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2. 

Abstract 

The structure functiold for the annihilation process e+ + e- t 

p + X are calculated in the neutral vector gluon model in the Bjorken 

limit. Bjorken scaling is broken by the presence of In q2 factors in 

a way which is closely related to the situation in inelastic scatter- 

ing. All calculations are carried out in a leading-lqarithm appro- 

ximation. In particular there is a multiplicity n - ln2q2 and a close 

interplay between the damping of the elastic form factor and the 

excitation of inelastic channels. The annihilation structure functions 

are shown to be related to their inelastic scattering counterparts by 

analytic continuation and by a physical region reciprocal relation. 

The reciprocal relation is observed to have a number of interesting 

consequences if it applies, in some approximate sense, to pion, protons, 

etc. In addition to the leading logarithm calcclaticns contained in 

this paper the discussions given here of discontinuities o,f the 

virtual-Ccmpton amplitude and the longitudinal impact parameter 

representation are of general interest and applicability. 
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I II!TRODVCTION 

This paper is one in a series of papers I-3 in which we study the 

neutral vector gluon model (massive QED) in the Bjorken scaling' 

limit. The major topic of this paper is the annihilation channel 5-7 

e- + e ++p+x, and the relation of the annihilation structure functions 

to their counterparts 8 in inelastic scattering, e- +P-e-+x . These 

relations may transcend the particular field theory studied here. 

Hare, as in all renormalizable 
", IO 

(in contrast to superrenormali- 

zablL\field theories, strict Bjorken scaling is broken by the presence 

of lnq2 factors in the asymptotic expansion of the structure functions. 

We exploit this by calculating in a leading-logarithm approximation for 

a given order in perturbation theory and then summing the result to all 

orders in the coupling constant. 

As for the inelastic scattering channel, the results we find for 

annihilation in the neutral vector gluon model differ greatly from the 

neutral pseudoscalar (scalar) field theory 
5 

because of diagrams in 

which vector gluons are emitted and absorbed by the charged fermion 

line between the points at which the external current acts 
I2 

. These 

diagrams sum to an "infrared" type result and generate a multiplicity 

of (soft) vector mesons <n> - 1n2q2. 

We find that, after appropriate interpretation, the annihilation 

structure functions can be reached by analytic continuation of the 

inelastic scattering structure functions. Furthermore we find and study 

a reciprocal relation, first explicitely noted by Gribov and Lipatov 
8,,3 

, 

which directly relates the annihilation ai;d inelastic structure functions 
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in their respective physical regions. 

In addition to our calculations for the neutral vector gluon model, 

occasional comparison to the pseudoscalar case and discussion of the 

reciprocal relation, our work here contains two formal sections which 

are of general interest and are not restricted to studies in perturba- 

t ion theory. The first of these is in Sec. II where, after reviewing 

the kinematics, we state the various discontinuities of the virtual 

Compton amplitude which correspond to physical observables and the 

appropriate way to analytically continue from one to another 
14 

. 

While very little of this is truly new we feel it is useful to pull it 

together and emphasize the key points. 

The other formal section is Sec. V, where we study the longitudinal 

impact parameter representation introduced in Ref. (5 ). After making 

the connection with Regge theory we go on to show how the lcngitudinal 

impact parameter representation provides a compact and efficient way to 

study the relations between the annihilation and inelastic structure 

functions. 

The remaining sections of the work are as follows: In Sec. III, 

after briefly reviewing the leading-logarithm approximation which we 

use, we give the results for the annihilation structure functions in the 

neutral vector gluon model. Calculational detai Is are reserved for 

Appendix A. We also give the key properties: multiplicities, momentum 

distributions, etc., of the important final states which build up the 

annihilation cross section. In Sec. IV we discuss analytic continuation 

and the reciprocal relation between annihilation and scattering, using 
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the results of Sec. I II. We also point out a convenient Lorentz frame 

in which these questions can be studied for arbitrary diagrams in any 

theory without explicit evaluation of all momentum integrations. we 

illustrate this with simple “diffractive” diagrams in Y 
5 

theory. 

Calculational details are in Appendix 8. In Sec. VI we discuss some of 

the physical consequences which would follow if the reciprocal relation 

were satisfied (in some approximate sence) by protons, pions, etc. This 

speculation is very tentative as we discuss in the same section. Finally 

in Sec.VlI we give a very short summary of our results. Pesults for a 

cutoff theory are reserved for a future publication. 



6. 

II. Summary of Kinematics and Structure Functions 

In this work we are concerned with calculations of the annihila- 

tion process as well as the relation between annihilation and inelastic 

scattering. Consequently we begin with a brief review of kinematics 

and the structure functions for the two processes. To make clear the 

conditions imposed by crossing (substitution law) and analytic continu- 

ation it is also useful to identify the structure functions with certain 

14 
discontinuities of the virtual Compton amplitude 

It turns out to be helpful to consider simultaneously three dis- 

tinct physical processes. They are: 

Inelastic scattering 

e-(a) + H(p) -f e-c&‘) + x, (2.la) 

(2. lb) 

Three body annihilation 

e-(k-) + e+(k+) + H(p) - X, 

and 

Annihilation 

e-(2-) + e+(e+) + ii(P) + x (2.lc) 

where X stands for the complete sum over the undetected hadron final 

states. The one-photon exchange approximations to these processes are 

shown in Fig. I. 

In each of the three cases we pick variables as follows: 

Inelastic scattering 

q2 = (L-r’)2 10 

u = p.(L-%‘)/m >O 

cos ea = i1.a 

(2.2a) 

(2.3a) 

(2.4a) 
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Three body annihilation 

q2 = (k- + k+)*/ m .O 

%J = P' (k- + k+) / m >O 

‘05 Hb = i-. ;+ 

(2.2b) 

(2.3b) 

(Z.'tb) 

and, 

Annihilation 

92 = (e-+ I,+)2 >o 
" =-P.(e- + t+) / m CO 

^ ^ 
cos H = 2 P 

c 

(2.k) 

(2.3~) 

Both cos Ba and co5 Sb are measured in the hadron rest frame (e=O),while 

co5 e 
c 

is measured in the center-of-mass frame (4'0). [Note that 

according to Eq. (2.3~) \I is the negative of the virtual photon energy 

in the frame F"O.1 For definiteness we will choose the hadron H to be 

a proton; m denotes its mass. All our remarks and equations will hold 

for any other choice for H provided m is always interpreted as the ma55 

of H. 

The physical regions for the three processes discussed above are 

shown together on Fig. 2. Note that had we not neglected the electron 

mass the processes 2.1(a) and 2.1(b) would be separated by a gap Aq2 = 

4me2. 

Aside from known factors associated with the electron lines and the 

virtual photon propagator, the spin averaged cross sections for the 

above processes are proportional to 
15 
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1 WP”( v, q') = L fP jj" (O)I ni '"1 j" 

77 n 
(0) 1 P, (zn)j *^4(p + q - pn) 

=1w2 (v, 4') (P> - 
m2 

p-3 qy (p‘J _ u q") 

q2 q2 

+ WI (,;, qi) (-gUV + bidi. ), 

q2 
(2.5a) 

L; P" 
= Z CP /j' (0) 1 n> cn i jv (0) 1 P>= (2~)~ 6"(p + q - p ) 

?r t 
n 

n 

= 5 w2 (.d, $) (p” - p’9 q’J) (p” - PLL q”) 

q2 q2 

+ i, (,;, 42) (-guv + -9Y. ) , 

q2 

(2.5b) 

and 

r ,w 
(US q2) = E <Olj' (0) ~ F,n> c 

il n 
ci,nlj" (0) 0>=(2~)3 :j4(q - P - p,) 

=; w2 (I>, q2) (PU - !x qq (p" - - P.0 
2 

02 q2 

U” 
+ w, t-9 ““+U) (2 .Sc) 

q2 

for 2.1(a), 2.1(b), and 2,l(c)"respectively. In Eos. 2.5(b) and 2.5(c) 

the subscript c denotes the connected part. 
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The mere fact that we have used variables of the same name and a 

common plot to describe three different physical processes does not in 

itself imply any relations between the processes. Some relations which 

do exist follow from crossing and anaiyticity as we now spell out. 

Consider the non-forward, spin-averaged, virtual Compton amplitude 

II 

T”“(,;,t,q:,qs) = i j d’+x ei(ql+q2)e$ <p2/T(jv(f), j”(-$) IPI>, (2.6) 

which is illustrated in Fig. 3. In Eq. (2.6) 

(ST”) _ (p,+p2)%l+42) 
u = -- 

4m 4m 

5 = (P, + q,)2, 

u = (PI - q2)2, 

and 

t = (q 1 - q2P. 

This Compton amplitude for t<O (aside from anomalous singularities 
l4,lj 

is expected to be an analytic function of \I, q: 
and q$. One expects 

both right (s channel) and left (u channel) hand cuts in L and right 

hand cuts in qi and (1;. 

The substitution law along with the charge conjugation property 

.iJ 
J = -C j' C -I gives the crossing symmetry property, 

T”’ c-u. t, q;, 9:) = T’” (v, t, cl:, $1. (2.7) 

After imposing current conservation one finds (as in Eq. (2.5a) that the 

spin averaged amplitude is automatically symmetric in the indicies u 

and v at t=O. 

