariance of AS informs us that we may not separately con-

tinue in A, and 12,

Also by taking, say, just t, toa pole of spin J,, helicity h2 we see

even though we may, of course, do so in J1 and Jz.

that the continuation of the resulting four point function: Q2(5pin J2, hz) +
Py ™ Py * Py ip the angular momentum J1 does not necessitate, indeed does
not allow, a continuation in the helicity hl associated with J1 for it is
constrained to be the external helicity hz. It is in this manner that we

see why one never encounters questions of complex helicity in two-to-two

processes. .
Returning to Eq. (27), if we define FR and FL in analogy with (16)
and (17),
+1 +1
1 ) 1 =)
FR’L(JI,Jz,l) =3 J dx1 PJ (x1) 5 J dx2 PJ (xz} x
- ! -1 2

T

2 .
d -ix

J '_¢' ¢ 1ré As(xl)x2:¢) » (28)
0 . .

)
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we may write the triple Sommerfeld-Watson transform

: a dJ
dx 4 2
Ag(costy, cos0,y,¢) = j FTsinma I LT J T

€ C C
A J1 2

r(A-JI)r(A-Jz)r(A+J1+1)r(A+J2+1)(2J1+1j(2J2+1)(-ei¢jA Faldpsdp,h)  x

< P (-x) P} ) e

l
di ' 1
Ci C

[ S

x (2041) (20,%1) (-e* ) B ) A ex ) PJ (- -x,) F (3,050, (29)
Now we have exhibited the dependence on 91,62 and ¢ = ¢1-¢2 and have
extracted all the kinematic gamma functions from the vartial wave amplitudes

L(JI,JZ,A) which may be continued in the right half (left half) a plane.
We are strongly urged.to assume that these functions have no singularities in
A and thus learn that the asymptotic behaviour in ¢ is completely determined

2;?) This assumption, which

from the "dynamical” poles and cuts in J., and J

is very natural in the light of our remarks about the Poincaré group above,

is born out in model calculations where the simultaneous and ¢

X190 X5

asymptotic behaviour with ti, t fixed has been studied.z)

2
Perhaps it is worthwhile once more to repeat the procedure we have followed
before going on to more complicated, albeit physically more interesting examples.
We chose from the outset a kinematic configuration indicated by the "tree" graph
of Figure 1 and designated-more precisely by the kinematics (1)-(7) in the rest

frame of particle 4. We then argued at length that to find the singularities

in the helicity Al’ conjugate to ¢1, which determine the asymptotic
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i¢
behaviour of AS as e L, » one must write a multiple partial wave

i

expansion which exhibits all the constraints on A; coming from the Lorentz

invariance of AS. The partial wave expansion is, of course, suggested
directly by both the tree graph and the kinematics and must be carried out
in a frame which guarantees that 61, 82, ¢1, ¢2 have their interpretaiion
as polar and azimuthal angles,'so we are confident that their conjugate
variables are angular momentum and helicity.

This last remark is relevant for the question: what i; the behaviour
of AS as cos¢d - % with cosel, cosez, t1 and t2 fixéd? This limit is
not accessible in any physical region of the five point function, as we will
discuss at some length below, but one may ask it. If we define the energy
variables s = (p1+p2)2, s; = (p3—p4)2, and S, = (p4—ps)2, then this

limit corresponds to s » » while s ts and t, are fixed. From the

1’ 520 2
point of view of the  s,t channel invariants, our question would seem to

have no answer for why should (cos¢) a(t 1) appear rather than (cos¢)a(51)

or even (cos¢)a(u1) where u; = (pl-p4) ?  That is, why, from the point of
view of channel invariants is the tree graph of Figure 1 relevant to the limit

S, ot ot fixed?))

17 20 510 355

Our answer to this question is that in the limit cos¢ » = | cosB., cosH

1 2?

tl‘ t, fixed, the four invariant dot products P1°P2s Py°Ps» ps-pz,Aand

Py*Pc all become infinite, while the other six possible inner products among
the momenta remain finite. The only choice of tree graph for which ¢ remains
an azimuthal anglg and for which these, and only these, inner products are
infinite in this limit are Figure 1 and its trivial variations gotten by inter-
changing Py and Py Or p, and P; or both. To be more precise in what -

we mean by tree graph, let us say that the crucial feature is that it defines
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a way of choosing kinematics so that if Py and pj as a pair connect to

Qij =p; - pj, then we make a partial wave expansion in the polar and

azimuthal angles Oij and ¢ij of the plane of P and P; and look for
. . . 2

poles in the conjugate variable Jij of eij_ and Jij(Qij ).

