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ABSTRACT 

We show that the Feynman rules for vacuum polarization calcula- 

tions and the equations of motion in massless, Euclidean quantum electro- 

dynamics can be transcribed, by means of a stereographic mapping, to the 

surface of the 5-dimensional unit hypersphere. The resulting formalism 

is closely related to the Feynman rules, which we also develop, for mass- 

less electrodynamics.in the conformally-covariant O(5,l) language. The 

hyperspherical formulation has a number of apparent advantages over con- 

ventional Feynman rules in Euclidean space: It is manifestly infrared- 

finite, and it may permit the development of approximation methods based 

on a semiclassical approximation for angular momenta on the hypersphere. 

The finite-electron-mass, Minkowsk’- I space generalization of our results 

gives a simple formulation of electrodynamics in (4,l) de Sitter space. 

t; Operated by Universities Research Association, Inc. under contract 
with the U. S. Atomic Energy Commission. 
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1. INTRODUCTION 

Conformal invariance in quantum field theory has attracted re- 

newed interest recently, because of its connection with problems of asymp- 

totic high energy behavior. 
1 

Important results on leading light-cone singu- 

larities, for example, have been obtained by the use of conformal in- 

variance. 
2 

Another question to which conformal invariance is relevant 

is the study of eigenvalue conditions imposed by requiring renormalization 

constants to be finite. 
3 

To see this, let us consider the single-fermion- 

loop vacuum polarization diagrams in spin-i quantum electrodynamics, 

illustrated in Fig. L. If we work in coordinate space with separated points 

x, x’ we can freely pass to the zero-fermion-mass, or conformal limit. 

the structure of the vacuum polarization is unique, 
2 

In this limit, however, 

and hence the sum of diagrams in Fig. 1 (a) must be proportional to the 

lowest order vacuum polarization tensor in Fig. l(b), 

=pY( ’ 
x ~‘;a) = - 3rr F[ll(e)v:oy)(x,x’) . 

When Eq. (1) is Fourier transformed to momentum space, using current 

conservation in the usual fashion to eliminate the quadratic divergence, 

the function F1ll (cu) appears as the coefficient of the logarithmically di- 

vergent term. Requiring the photon wave function renormalization 2 3 

to be finite then imposes the eigenvalue condition F Q) = 0. 4 

Our aim in the present paper is to study reformulations of mass- 

less electrodynamics which are made possible by its invariance under 

conformal transformations, with the goal of developing methods which 

may allow one to calculate or approximate the function F Dl appearing 

(1) 
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in Eq. (1). Because the singularity structure in x and x’ is not of 

interest (it is just that of the lowest order vacuum polarization). we make 

the Dyson-Wick rotation to a Euclidean metric at the outset. Thus we 

deal with massless, Euclidean quantum electrodynamics. Our principal 

result is that the Feynman rules for vacuum polarization calculations and 

the equations of motion in this theory can be simply rewritten in terms 

of equivalent rules and equations of motion on the surface of the 5-dimen- 

sional unit hypersphere. In Section 2 we state the 5-dimensional rules 

and verify by explicit transformation that they are equivalent to the usual 

rules in Euclidean coordinate space (x-space). We also construct and 

verify a 5-dimensional formulation of the Maxwell equations and the equa- 

tion of current conservation, and discuss the physical meaning of rotations 

and inversions on the hypersphere. In Section 3 we discuss massless, 

Euclidean quantum electrodynamics in the manifestly conformal-covariant 

O(5.1) language. We develop the Feynman rules in this formalism, explore 

some of their peculiar features, and show that they are related by a simple 

projective transformation to the rules on the 5-dimensional hypersphere. 

In Section 4 we discuss possible generalizations and applications of our 

results. We point out that the finite-electron-mass, Minkowski-space 

extension of our hyperspherical results gives a simple formulation of 

electrodynamics in (4,l) de Sitter space. The electron wave equation 

which we use is just the de Sitter space equation originally proposed by 

Dirac, 5 but our treatment of the Maxwell equations is an improvement 

over that of Dirac, and does not require the imposition of homogeneity 
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conditions. There are a number of calculational advantages of the hyper- 

spherical formulation of electrodynamics over the usual Feynman rules 

in Euclidean space. First, because the surface of the hypersphere is a 

bounded domain, the ‘calculation of vacuum polarization diagrams in the 

S-dimensional formalism is manifestly infrared-finite. Second, because 

the wave operators on the hypersphere are constructed from angular mo- 

mentum operators, there appears to be the possibility of making semi- 

classical approximations when virtual angular momentum quantum numbers 

are large compared to unity. This contrasts sharply with the situation in 

Euclidean space, where there is no natural distance or momentum scale 

which distinguishes regions where one can approximate the wave operator. 

2. 5-DIMENSIONAL FORMALISM 

In this section we set out the 5-dimensional formalism and verify, 

by explicit transformation, its equivalence to the usual rules in x-space. 

Sections 2(a)-2(c) contain a summary 01 the five-dimensional Feynman 

rules and equations of motion, while in Sets. 2(d) and 2(e) we discuss the 

transformation to x-space and the interpretation of symmetries on the 

hypersphere. 

2(a) Summary of Feynman Rules on the Hypersphere 

In writing down the 5-dimensional rules and comparing them with 

their Euclidean counterparts, we adhere to the following conventions and 

notation. 
6 

Five-dimensional unit vectors are denoted by TJ~,~~, . . . ; 5- 

dimensional vector indices are indicated by lower case Roman letters 
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a, b, . . . which take the values 1,. . . , 5, and the 5-dimensional metric is 

the Euclidean metric 6 Similarly, ordinary 4-dimensional vectors 
ab’ + 

are denoted by x 1’x2’...’ with vector indices p, Y, . . . taking the values 

1 , . . . ,4 and with a 4-dimensional Euclidean metric 6 
IIV’ 

The usual 4x4 

Dirac y-matrices are taken to satisfy a Euclidean Clifford algebra 

{Y,,,.Y,) = 2 6 
CL” 

(2) 

and are all hermitian; explicit representations for these matrices are 

well known. In writing the 5-dimensional rules we need, instead of the 

Y’S, a set of five hermitian 8x8 matrices cy a satisfying the Clifford alge- 

bra 

{aa* eb} = 2 b 
ab * (31 

In terms of the y-matrices and the Pauli spin matrices 71 2 3, an ex- 
t I 

plicit representation of the a-matrices is 

(I 
P =yT ’ Ly5=73 ; v 1 

since the matrix 
r 

o6 = ‘2 

satisfies (Y 
2 

6 
= 1 and anticommutes with the cua, the trace of an odd 

(4) 

(5) 

number of a-matrices vanishes. Physical quantities such as the electro- 

magnetic current, vector potential, etc. will be denoted by capital letters 

(Ja, Aa,. . . ) in 5-dimensional space and by lower case letters (j )I $...) ,a 

in Euclidean space. We let s d4x = s dxldx2dx3dx4 denote the integra- 

tion of x over Euclidean space and we similarly let s dR denote the 
‘I 

integration of q over the surface of the 5-dimensional hypersphere. 