The discontinuities which correspond to the o:;yiical ch’servables 

2.5(a) - 2.5(c) are 
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TP” (v+iE, 0, q2, q2) - T”J (\,-iE, 0, qz, ~2) = 2; W’” (v qz) 

(2.Ea) 

with v>O, q’,O, 

TV” (v+ie, 0, q2 + iE’, q2 - ic”) - T”’ (v-ic, 0, q2 +iE’ , q2 -iE”) 

= 2i iP” (v, q2) (2.8b) 

with v>o, q?JO, and 

T’” (v+iE,0,q2 + ic’, q2 - jE”) - TV” (,j-ic,O,q: + ic’, q2- iE”) 

= 2i i”” (.ti, q2) (2.8~) 

with v<O, q2~0,.respectively. We illustrate the discontinuity equations 

2.8(a) - 2.8(c) in Fig. 4. The normal threshold cuts in u begin at 

“R 
= +v o and v = -v L o where 

2m v. = (m + u)~ - rn2 - q2 + i (E’ + E”), (2.9) 

corresponding to single meson production. 

We note that for the space-like case (q?<O) appropriate to in- 

elastic scattering (2.l.a) the right and left hand cuts are non-overlap- 

ping as shown in Fig. 5(a). For the time-like cases (q2>O), Figs. 5(b) 

and 5(c), the cuts are overlapping and one must take care to circle only 

the right hand branch point at +v 
0 

when taking the discontinuities in 

Eqs. (2.8b) and Eqs. (2.8~). 

By inspection of Eqs. (2.83) and (2.8~) along with Fig. 2 we see 

a convenient way to analytically continue from inelastic scattering 

to the annihilation region: continue in the virtual photon masses from 

space-like CO time-l;Z:e values keeping 5 fixed at a positive and 
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l? 
physical value. It is clear, however, that it is necessary to distin- 

guish the initial and final photon masses a!, q$ respectively in order 

that one may continue q: above its cut (+iE) and q; below its cut (-iE). 

In the process of continuation we pass through the three body annihila- 

tion region; the prescription given is correct for this region also - 

Eq. (2.8b). 

In addition to the three (s-channel) discontinuities which we have 

been discussing there are three additonal (u-channel) discontinuities 

of the virtual Compton amplitude which describe similar physical pro- 

T”’ (v-/E, 0, qz, q2) - T“’ (v+ic, 0, q2, q2) = 2i \Jc”” (v, q2) 

(2. IOa) 

with u<O, q’<O, 

T lJp (viz, 0, q2- FE, q2+ic) - TV’ (v+ic, 0, q2-ic, q2 +iE) 

= 2i W “’ (v, q’) (2. lob) 
t 

with v<O, q’,O, and 

T”’ (v-ic, 0, qz -iE, q2+iE) - TV’ (vfiz, 0, q2 -ic, q2 +is) 

= 2i icvu (v, q2) (2. IOC) 

with v>O, q2>0. 

The corresponding physical processes are obtained from those listed 

in Eqs. (2.la) - (2.1~) by the substitution M-H. The corresponding 

physical regions are obtained by reflecting the regions in Fig. 2 about 

the q2 axis; see Fig, 6. The crossing property, Eq. (2.11), shows 

immediately that the cross sections for t?;e latter prOceSSeS 

(e- 
- - 

+i+e-+x,e 
+ 

+ 5 + ; i 2, and e i e+ + ii + ?) are identical 

to those for 2.1(a) - 2.1(c) respectively. Note that certain regions 



12. 

of the q2, v plane are inhabited by two different physical processes. 

This does not imply that the rates for the two processes are equal 

since they are given by different discontinuities of the same master 

-uu analytic function (e.g. in general Wcvu + W .I 

Finally we consider the Bjorken scaling limit. For all processes 

we define a scaling variable 13 

-1 
0=x = 2m v/(-q’) (2.11) 

and consider the limit /q2/*, w fixed. Furthermore in the Bjorken 

limit one imposes the additional restriction mx2>>m2. For annihilation 

therefore 

W’l -o&j 

cl2 

and for inelastic scattering 

1+0(-$ < w < o& ). 
-q2 - - .2 

We pick scaling functions in the standard way. 

For inelastic scattering (recall ~J>O) 

Fl(w) : lim [m W, (v. s*)l 

-q2, 

w fixed 

and 

F2(w) I l’im [II W2(v, q2)1. 

-qL 

o fixed 

(2.15) 

A convenient combination is 

FL(w) - F,(w) - l/2 o F2(w). (2.16) 

(2.12) 

(2.13) 

(2.14) 
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In the region w>l one has the condition F,, FL 2 0, which follows from 

the positivity of the cross section. The Cal Ian-Gross relation 2o for 

theories which scale is F 
L 

= 0 (F, = 0) for currents built entirely 

from spin l/2 (spin 0) fields. 

For annihilation (recall ~‘0) 

F, (0) : lim [m U ] (h, cl’)1 (2.17) 

o fixed 

and 

(2.18) F2(w) e lim [-,I ij2 (v, q’)]. 

A- 

w fixed 

Again it is useful to consider a combination 

F,(u) : T, (0) + l/2 w F2(w). (2.19) 

As in inelastic scattering one has a positivity condition F,, FL ‘0 

valid for O~w<l. Also FL = 0 (i, = 0) in scaling theories with a 

current built from spin l/2 (spin 0) fields exclusively. [Note the sign 

difference between the definitions(2.16) and (2.19).] 

For completeness we recall the annihilation cross section in the 

center-of-mass system (Bjorken 1 imi t) 

d2; 
= J!J& [F, (w) (I 

dud case q2 
+ cos2ec) + FL(W) (l-cos28c) I (2.20) 

showing the characteristic angular dependence for currents bui It from 

spin I/? or spin 0 fields. 
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I I I. Perturbation Theory Results 

In this section we identify and calculate those diagrams in the 

neutral vector glum model (massive QED) which make leading contributions 

in the Bjorken limit to the inclusive annihilation process e-+ e%+X. 

I,3 
Previous calculations of inelastic scattering in the neutral vector gluon 

mode I , as well as scattering and annihilation calculations in y 
5 

and 

5- 1 I 
other field theories, enable one to anticipate that Bjorken scaling will 

be broken by the presence of In q2 terms. This occurs because massive 

QED is a renormalizable but not a superrenormalizable theory. 

A complete calculation of all term5 which survive in the Bjorken 

limit is hopelessly difficult. In all our work we make a leading- 

logarithm approximation. Namely, in each order of perturbation theory 

we compute those terms with the highest power of In q2 and then sun the 

result to all orders in perturbation theory. 

It should be emphasized that here, as in our previous work, we make 

the leading-logarithm approximation for each exclusive channel n, 

e-+e+4+n. \.le then compute the inclusive process e-+e++P+X by summing 

the result over n. 

Theoretical calculations can also be carried out using a different 

leading-logarithm approximation. Namely one can first form the inclusive 

corss-section by summing over n and only then in each order of perturba- 

tion theory make a leading-logarithm approximation. Obviously one should 

compare results from the different leading-logarithm approximations only 

in those domains of common applicability. A detailed discussion of this 

and related matters has already been given in Sec. I I I of Il. Let us, 
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however, briefly remind the reader that the leading logarithm approxima- 

tion which we “se picks out a well defined set of diagrams which in fact 

contain the key difference between the neutral vector and the neutral 

(pseudo) scalar models. Moreover the sum of the terms which we caicu- 

late has an acceptable analytic form (no ghost cuts or singularities) 

and a simple physical interpretation. 

A convenient frame for the annihilation calculation is 

P = (I, 6, m2) (3. i, 
q = (co-‘, a, q2,) (3.2.) 

where we have used the (+, L, -) notation for four vectors [(v+, ;, v-) = 

(vO+ v3, VI, v2, vc- v3)l. Recall also from Sec. II mv = -P.q CO, 

w = Zmv/(-q2)>o. 

Labelling of the additional emitted particles is as follows. The 

leading diagrams contain no additional fermion-antifermion pairs besides 

the one required to produce the detected antifernion. We call the accom- 

panying fermion P’, 

~+I 2 
P’ : (“1, $1, PI-) = (“1, Ft. “‘:‘: ). 

Emitted neutral vector mesons are label led by 

I?+;. 
2 

ki = (ui, k’i, ki-) = (ui, i;i, I ). 
“i 

(3.3) 

(3.4.) 

In this frame we pick out the structure functions as follows: 

nw 
’ -11 = AFT (v, 02) (3.5.) 

1; -- 
7 

= qzo2 r F (Li, 0’). 
h L (3.6) 
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A. Born Term 

For the Born diagram, Fig. 7, one has 

FB 
1 

= + 6(1-u) (3.7) 

LB 
L 

= 0. (3.8) 

Even for this simple diagram it is possibie to find some insights into 

the approximations which are valid in higher orders. According to 

Eq. (3.5) 

FE 
I -t 

du’d2P’ 
“I ‘6(;; ’ -1-u’) a*($‘) 

) Tr[Cd-d v’(~‘+m) ~‘1. 

The trace is easily evaluated and equals 

4 (+ PI-+ + m2u’+m2) 

(3.9) 

from which it trivially follows that 

FB 
1 

= (+ PI-+ + mAJ’+m2)6(~ -1) (q2b) ~-I (3. TO) 

where u’ = &/(q20), P’- = m2/u’ = q2w. Thus dropping 0(1/q’) terms 

one obtains Eq. (3.7). 