If for Ag we had chosen ¢ to be the angle between the planes of
' (p1 ps) and, say, (p4 ps), the; in the limit cos¢ - = , we are not
picking.out P"Pys Pp*Pzs P *Pc and P,'Pg > = as before. So a partial
wave expansion which had this interpretation would be inappropriate for
the limit we desire, and we return to Figure 1 as the only:available tree
graph (including again t¥ivial P; <> Pz» Py 7 Pg permutations). |
Another observation in this regard is that with our parametrization
‘when ¢ +» @ sgo Py and Pz ""move away" from the cluster P, Pg Py
the fact that P4 'Pys Py Py and (pz-psj-pl and (pz-ps)-p3 remain finite,
singles out the pair P, Pg and the single particle p, as the correct
subclustering. Again we are led to Figure 1.

Such a line of thought leads us to expect that as et? + to  ywith

cosel, cosez, tl and t2 fixed, the function AS behaves as
1. %1 (%))
As(cosel,cosez,tl,t2,¢) ~~ (-’ 7) x f
¢+w

cosf.,t. fixed
i’71

1

o))

et £, . (30)

where the fi are functions of the fixed variables while ui(ti) > 0, are

the right most poles in the Ji as they appear in the representation of As
by Eq. (27). This suggestion is rather hard to verify in models of particle
production since the limit in question does not occur in the physical région.

(The dual resonance model may provide a useful testing ground). When we
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come to the six point function, however, the limit analogous to this can
occur in the physical region and Eq. (39) then has physical content. With

that we close our discussion of the five point function and proceed.

I11. Azimuthal Angle Limits of the Six Point Amplitude

We turn now to a discussion of the six point function, A6, concentrat-
ing on the kinematic configuration in Figure 2. This will be appropriate for

3)

'-;he exposition of the triple Reggeon vertex™” and plays a central role in the

‘éiScussion of single particle inclusive reactions near the end of the physical
region.lo)
Our procedure will be to make ; multiple O(3) partial wave expansion
of A6 and, as we have done for AS’ to write Sommerfeld-Watson transformat-
ions to yield integral representations useful for continuation to the crossed
channel. Since we encounter for the first time a vertex with three space-
like momenta (Ql Q2 Q3) we will have to distinguish between two different
kinds of partial wave expansion depending on the sign of the triangle funttion
A(le, Q22, Q32) = (Q12+Q22-Q32)2 - 4Q12Q22. We shall first discuss the
kinematics for the process P*PytPz > pi+pé+pé as indicated in Figure 2
and then give an heuristic argument as to how we may use the 0(3) expansion
indicated by Figure 3 and analytically continue to the reaction under con-

sideration.

There are two cases to be distinguisheds)

(1) ale,t,,t) >0 | (31)

and (2) A(tl’tZ’t3) <0 - : (32)
2

where ti=Q; . If the t, are either all positive or all negative, we may

be in case (1) or case (2). If only one of the t, is positive or negative,
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we are fixed in case (1). To sce the significance of each case, let us
consider them in order,: First suppose all ti >0, and A(tl’tz’tSJ > 0.

Then we may sit in a Lorentz frame where Q3 is along the time direction

Qg = (/15,0,0,0), . (33)
and q, = B,(n) (/5,,0,0,0) , | (34)
Q, = B,(n)) (/1,,0,0,0) , (35)

and VE_(t yEa5T,)
sinhn, = L2 3, (36)

va (t,,t.,t,)
sinhn2 = - 1’23 (37)

2/t Vig

~The role played by A(tl’t2’t3) is explicitly shown here. Were it negative,
we would not be able to orient the vectors Q and Q, in the t-z plane
by real z-boosts from their rest frames.

The set of vectors (33)-(35) is invariant under a rotation about the
z-axis, and this will lead to a conservation of the usual helicity at the
central vertex. As we have seen in the five point function of Section IT
this constraint means that analytic structure in, say, ll’ the helicity
of the "state'" with momentum Ql’ will be related to the analytic str;cture

in J2 and J the angular momentum of the states with momenta Q2 and

3,
QS’ as well as to the analytic structure in Jl. If all the ti are
negative with A(tl,tz,tsj > 0, a similar analysis may be presented.s)

Suppose we are now in case (2). To reach this take all Q, space-

like, and proceed to a frame where Q3 is along the z-axis

Q3 = (OJOJOJ '-ts) 3 ' (38)
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We may orient Ql and Q3 in the x-z plane

Q = R,(9) (0,0,0, /E) (39)
and Q, = R (8,) (0,0,0, J-té) ) - (40)

where Ry(e) is a rotation about the y-axis by 6, and

/LA(tl,tz,ts)

sin el = s (41)
2\/-1:1 V-—ts
V-A(t,,t.,t.) :
sin @, = - 1’2’3 : ‘ (42)
2/-t2 J-t3 *

Because we can choose the orientation of the vectors Q1 and Q2 in
the x-z plane, the set of momenta (38)-(40) is invariant under a y-boost,
which is a non-compact operation, rather than a z-rotation, a compact
operation, as in case (13. This invariance means tﬁat the '"boost helicities"
Aill)conjugate to a y-boost angle will be conserved at the (Ql Q2 Q3) vertex,
and the analytic structure in the li will reflect the singularities in the
J.l entering the vertex.

