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Although the fine structure constant is one of the best de-
termined numbers in physics, the reason why nature selects the
particular value a = 1/137. 03602 + 0, 00021 for the electromagnetic
coupling strength is still a mystery, and has provoked much inter-
esting theoretical speculation. For purposes of discussion, the
speculations may be divided roughly into four general types:

(a) Theories in which @ is cosmologically determined; (b) The-
ories in which o is a constant which is determined microscop-
ically through the interplay of the electromagnetic interaction

with interactions of other types, either gravitational, weak or
strong; {(c) Theories in which « is microscopically determined
through properties of the electromagnetic interaction alone, con-
sidered in isolation from other interactions; and (d) Numerological
speculations.

(a) COSMOLOGICAL THEORIES

A cosmological idea which has received prominent attention
recently is the suggestion that ¢ may vary with the time t
which has elapsed since the beginning of the universe. In one
version! of this hypothesis «@ varies linearly with cosmic time,

a~t, (la)
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while in another version? (suggested by a possible connection be-
tween electromagnetism and gravitation which we discuss below)
the variation is logarithmic,

o ~ (In t)'l. (1b)

Assuming that the present age of the universe is 2 1010 years, the
rate at which o charges is

R=a/a= 5-10-11 year-l hypothesis (la) (2)
-5-10-13 year-1 hypothesis (1b) .

Although these rates of variation are very small, it is remark-
able that there is now strong experimental evidence ruling out
both hypothesis (la) and (1b), as summarized’ in the following
table:

Source Limit on R

Fine structure of spectra of |R| < 2-10712 year'l
distant radio-galaxies
Nuclear a-decay: geophysical |R] < 2:107"" year
constancy of decay rate of U
Spontaneous fission: geophysical |R| < 5- 10~ year-
constancy of fission decay rate of
ue3s

-15 -
Beta decay: agreement of labor- IR]| < 510 year

atory and geophysical half-lives for
decay Rhenium 187—- Osmium 187
(T ~5- 1010 years)

The only simple hypothesis which is compatible with these limits
is R=0, which means a fine structure constant which is strictly a
constant over the lifetime of the universe. Such a constancy
could result if @« were some sort of cosmological boundary con-
dition, fixed, perhaps, by the detailed structure of the universe
at the beginning of the present expansion phase. Clearly, if o is
determined in such a fashion we could not, with our present
knowledge, hope to calculate it. A more appealing explanation for
the constancy of o is that @ is microscopically determined by the
basic particle interaction laws, independent of cosmological con-
siderations,
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(b} MICROSCOPIC THEORIES RELATING « TO THE
GRAVITATIONAL OR WEAK INTERACTIONS

A basic issue in making a microscopic theory of a is de-
ciding which of the four fundamental interaction types--strong,
electromagnetic, weak and gravitational--must be included, and
which can be neglected. Because of our very limited theoretical
understanding of particle interactions, no systematic discussion
of this problem can be given. The best we can do is to review
various options which have been seriously studied in the past few
years, with the caution that there is at present no proof that any
of these theories actually includes the correct combination of
interactions.

(bl) Theories Combining Electromagnetism and Gravity

A number of authorsz’ 4 have speculated that the length
3.1/2 -33
a=<G)ﬂ/c)/=1.6-1o cm (3)
characterizing quantized theories of gravitation may provide a
natural cutoff which eliminates the logarithmic divergences of
quantum electrodynamics. Apart from details (which in some
versions are complicated), the basic consequence of this idea is
obtained by requiring that the physical mass of the electron be
equal to its electromagnetic self-mass, as calculated with a mo-
mentum cutoff A of order a'zl. Setting A= c =1, this gives

A K'
= § = = R 4
m_ m_=m_ Karln(;é) m_ Kafn (;Za) | (4)
with k¥ and k' numerical constants. Thus, Eq. (4) gives us the
following relation between the gravitational coupling G and the
fine structure constant a,

a=[x1n(r—n’fz'—G—)]'1._ (5)
e

Assuming k' is of order unity, Eq. (5) is satisfied with

K ~137/104 ~1, also near unity, making the relation plausible.
The test of a detailed theory of this type would be whether it

glves the correct value of i, not an easy task since lowest order
electrodynamic perturbation theory gives K = 3/4w, which is sub-
stantially too small. An experimental test of Eq. (5) may be pro-
vided by radar ranging measurements> of the rate of change of G.
Should Dirac's hypothesis3 G ~tl prove correct, then Eq. (5),

~ which would imply a ~ (in t)'l, would be ruled out by the stringent
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limits on the time rate of change of @. A constant G would, of
course, be perfectly compatible with Eq. (5).