We see that P’- was O(q2) while P’+ = O(l/q2). This result 

generalizes to more complicated diagrams as follws. The + -“turn 

brought in by q predominantly follows the P (antiproton) line and.the 

momentum predominantly follows the P’.(protcn) line. 

Let us turn nw to higher order diagrams. In what follws we shall 

reserve more detailed calculations for P.ppendix A and present only the 

resultsand salient approximations in this section. As we mentioned 

above we can lean heavily on our previous work oninelastic scattering 
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in the vector gluon model. 

B. One Meson Production 

Diagrams with one meson in the intermediate state are of the three 

main types shown in Fig. 8. Fig. 8(a) is analogous to the “outer 

rainbow” or ladder diagram for inelastic scattering. We found in I that 

these diagrams, although leading in y 
5 

theory, are non leading in 

massive QED. The same is true for annihilation. We see from Ea. (A.5) 

that the structure function corresponding to Fig. 8(a) contains a single 

power of In q2 with no potential for further powers of In q2 upon inte- 

gration over w. This is typical of all outer rainbow diagrams. They 

form a simple exponential series in e21n (q2/u2), the logarithms arising 

from ultraviolet values of the transverse momenta, ci2 < E$. In fact, 

as in the scattering case, the result for the outer rainbow diagrams 

can be obtained simply from the ‘( 
5 

annihilation result by the replace- 

me” t g2+2e2. [g is the coupling constant in y5 theory, e the coupling 

in the vector theory.1 The rainbow diagrams are leading in the y5 

theory. 

Fig. 8(b) is the analog of the “inner rainbow” diagrams of inelastic 

scattering. Again in the vector theory they are non-leading and form 

an exponential series in In q2 which can be obtained from the y 
5 

anni- 

hilation result by g2+2e2. 

Fig. 8(c) is the diagram (plus its mirror image) which makes the 

leading contribution in O(e2) to the annihilation structure functions 

for the one meson production channel. It is the simplest member of the 

class of leading diagrams and is analogous to the “inner-outer” diagrams 
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we found important for inelastic scattering. From Eq. (A.9) (;~.~e2/16n2) 

F 8(C) (w, 
I 

In q’) = h(l-o)-’ In Lq2(‘-‘)]. 
u2 

(3.11) 

valid for l,l-o>>(u2/q2). The presence of the (l-w)-’ factor in Eq. 

(3.11) enhances the region w‘l and can give a further logarithm upon 

integration over w. In obtaining Eq. (3.11) one may neglect ki- addi- 

tively compared to P’- : q2,. The logarithm comes from a transverse 

momentum integration; in higher order diagrams of this class one also 

picks up logarithms from longitudinal integrations. 

C. Two Meson Production 

Consider next the leading contributions to two meson productions 

which come from the diagrams in Fig. 9(a) and 9(b). Their sum, from 

Appendix A, is 

F 9(a)+9(b) ( 
I 

w, In q2) = h2(‘-~)-’ ‘“3 [s2(r-w)l. (3.12) 
v2 

We see that compared to Eq. (3.1 I) one has gained two powers of In q2 

at the price of a single power of A. By contrast the 0(X2) generaliza- 

tiomof Figs. 8(a) and 8(b) only increase by a single additional power 

of in q2and thus are non-leading by our rules. 

As we discuss in Appendix A, considerable simplifications occur if 

one combines the expressions for 8(a) and 8(b) before carrying out the 

phase space integrations. After a mare difficult calculation one finds 

that diagrams g(a) and g(b) separately contribute (g’l’ gauge) Z/3 and 

l/3 respectively of the answer quotedin Eq. (3.12). The fact that the 

graphs combine to a simple eikonal-like result is completely character- 

istic of massive QED. In particular we note that the ~‘1 enhancement 
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is a result of the (approximately) freely propagating antifermion; the 

(l-w)-’ factor can be directly traced to the (P-q)‘-m’ poie term in 

diagrams 9(a) and 9(b). 

0. General Case 

Having identified the class of leading diagrams we calculate the 

general case for the production of n mesons in 0(X”). The leading 

diagrams are the obvious generalizations of Figs. 9(a) and 9(b) and are 

represented by Fig. 10. The shaded box is meant to indicate the summation 

over all permutations of attachment of the vector meson lines. As 

expected on the basis of remarks above and our work in I, after summing 

over all such permutations of the meson attachments one obtains a simple, 

eikonal-like result. 

Namely when the two groups of vector mesons in Fig. IO contain r 

and J. particles, r+l?=n, we find 

e+r f (a.r) cm, in q2j = A” k e!r! [In q2(‘-w)l 
zn-I 

. (3.13) 
1 

v2 

The integration regions which are important for Eq. (3.13) are as follows. 

Label the two groups of vector masons with and without primes. We pick 

up n ultraviolet logarithms from transverse integrations over the re- 

gions 

zi2 1 E 42, ui (3. ‘4) 

2. 
2 

< o’q2, ui 
I 

I - (3.14” 

and n-l infrared logarithms from integration over longitudinal momenta. 

The important regions for the latter nest according to 
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I 112 
;a’ “. < i Ui-], 

I - 
i+l (3.15) 

1 2 
FF;;T Uj’ 1. El “. 

J-1 
j+ (3.15’) 

The final integrals over u, and u; break into the sum of two terms. 

One is integrated G c ’ < EU with 
llq ---I- 1 

u , fixed by the delta function 

u = I-w; for the other let u,c u;. 1 [See the discussion above Eq. 

(4.17) in I.] 

Summing the result given in Eq. (3.13) over all allowed values of 

P,r consistent with P+r=n = fixed gives 

f (n) ’ = 2x 
n-i 

I q&y’” [ q’(~-w)l $-jT ( 2x ,,qqy I) . 

(3.16) 

Eq. (3.16) is not the final result for intermediate states with n 

mesons along with the proton-antiproton pair. It is only the contribu- 

tion from the lowest order in the coupling, namely O(h”), which can con- 

tribute to n meson production. For fixed n and higher order in h one 

has vertex and self energy corrections to the order h” diagrams. We 

shall not go through an explicit study as we did in the inelastic 

scattering case since the techniques are 50 similar. Instead let us 

merely state the obvious and analogous results. 

The leading diagrams are of the type shown in Fig. Il. The shaded 

boxes stand for the sum over all permutations of real and vi rtual meson 

emission (absorption) as is characteristic of a gauge invariant vector 

theory. To leading logarithmic accuracy interactions between the meson 

lines can be neglected. 

After evaluating the leading contribution of the sum of all graphs 
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of the type shown in Fig. II one finds a simple result. The result is 

the lowest order result, Eq. (3.13) or Eq. (3.16), multiplied by the 

absolute square of y, (q2). y,(q2) is the elastic form factor evaluated 

to leading logarithmic accuracy in the time-like limit q2e. For the 

space-like limit q2+-- one has 3 to leading logarithmic accuracy 

y, (92) -f 
-q2, 

exp (-h In2 [-q2/u21). (3.17) 

Since 

In (-q* + iE) = ln/q2j C in, 

we have .L 
$, (q’)” j&((q’) = exp (-2X In’ [q*/v’l + 2h T*) 

= exp (-2X In2 [q2/u21) 

to leading-logarithmic accuracy. Thus our final result summed to all 

orders in the coupling for n meson intermediate states is 

T, tn) (w, In q’) = 2X -$-J In [ 
q2(l-04 

u2 I exp (-2X In2 [2) 

$A-! 

n-l 
(2x h~[~y)l) . 

Such a simple result for the higher order radiative corrections 

naturally has a simple interpretation. We see from Eqs. (3.14), (3.14’), 

(3.15), and (3.15’) that the produced vector mesons have transverse 

momenta small compared to q* and small longitudinal (+) momentum fractions. 

Therefore the proton-antiproton pair produced by the external current 

are quite close to their mass shells. Hence it is quite plausible that 

the elastic form factor enters. 

The result given in Eq. (3.18) f arms a simple exponential series 

which is easily summed over P, 



22. 

i, (w, I" 4') = 2?, -+-+ I" I 
q2(l-w) ] 

1-12 

x exp (2h I"2 [q'('-") ] -2h In2[$) 

2 lJ2 . 
(3. '9) 

We note that the presence of the elastic form factor correction in 

Eq. (3.19) provides strong damping at large q2 which compensates the 

growth due to real vector meson production - the sum over n. This is 

physically sensible and necessary and leads to a well behaved total 

cross section as q2+=. 

In particular we note that there is an explicit cancellation of the 

ln'[q2/p2] term in the exponent of Eq. (3.19) leaving as the exponent 

2h 1n[qZ/!J21 I" (1-w) + h ln2(l-o). This means that for the inclusive 

quantity F - (n) ,,in contrast to the exclusive quantities F, , the inner- 

outer diagrams we consider form a series in single powers of In q2. 

This, as we remarked above, is origin of the difference between the 

leading-log approximation we employ and that of Ref. ( e ). The can- 

cellation of real and virtual meson processes has its origin in the 

same mechanism that underlies the infrared region for photons in rmss- 

less QED. 

It remains to calculate F2 by, say, evaluating the u=v=(-) compon- 

ent of iJ"; see Eq. (3.6). Again we spare the reader a tedious repeti- 

tion of a similar calculation in II for inelastic scattering. The result 

is 

F2 (w, I” q2) -I, -(z/Lij i, (0, I” 42) (3.20) 
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or equivalently 

FL (0, 1" q2) 2 0. (3.21) 

where A stands for equality to leading-logarithmic accuracy. 