It -is important to neote that because in case (2) real y-boost angles
have replaced real z-rotation angles as the azimuthal variables, we expect
to be able to reach asymptotic limits in a physical region of Aﬁ by alléw-
ing these y-boost angles to become large. The explicit behaviour of A6 in
these limits will be determined by the singularity structure in the boost
helicities, and that structure is apparent in the multiple partial wave
expansions analogous to (29).

In the following we will make a triple O(3) partial wave expansion of
Aé, choosing the Qi time like, and give an heuristic argument as to how this

is to be applied in the regime where A(tl’t2’t3) < 0 and the Qi < 0.
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A crosscd-channel partial wave expansion can be given directly for the physical
case where the Qi‘ are ‘spacelike and ﬁ(tl,tz,ts) is negative.

First we establish the kinematics for Figure 2 which are relevant for the
three-to-three scattering p1+p3+(1pi) > (-p2)+pé+pé whose forward discontinuity
in the wissing mass variable w2 = (pl+p3-pi)2 yields the single particle inclus-
ive cross section for P*P5 ] g missing mass W.lz)

All of the Qi are spacelike for the six point function described, and

in the inclusive process t_=t while t.=0. If we evaluate A(tl,tz,ts) for

1 "2 3
t1=t2 < 0 and t3 -+ 0 from below, then
A(ty,t,,ts) |t1=t2 = to(tg-4t)) (43)

and we see that the A function goes to zero from below, and therefore case
(2) is appropriate.

We specify the four vectors P;s pi and Qi in a frame F where

3)
Q3 sits along the z-axis and Ql and Q2 are in the x-z plane; that is,

we employ Eq. (38)-(42).3) In FS we give Py by taking a standard p; Vvector

S —
P]_ = (EI»O,Osql) (44)

" in a frame where Q1 = (0,0,0, f-tl) and parametrize it by the 50{2,1)

little group element

g,0xps §10 810 = BL0) B (8D R (4) (45)
which takes it to another frame where Q1 is solely along the z-axis. Then
by performing a y-rotation by the 81 of Eq. (41) we reach F3; that is,

p3 = R (8) g, (X:s £1b 6,0 P.° (46)

1 y  1© =1**1 212 Y1 T

Further it is easy to see that
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E. = m2 - EL q = —;EL (47)
1 : 4 ? 1 2 !

where m is again chosen as the common mass for all external spinless particles.

In exactly the same fashion we parametrize Py and P,

I.'.‘
P’ = R(8,) g,(x, ) B3 | (48)
F3 s
and Py~ = 250Xz, B35 65} Py, (49)
with p: = (E{,0,0,q)) , . (50)
| —F : =N
and Ei = ¥m "EL , 9; * 3 . ' (51

Since we have spinless external particles, there is no dependence of

A6 on the z-rotation angles ¢i‘ That leaves us with nine variables ti,

X5 and Ei i=1,2,3, one of which is rgdundant. Writing out A6 as a

function of the momenta
5 . s
Ay (Ro(8)) B (x;) B (&) p1 B, (xz) By (&) pg

R(8,) B () B,(5)) p) (52)

and remembering that it is invariant under y-boosts, we see that A6 depends

only on X1"X3z and Xp=X3 and not all three X5 This is precisely the
analogue of the restriction on As in previous section to depend only on
¢1-¢2-

To go from frame FS to the regime where the Qi are time like we

. i .
make a complex Lorentz transformation BZ(T;J and continue the €. to

i
positive values.ls)

. F ‘
B.(AD Q° = (/5,0,0,0. (53)
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Under this Lorentz transformation the operations By’ B, R moco oV

for the kinematics in case (2} behave as

B,(- 3 5,00 B,CP

) = R (-ix), | (54)
B,(- 3 B(0) B,GD = R (O, (55)

in im . .
and B,(- =) R (8) B.() = B, (i6) . | (56)

This suggests that x-rotation angles play the role of azimuthal angles in the
multiple O(3) partial wave analysis we are now ready to carry out,
With these hints we parametrize the six point amplitude of Figure 3 as

foliows: work in the frame F where

C
Q = /15,0,0,0) , (57)
Q, = BX(GA)'(J?;;O,O,O) o (58)
and Q= B (8 (/34,0,0,0) , (59)
with
va(t, ,t ,t.) _
sinh 8, = —2 B C. (60)
2/t Yt |
A C
va(t,,t,,t..)
and sinh eB = - ATB L (61)
2/t Ve
B C
We parametrize Pa by an 0(3) 1little group element
Baltar Ear S0 = ReOxd RyE) Rylep) (62)
which takes it from a standard vector
]
PA = (EA,O,O,QA) (63)

in a frame where QA = (/E;,0,0,0) to another frame where QA is purely

along the time axis. To take it to FC we apply Bx(GA) SO
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Fe

. 5
Py = B (8,) R (x) R(EN) R (8,) Py (643

Clearly we do the same for Py and Pe finding

F
C _ s
pp = B (e R (xg) R (5p) R (95) Py (65)
Fe -
s
and P = Rx(xc) Ry(EC) Rz(tbc)“pc¢= s : (66)
Vt, i 5 -
with E =—2l, qj—_—-zl-m j=A, B, C . (67)