Finally, we use tr4 and tr8 to denote respectively the trace over the 
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y-matrices and the a-matrices. 

The connection between the 5-dimensional coordinate q describing 

a space-time point and its Euclidean equivalent x is given by the stereo- 

graphic mapping’ 
-1 

x=lcq , s=ltT( 
5 ’ 

(ba) 
P CL 

with the inverse transformation 

=zlL 1-X2 
q 

P 1+x2 ’ 
q5 = - 

1+x2 

The 5-dimensional electromagnetic current Ja, which satisfies the con- 

s traint equation 

r,*J =qaJa = 0 

is mapped into the usuai’electromagnetic current j 
P 

by 

-3. 
K ~~=Ju-xuJ~ , 

with the inverse transformation 

(6b) 

(7) 

Jp=KA3j -K 
-2 

P 
x x*j , 

!J I 
J5 = - sM2x.j . (8b) 

We can now state the 5-dimensional Feynman rules with, for 

comparison, their Euclidean counterparts: 
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5-dimensional 

electron 
propagator 

$(a .TJ1-l)&Y .lJ2tu 

=i 
IT hfQ4 

photon 
propagator 

1 
6 

ab - 

41r2 (q1-72)2 

electron-photon 
iecr 

vertex a 
z + ie[cu*ql, aa] 

each closed 
fermion loop 

-tr 
8 

each virtual 

coordinate integration 

Euclidean 

. y * (x,-x,) 
-1 

2rr 2 (x1-x214 

1 
6 

- plJ 

4n2 (Tyq2 
t gauge terms 

(9) 

iey 
P 

-tr 
4 

s d4x 

(The two indicated forms of 5-dimensional electron-photon vertex are 

equal when sandwiched between electron propagators. ) 

The equivalence of the two sets of Feynman rules for vacuum polarization 

(closed-fermion-loop) calculations is demonstrated explicitly in Sec. 2(d) 

below. 

2(b) Photon Propagator Equation and Maxwell Equations 

To write the wave equation satisfied by the photon propagator on 

the hypersphere we introduce the (antihermitian) angular momentum opera- 

tor 

L 
a a 

ab =? aF 
b 

-rlbF * 
a 

(10) 

When several coordinates ql,q2,. . . are present we denote the angular 

momentum acting at ql by Ll, so (Ll)ab = hl)a a/ahl),- hl)b a/ahl)a, 

etc. In this notation the photon propagator equation takes the form 
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. 

(L12-4) 1 

blpQ 

2 = - 8n2 6sh1-12) > (11) 

where 6 s is the hyperspherical delta-function satisfying 

fhl)6&-q2) = fh2) (12) 

for arbitrary f. The constant multiplying the bS-function in Eq. (11) can 

be verified by integrating Eq. (11) over the hypersphere, 

8 dS2&L12-4) 
1 

(b11-Q2 

=- 

2 
=-4 [-&I F =-8~ 2 

where we have written IJ- = q1’q2 and used the fact that 

1 
/ dQl = s dG(l-t.tT) X azimuthal. integrations . 

-1 

Eq. (11) can also be verified, from the expansion of (1-p) -’ in terms of 

Gegenbauer polynomials C yir)> 8 

& = jjo i:,:y)(p) . 

Using the relation 

CY * (q )=Znf3 $2 
nm(~l)Ynm 2 8*z n bl;v2) I 

m 
‘8 

(13) 

(14) 

(15) 

(16) 

where the Y 
nm(‘l ) 

are orthonormalized hyperspherical harmonics, Eq. 

(15) becomes 
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1 * (TJ ) 

bll-q2)2 

: 4n2 ITi c ‘sync 2 . 
n=O m 

Then, using the differential equation for the hyperspherical harmonics 

L12 Y nm(y) = - 2*(*+3) Ynm(ql) , 

we find from Eq. (17) that 

(L,‘-4) - ’ 

hl-12~2 

= - 8rr2 c c Ynm(ql) Y;m(q2) 
n=O m 

2- 8,~~ 6sh1-.22 , (19) 

(17) 

(18) 

in agreement with Eq. (11). 

To write the Maxwell equations on the hypersphere we introduce 

the electromagnetic potential 5-vecto’r Aa, which satisfies the constraint 

q.A = 0 (20) 

and is related to the electromagnetic potential a 
t-r 

in Euclidean space by 

K-la =A-xA 
)I VP5 * 

(21) 

The electromagnetic field-strength is described by the totally antisym- 

metric rank-three tensor 

F 
abc 

= LabAc + LbcAa + LcaAb t (22) 

which is dual to the antisymmetric rank-two tensor 

F- 
abcde cde 

=E 
abcde 

a A rl- cal e’ 
d 

(23) 

The usual dual tensor ? 
PV 

in Euclidean space is related to $ 
ab by 

K-2F =$F”-x 6 -x s 
I*” CL 5v vp5 * 

(24) 

In terms of the tensors Fabc and F 
ab 

the Maxwell equations become 

LabFabc = 2e J 
c 

, (25-I 



-lO- 

La&.== c,, I (25b) 

with J c the electromagnePir .zxrremt, Which satisfies the conservation 

equation 
9 

LabJb = Ja (26) 

An explicit demonstration that Eqs. (25) and (26) indeed do correspond 

to the Maxwell and current conservation equations in x-space will be 

given below in Sec. 2(d). 

When Eqs. (22) and (23) are used to express the Maxwell equations 

in terms of the potential A, Eq. (25b) is trivially satisfied, while Eq. 

(25~~) becomes 

PcaA, = 2e Jc , (27) 

with P ca the wave operator 

P (28) 
Ca 

= 2 LcbLba - 6 Lea t L2 bca . 

Using the angular momentum commutation relations it is straightforward 

to verify that pc, has the following proper ties, 

LbcPca = PbcLca = ‘ba ’ 

(29) 

‘bPba =PbaTa=O , 

which guarantee the consistency of Eq. (27) with the constraints on J 

given by Eq. (7) and Eq. (26). Eq. (27) can be further simplified if the 

potential A a is chosen to satisfy the condition 

LabAb = A , (30) a 

which is the hyperspherical analog of the Lorentz condition. When acting 

on potentials which obey Eq: (30) the operator Pea becomes simply 
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(L2-4) 6 
G3’ 

Hence the wave equation becomes 

(L’-4)Ac = 2e J 
. c ’ 

and as expected involves the same wave operator as appears in the photon 

propagator equation; Eq. (11). 