E. Distribution Properties and lnteqrals 

We conclude this section on sane of the properties of the final 

states which build up the structure function F,(w) in Eq. (3.19). 

The average number of emitted antiprotons is a constant equal to 

one since our leading diagrams contain just a single fermion - antifer- 

mion loop. This is because in annihilation, as for inelastic scattering, 

for a given total multiplicity of fermions plus mesons, diagrams with 

additional fermion-antifermion pairs, either from closed loops or from 

i! graphs, are smaller by at least a logarithm in each order of perturba- 

tion theory than the diagrams illustrated in Fig. Il. 

As a check on our results let us compute the fermion multiplicity 

n(P) by integrating over the inclusive cross section. 

c<n(!)-(5jl~ {do ( dw & ] 

I-:$ 

JO 

= 

f 
dww2?, (w) (3.22) 

I LIZ' 

F 2 q 

where we have used Eq. (2.20) and used the leading logarithm result 

FL (IA) A 0. Using Eq. (3.19) the integral in Eq. (3.22) is easily 

carried out: 

<<n(p)>> A I. (3.23) 
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Note that this integral is just the sum rule quantity i2 defined by 

Eq. (6.2) of I. 

Similarly one can calculate the fraction <w(p):, of the center of 

rmss energy JZ which is given to antiprotons 

‘-IL!? 

r E q2 

<O(P)>> = dw w2 2+) G I 

I 
ia 

(3.24) 

This second integral is recognized as the quantity i, defined in Eq. (6.1) 

of I. The fact that the quantities <<n(p)>> and <<w(P)>> are independent 

of q2 even though the structure function F itself does not scale is an 

interesting and non-trivial result. 

We turn now to the properties of the mesons which accompany the 

photon-antiproton pair. The multiplicity of produced vector mesons for 

fixed w is 

-n(vm)> = (1 n ‘Fl(“))/(x F, (“)) 
” ” 

z 2j, ‘“2 [s2(‘-q . 

2 
(3.25) 

Similarly the spread in average number also grows like ln2q2, 

~n(~rn)>~ - <n(vm)>’ = a(vm)> (3.26) 

Eqs. (3.25 and (3.26) are, of course, a simple consequence of the 

Poisson nature of the distribution in n which is manifest in Eq. (3.lE). 

This Poisson structure reflects the fact the in the leading lcoarithm 

domain in which we work one has, after sumnation over all diagrams of 

the type shown in Fig. 11, independent, ““correlated emission of vector 
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mesons, and hence an eikonal type result. 

The average energy fraction of the vector mesons, already known to 

be small by Eq. (3.24), is 

<<(I-o)>> = (Jdw (I-o)w F,)/( i^ do o F,) 

= C(i12/q2) (3.27) 

which reflects the strong peaking of Fl near ~~1. 

It is easy to see from Eqs. (3.14)) (3.14’)) (3.15), and (3.15’) 

that in the center-of-mass system the vector mesons arrange themselves 

in two cones around the proton-antiproton direction. The individual 

vector mesons in the cones are characterized by opening angles 

tan Eli = ECUi) -l/2 
(3.28) 

as in I. [See, too, Fig. 8 in I.] 

The average transverse momentum of a vector meson with respect to 

its “parent ” fermion is 

$2, = cqi (l-o)/(‘” [q2(l-q) 
LIZ . 

(3.29) 

Thus on average the transverse momentum grows linearly with q2 except in 

the threshold region (l-w) = O(p2/q2). This growth reflects the absence 

of a transverse momentum cutoff in perturbation theory and undermines 

Bjorken scaling. 
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IV. Reciprocal Relation and Analytic Continuation 

In this section we discuss the relations which hold between our 

leading-logarithmic approximations to the structure functions. For 

convenience we will continue to discuss the spin l/2 theory for which 

FL = FL ; 0. Essentially identical results hold for spin 0 nucleons 

(massive scalar electrodynamics). 

A. Analytic Continuation 

In a scaling theory the statement that the annihilation structure 

function is the analytic continuation in w of the inelastic scattering 

structure function implies 

-+) = F,(w) . (4.1) 

[The minus sign in Eq. (4.1) is purely conventional. Note that the 

positively conditions mentioned in Sec. Ii only apply in the physical 

regions of Fl and F,.l Eq. (4.1) has the following interpretation. 

One first evaluates lim (m W,(u, q')) 5 F (w) in the Bjorken limit 
I 

with w,l and then analytically continues the result to values 0~61 

and compares to +). Naturally if one evaluates lim(m W, (%J, q:)) 

for w<l the result is trivially zero; this, however, is irrelevant to 

the continuation of F,(w). 

As discussed in Sec. II the continuation is conveniently done 

along the path s=const. Therefore since ti = S/(-q2) + I as o varies 

we may expect to encounter singularities in q2. When this happens, as 

discussed in Sec. II, we must separate q2 + qf, q: and go around the 

q;> 4; singularities in complex conjugate ways. One must therefore 

introduce twin scaling variables o, = s/(-q:) + I and w2 = s/(-q:) +I 

and interpret Eq. (4.1) as 
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-F,(w) = lim F, (ti, = u + ic, 02 = w- ic), (4.2) 
E’O 

where on the right hand side the limit is taken after the continuation 

is performed. 

In renormalizable field theories which characteristically break 

strict Bjorken scaling because of In q2 structure one clearly encounters 

singularities in q2 during the continuation from scattering to annihila- 

tion. Let us now study this explicitely in the vector gluon model. 

So far we have not distinquished the initial (q:) and final (9:) 

photon masses in our work. It is easy to see, however, that the 

scattering function 

F, (w, In (-q2)) = s In [-q21(~e’)l 

Xexp { 2h I”2 [-q2(+ -2A I”2 &I 

!J* u2 

computed in I for q2c0, ~11 is more property written 

(4.3) 

F, =$ In r-l] exp 2A In 
i 

2 
>;* 

[ 
-3 -I] (4.4) 

iI2 

where 5 = -9; (~~-1) = -9: (to,-I), aside from O(m2/q2) corrections. 

I” Eq. (4.4) all logarithms are real for s,O, -qf>O, -422’0. Similarly 

in place of Eq. (3.19) one ought to write 

F, =f$ I” $1 exp 
i 

q* 
2X ln*[-$ -h In2 [-$1-h In2 $1 j 

(4.5) 

where all logarithms are real for s, q2, q2 >O. 
1 2 

In the co”tinuation’Lf Eq. (4.4) to time-like photon masses the 

correct phase choices are 
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-9: 
I” C-1 4 

+ In (-) -ix 

u2 u2 

I” ( 
-s; 

2 

-) 
q2 

+ In (--) +in 

a2 P2 
(4.6) 

Therefore dropping -I? compared to ln2[q2/~21 we see that the analytic 

continuation condition is satisfied. [It might be argued that in lead- 

ing logarithm calculations one may neglect +iT compared to I” [lq21/u2], 

and hence one need not be concerned with iE prescriptions. Such an 

attitude is improper, however, since the neglected next-to-leading 

logarithmic powers are real and therefore cannot cancel spurious 

imaginary terms which arise if the branch points are not circumvented 

properly.] 

6. Reciorocal Relation 

Putting aside matters of analytic continuation we see by inspection 

that Eqs. (3.19) and (4.3) are connected by a reciprocal relation 

F, (0. In q2) 1 2 F,(;, In (-q2)). (4.7) 

To establish Eq. (4.7) we must make the approximation 

1” [22(; -I)] = I” r-q& - l”(U) 

; I” [$ (l-w)] . (4.8) 

This approximation is acceptable within our leading-log philosophy since 

even though we have treated ln(q2/u2) and In(w-I) consistently on the 

same footing we have not done the same for any In(w) factors. 

This reciprocal relation, first established in the Mellin trans- 

form space for the rainbow diagrams in y5 theory, was first stated in 
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the form of Eq. (4.7) by Gribov and Lipat,ov in their extensive studies 

8 
of scaling in perturbation theory. The relation holds on a diagram by 

diagram basis. For this reason it is unaffected by the fact that the 

authors of Ref. ( 8 ) use a different leading log criterion which picks 

out a different (wider) set of diagrams than the one we select. It is 

easy to see by studying low order examples that for a given graph the 

reciprocal relation, Eq. (4.7), breaks down at a sub-leading- 

2 
logarithm level. [Recall that the same is true for the Callan-Gross 

and other formal light cone-parton model relations.1 

Unlike analytic continuation, which cannot be checked experimentally, 

the reciprocal relation (4.7) connects F, in its physical region to 

F, in its physical region. It is tempting therefore to abstract the 

reciprocal relation from its perturbation theory origin and suppose it 

true for the real world. This is a delicate matter, however, since the 

reciprocal relation must fail for truly composite systems. [ We d iscuss 

this further in Sec. VI.] 

C. Alternate Technioue 

In our work so far we have studied the reciprocal relation and 

the analytic continuation question by actually carrying out all momentum 

integrations. To extend this study to other classes of diagrams and 

other theories it is more efficient to usa the method we discuss nw 

which allows one to make the comparison at the integrand level after 

establishing certain approximations. 