Once again the spinlessness of the external particles tells us that A6 does
not depend on the ¢j, and the invariance of A6 under Xx-rotations reminds
us that A, depends on the eight variables: to £ for j = A,B,C and
XaXe and XpXce

With these kinematics in hand we can éarry out the triple O0(3)} partial
wave analysis on A6. The only.tricky point is to relate the rotation functions
in the basis where Jx 1s diagonalized on the left and JZ on the right, which
is natural for the 0(3) labelling Rx(X) Ry(g) Rz(¢), to the usual Rz Ry Rz
functions. By noting that Ry(- %J Rz(x) Ryﬁ%ﬁ = Rx(x) we can give the partial

wave expansion
: S s 5
Ag (B (8 0R (IR (80P, » R (IR (E)Pc, By (Bp)R (xR (Bpdpg =

+J

W OZO Zj I‘(Aj+Jj+1) Ry .
= (2J.+1) —~t—— P~ (cos(E. + 3) ) X
' §AB,C Um0 A,=-g, 3 TOGymIgIr >l
3 i3
A . .3 - - i A
x exp(i AAXA i ABXB i lcxc) M(JA,_A,JB,AB,JC,AC,tA,tB,tC) . CQB)

In order that A6 depend only on the differences XpA~Xc and XpTXgs We

require A=)

c A'AB‘ Remembering from our discussion of A5 that we must,

even beyond considerations of signature, continue separately positive and
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negative helicities, we divide the Xj sums in (68) into six regions

1 A, >0, A, >0, A.=Xx, -A,>0 , (69)

A= B = c- a8 =
I Ay 20, g2 0, A <0, (70
I11 AA >0, KB < 0, ‘AC >0 ’ ‘ (71)
v XA < 0, XB < 0, AC_< 0 R (72)
v 'AA <0, Ay<0, A.20 . (73)
and Vi AA < 0, AB > 0, AC < 6 . (74)

We must define different amplitudes to be continued into the right half
or left half A plane for each helicity. We will designate by a subseript Rj
or Lj the amplitude continued in the right or left half plane for each

j = A,B,C. Thus the quantity M will be continued into the right hand

RyRgRec
plane of lA, KB’ and AC; its definition in terms of ‘AG is
M (J, A, s Jg Ag, J ) 8,
RyRZR. ““A “A% VB TB’ TC €7 Thy = Ap,h
1 i LA 1 i A 1 i Ac
y E‘J dxy Py (xy) E'J dxp Py (xp) 7 J dx. Py {xg) >
A B C
-1 -1 -1
o —idk +id_y
Zm dXA e AN 2m de o DB
* f 77 F Ao (XprXgsXerXpsXpaXe = 035 (75)
0 0

where xj = cos(aj + g&. Amplitudes to be defined in left half planes are

b as in (17) and (28).

defined using P
We may follow all the steps in the discussion of AS above to write

Sommerfeld-Watson transforms for each of the six regions. Since there scems

»
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to be no particular point in writing out six such long formulae, we will

1

give the transform for region I only, leaving the others to the patient

reader. We choose to eliminate A, in the writing, and find

C
Region I _ _ o
C
dX dA dJ.
- { B I —D ' I I —J (27.+1)T(A.-J.) %
2i sinmh 2i sinwi, j=A 2ni Y 33
CA A CA B CJ
A B j
A, $(x,-X) A ~1 (Xp-xp) A
xT{(L.+J.+1) P J (-x.) [-e A TC ] A [-e BC 1 B x
J o3 J. 3
J
x M (FA, Johy, J. A=) (76)
RARBRC AA B'B C A B

where AC is to be set equal to AA-AB in all expressions, and

(::)= cOos (£j+ ga = —sinEj.
e

The partial wave coefficients MR and ML are taken to have only

dynamical poles or cuts in the Jj and to have no further singularities in

the lj' With this assumption, the asymptotic behaviour in, say, is

XA

governed by the singularities in x, which reflect, via the gamma funct-

A

ions in (76) and its companions for the other regions, the singularities

in JA"JB’ and JC.

Taking this example further we find that for singularities in Jj at

aj(tj) > 0, there are two terms in the leading asymptotic behaviour of A6

as X, * -i= with Xpr Xps Xoo tA’ Tos tC' and Xp held fixed; set XC=0,

These two terms come from poles in AA at uA(tA) or at aB(tB) + ac(tc).

»

So
iy, «, (t.)
ALTATTA
A6 (Xj.tj,XA,XB) ’\-'/. ("e .
. X‘A o-1w

xj’tj'XB fixed



-22-

ixy ogltgdran(ty)

+ ('e )] Fz(xj,t-,XB) . ' (77)

J

The identification of two terms in the asymptotic behaviour in an azimuthal

14) Their

éngle for A6 has been made in a paper by Low and coworkers.
definition of poles in helicity differs somewhat from ours, and their method
of derivation is certainly remarkably dissimilar; however, their result is

equivalent to (77).