2(c) Electron Propagator Equation and Field Equation 

To write the electron propagator equation we introduce the matrix 

Y ab defined by 

Y 
=1 

ab 4 b,Gbl * (32) 

Using the abbreviation yabLab = y - L, we find that the electron propaga- 

tor obeys the wave equation 

(iy-lt2) 
(a * ql-l)(cr - q2+1) 2 

=- 2n -z.. 
b11-12)4 

y11-q2)(a * q2t1) 

(a -ql-lHa -q2+1) 

h,-?,I 
4 

(it--2) = - 2*26S(711-‘1,)(a *ql-1) , 

(33) 

where the coefficient of the 6S-function in Eq. (33) is obtained by averaging 

. r 
over the hypersphere. as in Eq. (13). An alternative method for obtaining 

Eq. (33) is to use the following relation between the electron and photon 

propagators, 

(a .?l-l)(a -q2+1) 
=- 

(y12)4 

$(iu31tl) ’ 2 (cY-q2fl) . (34) 

(y-1,) 

Applying the wave operator iylt 2 to Eq. (34) and using the identity 

(iy - Llt2)(iy. L1tl) = - +(L12-4) 9 

we find 

(35) 
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(iy31+2) 

(0 .?ll-l)(a *q2+1) 

hlp,)4, 

= $ (L,2-4) 1 2 (o*12+1) 

h1-?,) 

=- 2?r2 6s(q1-qi)(a *q2+1) I (36) 

where in the last step we have used the photo-n propagator equation, Eq. (11). 

The matrix yab is a generalized spin operator for the electron. 

WritZng 

S 
ab = - iYab > 

we find that S and L satisfy identical commutation relations, 

[%b’ ‘cd’ = 6acSdb- ‘adScb + ‘bcSad- 6bdSac ’ 

[Lab’ Lcd3 = ‘ac=db- %dL;bf ‘bc=ad- 6bcLac ’ 

and that 

s2=-5 , 

(L.S)2 = 3 L’S - $ L2 . 

The second relation in Eq. (39) leads immediately to the identity in Eq. 

(37) 

(38) 

(39) 

(35). 

Finally, in terms of an 8-component electron spinor x the elec- 

tron wave equation takes the form 

- 
(40) 

with the adjoint equation 

I [( 
s x iyab q, ‘;i;;- f 

b 
(4i) 

&(’ . 

The electromagnetic current J c 
which appears in Eq. (31) is given by 
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JcW = + ; [~-L~~] x . (42) 

Using the relation + 

( 
a 

?-- a aaq -rlcaq [a.q.a,] = [a.q,aa] - 2iq,y*L 

=. a ) 

and Eqs. (40) and (41), we see that the current J satisfies the current 
c 

conservation condition of Eq. (26). The constraint imposed by Eq. (7) 

is also obviously~satisfied. 

2(d) Tramformation from the Hypersphere to x-Space 

We give~in this section the explicit transformations which map 

the hyperspherical Feynman rules and equations of motion into the corres- 

ponding rules and equations of motion in x-space. We begin with the Feyn- 

man rules of Eq. (9) and consider first a closed fermion loop coupling 

to 2n photons, given by 

1 
c 

Z;; permutations 
- tr8 

I 

+(o.?l-l)&Y~2t1) 
‘-i; iecv 

-i 4b -q2-l&cu *q3+1) 

of 1,...,2n 
ll h,-?,) 

4 
%” h,-T,) 

4 

-i s-12, -l&& .rQfl) 
. . . 

-2 
2n-“1)4 

ietv . 
lT (11 =I 1 

(44) 

In order to obtain the corresponding Zn-point function in x-space, we 

must transform each of the 2n current indices according to the recipe 

of Eq. (8a), which means that we effectively make the replacement 

for each vertex LY 
a.’ 

After this replacement has been made, we must 
1 

then find that a purely algebraic rearrangement of factors gives the Zn- 

point function computed from x-space Feynman rules. For the denomi- 

(45) 
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nator in Eq. (44) the rearrangement is trivial, since substitution of Eq. 

(6) shows that 

bli-“itll 
2 

= KiKitl(Xi-Xi+li2 . (46) 

To rearrange the numerator we exploit the fact that the factors ‘Y-T f 1 

appearing in each propagator are projection operators, allowing us to re- 

write the numerator of the general propagator according to 

;(a * y-1) $b ‘?itl+l) = $(a -qi-l) & * (%+l-qi) +(a ‘?itlt’) . (47) 

We next introduce the matrix O(x) given by 

O(x) = 
1ta5e *x 

o(x)-’ = 
I-a5a *x 

(1+x2)* (1+x2)% ’ 

where CY.X denotes the’4-dimensional scalar product cz x . Some 
PP 

straightforward algebra then shows that 

(48) 

t 
= c-8. (xi-x. 

1t1 
) (49) 

and that 

)Ly $(a5-1) 
5 P 

* (50) 

Substituting Eq. (4) for the a-matrices, we can pull all factors ~(~5*1) = 

+(~~fl) to the left, where they comb<ne to give a single factor $(T3+1). 

The factors 7 1 appearmg in the matrices LY then cancel in pairs (7 
1 

‘= l), 
P 

leaving 

-t=8[+(T3+ll X{yll = - tr4[X{yll , ( 51) 

where X{y} contains y-matrices only. The factor K 
3 

i 
appearing in Eq 
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(45) precisely cancels the factor (K~‘/K~~)~ arising from the substitution 

of Eq. (49) and Eq. (46).in+ E-q- .(44). Thus, we have shown that when the 

replacements of Eq. (45) are made, Eq. (44) can be algebraically rearranged 

to the form 

~ permu~tions _ tr4 ~ ” (xl-x~) 
I 

icy -i ” ‘x2-x3’ 

of 1,...,2n 
2rr (x1-x2) p2 21T2 (x2.x3)4 

. . , 2 y * (X2r-X1) 
iey 

2n 2 (x 
2n-?) 

4 I Pl ’ 
(52) 

which is just the 2n-point function calculated according to the Euclidean 

x-space Feynma.n rules. 

The next step is to verify .that the hyperspherical rule, 

5 dn dQ Ja hl) Ja 
Y 12 1 

(53) 

correctly describes the propagation of a virtual photon from q 1 to q2. 

The use of the current J in Eq. (53) is of course just a convenient short- 

hand ;for describing the 2n-point functions from which the photon is emitted 

(absorbed), with all variables other than those referring to the virtual 

photon in question suppressed. Calculating the Jacobian of the transfor- 

mation of Eq. (6) by use of 5-dimensional spherical coordinates gives 

Substituting Eq. (54) into Eq. (53), using Eq. (46) to rewrite the denomi- 

nator of the photon propagator and Eq. (8b) to reexpress the current Ja . 

in terms of the combination of components j 
3 

= K (J -x J ) which is rele- 
CI P P5 

vant to x-space, we find that the factors K precisely cancel, leaving 
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with 

(55) 

c 
2qp (x1) 

1 p2 
2(x2$ (x2) 

1 p2 
A 

P1P2(xl*x2?= (-,-:,)2 5p2- " lCX12 1txz2 

4(1+x ‘X )(x ) (x,1 
(56a) 

1 2 1 Pi Ir2 
t 

(1tx,2)(ltx22) 3 

6. 
v2 21 a = 2 + P*(xl-x21 2 ah) 

1 Pl 
ln(ltx12) (x,-x,) .~ 1. - 

(56b) 

a 
+ ah) 

2, - I 2 Pn(ltx2 [*~n(ltxl 2)ln(ltx22)] 
l I*(xl-x2) “;i 

5 
r. acxa) 2 

p2 
ay:Jpl at,azi, 

2 

In Eq. (56a) we give the form of the i-space photon propagator. A 
-:~, 

which emerges directly from the substitution of Eq. (8b) into Eq. (53); in 

Eq. (56b) we show that A can be rewritten as the usual Feynman propa- 

gator plus total derivative terms (gauge terms), which make no contribu- 

tion to Eq. (55) because of electrom$gnetic current.conservation. Hence 

Eq. (53) is completely equivalent to the usual x-space Feynman rules for 

propagating a virtual photon. In the next section we will show that the 

special significance of the gauge terms in Eq. (56~~) is that they give A 

simple transformation properties under coordinate inversion. 