The method involves only a change of frame for the scattering 

calculation from the frame of 0 
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I -o! 
-1 

dxld22, 
(l-w-l)2 (1%-l) 

x, (l-w 
-1 

-x,P 

5 (-q2&; 
x,(1-w 

-1 
-x1)) 

0 (4.14) 

After a change of variables x, -T -u,, 2, --t z1 in Eq. (4.14) and taking 

account of an overall sign (a J ace ian factor) because of the delta b 

function,we see F, - (8a) and F (12) 
I 

obey the analytic continuation rela- 

tion, Eq. (4.1). 

To see the reciprocal relation perform the scaling 

x1 
+ 0” 

;2 ~ w-l 22 
I’ I I 

(4.15) 

in Eq. (4.14). By inspection one then establishes the reciprocal rela- 

tion, Eq. (4.7). 

It is easy to extend this to the general diagram. Using an obvious 

notation one has 

F, = fl” 
s 

ti #,? -1 

xl 
i 

S(l-W -~Xi) S(Ebi) 

i=l 

X6(-&rza;) f,,(p.Ii; Zi.Uj) (4.16) 

for inelastic scattering. In Eq. (4.16) the index i runs over all 

final fermions and mesons. For the corresponding annihilation diagram 

one has 

J dui 
F,=f: - 

ui 
d2ki 5(0-‘-,-XI+) 6 (2) (ZL) 

i=l 

X6(q2,-CkT) f,,(-P.ki;ki.kj) . (4.17) 

where i runs over all fermions and mesons which accompany the detected 

antiproton. 

In writing these equations we have neglected mass squared terms in 



the dynamical term f. This is appropriate in the Bjorken scaling limit. 

Mass terms are necessary only to provide cutoffs (scale factors) for 

logarithmic integrations. After a scale transformation in Eq. (4.14) 

Xi -f WU/, pi -f O-“2 i;i, (4.18) 

a generalization of Eq. (4.‘3), direct comparison to Eq. (4.15) shows 

provided that the reciprocal relation holds 

fN(p’ei; Zi’ “j) -L oN- ” fN(-P.ki; ki.kj) (4. ‘9) 

The key point is that after the transformation (4.18) the phase space 

factors and delta functions in Eqs. (4.16) and (4.17) are identical. 

[Recall also one changes -q2 + +q2 in the reciprocal relation.] In 

32. 

Appendix B we give an additional example of these scaling techniques. 

D. Other Graphs and Other Field Theories. 

We have studied in Section III the “inner-outer” graphs, which are 

the leading graphs in massive QED. This class of graphs satisfied both 

analytic continuation and the reciprocal relation. I” Y 5 theory, which 

is the other interesting renormalizable theory, these inner-outer graphs 

are negligable since they are down by O(qe2). 

Another interesting class of diagrams is the outer rainbow (ladder) 

graphs. We studied in massive QED a specific example above in part C. 

Any specific diagram of this type differs from the same diagram in y5 

by the replacement g* + 2e2 to leading-logarithmic accuracy. The rain- 

bow graphs has been extensively studied in y 
5’ and both analytic con- 

tinuation and the reciprocal relation follow. Therefore both follow 

in massive QED as well. Recall these diagrams represent the leading 

non-diffractive diagrams in. Y 5 theory, and the leading non-diffractive 



diagrams in the limit U-M (~0) for scattering (annihilation) in massive 

QED. 

A new class of diagrams (“towers”) which we now discuss are the 

leading diffractive (same for proton or neutron targets) graphs in both 

theories. Figs. 13(a) and 13(b) for y5 theory and the analogs 13(c) and 

13(d) for QED are the lowest order examples of this class. Figs. 13(a) 

and 13(b) are explicitly treated in Appendix B. Graphs 13(a) and ‘3(c) 

are O(~21n2[-q2]) while graphs 13(b) and, in the Feynman gauge, 13(d) 

are O(X2’n[-421). Higher order graphs of the types (a) and (b) form a 

series in A21n2[-q?] and are therefore as important in the leading log 

8 10 
sense as the rainbow graphs. Gribov and Lipatov and Mason have treated 

the entire class in detail. 

Both relations between inelastic scattering and annihilation obtain 

for both theories. It is perhaps amusing that these relations also 

hold for Figs. 13(b) and 13(d), even though they are non-leading. If 

we can abstract this result, the two relations are properties of the 

leading behavior of any given graph. 

22 
Superrenormalizable theories such as X$3 or a cutoff theory such 

6 
as the Drell, Levy, Yan y 5 theory, are qualitatively different than the 

renormalizable theories discussed above. This is because their more 

convergent behavior gives Bjorken scaling. 

For the m3 theory, intuition about momentum flow is a reliable 

guide to the behavior of any particular diagram. Each additional pro- 

pagator in an infinite momentum path gives damping by a power of q2. 

This means that diagrams in which the interacting boson propagates 

freely, as in Fig. 14, lead to O(q*); form factor ccrrections to the 
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external vertices are also absent to O(q-‘1. This simplifies the 

analyticity properties of the structure function F 
L 

and FL (FT and FT 

are zero to O(q-‘)) and analytic continuation follws as previously 

outlined. The reciprocal relation for FL and FL is 

FL (w) = ; FL (w-l), (4.20) 

or in terms of F2, 

F2 (w) = -o-~F~ (o-l). (4.2’) 

This relation holds in O3 23 at least for the ladder diagrams. 

Cutoff renormalizable field theories, which are non-local, are 

more complicated, and work is presently in progress on the questions 

of analytic continuation and the reciprocal relation. 



v. Longitudinal Impact Space 

In a previous study of scaling in the y5 field theory a ongltudlnal 
3,1q 

impact parameter (LIP) representation was introduced. This representa- 

tion was both given a physical interpretation and shown to be convenient 

for calculations. This section is in two parts. First, we continue the 

discussion of the physical interpretation of the LIP representation by 

showing that it is a natural extension of the Regge description of 

scattering to the Bjorken region. Second, we show how this representation 

provides a convenient and economic way to study the reciprocal and analytic 

continuation relations between the deep inelastic and the annihilation 

structure functions. This discussion is general and is not restricted 

to perturbation theory. 

A. Longitudinal Impact Parameter Representation 

We begin with a brief review of the representation itself. We 

suppress possible explicit dependence on In q2 (present in perturbation 

theory) , and without loss of generality, we consider the F, and F, 

structure functions only. [We drop the subscript 1 throughout this 

section.] For the scattering process define the transformed structure 

function F(T) by the Mel lin transform 

F(r) = dx x~-’ F(w). (5.1) 
0 

where x = l/o. In the usual definition of the Mellin transform the 

integral runs from 0 to m. In writing Eq. (5.1) we have integrated 

only over the physical range of x as is natural. 

The inversion formula to Eq. (5.1) is 



c+i- 

F(w) = 
J dtiT 

F(T) 
2ni 

c-i== 

(5.2) 

where c is real and the contour is to the right of all singularities 

of i(,,. 

That T is an impact parameter may be seen by analogy to the usual 

transverse impact parameter bL. First we rewrite Eq. (5.1) as a Laplace 

transform 
m 

$1 = J dz e“’ F(e’) 

0 

(5.3) 

where 

-Z 
x=e . 

Such a Laplace transform is analogous to the Fourier transforms one 

writes in the usual eikonal representations with T playing the role of 

the impact parameter c . This analogy is even sharper if we recall that 

the two sets of variables 

(b, = El/p+, b2 = E2/p+, T = K3) 

and 

(P,’ P2’ - z = In (p+/m)). 

form conjugate sets 

(5.4) 

(5.5) 

[b,, p,l = [b2, p,l = [T, -21 = -i. (5.6) 

In Eq. (5.4) K3 is the generator of boosts in the 3 direction and E,, E 
2 

are Euclidean translation operators in the I, 2 directions. [See Chang 

and Fishbane, Ref. (lo), for details.1 

The product bipi appearing In the commutators(5.6) has dimensions 

of angular momentum. Therefore TIZ has that same dimension. However , 

according to (5.5) z is dimensionless, so that T is itself an angular 
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momentum. 

Now it 1s clear from Eq. (5.2) that if we push the contour to the left 

and cross, say, a pole of F(T) at ==a we will have 

c’+im 

F(w) = J (5.7) 

t’-im 

where Y is the residue of the pole. In the limit UP+= the pole term will 

be the leading part of the amplitude. 

Consider now the usual Regge description as applied to the forward 

virtual Compton amp1 itude T’“(v, o, q2, q2). The Compton amplitude may 

be expanded in invariants T l, T2 in complete analogy to Eqs. (2.5a)-(2.5~). 

For simplicity we work only with Tl and let T(v, q2)~mT,(v, o, q2, q2). 

Recall, by virtue of Eq. (2.7), 

T(“,q’) = T(-“, q2) (5.8) 

The standard Froissart-Gribov definition of the positive signature 

analytically continued t-channel partial wave amplitude is (recall t=o) 

m 

T(j,q’) = i 
s 

ds’ Qj(l- 
S)C 

discs T(v’, q2) + disc T(v’, q2) 
U s 

5 
0 (5.9) 

where 

disc” T(-v’, q2) = disc T(v’, q2) = m W1 (v, q2), 
s (5.10) 

and 

v’ = (s’- m2- q2)/(2m). (5.11) 

The corresponding Sommerfeld-Watson transformation, after picking up a 

Regge pole at j=a, has the fcrm 
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T(v, q’) = - 
+ &-) + Pj (I- +-$ )] T(j, q2) 

2 2 sin 7 , 
CR-i” 

-m(q2) (2a + 1) 
ip, C-1 + g-29 + Pa (1 - &)I 2 

2 sin TT a 

In the limit s*, q2 fixed 

T (v, q2) = -l7 

Therefore 

c = r(2a + 2) 
a Za[r(a+l)12 

4 discs T(v, q:) = C,t?(q2) -?- 

i I 
+ . . . . 