(b2) Theories Combining Electromagnetism and Weak Interactions

The fact that the electromagnetic and weak interactions both
utilize vector type couplings suggests that they may have a com-
mon origin. Suppose, for example, that weak interactions are-
mediated by an intermediate vector boson of mass MW which
couples to lesptons and hadrons with the electromagnetic coupling
strength e.> The effective weak coupling coming from the W-
exchange diagram

/7couplings oc e
$rnnannng (6a)

2 2.~ 2 . .-1
W propagator oc (M_ -q ) 1~(M )

W w
for small momentum transfer q

would be
Gp ~™MZ (6Db)
w
to agree with the experimental value of the Fermi constant
Gg ~ 10"5/M one would need an intermediate boson of mass

proton
My ~ 30 Mproton’ (7)

well beyond the present experimental lower limit on My, of a few
proton masses. A particularly appealing version of this type of
theory has been proposed by Weinberg, ® who constructs a unified,
renormalizable theory of weak and electromagnetic interactions.
(Unlike the situation in the gravitational cutoff scheme discussed
above, the renormalization constants in Weinberg's theory are
themselves still infinite.) The basic test of models of this type
will of course be the search for heavy intermediate bosons. While
the models do not calculate @ a priori, if they are proved correct
there will be a strong indication that to calculate ¢ one must take
the weak interactions, as well as the electromagnetic interactions,
into account.
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(c) THEORIES IN WHICH « IS DETERMINED BY
ELECTROMAGNETISM ALONE

Finally, let us discuss the possibility that @ may be deter-
mined microscopically by properties of the electromagnetic inter-
action alone, with the neglect of gravitational, weak and strong
interactions. To justify the neglect of gravity we can argue that
so far there is no experimental evidence for quantum gravitational
effects, and weak interactions may be negligible if they really are
weak, rather than being of electromagnetic strength. An argu-
ment which may justify the neglect of strong interaction effects
will be given later on. The basic requirement which we impose,
in an attempt to get an eigenvalue condition for a, is that the re-
normalization constants of quantum electrodynamics should all be
finite. These constants are

mo = electron bare mass,

ZZ" = electron wave function renormalization, (8)
Z3 = photon wave function renormalization;

we require that as the cutoff A used to calculate them becomes in-
finite, mg, ZZ and Z3 should have finite limits. The condition
on Z3 can be stated in the alternative form that the renormalized
photon propagator dc(-qz/mz, a) [ which is normalized to uni'tyzat
q2=0] should approach the finite constant Zgl = ao/a as =g /m--c0.

A systematic, non-perturbative attack on the problem of
whether Z3 can be finite was made by Gell-Mann and Low in
their classic 1954 paper on the renormalization group. They
showed that there is indeed an eigenvalue condition imposed by
requiring that Z3 be finite, but that the condition takes the form

Ylag)=0 RO

and determines the asymptotic coupling o, rather than the phys-
ical coupling a@. Their analysis leaves a a free parameter of the
theory, restricted only by the condition @ < ag coming from spec-
tral-function positivity. This essential conclusion was retained
in the subsequent work of Johnson, Baker and Willey (JBW), 8 who
made two important advances over the work of Gell-Mann and Low.
First, they showed that _1_f Z3 is finite, then the renormalization
constants Z; and mg can also be finite: The electron wave func-
tion renormalization Z), which is gauge-dependent, can be made
finite by an appropriate choice of gauge (the Landau gauge), while
the electron bare mass m; takes the simple scaling form



S. L. ADLER

2

3 "0 3
mo—constXm( ) e =3 2—ﬂ-+§(

%o, 2
E) + ... (10)
and therefore vanishes in the limit of infinite A provided that £ >0,
(A vanishing bare mass means that the physical mass of the elec-
tron arises entirely from its self-interaction.) Second, Baker
and Johnson? showed that the Gell-Mann Low eigenvalue condition
)=0 implies the much simpler condition F[gl (ao) = 0, where
t P(y) is a function of coupling y defined as follows. Let us
define the photon renormalized proper self-energy m.(-q /m » V)
by -1
a_(-a*fm?y) = [14y v (-a"/mi ] T (1

and let -rrL 1 (-qz/mz, y) denote its single-fermion-loop part,

“{:l]('qz/mz’w = *“O'“ ty i +y2—®~+ e (12)