In the limit Xy

+ -i= with Xp» tj and Ej fixed the plane Py pA

is "moving away'" from the cluster of four momenta Pg» pé;:pc, and pé. Since
the inner product of p, or pA with any of these vectors is becoming
infinite, while any of the inner products among these vectors is remaining
finite, one may properly inquire why the tree graph of Figure 3 should be
considered in this limit. That 1is, why not take a tree configuration where

Py and Pc and pé and Pp o ziy,a%?fi?e azset of pairs for a partial wave

: ' Ao (PpPI7) -
expansion and thus encounter (-e ) in the limit. They key to
the answer is that as X + -jw Xg» aj’ tj fixed, ;he quantities
pA-(pB-pé), pA-(pB-pé), pA'(pCfpé), and pA'(pC-pé) remain fixed. This
requirement among dot products singles out the pairing (pB pé), (pc pé) of
Figure 3.

Just a few words about the results in this section before we proceed
to the single particle inclusive process. The limit (77) is the same as the
limit in Eq. (30} if wé choose az(tB) = 0; that is if we take the residue
of A6 at a spin zero pele in the We know that this limit on AS does not

. 2
since once we take t_=m to reach the

occur in a physical region of Ag B

spin zero pole, we have A(tA,tB tc) > 0 and cannot make it negative by

continuing in tA and tC " to negative values. When we let tA, tB’ and
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tC be continued to negative values such that A(tA,tB,tC) > 0, - then by our
construction, the Sommerfeld-Watson transform of (76} etc. is useful for
yielding the asymptotic behaviour in the azimuthal angles X and Xg con-

tinued to the y-boost angles Xq and Xy encountered in (52). The criterien

for an azimuthal angle'asymptotic limit to occur in a physical region of a

multiparticle S-matrix element is that for some tree graph configuration

there be a vertex of three spacelike momenta Q,, Q,, and Q. such that

2 2
A(Qz; Qg, Q;] < 0. The asymptotic limit of an azimuthal angle associated with

this vertex is governed by singularities in the conjugate helicity as given
by multiple Sommerfeld-Watson transforms such as (76).

Finally, let us mention an elementary reason why there are two terms
in the leading behaviour in Xp = -i® as in (77). If we consider the vertex
corresponding to a particle of mass /;;; spin JA decaying at rest to

vt JB + Jtc, JC moving along the z-axis, then the helicity A

3’ is

A
restricted to be less than the smaller of JA or JB + JC by conservation
of angular momentum, The gamma functions in the decay matrix element which
yield this restriction, when continued in helicity and angular momentum,

result in precisely the two terms -of (77). Said in other words, one of

the lessons of the multiple partial wave analyses is that the singularities

in complex helicity are bounded by the maximum sense values allowed to

ordinary helicity.
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Iv. Azimuthal Angle Limits in the Single Particle Inclusive Reaction

We now propose td take the formalism we have built up for finding the
location of helicity singularities in Sommerfeld-Watson transforms of multi-
particle amplitudes and apply it to an analysis of. the single particle
inclusive distribﬁtion for py+pg > pi + anything. The regime of interest
)2

to us will be when the initial energy s = (p1+p3 + o« while the momentum

transfer t = (pl - pi)2 and the missing mass Wz = (p1+p3-pi)2 are held
fixed. We will demonstrate first that this limit of the forward A6 can

only be reached by taking an azimuthal angle to infinity.i As usual we will
encounter, from ecach of the six regions of the Sommerfeld-Watson transform

. two terms in the asymptotic behaviour of A6 in this limit. One term in

each limit will be shown to have no dependence on the missing mass, and thus
only one of the possible terms from each region will contribute to the
inclusive cross section which is extracted from the forward AG by taking the
absorptive part in W2, We will show that the term which survives in the
$ > =, 01T, W2 fixed limit describes a Reggeon particle absorptive part
with maximum helicity flip in the "crossed" (with respect to Wz) channel.lO’ISJ

In order to discuss the kinematics of A6 appropriate to the inclusive

1 5 = t and then let t3 + 0 from below. At the

1
(a3

reaction we must take t
same time we must set pi = Pys and it will follow that pé = Psx and
P = Py ;fter that.