2m2 

(5.12) 

(5.13) 

(5.14) 

If we impose Bjorken scalingon Eq. (5.14), in the region o= (s/-q2)+l>>l, 

then the residue function 8 must have the form 24 

2m2 a 
Ca8(q2) = y - ) -92, 

1 I -92 

where y is independent of q2. Thus 

F,(w) = lim 
i 

i discs T(v, q ) 21 =.f(u)a 

v== J + . . . . (5.15) 

IA>>, 

The connection with the longitudinal impact parameter representation 

of Eq. (5.7) is now obvious. Poles in the variable T occur at -;=a(O) 

where n(0) are the positions at t=O of the even signature Regge poles 

which can be exchanged in the t-channel of Compton scattering. The 

residue of the poles in T space are the Regge pole residues after a 

(q2) -u dependence has been factored out. [Strictly speaking since the 

expansion in Eq. (5.9) is in terms of powers and the expansion in Eq. (5.12) 

is in terms of Legendre functions, a pole at ~=c1 corresponds to a set of 
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Regge poles at ;=i, a-l, a-2, . . . and conversely.] The expansion of 

the inelastic structure function F(o) in terms of a few leading poles - 

or cuts in T is, of course, only relevant to the u>l region. This 

does not prevent us from talking about a LIP representation, Eqs. (5.1) 

and (5.2), for any value of w, however. 

B. Relations in ? space 

In a manner which is completely analogous to what we did in 

part A we define a transform F(T) of the annihilation structure function 

‘i (T) = 
i” 

dw ,‘-I : (w), (5. &! 
,: 
0 

As we did for scattering, we integrate only over the physical region 

for annihilation. For annihilation, since o<o<l, there is no @>I re- 

gion where we can think about the dominance of one or a few 7- poles. 

One may ask what relation is satisfied by the Mellin transforms F(T) and 

F(T) if the analytic continuation relation (4.1) is satisfied. It is 

obvious without calculation that there is no relation in general since - 

one is integrating F(w) over l~<m in Eq. (5. I) and F(w)=?(w) over o<w< 1 

in Eq. (5.16). We return to this point below, however. 

The reciprocal relation (4.7) is a physical region equation so we 

expect a relation in the LIP space. Using Eq. (4.7), 

I I 

F(T) = 

s 

dw u’-’ F(w) = 
s 

do or-’ F(i) 

0 0 

= ; (r-1) . (5.17) 

The converse of this relation is also true. That is, if F(T) = ;(T-l), 

then the reciprocal relation F(w) = w -I F(w-‘) is satisfied. 
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As an example consider the outer rainbow (ladder) diagrams in y 
5 

theory. These were conveniently calculated in the LIP space and for 

the O(g2”) graph the result was 

and 

where 

;(n) CT) = 1 a ” 
20 ml I 1 

F(n) 
CT) = & [T&J 

a=& 2 
I”-$- 

(5.20) 

and 

;=& 2 
I”$ . (5.21) 

Clearly Eq. (5.17) is satisfied and hence the reciprocal relation (4.7) 

follows. 

(5.19) 

Consider now the combination of analytic continuation and the 

reciprocal relation. Eliminating F(w) between Eqs. (4.1) and (4.7) we 

have a condition on F(o) itself, 

F(w) = -A F(A). (5.2) 

We now state a theorem: If the transform C(T) satisfies F(T) = 

;(-?I), and moreover if F(r) has only isolated poles and/or essential 

singularities in 7 then F(w) satisfies Eq. (5.22). [By making the for- 

mal transition from Mellin transform to Laplace transform as in Eq. (5.3) 
. _ 

I 
and by shifting the origin in F(T), G(T) : F(T- F), then the statement 

of the theorem is changed as follows: Let G(T) and G(‘f) be Laplace 

transform pairs. Then if G(T) is even(odd) in 7 and moreover has only 

isolated poles and/or essential singularities in T, the” G(z) is odd 

(even) in 2.1 
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The proof is straightforward. First note that singularities of 

?(-i) come in pairs symmetrically located about the line Pe? = -l/Z. 

Suppose that F(T) has a pole at ~=a with residue y. Because F(T) = F(-~-1) 

we must also have a pole at T= -(a+l) with residue -y. Use the inver- 

sion formula Eq. (5.2) and close the contour to the left picking up the 

singulari ties at ~=a, -a-l as illustrated in Fig. 15. One finds 

F(w) = Y(IL~ - w 
-a- 1 

) (5.23) 

which satisfies Eq. (5.22). The result may be immediately extended to 

a sum (finite or infinite) of simple pole singularities of P(T). Since 

second order and higher poles can be build up from a coalescence of 

simple poles and a” isolated essential singularity is just a” infinite 

order pole the proof holds for such cases too. Hence the theorem is 

proven. 

It is easy to see by taking as a” example E(T) = (~(~+l))-l’~ that 

the hypothesis of no branch points is necessary for the theorem. Like- 

wise the hypothesis of isolated singularities was clearly used in our 

constructive proof 

The converse to this theorem is that given the relation (5.22) and 

some restriction on the class of functions F(w) one must have F(r) = 

L(--r-I,. However, we are unable to give at this time a satisfactory 

characterization of the restriction except the too “arrow one that F(o) 

is the sum of terms of the form yw’ . 

Ey inspection of Eq. (5.18), th e result for the rainbow graphs in 

y5 theory, we see that the hypothesis of the theorem art3 satisfied, hence 

we may conclude that the self-reciprocal relation (5.22) is obeyed. 
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In the same spirit we state a final theorem which applies to the 

analytic continuation relation: If F(T) and F(T) have only isolated 

poles and essential singularities and satisfy F(-T) = g(T)then the 

analytic Continuation F(w) = -F(o) follows. 

The proof is as above except that we also need the inversion for- 

mula for Eq. (5.16), which is 

c + i- 

F(0) = 
s 

dr LJT F(T)) 
2n1 

c- ia 

where the contour lies to the right of all singularities of F(r). 

Naturally the theorem is satisfied by the example given by Eqs. 

(5.18) and (5.19). 



VI. CONSEQUENCES 

In this final section we discuss further the reciprocal relation, 

Eq. (4.7), and some consequences which follow if it is take” seriously. 

This discussion is subject to the caveat that the reciprocal relation 

cannot be correct as it stands for al I systems. I” particular we can 

expect that the reciprocal relation does not apply to weakly bound 

composite systems like nuclei. By weakly bound we mea”, of course, that 

the binding energy is small compared to the rest masses of the constitu- 

ents. 

One may ask about particles like the proton, pion, etc. We know 

that these particles also are composite systems. They are quite differ- 

ent from nuclei, however, since typical binding energies are of the same 

order of magnitude as the rest mass of constitutents - whether one re- 

gards the hadrons as composites of themselves or of more elementary 

building blocks like quarks. While it is true that there is no compel- 

ling reason why the reciprocal relation, based as it is on perturbation 

theory, need apply to this latter class of tightly bound composite 

systems it will be amusing to see if it satisfied in some approximate 

way, nevertheless. Let us spell our a few consequences. 

A. Multiplicity 

One important experimental number is the average multiplicity of 

hadrons produced in annihilation. This quantity can be expressed as a” 

integral over the inclusive cross-section. The result which we now show 

is that, when coupled with diffractive behavior in scattering, the re- 

ciprocal relation leads to logarithmic growth in multiplicity. 
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We imagir,e we scatter off nucleon targets and are measuring the 

inclusive annihilation experiment, 3- 3 crc~ss section d o/d p, with detected 

“lJCleO”S, and that F 
L 

=:==O. Then 

<“> = ; -1 
T s 

d3p d30 

d3P 

_ - I 
= ‘T s 

d2; 
dwdcos6dodcos8 ’ (6. I) 

We use Eq. (2.20), perform the cos 8 integral, make the one photon 

approximation C = aT/(q2), and find 

8 <“> = - ,,2 
3 aT 

do FT(o) ‘u (6.2) 

2 jm2/q2’ 

8 = - & -1 
3 aT s 

dw FT(l/w). (6.3) 

In going from (6.2) to (6.3) we have assumed the reciprocal relation (47). 

Now diffractive behavior in scattering means that F2 = vW2 = Czconstant 

for large 0, or 

FT (0) ;m;CU. (6.4) 

We see this behavior leads to a logarithmic divergence for small w in (6.3), 

2 <“> = - rra* 
3 aT 

-l c I” ‘I& + const. (6.5) 

Such logarithmic growth is contrary to recent light cone arguments 
25 

which claim that FT(w) is non-singular as w-0 and hence that <n> = const. 

This claim is contradicted in massive QED by the diffractive digrams 

as in Fig. 13(c), which give ~,(IJJ+w-~, and in X$J~ 
23 , where !,(w)-*w-~. 

Logarithmic growth in multiplicity due to the tower diagrams is a typical 

multiperipheral mechanism, and is different from the logarithmic growth 
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of mesons in Eq. (3.25). 