In the limit of asymptotic -q /m it can be shown that 11[ }-q/rn y)
grows at worst as a single power of fn(-q /m ) [hlgher powers
of In (-q /rn } can only come from multiple-fermion-loop dia-
grams where vacuum polarization insertions appear inside
fermion loops],

“[i] (-qz/mz, y) = G[l] (v) + F[l] (v) ln(-qz/m2)+vanishing terms. (13)

The coefficient of the logarithm in Eq. (13) is the function which
gives the simplified eigenvalue condition; unlike the Gell-Mann
Low function tf which involves all vacuum polarization diagrams,
the function I involves only aTery special subclass of these
diagrams.

In addition to showing that llJ(ao) = 0 implies F[ 1 (oz )=0,
the Baker-Johnson analysis also shows t}ﬁt Y (ag)=0 1rnp11es
(m=0, y=ag) = 0 for n > 2, where (m y) is the sum of
51ng1e -fermion-loop 2n-point functions
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2 -2 .
T[ 1 (m,y) = .- + permutations]
2n ’ 1 +y |l
%n I 25_1
K14
3, . (14)
2 |1

+y + permutations| + ...

. 2 -

Let us now uselC this powerful result in the following way: We
take a single-fermion-loop 2n-point function and contract n-1
pairs of external photon lineswith n-1 photon propagators, leaving
only two free external phétons. The resulting object has the
same Lorentz structure as the single-fermion-loop proper self
energy L , but some simple combinatorics shows that itis n h
1r[1] itself, but rather the coupling-constant derivative (d/dy)n'llic.
That is, we have 4

(a/ay* el e (15)

But since ng (m=0, y=ag) vanishes, we learn from Eq. (15) that

n-1

d F[I]( )l =0 n>2, (16)
n-1 y Iy:a -

dy 0

that is, F[ I vanishes with an ;r,f;nnig_x_d_g_t_zm aty = ag. A
similar argument shows that Tzl (m=0,y) also vanishes with an
infinite order zero-at y = ag, and this in turn implies that the
Gell-Mann Low function has a zero of infinite order. Hence, _i_f
the Gell-Mann Low function ¢ has a zero for non-vanishing
coupling, it must be a zero of infinite order-- we see that electro-
dynamics must satisfy an extraordinarily strong condition in order
for Z3 to be finite
Whether F[ 1] (y) and Tz[;] (m=0, y) have the required infinite
order zero is an open calculational question. There are two
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possibiljties:

(A) FLY (y) and ng (m=0,y) do not have the required infinite
order zero. Then the renormalization constants of electrodynam-
ics cannot all be finite., [ The only way to avoid this conclusion
would be if a key technical assumption needed for the renormaliza-
tion group analysis breaks down. The assumption states that
terms which vanish asymptotically in each order of perturbation
theory do not sum tc to ive an asymptotically dominant result, ]

(B) F[l] (v) and T (m=0,y) have an infinite order zero at y =
y~> 0. As we have seen, this allows a class of solutions with
finite Z3 , in which ag is fixed to be yg and a < Yo is undeterm-
ined. We will now show!0 that the presence of an infinite order
zero allows one additional solution, in which the physical fine
structure constant a is fixed to be Yo-

The possibility of an additional solution arises because
when an infinite order zero (an essential singularity) is present,
different orders of summing perturbation theory lead to inequiv-
alent theories. One natural way of summing perturbation theory
is to sum ''vacuum-polarization-insertion-wise': One first sums
all internal photon self-energy parts,.and then inserts the result-
ing full photon propagators in the vacuum polarization skeleton
graphs. This order of summation is the one used y JBW, and
leads to their form of the eigenvalue condition F (ar )=0. To
see this we apply ''vacuum-polarization-insertion- w1se” summa -
tion to the single-fermion loop skeleton graphs for the photon
proper self-energy, giving

Lt/ ) Ot - (DD
'@”«@ (17)

permutatxons.
where each shaded blob denotes a full renormalized propagator
insertion ad /q . Let us now assume that in letting qz/mz—»oo,
we can take the limit inside the infinite sum over insertions rep-
resented by Eq. (17), and therefore we replace each blob by its
asymptotic limit ad (oo a)/q2= a Z3 /q —ao/q This gives

w1 o/, aa ]~ nl Y (-q®/m, ) e +ilha i dhd

+ vanishing terms, (18)
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so asymptotic finiteness requires the condition F[ 1 (@g)=0, i.e.
ag=Yqe Similar arguments apply to the multiloop skeleton dia-
grams, when summed ""vacuum-polarization-insertion-wise",
and again give the condition ag=yg .