To transform the photon and electron equations of motion and the 

current conservation equation to x-space, we rewrite the differential 

operators a/aqa, and La’, in terms of x-derivatives according to 

a 
= K-1(6ap-6a5~p) & t terms proportional to 11, , (57) 

P 
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L 
a a 

p”=xp~8xy-x - vax * 
P 

L 
-1 8 

5P 
=x X.2 f(l-K 

Ir ax )ax ’ 
P 

and use the following equation [obtained from Eq. (6)] to differentiate K, 

(58a) 

Applying Eq. (581 to Eqs. (21)-(24) we find that Eq. (241 implies the usual 

connection between the x-space field strength F and potential a 
WV P’ 

f 
a a --a =+& xwc ax, ar ax A 1 

(r xupv pv . (59) 

Similarly, applying Eq. (58) to Eqs. .(25) and (26), we find (after con- 

siderable algebra) that these equations reduce to the usual Maxwell and 

current conservation equations in x-space, 

Eq. (25a) =+ 8 f 
P vu 

=ejy , 

Eq. (25b) w 0 1 
II WV 

=o , 

Eq. (26) m 8j =O. 
PP 

(boa) 

(bob) 

(61) 

To transform the electron wave equation [Eq. (40)] and the expression for 

the electromagnetic current [Eq. (42)] to x-space, we first note that the 

Pauli matrix T2 commutes with the wave operator in Eq. (40), and hence 

the 4-component spinors 

X* = $1 f T2)X 

also satisfy Eq. (40). Defining x-space 4-component spinors $, by 

(62) 

4J* = K3’2 0(x)x* , 

we find that the projection of Eq. (42) into x-space takes the form 

(63) 
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3 -i 
jp(x) = K y x [cr.? t yy51 x 

= jp?- j 
Ic ’ 

with 

jp* =T#* I 7* = ++* . 

(64) 

(65) 

Since a direct (and again somewhat lengthy) calculation shows that the 

Dirac wave operator obeys the transformation 

tc3’20(x)[ iyab[qa(< - ieAb(,,) - qb(< - ieAa(?))] + 21 ~-~‘~O(x)-l 

=- iT2Ks1y - (-& - iea) , (661 

the x-space spinors $* satisfy the usual mass-zero Dirac equation 

y-t&- iea)$* = 0 . (67) 

This completes the demonstration that the hyperspherical formalism is 

completely equivalent to the usual formulation of quantum electrody- 

namics in Euclidean x-space. 

2(e) Interpretation of Symmetries on the Hypersphere 

We briefly discuss in this section the x-space interpretation of 

the rotational and inversion symmetries on the hypersphere. As we have 

seen, the photon wave operator is L2- 4, and this commutes with the ten 

generators Lab of rotations on the hypersphere. Similarly, the free 

Dirac wave operator iy 3 L + 2 commutes with the ten operators 

J 
ab = Lab + Sab I 

which are the hyperspherical rotation generators when spin is taken into 

account. We can interpret the hyperspherical rotational symmetry as 

follows. Six of the rotational generators L to= JPv) 1 cave the 5-z&s 
PV 
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invariant, and therefore, by Eq. (bb), leave x2 unchanged. These clearly 

correspond in x-space to the generators of the homogeneous Lorentz group 

[which of course, in the Euclidean metric which we use, has become the 

four-dimensional rdtation group O(4)]. The remaining four generators 

2 
L 

5v’ 
which change x , correspond to rather complicated conformal trans- 

formations in x-space. For example, the 5-dimensional rotation 

q -+q’: 
?‘I, 2,3 = Y, 2,3 

1’4 
= q4 cosa - q5 since 

1’5 
= q4 since t ~5 cos (Y 

corresponds in x-space to the conformal transformation 

(6%) 

x ex’: X’~’ 
L2, 3 

= x1, 2, ,/D , xl4 = [x4 cos cz-$(l-x’)sincr]/D , 

D=l+x2sin2;tx4sino . 
(69b) 

From this point of view, the manifest covariance of the hyperspherical 

Feynman rules under rotations generated by L5v is a reflection of the 

conformal invariance of zero-fermion-mass electrodynamics. We note, 

finally, that the ordinary x-space translation x + x’ = x + a does not 

correspond to a linear transformation on q, but rather to the nonlinear 

transformation 

q-q’: ‘I’ ~ = bl 
v 

+ (lti5bp]/D’ , 

qa5 = [q5 - i a2Cl%,) - ?*a]/D’ , (70) 

D’ = 1 t 2 a’(lhl5) t rl -a , q.a=q a . 
CIP 

Translation invariance of the x-space formalism guarantees that the 5- 
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dimensional formalism is covariant under the conformal transformations 

of Eq. (70), even though this is not manifestly evident. 
*~ . . 

In addition to the continuous-parameter rotation group, there is 

an important discrete symmetry operation on the hypersphere, the in- 

version 

q--v - (7la) 

According to Eq. (6), this corresponds in x-space to the inverse radius 

transformation 
2 

x-+-x/x . Ulb) 

Because the trace of an odd number of w-matrices vanishes, the hyper- 

spherical expression for the closed loop Zn-point function in Eq. (44) is 

invariant under simultaneous inversion of all the coordinates ql. . .q2n. 

Similarly, the hyperspherical photon propagator is inversion invariant. 

Hence we conclude that (as long as no divergent vacuum polarization in- 

sertions are made) the radiative corrected 2n-point functions in the hyper- 

spherical formalism are manifestly inversion invariant. This in turn 

implies simple transformation properties for the corresponding x-space 

2n-point function under simultaneous inverse radius transformation of 

the coordinates x 1’.‘.‘X2n. To find the form of the x-space transforma- 

tion, we follow the notation of Eq. (53), and let Ja(q) describe the emis- 

sion of a photon from the 2n-point function at coordinate q, with the other 

2n - 1 variables suppressed. In this notation, the inversion invariance 

of the 2n-point function reads 

Jab’ = - rl) = Jab) , (72) 

where, of course, the suppressed variables are also inverted. Projecting 



-21- 

Ja(q) back to the x-space gives 

tc-?j (x) = J (11) - x J (q) 
CL CL P5 ’ 

while projecting the inverted current Ja(?‘) gives 

with 

(K’)-3jF(x’) = JP(?‘) - XL J5(q’) , 

q’ = - ‘1 , x’ = 1 t lg5.= 1 - 115 ,~ x’P = - xlllxZ . 