5. ??rton Model 

It is natural to ask what is required to obtain the reciprocal 

relation in the parton model. One finds that it is necessary for f(x), 

the probability of finding a parton constituent in a physical hadron 

having longitudinal momentum fraction x(x=1/0), to be the same function 

as s(o), where g is the probability of finding a physical hadron in a 

one parton state with fraction o of the pat-ton's longitudinal momentum. 

In general there is no need for the functions f and g to be so related. 

However, in perturbation theory the physical hadrons are dressed 

partons (partons = bare quanta) and in the leading-logarithm approxima- 

tion resemble the bare constituents closely enough that f and g are 

appropriately related. 

In the parton model of Berman, Bjorken, and Kogut 
26 

the functions 

f and g, while not giving the reciprocal relation everywhere, are pro- 

portional in the reciprocal regions x+0, w+O and therefore generate a 

logarithmic annihilation multiplicity like Eq. (6.5) given the diffractive 

inelastic behavior expressed by Eq. (6.4). 

C. Dynamical Sum Rules 

Given the reciprocal relation (4.7) and the existence of dyna- 

mica1 sum rules for inelastic scattering, e.g. the Adler Sum Rule 
27 

, 

it is possible to write sum rules for the structure functions of 

annihilation. Recall the sum rules of inelastic scattering provide a 

unique test of the quantum numbers of the constitutents of the hadrons. 

Given these quantum numbers, the reciprocal relation predicts easily 
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measured quantities like multiplicities in annihilation. 

Unfortunately most of the inelastic scattering sum rules involve 

neutrino scattering,for which the annihilation counterpart is at present 

unreal istic. There is, however, one interesting sum rule for inelastic 

27 scattering which follows from combination of the Adler sum rule and the 

exchange degeneracy relation 
28 

, 

I 

(0) - F,e”(w) 
I 

= & . 

0 

Application of Eq. (4.7) gives for annihilation 

j do w [LIP(o) - F,“(w)] = ;. 

0 

(6.6) 

With the help of Eq.(6.2) we can cast Eq. (6.7) into a prediction for the 

difference of proton and neutron multiplicities 

I 
<” > - ‘” ’ = T . P n 

(6.8) 

In obtaining Eq. (6.8) we have used in Eq. (6.2) the value a 
8 

T = q. lTa2 . 

This value and the ion the right hand sides of Eqs. (6.6) and (6.7) 

follow if the popular SU(3) quark model algebra applies. For an under- 

4 
lying SU(2) symmetry let aT = 5 noi and change the right hand sides of 

Eqs. (6.6). I I 
(6.7) and (6.8) to F, 7 and I respectively. 

D. Kinematic Considerations 

The physical region for annihilation, Eq. (2.12), is actually 

rather small (i.e. does not extend even approximately from 0 to 1) for 

most masses and presently available colliding ring energies. To take 

an example, even for q2 = 25(Gev)’ and detected protons, o runs only 



from -. 4 to ‘.52. The accessable region for pions in annihilation is 

much wider for a given q2; we are already seeing evidence for copious 

29 pion production at present machine energies If one wished to 

test the reciprocal relation for pions one would require deep inelastic 

scattering from pions. The possibility of accumulating this data, 

using a region in which one-pion exchange is visible in scattering from 

30 nucleons,has recently been discussed . 



VII. s lmma ry 

In this paper we have studied the annihilation process e- + e+ + 

6 + X in the neutral-vector-gluon model in the Bjorken limit. We find, 

using a leading-logarithm approximation, results which closely resemble 

the inelastic scattering channel e- + P + e- + X. Namely, for each 

definite final state, Bjorken scaling is broken by In2q2 factors which 

exponentiate into an eikonal-like form after summation over final states. 

There is also a close interplay between virtual meson form factor 

corrections and the emitted mesons. Copious “soft” vector meson emission 

characterizes the final states. In particular the multiplicity grows 

like ln2q2. 

We also find, after taking cognizance of the branch points in q2 

which are present because of the scale breaking In q2 factors, that the 

annihilation structure functions can be reached by analytic continuation 

of the inelastic scattering structure functions. 

Finally we observe and study a reciprocal relation which connects 

the annihilation and inelastic structure functions in their respective 

physical regions. This study is facilitated by use of the longitudinal 

impact parameter representation. We show here that this representation 

is a natural extension of the ordinary Regge representation cum Bjorken - 

scaling. 
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Appendix A 

This Appendix contains details behind the results for the low 

order diagrams which we quoted in Sec. I I I. We use the notation and 

Lorentz frame discussed there, and refer to the figures for the momentum 

labels. 

A. Diagram 8(a) 

F 8(a) = ,$ ]i.$+ ?&pQJ2kl G+(o-‘-l-u,-“‘) 
1 

where 

and 

N A Tr {Y) v*(#+k,) u’d’r’ ($+Y,) j 

D = [(P+k,)2 - !&I2 = (s;: + Al)2~ -2, 
1 

(A.1) 

(A.21 

(A.3.) 

A, = u2(l+ul) + m2u; >O 

In writing Eq. (A.2) we have dropped fermion mass terms; they make no 

contribution to the leading logarithmic answer. [Throughout this 

section +, I, - superscripts on delta functions are used for a convenient 

reminder that these delta functions express conservation of +, 1. - 

momentum respectively.] 

Without loss of generality we take 6’ to be in the 2-di rection, and 

find 

N 4 I6 P.k, P’.k,. (A.2’) 

We next perform the Fi and u’ integrations by means of &* and 6- res- 

pectively. For the l, integration there are two regions to be considered: 
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If "7 is comparable to q2, then N=(z:)' and the integration is not 

logarithmic. (f $<,+q2,” ,, then N&T and the integration is 

logarithmic. The latter obviously gives the leading behavior. There- 

fore 

N A 4k; u,P'-I 4 2: 4% (A.2' '.) 

and 

Eq2wu, 

z2 

F 8(a) ; x 

dUIUl 
! 

d$) 
i; 

A+ (lo- ’ -l-u,- m 

I 
[z;+A,12 

; x du,u, In($) G+(l+u,-o-l) 
I 

Thus we find a result which is proportional to a single logarithm. 

Moreover we note that the u, integration is such that the integral of 

F, over w cannot generate an additional logarithm. It is for this rea- 

son we have dropped the w, factor in the argument of the logarithm in 

going from Eq. (A4) to Eq. (AS). 

B. Diagram 8(c) 

- 8(c) The expression for F, is given by Eq. (Al) with 

9 v'(+'+#,) va($') Y'#+$,) yaj CA.~.) 

and 

D = [(P+k,) ' - m2][(P'+k,)' - m2] 

= . ” I -’ @;+A,] [(w-‘-i) &+I. 

Again with ?' in the Z-direction, we have 

:; = 16 P.P' (P+k,).(P'+k,). 

(A.7.) 

CA.~'.) 
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We do the ?' and u' integrals with 6 
I - 

and 5 The 2: integration is 

logarithmic only in the interval v'~<~~~~q~wu,. Knowing this we can 

make the approximations 

P.P' = qL, (P+k,).(P'+k,j: (,+u,) q2w (A.8.) 

so that 

and 

N 4 '+(q2w)' (l+u,) (~.6'.) 

Therefore 

D - u, -' (i;+ A,) (l-0)s'. 

d(zf) 
w(l+u,)u, 

' 
+(W-' 

2; 

(l-w) (j;;+A,) 
-l-u,--&) 

- q+- r du, (l+u,) 6+(u-'-l-u,) l&%. (A.9.) 
!J2 

The remaining integral over u, is done by the 6+ function. The result 

has a single overall power of In q2. Because of the overall (I-W)-' 

overall factor a second logarithmic power can be generated if we inte- 

grate over w in the region w-1. This time, therefore, we are careful 

to retain the u, term in the argument of the logarithm in Eq. (A.9.). 

Thus we have the result quoted in Eq. (3.11). 

C. Diagrams 9(a) and 9(b) 

Although it is instructive to consider these diagrams separately, 

it is most efficient to combine the calculations as we shall do here. 

We have 
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F 9(a) ,9(b) = A’ 
[du,du2du' i 

I -p J u,u2u, j d2k,d2k;d2P' 

x&+(w-’ -,-u,-u2-u') &l+$+$) E-(q'w+--k;-k;) 
I, (a) , (b) 

D(a), (b) 

(A.10.) 

where 

N (a) 6 Tr { (!f'+$,+$,) va(+++,) u&'(~'+~,+~,) 

(A.".) 

D(a) = [(P+k,)? - m2][(P+k,+k2)2 - m21 [(q-Pj2 - m21[(q-P-k,)2 - m21, 

(A.12) 

Ncb) 4 Tr {(++$,+$,) 

(A.13.) 

and 

Db) = [(P+k2)2-m2][(P+k,+k2)z-mz] [(q-P)* -m"l [(q-P-k,)2 -m2]. 

(A.14.) 

We may now apply the lessons learned from the lower order diagrams. 

To extract the leading behavior of the numerators let the - momentum 

introduced by q flow along the P' line and the + momentum flow along 

the P line. One finds 

,(a) - 8('+u,+u2) (l+u,) PI-(Pi-+k;) (PI-+k;+k;). (A.ll'.) 