There is, however, another natural summation order,
which is to proceed '""loopwise': One first sums all single-
fermion-loop vacuum polarization graphs, then one sums all two-
fermion-loop vacuum polarization graphs, and so forth, The sum
of all single-fermion-loop graphs is just

gt m?e , ~, G (@ (@l (19)
‘ -q /m o + vanishing terms,

so asymptotic finiteness now requires F[l] () =0, i.e.,a=y,. It
is easily seen that the same condition a=yy guarantees asymptotic
finiteness of the multiloop vacuum polarization graphs. So we
have found an additional, discrete solution in which « is fixed to
have the value Yo Since ap> @, for this solution ag will be out-
side the region of analyticity of F and so the interchange of
limit with sum used in the "vacuum-polarization-insertion-wise'
summation procedure is invalid. Hence the condition rl1 (a0)=0
derived by JBW does not apply to the discrete solution in which «
is fixed. (If it did, one would have the contradictory equations
a=ap=yg, @ < ao.)

We conclude, then, that requiring the renormalization con-
stants of electrodynamics to be finite, combined with '"loopwise'
summation, leads to an eigenvalue condition for «. We conjecture
that this is the mechanism which fixes the value of the fine struc-
ture constant. The eigenvalue condition has the appealing prop-
erty that it is independent of the number of elementary charged
fermion species which are present. To see this, we note that
when j species are present, the coefficient of the logarithmic
divergence in the single-fermion-loop photon proper self-energy

18 .
> gl
iy oo ley)s (20)

which vanishes if all ay=y3. The same condition guarantees
vanishing of the multiloop vacuum polarization diagrams. So the
value of @ which is determined is the same as in the one species .
case, and the j species are all required to have the same basic
electromagnetic coupling :k'\/§r0. Hence charge quantization ap-
pears in a natural way.
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Let us now give a possible argument for the neglect of the
strong interactions. Suppose that elementary charged fermions
are present which have strong interactions mediated by neutral
boson exchange (the gluon model). Although the bosons do not
themselves contribute vacuum polarization loops, they could mod-
ify the fermion vacuum polarization loops when they appear as
internal radiative corrections, e.g. ’

{ ' (21)

gluon

However, let us now invoke the experimental observation of scal-
ing in_deep inelastic electron scattering, one explanation for
which™” is that the exchanges which mediate the strong interactions
are actually much more strongly damped at high four-momentum
transfer than is the free boson propagator (q2+ pz)'l. If this ex-
planation proves correct, then vacuum polariiation diagrams

with gluon radiative corrections will by themselves be asymptotic-
ally finite, and therefore will not contribute to F . This means,
in turn,that the presence of strong interactions will not alter the
eigenvalue condition for oa.

1
What can be said about the prospects of calculating F[ ] {y)?
All that is known at present is the expansion through 6th order in
perturbation theory), 12

g 22D e Bz L 22

32w 4 2w

Even though the perturbation theory calculations leading to Eq.
(22) are quite horrendous, the resulting coefficients are remark-
ably simple. A possible clue to the origin of this simplicity may
be the fact that FLU is a property of electrodynamics in the zero
fermion mass limit, in which limit the invariance group is the

full conformal group, a much larger group than the usual inhom-
ogeneous Lorentz group. Perhaps this fact can be used to
develop means for calculating rl1] » or at least for approximating
it well enough to determine the location of its singularities.
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(d) NUMEROLOGICAL SPECULA TIONS: WYLER'S FORMULA

So far we have discussed what might be termed!4'theories
in search of number'. But no discussion of @ would be complete
without mentioning a much publicized "number in search of a
theory", the formula for « proposed by Wyler, 15

5
o= - (% 21137, 03608, (23)
4° 4
8w 275!
Whether the agreement of Eq. (23) with experiment has a basis in
physics, or is purely fortuitous, remains at present a completely
open question.
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