Using Eqs. (73) and (74). we can convert the equality of Eq. (72) into 

a relation behveen jP(x’) and jP(x), giving 

jF(x) = (x 2 -3 MPV(x)jY(x’) , ) (76) 

(73) 

(74) 

(75) 

where 
2x x 

Mpy(d = 6 -a; 
PV x2 

MPy(x)MyF(~) = 6 
w * (77) 

Thus, the 2n-point function in x-space is left invariant under the com- 

bined operations of (i) simultaneous inverse radius transformation xj 4 

2n 
- XIX. 

J J 
2, j = 1,. . . , 2n and (ii) application of the projection operator n (xj2je3 X 

EM 

j=l 

P,,P,(xj) to the vector indices. This recipe is just the one discussed 

J J 
by Schreier.2 In terms of the matrix M 

P” 
we can understand the signifi- 

cance of the gauge terms in the x-space photon propagator of Eq. (56): 

the gauge terms guarantee that under inverse radius transformations the 

photon propagator transforms covariantly, i. e. 

A (X,X )=M 
PlP2 1 2 

, (xl)M (78) 
V 1 

I (x2)“ , , (-xl/x12, -x2/x22) . 
p2p2 V2 

The usual Feynman propagator, of course, does not satisfy Eq. (78). 
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3. CONNECTION WITH THE MANIFESTLY 
CONFORMAL-COVARIANT FORMALISM 

* 

In this section we discuss massless, Euclidean electrodynamics 

in the manifestly conformal-covariant 0(5., 1) language, and develop its 

connection with the 5-dimensional formalism of the preceding section. 

In Sec. 3(a) we review the O(5,l) formalism and in Sec. 3(b) we develop, 

in a heuristic fash.ion, the 0(5,1) Feynman rules for electrodynamics. 

In Set- 3(c) we show that the O(5,l) rules are related to the 5-dimensional 

rules by a simple projective transformation. 

3(a) The O(5,l) Formalism 

As has been greatly emphasized recently,’ a large class of re- 

normalizable field theories containing no dimensional parameters (masses 

or dimensional coupling constants) are invariant under the 15-parameter 

conformal group of transformations on space- time. In particular, quan- 

tum electrodynamics with zero fermion mags is conformal invariant. We 

recall that of the 15 confbnml-group generators, 10 are the generators of 

the Poincare/group, 1 generates the dilatations 

X --) xx (79) 
P P 

and the remaining 4 generate the special conformal transformations 

XII -+ (xptcpx2)/(l+2c .xfc2x2) . (80) 

Although the usual formulations of massless field theories are manifestly 

Poincarg invariant, their invariance under the nonlinear transformations 

of Eq. (80) is not manifestly evident. However, a very pretty way of 

achieving manifest conformal invariance was introduced by Dirac, 
10 

and 

has been further developed recently. The basic idea is to ‘replace the usual 
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field equations over the Minkowski space-time manifold x 
P 

by equivalent 

field equations over a 6-dimensional projective manifold &A. [We adopt 

the convention that b-dimensional vector indices are indicated by capital 

Roman letters A, B, . . . which take the values 1,. . . ,6. ] The coordinate 

x is related to 5, by the projective transformation 

x = k/C+ , 5+=5,+5, . (81) 

When the metric in x-space is the Minkowski metric (1,1,1, -l), the c- 

space is endowed with the metric (l,l, 1, -l,l, -1); correspondingly, when 

the metric in x-space is the Euclidean metric (l,l,l, l), the c-space is 

endowed with the metric (1,1,1,1,1, -1). In either case, if 5 is restricted 

to the light-cone 

&o ) (82) 

then it can be shown that the 15-parameter linear group of pseudorotations 

on 5 is isomorphic to the conformal group of nonlinear transformations 

on x. In the Minkowski case, the pseudorotations form the pseudoor- 

thogonal group 0(4,2), while in the Euclidean case with which we are pri- 

marily concerned, they form the pseudoorthogonal group O(5,l). So to 

construct a manifestly conformal invariant formulation of massless, Eu- 

clidean electrodynamics, we must write equations which are manifestly 

covariant under the operations of O(5,l). 

Because excellent reviews are available in the literature, 
11 

we will 

not actually detail the development of the 0(5,1)-covariant formalism, but 

rather will simply summarize the results needed for the construction of 

Feynman rules. 
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(1) The electromagnetic current is represented by a 6-vector J,(c), 

homogeneous in 5 of degree -3 and ,satisfying the kinematic constraint 

g.J(s, = 0 . (83) 

The equation of electromagnetic current conservation takes the form9 

L,,JB(S) = J,(f) t 

with 

L 

(84a) 

(84b) 

and J 
A 

(5) is related to the x-space current j 
CL 

(x) by the recipe 

jp(x) = Cc3 {J,(E) - xp[J5(5) + J,(E)] 1 . (85) 

Note that Eqs. (84) and (85) are both invariant under “gauge” transfor- 

mations of the form 

J,(f) -* JA (5) + SAM(C) > (86) 

with M(e) homogeneous in 5 of degree -4. The invariance of Eq. 

(85) follows immediately from Eq. !81), while Eq. (84a) is left unchanged 

because 

LAB $BM(t) = f,(5+5+5) = 5,Wk) > (87) 

where in the second equality we have used the homogeneity of M(c). 

(2) The electromagnetic potential is represented by a 6-vector A B(E), 

homogeneous in f of degree -1 and satisfying the constraint 5 .A = 0. 

The photon wave equation takes the form 

CIGAR = e J,(t) , (88a) 

with 
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a a q 6=aT - . 
B agB 

(3) The electron field is represented by an 8-component spinor x(g), 

homogeneous in 5 of degree -2, which obeys the wave equation 

(88b) 

[ iyAB[kA(& - ieAB(c]- EB(e - ieA*(l))] + 21x = 0 . (89) 

The matrix yAB is defined by 

‘AB n 

where the 8x8 matrices PA satisfy a Clifford algebra 

{P,*P,) = 2 gAB 

with gAB the metric tensor. An explicit representation of the P’S is 

P, = - VpT3 P, = T1 p =-i7 
6 2 * 

The electromagnetic current of the electron is given, in terms of the 

spinor X, by 

JA = 2cB x VBAX I ;=x+p, * 

(90) 

(91) 

(92) 

(93) 

These equations completely specify the 0(5,1)-covariant formulation of 

massless electrodynamics, and, via Eq. (85), allow us to project Zn-point 

functions in the 6-dimensional language back into Zn-point functions in x- 

space. 

3(b) 0(5,1)-Covariant Fevmnan Rules 

We proceed next to deduce, in a heuristic fashion, Feynman rules 

for the 0(5,1)-covariant calculation of closed-fermion-loop processes. 