We choose x3=0, as we always may, and letting ty =1, = t, the
y-rotation angles (41) and (42) which orient Q1 and Q2 in F3 become

/1.5
sin 81 =4 1 = st = - sin 82 , (78)

S0 B = -8 = H ' i (79)
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Writing out the vectors pi and p, Wwe see

,pi = (Ecoshglcoshxl, Esinhélcose - qsind, Ecoshalsinhxl,
~qcosd - EsinhglsinG) _ , (80)
and P, = [Ecoshazcoshxz, Esinhgzcose - gsing, Ecoshgzsinhxz,

qcosg + Esinhgzsine) s (81)

where E = Jﬁz-t/4 and q = v-t/2. Equating these vectors yields

Xl = X T X . (82)

coshE1 = coshE2 , (33)

cosesinhgl = cosesinh£2 , (84)

and 2qcosd = —Esine(sinh£1 + sinhaz) . (85)

as tp > t, cos@ pgoes to 0 and the requirement that (84) hold on the way to

the limit (that is, (84) and its derivative with respect to 6 at 8=0) means

gl = 'Ez = E! (86)

) )
- ¢ cot &3) (87) (f}—————**

which implies that in the limit t,+0, 80 -

We have three variables left in the forward limit of A6' They are ¥,

an azimuthal boost angle 53, a polar boost angle, and t, a momentum

i

and sinhg

transfer. The four vectors P and Qi have become

Q = (0, /~t, 0, 0) , (88)
‘QZ = (0: "/:'_{) 0: O) 3 (89)
Qz = (0, 0, 0, O 90)
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. P, = (Ecoshy, 5= Esinhy, 0) , (91)
P, = (Ecoshy, :%Eiz, Esinhy, 0) , (92)
and | | P3 = (mcoshssmprﬁinhas, 0, 0) . (93)

The invariants s and W2 may be expressed in terms of x , t, and § 3 as
5 = (p1+p3)2 = 2m2 » Zmbcbshy coshL3 - o/t sinh&3 , (94)

2 12 2 .
and W = (p1+p3-p1) =m +t - ZmV:2-51nh53. (95)

The limit s = = , t, W2 fixed can clearly be achieved only by y » -=, 53,
t fixed; that is, it is an azimuthal angle limit in which no polar angle
£ becomes large. We have given, if‘not established, a rule in the discussion
around Eg. (30) that one must employ the partial wave analysis dictated by
one's choice of polar and azimuthal angles to locate the singularities in
helicity in the Sommerfeld-Watson transform which yield the azimuthal angle
limit being considered.

We return, therefore, to the 0(3) analysis of A6‘ for the tree graph

of Figure 3. The following identification of variables for the forxrward A6

is made with the help of (54) and (55):

Xp = Xg = 1X H e = 0, | (96)
E.pA = EB = 0 ; EC = -153 (97)
- and tA = tg = -t ; t3 = tc =0 |, {98)

We know that in the Sommerfeld-Watson transform of each of the six regions
(69}-(74) the singularities in "X reflect, via the explicit kinematic gamma
functions, singularities in the J's. For the case we now adopt of poles in
J. at aj(tj) >0 , the region which giyes the leading asymptotic behaviour

J
as x <+ -= 1is region III. The partial wave amplitude must be continued into
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the right half plane for Ax and AC and the left, for Age Furthermore,
since Xp = Xp = ix, the asymptotlc behaviour in x 1is governed by
AC = AA - AB’ so let us eliminate AB in making the Sommerfeld-Watson

transform which reads with forward kinematics~

C
. dx
Region ITI _ A l ]
A6 - J 21sinwA J 21 51nnA J 21 (2J 1) x
C A cC j=
A
X T(Ay=J )T+ s DT (A =T IT (AT H DT (-2 ~J )
o A -~*p ‘e
x (A=A, +J +1) P (o) p (0) P (sing.) x
C A "B J J c
“A B C
ixy Xe _
x (-e ) MR L R (J A’ JB’AAHACf JC,AC) (99)

ABC
We have argued that the partial wave coefficients M defined in this manner
contain only poles and cuts in the Jj (dynamical singularities) and are

regular in the ..
¢ J -0

In the limit ¥ +‘€§- there are two contributions to the asymptotic

behaviour of AéReglon III. The first comes from the AC pole in F(AC— JC)

which is just the JC = aC(O} pole transferred to the AC plane. This con-

tribution has its gc behaviour explicit since we must do the J integral

C

around the aC(O) pole. The second leading contribution comes from the pair

of gamma functions T(AA - JA) P(AC - JBJ and occurs at

A
A= uA(tA) + aB(tB) with A, = aA[tA), M o= naB(tB). The &

C A B dependence

3
is not specified here. We then recad from (99)

aC(O] o, (0)

Region III (x, p (-i sinhg ) X
o (0)

X>65,8) T (-eH)

x-)-—ou

Ag

53,t fixed
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. - aA(t)+aB(t)
X Fl(t) + (-e 3 . Fz(is,t,lA=aA,AB=-aB), (100)

where Fl and F, are unknown functions of the specified variables. From

Equation (10) for &.(0) > 0 we find

-aC(O)

aC(O) dC(O)
Fa_0)

(-i sinhg,) = (coshgy) /27 Tl + 1), (101)

so noting

e X=s5/mE coshi (102}

in the limit we have taken, we learn that the first term of (100) has no

dependence on__£_. Changing over to s, Wz, and t we may rewrite the limit

3
(100) as
. a {0} .
AGReglon 11X (S, wz, t) ~_/ ("S)C Fltt) +
g =+
W, t fixed
. 2
a, (t)+a, (t) F (W ,t,h, = o, (), Ag=-a (1))
s) A B 2 S Sl (103)