After identifying the region over which the zi integrations are 

logarithmic one has P'- = q2w>>ki- 50 that (A."'.) may be further 

simplified to 
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N(=) A 8(l+u +u ) (I+u ) (q2tJ3. 
12 I 

Similarly we can simplify Eq. (A.13.) to 

Ncb) 1 8(l+u,+u2) (l+u,) (q2uj3. 

(A.15.) 

(A.16.) 

In the same fashion we exploit the fact that in the important 

integration regions q->iki, P- in order to simplify the last two 

factors of D(a)'(b) according to 

[(q-P)*-m2] [(q-P-k,)2-m ] A [(l-o)q21 [(w-'-l-u,)q'o]. (A.17.) 

At this point we combine the two integrands. We have a situation 

analogous to Eq. (3.8) of I, in which the sum of two diagrams can be 

drastically simplified. The analogous simplification here goes as 

follows: 

8(1+u +u )q2u2 ' 
12 

i( 

I 

= (I-w) (A-u,) [(P+k,)'-&][(P+k2)'-ri?] 
i 

(~.'8.) 

We see that the net result as far as the z, and c2 integrations are 

concerned is a factorization into two pieces, each identical in form to 

the transverse integration for diagram 8(c). 

One completes the calculation as follows: First perform the ?' and 

u' integrations using S 
A 

and 6- respectively. Noting that 
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one obtains 

[(P+kiJ4 - m2] = ui-‘(rt;+ Ai) (A.19.) 

F 9(=)+9(b) ; 2x2 1 
I 

$+A, ) 

1” d2k 
x2’ 

I $+A2) 

Sf(U 
i;? 

-‘-1-u,-“,-a(--). (A.20.) 
ll 

The leading logarithms come from u 24~<<q2uui; we call these ultra- 

violet logarithms. Because of the limits on the lithe b+ argument 

simplifies to S+(o -I..,- u1-u2). The remaining longitudinal integrations 

are strongly coupled. In particular the denominator factor (~1 -‘-I-“,) = u2 

shows the u2 integration islogarithmic over the interval p2/(Eq2)cu2czu,; 

we call this an infrared logarithm. The final ul integral is performed 

with the aid of the 6 + function, which by now takes the form 6+(w -‘-l-y). 

The final result is given in Eq. (3.12). 
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Appendix B 

In this Appendix we verify the analytic continuation formula 

Eq. (4.1) and the reciprocal relation, Eq. (4.7), for the lowest order 

“diffractive” diagrams illustrated in Figs. 13(a) and 13(b). These 

figures are drawn for the scattering case; their annihilation analogs 

are obvious. 

For Fig. 13(a) we have (recall -q2 E Q2>O) 

13(a) 1 (92) 
F1 =-$- 

dx,dx2dx’ / 

321~~ 
/ d29,,d222d2p’ 

x,x2x’ J 

x 6+(1-o-’ 

;I’ 2 3 
-x1..xl-x2) &;1+;l+;2) 6-(,,,Q2 - - - w!m - 2) ! 

x’ x, x2 D 

where 

) 

2+“* ki = (Xi, 2, +--) 
I 

(8.1.) 

and 

N ; Tr by5 a’~,\ 
i 

Tri $2 v’Cb’-b+b,) y5&p5 (b’-a+b,) Y’ 1 

; 32 P.P’ [Z2.(p’-p) &;(p’-P) +“,.!L2 p.P’l (8.2.) 

D = [(p~-p)2-~2]2[(p’-p+~l)2-m212 

A (2 p.p’)2(-2p.p’-2p.E1+2 p’.i’)*. (B.3.) 

The factor N/D in Eq. (B.I.) is the function f3 we discussed in part C 

of Sec. IV. We want to simplify f3 keeping only those pieces which 

make maximal logarithmic contributions. 
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Rather than doing a rigorous mathematical exploration of all the 

regions over which f is integrated, we present here an analysis based 

on the physics of momentum flow. This analysis is supported by a more 

careful study. The large minus momentum introduced by q will be pro- 

portioned between k, and k2 in all possible ways. However, no more 

than an E fraction of q- can leak through the meson line p’-p and end 

up on the fermion line p’. This follows because any larger leakage 

will make the meson propagator large and hence suppress the result. We 

conclude therefore that no component of p’ is large. Therefore since 

q-=O(Q2) we can anticipate 

i,‘Q2. P’Q,. P’Q2. p’.Q 
1’ 

p”Q 
2 = O(Q’) (B.4.) 

and 

p’.p = O(1). (B.5.) 

Therefore 

f3 (P.P', P'E,, P'i2; ',.C2) q ; 

; 
B(P.P’)Q~.(P’-P)Q;(P’-P) 2i2.(p'-P) 

(P.P')*[2L1.(P'-P)12 (P.P'b."(P'-P) 

For the annihilation diagram analog we have 

(8.6.) 

F 13(a) & I (A) 
* du,du2du’ 

1 .2 326 u,u2uI 
dik, d2k2d2P ’ 
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xG+(w-%-u~-“,-u2) d(F+Z,+K2) 

$ P 
5-(q2, - _ - l. - 3 ) 

u’ x, x2 

%f3(-P*P’, - P.k,, - P.k2; k,.k2) (8.7.) 

Again after a simple consideration of momentum flow 

f3(-P-PI,-P.k,,-P.k,;k,*k2) ; 

P.P’ 
j $2 kl 

/ 
& -i 

4 
.i 

. \A! 

p,2i ,i;* : 
I I _- 

1 ul :’ 
I--! 
\“, f 

(8.8.) 

To establish analytic continuation one need only make in Eqs. (8.1.) 

and (8.6.) the variable changes xi+-ui, zi + L, x’ + -u’, $1 + 61. 

To establish the reciprocal relation we perform the scalings given 

in Eq. (4.18). One finds 

2 - 
- i2 AU2 

2 k2 -- 

p.p’ i,- P.P’ - 
kl (8.9.) 

which agrees with Eq. (4.19) since N=3. This completes the proof. 

If one actually carries out the momentum integrations in Eq. (B.l.) 

after having approximated the integrand according to Eq. (8.6.) one finds 

the following. One finds two (nested) ultraviolet logarithms coming from 

the .Ll and L 2 transverse integrations. The longitudinal integrations 

are not logarithmic. Thus the diagram is ?(g41,‘C.2) Gth no special 

enhancements in o. This graph is therefore of the same size and import- 

ance as the O(s4) outer rainbow (ladder) diagram. 
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The other O(g4) diffractive diagram is shown in Fig. q(b). P 

similar analysis shows that this graph contains only a single power 

of In Q2. Both the analytic continuation and reciprocal relation can 

be established by the same techniques as we have used for diagram 13(a). 
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Figure Captions 

I. Three physical processes considered in the text. (a) inelastic 

scattering, (b) three-body annihilation, (c) ordinary annihilation. 

2. The physical regions for the three processes illustrated in Fig. I. 

3. The Compton amplitude. Various discontinuities of this amplitude 

control the physical processes of Fig. I. 

4. The discontinuities of the Compton amplitude which give the physi- 

cal processes (a) - (c) respectively in Fig. I. 

5. The positions of the cuts for the physical processes in Fig. I. 

and the paths which must be followed in taking the discontinuities 

in Fig. k. 

6. The physical regions for the processes similar to those in Fig. I, 

but with proton, antiproton interchange. 

7. Born diagram for annihilation. The heavy line indicates the detected 

particle. 

8. O(ei) graphs for annihilation in massive QED. (a) and (b) are the 

analogues to the “outer” and “inner rainbows’, of inelastic scatter- 

ing, while (c), uhich gives a leading contribution, as explained in 

the text, is the “inner-outer rainbow” analogue. The heavy line 

indicates the detected particle. 

9. Two-meson intermediate state inner-outer graphs. To leading- 

logarithmic accuracy, these two graphs combine in an eikonal-like 

fashion. 

ID. The general leading graph without form factor corrections. The 

shaded areas imply that a sum over all orders of connection of the 

vector meson legs is taken. 
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II. The general leading graph including the leading form factor 

corrections. The shaded areas again indicate a sum over all 

permutations of meson emission and absorption. 

12. Lowest order outer rainbow, or ladder, diagram for inelastic 

scattering in massive QED. 

13. Lowest order diffractive graphs. (a) and (b) are in y 
5 

theory and 

(c) and (d) are in massive QED. Diagram (a) is more important 

than diagram (b) by a power of In q2. In tile same way (c) domi- 

nates (d) (Feynman gauge). 

14. The general graph for inelastic scattering which expresses the 

contiguous vertex approximation. The interacting particle is point- 

I ike. 

15. Contours in the T-plane. Ci is the initial contour. Cf is the 

final contour, which encloses the contributions of poles and iso- 

lated essential singularities lying symmetrically about the point 

Re 7 = -l/Z. 
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Errata For 

INELASTIC e-p SCATTERING IN MASSIVE 

QUANTUM ELECTRODYNAMICS 

P. M. Fishbane and J. D. Sullivan 

Phys. Rev. D4, 2516 (1971) 

(i) Fig. Z(c): Interchange kl and k2 labels. 

(ii) Eq. (4.4): Change overall factor from ($bo (3. 

(iii) Change Eq. (A61 to read 

N = 16 

(iv) Change Eq. (A151 to read 

(p+q-k1j2 = x~Q~(~-x~-x~)-~. 

(VI In Appendix B when the “seagull” graphs are included the 

(correct) result becomes 
Y W2(scalar) 1+X 
vW2(spinor) = - 2 . 