We will not actually directly prove the equivalence of these rules with the 

usual x-space rules, but rather will show this indirectly in the next section 
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by deducing the 5-dimensional rules of Sec. 2 from the 6-dimensional 

rules which we now develop. ‘l?o begin, we infer from Eq. (93) that the 

rule for a vertex where a current with polarization index A acts at co- 

ordinate 6 is 

vertex 02 erA(5) = elBIPB,PA] ; (94) 

clearly, this rule automatically satisfies the kinematic constraint of Eq. 

(83). [In Eq. (94) and subsequent equations of the present section, we 

omit numerical proportionality constants.] Next, we must guess the 

rule for the electron propagator S(5 ,5 
1 2 

). We first note that since x(c) 

is homogeneous in 5 of degree -2, S must be homogeneous of degree 

-2 in 51 and 5, independently. A check on this requirement is pro- 

vided by the fact that since J,(E) is homogeneous of degree -3, a Zn- 

point function must be homogeneous of degree -3 in each of the 2n coordi- 

n&es. Since the vertex J?,(k) is homogeneous of degree tl, this re- 

quirement will be satisfied by propagator-vertex chains of the form 

S($’ c2r, (5 Ka,, 5,1r, (5 1 . . . 
2 2 3 3 

(95) 

only if the propagator is homogeneous of degree -2 in each of its argu- 

merits. I’he homogeneity requirement immediately restricts the choice 

of propagator to one of two possible forms, 

S2Kl, 5,) = 1 
(5,*52)2 * 

(96) 

We can rule out Sl as a possible choice, however, by noting that when 
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S1 is sandwiched behveen the two adjacent vertices we get 

I-* (5 )S (5 ,5 Jr (5,) = 
[P. 6,~ PAlIP ’ k,P ’ 6,[P * 52, !&I 

1 1 1 1 2 A2 
cc, * E2J3 

(97) 

p ’ k1(k1)A1(<2)A P ’ 5, 
=- 4 

(5, - 5,13 
, 

where we haves used the fact that (S. 5)’ = 5’ = 0. But as we have seen 

above, “gauge” terms of the form (E,), or 
1 

(e,), project to a null 
2 

current in x-space, so use of S 
.I’ 

as the propagator would lead to identic- 

ally vanishing Zn-point functions in x-space. We conclude that the correct 

choice of electron propsgator is S2, and that the 0(5,1)-covariant ex- 

pression for a closed ferm:on loop coupling to Zn-photons is given (up to 

proportionality constants) by 

permt%tions tr8 ’ 2 [P’52’PA 
of 1,. :. ) 2n (5,*5,) 

Although we have constructed our rules to satisfy the kinematic 

constraint of Eq. (83) and the requirements of homogeneity, we must 

now check whether they are consistent with the equation of current con- 

servation, Eq. (84a). To do this, we first examine the effect of the free 

Dirac operator on the propagator forms S1 and S2. By direct calcula- 

tion, we find that 

- - 
(ivABLpB+2) S1(51, 5,) = S1(5,, 52)(ivABLfB-2) = O * 

(iyAzB+2) S,(k,, 5,) = 2 S,(E.,, 5,) , 
t- 

S,(E,, S2)(iyABL2 AB-2) = -2 Sl(E1~5,) , 

(99=) 

(99b) 
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all for 5, # 5, [at cl = 5, there are additional delta-function contribu- 

tions, which we omit in writing Eq. (99)]. We see that the correct propa- 

gator S2 does not satisfy the Dirac equation, and that adding in an arbi- 

trary~multiple of Sl cannot fix things up. In effect, we see that S1 is a 

null propagator (because it leads to a vanishing current in x-space) and 

that S2 is a pseudo-propagator, which when acted on by the Dirac wave 

operator gives a multiple of the null propagator, but not zero. 

Let us now examine the effect of this peculiar state of affairs on 

the current conservation properties of Eq. (98). We consider the propa- 

gator-vertex chain linking the points 51, 5, 5, and act with the differential 

operator LAB = 5, a/~agB- 5, a/at,*, giving 

LAB . . . [P’6,PBl ’ 2 [P’5,*P,21 *” 
(5 .5,) 

= .., [p’$,p, ] ’ 2 [P’f$,l ’ 2 [P-k2~FA21 ‘*’ (100) 

1 (5,‘5) (5 .5,) 

The first term on the right-hand side of Eq. (100) is just the result re- 

quired by Eq. (84a), while the remainder R A 
is given by 

RA = -25* . . . 
i 

7?B 
[p ‘t13PA 1 l 2 hABL +‘) 

1 (5;5) 

(5 ‘5 )2 [P’c,.P, 1 “’ 
2 

2 
t 

+ . ..[P-5 ,P 1 l 
1 *1 (5,W2 

(ivABLAB-2) 

Substituting Eq. (99b) and algebraically rearranging as in Eq. (97), we 

get 
12 
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I 
P*<(62)A2P’~2 

RA = 8 CA . ..wQP. 1 1 
1 (51*5)2 (5*E2J3 *** 

p * k,($)A,P * 6 
t . . . * 

(5,’ o3 
(102) 

Although Eq. (102) does not vanish, the first term in the curly bracket is 

a pure “gauge ” term with respect to the index AZ, while the second is a 

pure “gauge ” term with respect to the index Ai, and hence both give a 

vanishing contribution to the Zn-point function when projected back to x- 

space. So we see that because S2 is a pseudo-propagator, Eq. (98) only 

satisfies a pseudo-current-conservation condition: when we test current 

conse.rvation on a given index, Eq. (84a) is not satisfied in the 6-dimen- - 

sional space, but does hold when we project on all of the remaining indices 

to transform back to x-space. 

As an explicit illustration of this 

let us consider the single loop two-point 

(98) is given by 

~=8{[P'<1,PA11 [P-6,> PAZ]} 

pseudo-conservation property, 

function, which according to Eq. 

$*~2gA1A2-(~1)A2(~2)A1 
cc I (103) 

Acting on Eq. (84) with (L1) *i*i gives 

(L,lAiAL ~1”2gA1A2~S,‘A2(S2’*l = 51’52g 
*i 

~2T:i~)4A2(C21 
*i 

+ R , 

(5,’ 5,) 1’ 2 
(104) 

R=- 
45; ~,~~‘(k,)A, 
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As expected, there is an extra term R which, because it contains the 

facto= (E.,), , makes no contribution to the two-point function in x-space. 
2 

Interestingly, there is no way of modifying Eq. (103) to make the extra 

term R vanish. Tb see this we note that the only other second rank ten- 

sor with the correct homogeneity properties and which satisfies the kine- 

matic constraint of Eq. (83) is 

(105) 

However, Eq. (87) tells us that this expression satisfies 

*iAl (gllAl(S2lA2 (51~A;(521A2 

(J-1’ .:, 
(6,’ 5,j4 (51*E2)4 ’ 

(106) 

so adding a multiple of Eq. (105) to Eq. (103) cannot cancel away R. We 

conclude that pseudo-current-conservation is an unavoidable feature of 

the O(5. I)-covariant formalism. 