2

NSRS At “p (")

When we take the absorptive part in W2 of this formula to extract the con-

tribution to the inclusive cross section from region IIT, we pick up

~ _
a, {(t)+a, (L) F, (W, t,\, = a, X, = -a.}
oy A B abs { 2 AT A, GB+Q B (104)
W 1/2...2 2., A B
[A / (W sLT,m )] '
Every other contribution to A6 from the other five regions is either of the
+a_ {(0)
C

form {-s) F(t) or it has lower powers of s than (104). We thus reach

the important conclusion that the leading contribution to the inclusive cross

section in the limit s > = WZ, t fixed (as depicted in Figure 4). is

just (104). Since F2 is proportional to the t3 channel amplitude for

Q1 (helicity aA) + Q2 {helicity - aB) > Pyt (—p3], this is precisely what
10) '

Wwe expect.
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Our reaching this result lends strong support to three of the basic
steps we have been carrying out: (1) Our assumption that the partial wave

coefficients such as M contain only dynamical singularities in the
RalaRe 4

Jj; (2} our argument that the helicity singularities in a multiple Sommerfeld-
Watson transform are, therefore, to be read off from the kinematic gamma funct-
ions; and (3) our rule that the partial wave analysis for which one defines

the polar and azimuthal angles & and X 1is the one to employ when the

azimuthal angle becomes asymptotic even though no polar angles become large.

V. Discussion and Conclusions

By considering the five and six point amplitudes in some detail we
have developed a set of operational instructions for locating the singularities
in helicity appearing in multiple Sommerfeld-Watson transformations of many
particle amplitudes. These instructions have just been repeated at the end
of the last section where we also argued that the application of our procedures
to the single particle inclusive procéss yields the proper answer.

We have also argued that an azimuthal angle asymptotic limit of a many
particle amplitude can occur in a physical region of that amplitude when one
encounters in some tree graph a vertex where three spacelike momenta Ql,AQ2
and Q3 meet with A(Qi, Qg, Q%) < 0. As we showed, following Reference 3,
in this kinematic configuration an azimuthal z-rotation angle which is
bounded in physical regions is replaced by a y-boost angle, x , which may
lie anywhere along the real line. ’

In the two examples, AS and A6,

a vertex with which the azimuthal angle was associated lead to a coupling of

we have treated, the covariance of

the singularities in the helicities entering the vertex. One may ask whether
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in higher point functions somehow helicity singularities are not passed from

one end of the process to the other, therefore, making the singularity structure
in helicity unspeakably complicated? We can see from the tree graph configurat-
ion for Ag given in Figure S that this will not occur, and any helicity
communicates only with the neighbouring helicities at any vertex. In the
partial wave expansion of the graph in Figure 5 one encounters the product of
rotation functions

J J J J J
1 2 5 3 4
45 hl(el) dq A2(92) dxs,x'(es) dy- 0(83) 4,

(e,) (105)
5 3 4294

where Js and Bi are the angular momentum and polar angle associated with

Qi' Covariance at the vertices I and II require XS = Al-k and Aé = k4~l

2 3

respectively. However, except in the very special cbnfiguration where 65 =0

(that is, forward internal Reggeon scattering), there is no coupling of Al,

say, with 33 or A4.

There is an amusing point here, however, for the analytic structure in
Al, say, will reflect through the familiar kinematic gamna functions the
singularity structure in Jl(Qi)’ JZ(Qg) and JSCQ§). Sincé the line
carrying QS or Q2 could have been composed in a variety of ways from the
pz, pé, Py pé, Pys and p&, and since the pole and cut structure in J2 or
Jo  may depend on this, we see that the analytic structure in Al may vary
with the tree graph considered. An example of this occurs when we have
internal quantum numbers. Suppose we choose the charges of the spinless
particles, call them pions as in Figures 5 and 6, to be as in those figures.
In each case the charge carried by Ql is +1, with even G parity. In
Figure 5 Q2 carries charge -1 with even G parity, and QS carries
charge 0 with G even. In Figure 6 Q& carries charge 0 with G ‘odd,
and Q; carries charge +1, G odd. Clearly the singularities in A will

i

be different for the two configurations.
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A final sct of remarks concerns signature, which we have avoided until

t .
now in order not to draw attention from the main issue of analytic structure

2) 6) tel‘s us to

in helicity. The arguments of Goddard and White"’ and Weis
regard the Semmerfeld-Watson transforms wec have given as appropriate for
signatured amplitudes which have only "right hand cuts" in the yariables
cosy and cosf , azimuthal and polar cosines. These arguments are exceeding-
ly plausible but rest on an assumed analyticity structure in the cosines for
multiparticle amplitudes. That analyticity could prove false:

Let us see, ho&ever, what consequence such an addition of signature will
- have for us. To identify the signatured amplitudes consider, for example, our
i