Next, we turn our attention to the photon propagator DA A (5 ,c 1. 
121 2 

Because the photon field AB(5) is homogeneous in c of degree -1, the 

photon propagator D must be homogeneous of degree -1 in 5, and 5, 

independently. In addition, in order to annihilate the extra “gauge” terms 

which appear when we test current conservation on indices of the closed 

loop other than A1,A2, the photon propagator must be explicitly transverse, 

‘:lDA A f5,,5,) = 5, *2 DA A 
12 

(6 1 >k = 2 ) 0 . (107) 
1 2 

The simplest form which satisfies these requirements is 
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DAA ff,st,) =h 
1 2 [ 

$(~,)A2 

1 2 
gAIC- 1 

* 
x2-5, - ’ 

(1’38) 

where 2, and 5, are arbitrary points which are held fixed when doing 

the virtual integrations over 5, and 5,. Because of gauge invariance, 

closed-fermion-loop expressions have no dependence on z, and ‘5, after 

one sums over al! orderings, with respect to other photons which are present, 

of the emission and absorption of the virtual photon propagated by Eq. (108). 

The simplest way to verify this statement, and to check the correctness 

of Eq. (108) to begin with, is to transform Eq. (108) back to x-space. We 

find 

E;+$+J 
A1 

E,)D, A ff ,E )J 
*2 

12 1 2 
(5,) = - 2jlll(x,)A; ~ l 2(xl~x2)‘p2 (x2) , (109) 

with the effective x-space propagator given by 

6 

A’ pIp2(Y2) = 
PlP2 + 2 

Gl-~1)~1(~1-~2)p2 

f~l-xl)2fxl-x2)2 

t2 
fx2-x1)plfx12-x2)p2 

(xl-x2)2 (x2-x1 
2.4 

) (x2-x2) 
2 

-2 
Gl-x1)p1f”x2-~2)p2 

2; 2 
(1lOa) 

(;il-x1) (x2-x2) 

6 
V2 a = 

+ ab ) [ 
ml-x2) 2, a 

(xl-x2)2 2 
2 p2 

ah ) 
l IJ.1 

nn(zl-xl)2 
1 

a 
+ a(x) - In(xl-x2) 

[ 
2i a 2 a a 

- 
1 Pl 

2afx 
2 

) wx”,-x2) 1 afx ) 
IJ.2 1 5 

ah,) 
p2 

x [$ In(+l)2 h(x”2-x2)2] . (110b) 

In Eq. (IlOa) we give the form of the x-space propagator which emerges 

directly from the transformation; in this equation xl,j;l,x2,z2 denote, 

respectively, the x-space images of ~l,~,, ~,,~,. In Eq. (110b) we see 
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that A’ is equivalent, up to gauge terms, to the usual Feynman propaga- 

tor, and in particular that all the dependence on gl,z2 is contained in the 

gauge terms. This verifies that Eq. (108)-i* a valid expression for the 

photon propagator, and that tl and 2, drop out of gauge invariant quanti- 

ties, such as closed fermion loops. [The derivation of Eq. (110) from the 

conformal-covariant expression of Eq. (108) indicates that the effect of the 

x-space gauge terms is to render A’ covariant under x-space conformal 

transformations, provided that the points zl,x2 are conformally trans- 

formed along with x1 and x2. 
13 

] 

Finally, calculation of the Jacobian of the transformation of Eq. 

(81) shows that 

s d4x = j” dS5 5i4 , (111) 

where 
J 5 

dS denotes an integration over the hypersphere 5,’ f 5,’ t 

c32 + 1,’ t 55’ = c62, with 5, held fixed. Comparing with Eq. (109), 

we see that 

s 
d4x,d4x2(-2)j (x )A’ 

pl’ 1 PlQY2)jP2(x2) 

Al A2 
(112) 

=S dSgldSc2 J (511DAlA2(5,,f2)J (5,) > 

indicating that the Feynman rule for virtual integrations is simply 

virtual integration over 5: 
s 5 

dS 
- 

(113) 

This completes our specification of the 0(5,1)-covariant Feynman rules 

for calculating closed loop quantities. 
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3(c) Projection onto the 5-Dimensional Unit Hypersphere 

We complete our discussion of the 0(5,1)-covariant formalism by 

showing that it is related, by a simple projective transformation, to the 

5-dimensional Feynman rules of Sec. 2. The transformation is generated 

by exploiting the fact that in an n-virtual photon process, the fixed points 

‘i in each of the n photon propagators can be chosen independently, pro- 

vided that over-all Bose symmetry is maintained. Since closed fermion 

loop amplitudes are independent of all of the propagator fixed points, they 

will be unchanged if we integrate all of the fixed points over their respec- 

tive hyperspheres x12+. . . +T52 = 76’. The effect of this integration is to 

replace the photon propagator of Eq. (108) by the averaged propagator 

s 
n (5,,5,) = 

ds~lds~2Dnl*2(~l~ 52) 

AlA s 
dSEldSE2 

(114) 

The integrations in Eq. (114) are readily evaluated, giving 

/ 

5 
gAIC- 

c gA26 

AlA 
-5, - 

(‘2’6 I 

t terms proportional to (fl), or (5,), ; -’ (115) 
1 2 

the terms proportional to (cl), or (c2)A are uninteresting because they 

1 2 
make a vanishing contribution by virtue of the constraint equation, Eq. (83). 

The key feature of Eq. (115) is that the quantities in brackets, 

gAl65K 
C c gA26 

gA,C - K1j6 ’ g A2- ‘2 ({2)6 
ill6) 

both vanish when C = 6, so the sum in Eq. (115) extends only over 
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c = 1,. . .) 5. This suggests projecting oxito a 5-dimensional space, as 

follows: (i) The 5-dimensional coordinate +I, is related to the 6-dimen- 

sional coordinate 5, by 

5, 
qa=- I 

‘6 
a=1,...,5 . (117a) 

The light-cone restriction on 5 implies that 

q2=1 ) (117b) 

and scalar products in 6-space may be rewritten in 5-space as follows, 

51’5, = - 4 c165,6(yq2)2 . (117c) 

(ii) The five-dimensional current J,(q) is related to the 6-dimensional 

current J,(t) by 

J,(T) = 563[~a(Eha~6(5)1 , (118) 

which is just the projection generated by the brackets of Eq. (116). 

We proceed now to combine Eqs. (115), (117) and (118). Using 

J”dSg=JdQ,,c64 , (1~9) 

we get 

s dS,$Sk2J 
-41 - r 

(5,) DAlA2(S,, 5,)J 
A2 

(5,) 

-26 
ala2 

J (rl,) 

(hl-qZ a2 

, (120) 

which reproduces the 5-dimensional Feynman rule for photon propagation. 

To study the effect of the projection operation of Eq. (118) on the 0(5,1)- 

covariant expression for a closed fermion loop in EL+ (98), we consider 

first the projection of the vertex r,(k). We find 



-35- 

. 

= gb3[fi. ES Pa-%.&l = cb4[P ‘?-P,, Pa-7,P,1 

= - ~64(cr-?+)aa(a.1-1) I 

where we have introduced matrices cz a defined by 

(I =- 
a ‘,6’a * 

Since the propagator (5; c2Je2 can be rewritten as 

1 4 = 

(5; e2j2 (51)~~~2)&12)4 
f 

we see that the projection.of Eq. (118) transforms Eq. (98) into 

(121) 

022) 

(123) 

42n c 
permutations 

tr8 

of l,...,Zn 

1 
. . . 4 (@‘T12nfl)rua (cr*ql-l) (124) 

b12n-11) 1 

which apart from normalization constants is identical with Eq. (44). SO 

we have verified that the projective transformation generated by using the 

averaged propagator of Eq. (114) just gives the 5-dimensional Feynman 

rules for the photon propagator, the electron propagator and the electron- 

photon vertex. 

To conclude, we show that Eq. (118) and the formal properties of 

the 6-dimensional current J,(k) imply the corresponding formal proper- 

ties of the 5-dimensional current Ja(?). We begin with the constraint equa- 

tion, 5. J,(c) = 0, which can be rewritten as 

0 = C.J~(E) - E6~6(5) = 56~a[~a(5b~a~6(5)l = si2 11. oh) , (125) 
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giving the 5-dimensional constraint equation, Eq. (7). Next we consider 

the 6-dimensional version of current conservation, 

LAB JBW = J,(t) > 

and use Eq. (87). with M(5) = cil J,(c), to write 

LAB[JB(5)-5Bf61J6i5)l = J,(k) - E,f;l J6(5) . 

Since the sum on 13 in Eq. (127) exntends only over B = 1,. . . ,5, and 

since we are interested only in values of the free index A = 1,. . . , 5, no 

derivatives 8/8E6 appear. Hence, on multiplying through by 563 and 

using the fact that 

a a =q - 
a hb -nbTELab ’ 

Eq. (127) becomes the 5-dimensional current conservation equation 

L a,, Jb(1) = Jab) . 

026) 

(127) 

(128) 

(129) 

4. DISCUSSION 
< 

In this section we very briefly discuss possible generalizations 

and applications of the 5-dimensional formalism of Sec. 2. First, we 

note that although we have worked with a Euclidean x-space metric through- 

out, it should be straightforward to generalize the 5-dimensional rules to 

the usual Minkowski case. The hypersphere will then become the hyper- 

bolic domain 

, (130) 

which is a (4,l) de Sitter space of unit radius. 
14 

A further generlization 

would consist of giving the electron a mass m and, since the distance 



-37- 

scale now acquires a meaning, calling the radius of the de Sitter space 

R. so that Eq. (130) becomes + 

llz+ qz2+ r(32- r1*2+ 152 =R2 . 

As Dirac’ has shown, an appropriate wave equation describing a massive 

electron in a de Sitter space of radius R is 

x = 0 , (132) 

which is a simple generalization of Eq. (40). The electron propagator cor- 

responding to Eq. (132) will of course differ from the massless propaga- 

tor of Eq. (9). but the electron-photon vertex and the photon propagator 

will be unchanged. The massive 5-dimensional formalism is not exactly - 

equivalent to ordinary massive electrodynamics in Minkowski space-time, 

but as Dirac5 has shown, in any finite neighborhood of 15 = R, Eq. (132) 

reduces to the usual x-space Dirac equation in the limit R - m. It is only 

in the completely massless case that the 5-dimensional and x-space formal- 

isms have the same physical content. 

It should be emphasized that while our electron wave equation is 

identical (in the case m = 0) to Dirac’s, our treatment of the Maxwell 

eqqations is substantially differ+. Unlike our expressions for the electro- 

magnetic field strengths, which involve a/aq 
a 

only through the angular 

momentum opeiator L ab, Dirac’s expressioni’ involve a/&la by itself. 

2 
Hence, in order to avoid going off the hypersurface of constant ‘1 , Dirac 

finds it necessary to introduce homogeneity constraints on the electromag- 

netic potential, of the type encountered in the 0(5,1)-covariant formalism. 
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In our formulation of the 5-dimensional theory, such constraints are un- 

necessary, and an examinz$ion 05. the 5-dimensional Feynman rules of Eq. 

(9) shows, in fact, that they are not homogeneous in the coordinates. The 

absence of homogeneity requirements permits eigenfunction expansions of 

the field operators, and should therefore make possible a canonical quan- 

tization of the 5-dimensional formalism. 
15 

The first step in canonical 

quantization would be to write down an appropriate Lagrangian density; it 

is readily seen that variation of 

2 = - & (Fabc12 + x - ieAb(n)) - +lb (& - t 2 - imR 
3 

x 
a 

(133) 

gives the correct equations of motion. The next step is to pick a “time” 

axis for purposes of ordering operator products in Green’s functions and 

for the definition of canonical momenta. Ordering with respect to n4/(l+n5) 

would correspond to the conventional time-ordering in x-space. Another 

possible choice, ordering with respect to q5, would correspond to x-space 

‘ 
ordering with respect to x , a form of quantization which has been recently 

studied by Fubini and Jackiw. 
16 

This concludes our discussion of possible avenues for generaliza- 

tion of our results. l7 Let us next briefly consider possible calculational 

advantages of the S-dimensional formalism for massless electrodynamics. 

The key point to notice is that whereas the wave operator in Euclidean x- 

2 2 2 
space is 0 

x’ 
with a continuum spectrum -p = - (momentum) , the wave 

operator on the hypersphere is L 
2 

- 4, with discrete spectrum -2(n+l)(nt2). 

This difference in spectra has !xo important consequences. First, the 
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fact that the spectrum of 0 
2 

x 
contains 0 leads to the occurrence of in- 

frared divergences in x-spaces calculations of propagators and vertex 

parts. These divergences are known to cancel, however, in closed fermion 

vacuum polarization loops, 
18 

and this is reflected in our ability to map 

vacuum polarization calculations onto the unit hypersphere, where the 

spectrum of the wave operator does not contain. 0. In other words, closed 

fermion loop calculations on the unit hypersphere are manifestly infrared- 

finite. Second, it is difficult to see how to introduce approximations in 

massless electrodynamics when calculating in Euclidean x-space, since 

there is no natural scale for selecting one region of p2 as being more 

important than another. [We h aye particularly in mind the calculation of 

the function F[l’(,) defined in Sec. 1, where no natural scale for making 

approximations is provided by external momenta. ] The situation is dif- 

ferent on the hypersphere, where unity is a natural scale for. measuring 

the spectrum -2(ntl)(nt2), and where the semiclassical region of large 

quantum~ numbers, n >> 1, provides a natural domain for making approxi- 

mations. The development of techniques for making such semiclassical 

approximations on the hypersphere is an important problem, which, hope- 

fully, may shed light on the nature of the elusive function F qa,. 
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FIGURE CAPTIONS 

Fig. 1: (a) Single-fermion-lopp vacuum polarization diagrams in spin-4 

electrodynamics. 

(b) Lowest order vacuum polarization diagram. 
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