A as a function of z=e and X=cosé, . We wish to write a double dispersion

relation in 2z and x and use the definition of MR and ML given in (16)

and (17) to find partial wave coefficients which can be continued in J and

A , the conjugate variables to 6, and ¢. We will write the formulae for

1
MR only. Assuming then sufficient analyticity for AS we can-use the
dispersion relation?)
+oo
Ac(x,2) = -J dx' dz! (x?fig'EQQ_z) , (106)

to write

Mo (3,0) = J dzt zvor71 f dx' Q*xy) x
<! Qg
1 X
o]

{ p(x',2") - 17 p(x',207 + DM [pxt,-27) «
- -7 a2 } , (107)

where we have started the X' integration at X and noted the symmetry

-

QE(-x) = - (al)J'k Qg{x) for the "second kind functions" ag(x). We see
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that it is appropriate to continue separately J even and odd and X even

and odd, so we define a.helicify signature T, =t and a usual J-signature

Ty o= + and signatured partial wave coefficients
T, T : ’
M Mg = J dzt 2071 f Q;(x') x
1 X
7o

x {[p(X',Z'} =1y 1 pl-x',2)] -t lelxt,-2") - 1y o1 a(-x,z')] } » (108)

which coincides with MR(J,A) fér J -even (odd), Ty = 31 and X even

(odd), 7, = *l.
We now perform a Sommerfeld-Watson transform on the sum

] ] e 2 P3 (x) My (I, %) %%%5%{%%- (109)

A=0 J=i

which becomes

_da dJ
-J m J m T(A—J) F(;\+J+I) (23+1) X

CA _ CJ

SR A A A
(-z)" + 1, (2) BA-x) + 7.1, BO(x) 1T )
It 1 2 R ol BN ¢ RV B (110)

The significant feature of (110) is that the product T of J and A

signatures anpears. In every simultaneous J and ) continuation, then,

we will find the product cf Ty and the associated Ty

If we apply these considerations to the inclusive process discussed in

the previous section, we see that since £A = EB = 0 we always encounter

=X
PJ(O) (1+TJ Tl) for these and so must have T, = T3 for A and B.

Region III which has a Wz discontinuity

Writing the full contribution to A6

we have in the limit s - =, W2, t fixed
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(1 -iﬂaA
. ; g, +a. - J, * e )
Agcglon T~ Z s A B A "
, gk T TJB sin wa,
W,t fixed
+ imo
(. +e D |
J .
_ B 1 E
X e %
sin TG : oW G‘A-.’(IB T :
B [51n(£c + i-)] Je
dr TJATJBTJC
x [ TN P(aA+aB-JC) T(aA+aB+JC+1)(2JC+1) MR L R (Jc,t) x
A'BC
o, +o o,+o '
= A B T ~"A B Ll :
x P (-cos(¢. +5)) + 1, T, 1, P (cos(E~ + 3] (111
[ JC c 2 JA JB JC JC c 2
where o= aA(t), ap = aB(t] s and because AC = AA - AB we have noted
TA =TT, =TTy here. Thus we see the result of Einhorn, et al.17)
Cc A B A B
that the signature factor for J. in this limit must be 1. 1. 1 It
C JC JA JB

is curious that because of the special kinematics of the inclusive reaction,
one does not employ the full signature structure of the six point function.
In generzl, for configuration which is not forward, we now see, that the

signature product rule given in Ref. 17 does not apply. When in the Je

integral Eq. (111) a specific pole contribution from J. = aC(G) is picked

C

. L . 2 .
up, the discontinuity in cos £.,(W°) would contain the factor
P Y C

sint(a. - a, - a

Tlay +0p - a c % T %)

B C)
- U ' (112)

T(uc + 1 - @y = aB]

This 1s the famous factor insuring the vanishing of the "triple Pomeron

10)

vertex and its presence in our treatment is a consequence of the
dynamical assumption we made that M (Jc,t) does not have any further

singularities, let alone fixed poles.
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Figure Captions

The tree graph appropriate for the partial wave analysis of the
five point amplitude A.. The asymptotic limit of Ag in the
angle between the planes formed by Py bS and P, Pg is governed
by the singularities in the helicity attached to the (Ql Py QZ)

vertex.

The tree graph defining the kinematics for the parfial wave analysis
of the six‘point amplitude A6 in the regime where the Qi 'are
spacelike. If A(Qi, Q%, Q;) < 0, the asymptotic limit of an
azimuthal a?gle (y-boost angle) associated with the (Q1 Q2 Q3)

the single

vertex can be reached in a physical region of A6;

particle inclusive process is an example.

The tree graph appropriate for the partial wave expansion of A6

when Figure 2 is analytically continued to the regime Q2, Ag, Qé > 0.

This shows the single particle inclusive process as the W2 dis-

continuity of A, at t, = t, = t, t, =0, The limit s =+ =, t,

6 1 3

2 .. . . .
W® fixed for this c¢ross section involves only a y-boost angle

becoming infinite.

A tree graph for AS

Another tree graph for AS'
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